
Solving the BINPACKING Problem

by Recognizer P Systems with Active Membranes

Mario J. PÉREZ-JIMÉNEZ, Francisco José ROMERO-CAMPERO

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence

University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: {Mario.Perez, Francisco-Jose.Romero}@cs.us.es

Abstract. In this paper we present an effective solution to the BINPACKING
problem using a family of recognizer P systems with active membranes, input
membrane and external output. The analysis of the solution presented here
will be done form the point of view of complexity classes.

1 Introduction

P systems are an emergent branch in the field of Natural Computing. This unconventional
model of computation is presented as a kind of distributed parallel computing model and it
is based upon the observation that the processes which take place in the complex structure
of a living cell can be considered as computations.

Since Gh. Păun introduced it in [2] several variants have been considered from different
approaches. A fairly complete compendium about P systems can be found in [3]. Many of
the proposed variants have been proved to be computational complete,their computational
power is that of Turing machines; besides some variants of P systems have been proved
to be computational efficient, they have been shown to be able to solve NP-complete
problems in polynomial time (see [3] Chapter 7).

The solution presented here has been designed through a family of recognizer P systems
with active membranes, input membrane and external output. In particular, P systems
with active membranes are studied in [3], section 7.2. We have followed the ideas and
schemes used to solve others numerical NP-problems as the Subset–Sum in [9] and the
Knapsack problem in [10]. Due to the strong similarities of the design of these solutions
the idea of a cellular programming language seems possible as it is suggested in [12].

The analysis of the presented solution will be done from the point of view of the com-
plexity classes. A complexity class for a model of computation is a collection of problems
that can be solved (or languages that can be decided) by some devices of this model with
similar computational resources. We will study the complexity of the proposed solution
within the framework of the complexity classes in P systems studied in [7] and [8].

The paper is organized as follows: Section 2 recalls recognizer P systems with active
membranes, input membrane and external output. In section 3 the complexity classes
for P systems are briefly introduced. Sections 4, 5 and 6 show a cellular solution to the

414

BINPACKING problem. In section 7 we use a CLIPS simulator for recognizer P systems
with acive membranes to show a session for the BINPACKING problem. Conclusions are
given in section 8.

2 Recognizer P systems with Active Membranes, Input
Membrane and External Output

Definition 2.1 A decision problem, X, is a pair (IX , θX) such that IX is a language over
a finite alphabet (whose elements are called instances) and θX is a total boolean function
over IX .

Definition 2.2 A P system with input is a tuple (Π, Σ, iΠ), where:

• Π is a P system, with working alphabet Γ, with p membranes labelled by 1, . . . , p, and
initial multisets M1, . . . ,Mp associated with them.

• Σ is an (input) alphabet strictly contained in Γ.

• The initial multisets are over Γ− Σ.

• iΠ is the label of a distinguished (input) membrane.

Definition 2.3 Let (Π, Σ, iΠ) be a P system with input. Let Γ be the working alphabet
of Π, µ the membrane structure and M1, . . . ,Mp the initial multisets of Π. Let m be a
multiset over Σ. The initial configuration of (Π,Σ, iΠ) with input m is (µ0, M0), where
µ0 = µ, M0(j) = Mj, for each j 6= iΠ, and M0(iΠ) = MiΠ ∪m.

The computations of a P system with input m ∈ M(Σ), a multiset over Σ, are defined
in a natural way. The only novelty is that the initial configuration must be the initial
configuration of the system associated with the input multiset m ∈ M(Σ).

In the case of P systems with input and with external output, the concept of computa-
tion is introduced in a similar way but with a slight variant. In the configurations, we will
not work directly with the membrane structure µ but with another structure associated
with it including, in some sense, the environment.

Definition 2.4 Let µ = (V (µ), E(µ)) be a membrane structure. The membrane structure
with external environment associated with µ is the rooted tree Ext(µ) such that: (a) the
root of the tree is a new node that we will denote env; (b) the set of nodes is V (µ) ∪{
env

}
; and (c) the set of edges is E(µ) ∪ {{env, skin}}. The node env is called external

environment of the structure µ.

Note that we have only included a new node representing the environment which is
only connected with the skin, while the original membrane structure remains unchanged.
In this way, every configuration of the system informs about the contents of the external
environment.

Definition 2.5 A recognizer P system is a P system with input, (Π,Σ, iΠ), and with
external output such that:

1. The working alphabet contains two distinguished elements YES, NO.

415

2. All its computations halt.

3. If C is a computation of Π, then either some object YES or some object N0 (but not
both) mush have been released into the environment, and only in the last step of the
computation. We say that C is an accepting computation (respectively, rejecting com-
putation) if the object YES (respectively, N0) appears in the external environment
associated to the corresponding halting configuration of C.

This recognizer systems are specially suitable when trying to solve decision problems.
In this paper we will deal with recognizer P-Systems with Active Membranes, Input

Membrane and External Output. Let’s remember that a P system with Active Membranes
is a tuple:

Π = (Σ,H, µ, ω1, . . . , ωm, R)

where:

1. m ≥ 1, is the initial degree of the system;

2. Σ is the alphabet of symbol-objects;

3. H is a finite set of labels for membranes;

4. µ is a membrane structure, of m membranes, labelled (not necessarily in a one-to-one
manner) with elements of H;

5. ω1, . . . , ωm are strings over Σ, describing the initial multisets of objects placed in the
m regions of µ;

6. R is a finite set of evolution rules, of the following forms:

(a) [a → ω]αh for h ∈ H,α ∈ {+,−, 0}, a ∈ Σ, ω ∈ Σ∗, object evolution rules: This
is an object evolution rule, associated with a membrane labelled with h and
depending on the polarity of that membrane, but not directly involving the
membrane.

(b) a []α1
h → [b]α2

h for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Σ, communication rules
(send in rules): An object from the region immediately outside a membrane la-
belled with h is introduced in this membrane, possibly transformed into another
object, and simultaneously, the polarity of the membrane can be changed.

(c) [a]α1
h → b []α2

h for h ∈ H, α1, α2 ∈ {+,−, 0}, a, b ∈ Σ, communication
rules (send out rules): An object is sent out from membrane labelled with h to
the region immediately outside, possibly transformed into another object, and
simultaneously, the polarity of the membrane can be changed.

(d) [a]αh → b for h ∈ H, α ∈ {+,−, 0}, a, b ∈ Σ, dissolving rules: A membrane
labelled with h is dissolved in reaction with an object. The skin is never dis-
solved.

(e) [a]α1
h → [b]α2

h [c]α3
h for h ∈ H, α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Σ, division rules

for elementary membranes: An elementary membrane can be divided into two
membranes with the same label, possibly transforming some objects and their
polarities.

416

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step, one
object of a membrane can be used by only one rule (chosen in a non deterministic
way), but any object which can evolve by one rule of any form, should evolve.

• If a membrane is dissolved, its content (multiset and internal membranes) is left free
in the surrounding region.

• If at the same time a membrane h is divided by a rule of type (e) and there are objects
in this membrane which evolve by means of rules of type (a), then we suppose that
first the evolution rules of type (a) are used, and then the division is produced. Of
course, this process takes only one step.

• The rules associated with membranes labelled with h are used for all copies of this
membrane. At one step, a membrane labelled with h can be the subject of only one
rule of types (b)-(e).

Let us denote byAM the class of language recognizer P systems with active membranes
using 2-division (see [3], section 7.2).

3 The complexity class PMCF

Roughly speaking, a computational complexity study of a solution for a problem is an
estimation of the resources (time, space, ...) that are required through all the processes
that take place in the way from the bare instance of the problem up to the final answer.

The first results about “solvability” of NP–complete problems in polynomial time
(even linear) by cellular computing systems with membranes were obtained using variants
of P systems that lack an input membrane. Thus, the constructive proofs of such results
need to design one system for each instance of the problem.

If we wanted to perform such a solution of some decision problem in a laboratory, we
will find a drawback on this approach: a system constructed to solve a concrete instance is
useless when trying to solve another instance. This handicap can be easily overtaken if we
consider a P system with input. Then, the same system could solve different instances of
the problem, provided that the corresponding input multisets are introduced in the input
membrane.

Instead of looking for a single system that solves a problem, we prefer designing a
family of P systems such that each element decides all the instances of ”equivalent size”,
in certain sense.

Let us now introduce some basic concepts before the definition of the complexity class
itself.

Definition 3.1 Let L be a language, F a class of P systems with input and Π =
(Π(n))n∈N+ a family of P systems of F . A polynomial encoding of L in Π is a pair
(g, h) of polynomial-time computable functions g : L →

⋃

n∈N+

IΠ(n) and h : L → N+

such that for every u ∈ L we have g(u) ∈ IΠ(h(u)).

417

Lemma 3.1 Let L1 ⊆ Σ1 and L2 ⊆ Σ2 be languages. Let F be a class of P systems
with input and Π = (Π(n))n∈N+ a family of P systems of F . If r : Σ1 → Σ2 is a
polynomial time reduction from L1 to L2, and (g, h) is a polynomial encoding of L2 in Π,
then (g ◦ r, h ◦ r) is a polynomial encoding of L1 in Π.

Definition 3.2 Let F be a class of recognizer P systems, f : N+ → N+ a
total recursive function, and X = (IX , θX) a decision problem. We say that
X ∈ MCF (f) if there exists a family, Π = (Π(n))n∈N+, of P systems such that:

• Π is F–consistent: ∀n ∈ N+, Π(n) ∈ F .

• Π is uniform: there exists a deterministic Turing machine that from n ∈ N+ con-
structs Π(n) in polynomial time.

• There exists a polynomial encoding (g, h) from IX to Π verifying:

– Π is f–bounded, regarding to (g, h).
For each u ∈ IX , all computations of Π(h(u)) with input g(u) halt in, at most,
f(|u|) steps.

– Π is X–sounded, regarding to (g, h).
For each u ∈ IX , if every computation of Π(h(u)) with input g(u) is an accepting
computation, then θX(u) = 1.

– Π is X–complete, regarding to (g, h).
For each u ∈ IX , if θX(u) = 1, then every computation of Π(h(u)) with input
g(u) is an accepting computation.

Remark 3.1 In the above definition we have imposed every P system Π(n) to be confluent,
in the following sense: for every input m, either every computation of Π(n) with input
m is an accepting computation, or every computation of Π(n) with input m is a rejecting
computation.

Definition 3.3 The polynomial complexity class associated with a collection of recognizer
P systems, F , is defined as follows:

PMCF =
⋃

f polynomial
MCF (f)

Proposition 3.1 Let F be a class of P systems with input. Let X,Y be problems such
that X is reducible to Y in polynomial time. If Y ∈ PMCF , then X ∈ PMCF .

4 The BINPACKING Problem

The BINPACKING problem can be stated as follows:

Given a set A = {s1, . . . , sn}, a weight function ω : A → N and two constants
b ∈ N, c ∈ N decide whether or not there exists a partition of A into b subsets
such that their weights do not exceed c.

418

This problem can be seen as the situation when we have n items, b bins of capacity c
and we have to introduce the items in the bins.

We will represent the instances of the problem using tuples of the kind
(n, (ω1, . . . , ωn), b, c), where n is the number of items, (ω1, . . . , ωn) are the weights, b is the
number of bins and c their capacity.

We will face the resolution of this problem via a brute force algorithm, in the framework
of recognizer P systems with active membranes using 2-division, without cooperation nor
priority among rules. Our strategy will consist in:

• For each bin:

– Generation stage: Membrane division is used until a specific membrane for each
subset S of the remaining items is obtained.

– Calculation stage: In each membrane the weight of the associated subset is
calculated.

– Checking stage : The condition ω(S) ≤ c is checked for every subset S ⊆ A.

– Transition stage: If the associated subset satisfies ω(S) ≤ c then we introduce
these items in this bin and we repeat the process with the remaining items and
bins; otherwise the membrane is dissolved.

• Output stage: The answer is released into the environment according to the results
in the checking stage for each bin.

Now we construct a family of recognizer P systems with active membranes using 2-
division solving the BINPACKING problem.

Let us consider a polynomial bijection, 〈 〉, between N3 and N (e.g. 〈x, y, z〉 =
〈〈x, y〉, z〉, induced by the pair function 〈x, y〉 = (x + y) · (x + y + 1)/2 + x).

The family presented here is

Π = { (Π(〈n, b, c〉), Σ(n, b, c), i(n, b, c)) : (n, b, c) ∈ N3 }
For each element of the family, the input alphabet is Σ(n, b, c) = {s1, . . . , sn, z1, . . . , zn},

the input membrane is i(n, b, c) = 2, and the P system Π(〈n, b, c〉) =
(Γ(n, b, c), {1, 2}, µ,M1,M2, R) is defined as follows:

• Working alphabet:

Γ(n, b, c) = {zijk, sijk, Zijk, Sijk, z0, z, w, W, gl, T, tm, D,D, D̂,G, G1, fr, neg, de,

Y ES,NO : 1 ≤ i ≤ b,−1 ≤ j ≤ n, 1 ≤ k ≤ n, 0 ≤ l ≤ 2n + 1, 0 ≤ m ≤ 2n + 1}

• Membrane structure: µ = [1 [2]2]1

• Initial Multisets: M1 = {f1}, M2 = {f1, g0, D
c}

• The set of evolution rules, R, consists of the following rules:

1. [sk → s1, k, k]02 ; [zk → z1, k, k]02, 1 ≤ k ≤ n

These rules initialize the algorithm. The objects of type s and z will have three
subindixes. The first one, 1 ≤ i ≤ b, will represent the number of the bin where
the item represented by this object can be added. The second one, −1 ≤ j ≤ n

419

will denote its position in the stack to be added in the current bin; if second
subindixe is -1 then this item has not been chosen to be added in the bin. The
third one, 1 ≤ k ≤ n will be use to show for which item this object is used to
represent its weight.

2. [zi, 1, k]02 → [z]+2 [zi, −1, k]02 , 1 ≤ k ≤ n , 1 ≤ i ≤ b− 1
The goal of these rules is to generate one membrane for each subset of the
remaining items that can be added in the current bin. When the object zi, 1, k

is present in a neutrally charged membrane with label 2 it means that the
system has to decide whether or not the item number k is chosen for the subset
to be added in the bin number i.
So the membrane is divided into two membranes: one positively charged which
will represent the subset where the item number k is chosen to be introduced
in the bin, the object z appears in this membrane; and the other one will be
negatively charged and will represent the subset where the item number k is
not added in the bin, so we set the second subindixe to −1, zi, −1, k.

3. [si, 0, k → w]+2 , 1 ≤ k ≤ n, 1 ≤ i ≤ b− 1
The presence of the objects si, 0, k in a positively charged membrane with label
2 means that the item number k is added to the subset associated to the mem-
brane. The multiplicity of the object s·, ·, k encodes the weight of the item k
and the multiplicity of the object w encodes the weight of the subset associated
to the membrane.So when an item is added to the subset associated to the
membrane the objects si, 0, k evolve to w.

4. [z]+2 →] []02
The element z is used to change the polarization of the membranes with label
2 from positive to neutral.

5. [si, j, k → si, j−1, k]02; [zi, j, k → zi, j−1, k]02; 0 ≤ j ≤ n, 1 ≤ k ≤ n, 1 ≤ i ≤
b− 1
Once the item analyze has been or not introduced to the bin these rules update
the stack of items by rotating the second subindixes of the objects of type s
and z.

6. [gi → gi+1]02; [gi → gi+1]+2 ; 0 ≤ i ≤ 2n− 1
The objects gi are counters used in the generation stage.

7. [g2n → g2n+1 , t0]02; [g2n → g2n+1 , t0]+2 ;
The generation stage takes 2n steps. The object g2n will produce the objects
g2n+1 and t0 which will begin the preparation for the checking stage.

8. [g2n+1]02 →] []−2 ;
The item g2n+1 will change the polarization of the membranes with label 2 from
neutral to negative.

9. [w → W]−2
In the preparation for the checking stage the objects w are renamed to W in
order to avoid conflicts with the previous stage.

10. [si, −1, k → Si, k, k]−2 ; [zi, −1, k → Zi, k, k]−2 ; 1 ≤ i ≤ b− 1, 1 ≤ k ≤ n

The objects si, −1, k and zi, −1, k are renamed to Si, −1, k and Zi, −1, k before the
checking stage in order to avoid conflicts with the previous stage.

420

11. [D → D , D̂]−2
The multiplicity of the objects D represents the capacity of the bins. In the
checking stage we have to check if the weight of the subset introduced in the
current bin exceeds or not its capacity. At the beginning of this stage the
objects D produce the objects D and D̂. The objects D̂ will be used in the
checking stage of the current bin and the objects D will keep the capacity of
the bins so this information can be used later in the computation.

12. [D̂]−2 →] []02; [W]02 →] []−2
With these rules the system checks whether or not the weight of the subset
introduced in the bin exceeds its capacity.

13. [ti → ti+1]−2 ; [tj → tj+1]02; 0 ≤ i ≤ 2c− 1, 1 ≤ j ≤ 2c− 1
The objects ti are counters used in the checking stage.

14. [t2c → t2c+1, G, z0]−2 ; [t2c;→ t2c+1, G, z0]02;
The checking stage takes 2c steps. The objects t2c will produce the objects
t2c+1, G and z0 which will begin the transition to the next bin.

15. [t2c+1]−2 →] []+2 ; [t2c+1]−2 →] []+2 ;
The object t2c+1 changes the polarization of membranes with label 2 from
negative to positive and the transition stage begins.

16. [W]+2 →]

If there are still objects W when the checking stage has finished it means that
the multiplicity of objects W exceeded the multiplicity of objects D̂. So the
weight of the subset introduced in the bin exceeded its capacity, that is this
is not a possible solution to the problem and the corresponding membrane is
dissolved.

17. [D̂ →]]+2
The remaining objects D̂ are ”erased” in the transition stage.

18. [D → D]+2
The objects D are renamed to D so they can be used in the computation for
the next bin.

19. [Si, k, k → si+1, k, k]+2 ; [Zi, k, k → zi+1, k, k]+2 ; 1 ≤ i ≤ b− 2; 1 ≤ k ≤ n

The objects Si, k, k and Zi, k, k are renamed to si+1, k, k and zi+1, k, k so they can
be used in the computation for the next bin.

20. [G → G1]+2 ; [G1 → g1]02
These rules produce the object g1 that will be used as counter in the generation
stage of the next bin.

21. [z0 → z]+2
The object z is produced to finish the transition stage.

22. [Sb−1, k, k → w]+2 ; [Zb−1, k, k →]]+2 ; 1 ≤ k ≤ n

These rules introduce all the remaining items in the last bin.

23. [fi → fi+1]02 ; [fi → fi+1]+2 ; [fi → fi+1]−2 ; 0 ≤ i ≤ 2nb + 2cb + 5b− 2n−
2c− 5
The objects fi are counters that will show when the checking stage for the last
bin must begin.

421

24. [f2nb+2cb+5b−2n−2c−4 → neg, T, d0]+2 ;
This rule will force the system to skip the generating stage for the last bin and
will force the checking stage begin.

25. [T → t0]02 ; [neg]02 →] []−2
These rules initialize the checking stage for the last bin.

26. [di → di+1]02 , [di → di+1]−2 , [d2c+3]02 → Y ES ; 0 ≤ i ≤ 2c + 2
The objects di are counters in the membranes with label 2 that eventually will
produce the answer YES.

27. [di → di+1]01 ; [d2nb+2cb+5b−2n+3 → NO]01
The objects di are counters in the skin that will eventually produce the answer
NO.

28. [Y ES]01 → Y ES[]+1 ; [NO]01 → Y ES[]−1
These rules released the answer into the environment. Note that if the answer
of the system must be YES this object will appear in the skin one step before
the object NO so no conflict occurs.

5 An Overview of the Computation

First of all we must define a polynomial encoding of the Binpacking problem in the family
Π in order to study the complexity of the problem with respect to it. Given an instance
u = (n, (ω1, . . . , ωn), b, c) of the Binpacking problem, we define h(u) = 〈n, b, c〉 (recall the
bijection mentioned in the previous section) and g(u) = {z1, . . . zn, sω1

1 , . . . , sωn
n }. Now we

will informally describe how the system Π(h(u)) with input g(u) works.
In the first step of the computation, the rules [sk → s1, k, k]02 ; [zk → z1, k, k]02 are

applied to initialize the computation. The first subindixe of these objects represents the
bin we are dealing with.

For each bin i, for 1 ≤ i ≤ b − 1, the generation and calculation stages take place in
parallel, following the instructions from the rules in 1 - 7. This two stages end when the
object g2n+1 set the polarization of the membrane to negative. We generate every subset
of the remaining items, associating each subset to a single working membrane.

Let us introduce the concept of subset associated with an internal membrane through
the following recursive definition:

• The subset associated with the initial membrane is the empty one.

• When an object zi, ·, k does not appears in a inner membrane it means that the k-th
item of A has been introduced in the bin number i. In the other hand when an
object zi, −1, k appears in an inner membrane, it means that the k-th item of A has
been left out of the bin number i and so it can be introduced in the following bins.

• When a division rule is applied, the two newborn membranes inherit the associated
subset form the original membrane.

As we have mentioned above, the two first stages are carried out in parallel. Indeed,
there is only a gap of one step of computation between the moment when an item is
added to the associated subset and the moment when the new weight of the subset is
updated. For example, for the item number 1 which is represented by the objects s1 and

422

z1: after two steps of the computation we can see that there are two inner membranes in
the configuration. In one of them no object z1, ·, 1 appears, thus the item number 1 has
been introduced in the bin number 1 and it can be proved that according to the rule 3 in
the next configuration ω1 copies of w will appear.

Meanwhile in the other inner membrane appears the object z1, −1, 1, thus the item
number 1 has been left out of the bin number 1.

After a division rule [zi, 1, k]02 → [z]+2 [zi, −1, k]02 is applied, the two new membranes
will behave in a different way. The positively charged membrane will update the weight
of its associated subset because a new item has been introduced; meanwhile the neutrally
charged membrane can be divided if there still are more items to be added in the bin.

The generation and calculation stages continue this way till the object g2n+1 set the
polarization of the membranes to negative following the instructions of the rule 8 and then
the checking stage begins.

Before the checking stage the system renames and duplicate some objects following the
rules 9, 10, and 11 in order to avoid conflicts with the previous stages.

The purpose of this stage is to compare the multiplicities of objects W and D̂. This
task is carried out by the rules in 12. The objects t1, · · · , t2c+1 are used as counter in this
stage. When the object t2c+1 appears in the membrane it means that the stage is over
and it sets the polarization to positive using the rule in 15. In the next step if there are
any objects W it would mean that the multiplicity of the objects W was greater than the
multiplicity of objects D̂, that is the weight of the associated subset exceeded the capacity
of the bin and so the membrane is dissolved by the rule in 16. Otherwise the weight of
the associated subset did not exceeded its capacity and the systems have to move to the
next bin. Using the rules in 17, 18, 19, 20 and 21 the computation for the bin number i,
1 ≤ i ≤ b− 1 ends and the computation for the i + 1 bin begins.

The computation for the bin number b, the last one, is quite different from the rest.
The system skip the generation stage for this bin using the rules in 22, 24 and 25 because
all the remaining items have to be introduced in this bin. The counters of rule 23 are used
to show when the computation for the last bin begins.

The rules in 26 are counters that can eventually produce the object YES. If the object
d2c+3 appears in a working membrane it would mean that the subsets associated to this
membrane during the computation is a solution to the problem.

The counters in 27 will eventually release the object NO in the skin. Observe that the
object NO will be produced a step later than the objects YES so following the rules 28
the correct answer in released into the environment.

6 Necessary Resources

The presented family of recognizer P systems that solves the BINPACKING problem is
polynomially uniform by Turing machines. It can be observed that the definition of the
family is done in a recursive manner from a given instance, in particular from the constants
n, b and c. Futhermore the necessary resources to buil an element of the family are:

• Size of the alphabet: 4n2b− 4n2 + 4nb + 4bc + 14b− 4n− 2c− 1 ∈ O(max{n, b, c}3)

• Number of membranes: 2 ∈ Θ(1)

• |M1|+ |M2| = c + 3 ∈ O(c)

423

• Sum of the rules’ lengths: 10n2b + 10n2 + 110nb + 60cb + 40n + 150b + 20c + 120 ∈
O(max{n, b, c}3)

Note that the instance u = (n, (ω1, . . . , ωn), b, c) is introduced in the initial configura-
tion through an input multiset; that is, encoded in an unary representation and, thus, we
have that |u| ∈ O(ω1 + · · ·+ ωn + c).

The number of steps in each stage are the following:

1. Initialition: 1 step

2. For each bin from 1 to b− 1:

• Generation and calculation stages: 2n steps

• Transition to the checking stage: 2 steps

• Checking stage: 2c steps

• Transition to the next bin: 3 steps

3. For the bin number b: 2c + 6 steps

4. In the output stage: 2 steps

So the overall number of steps is:

1 + (b− 1)(2n + 2c + 5) + 2c + 12 = 2nb + 2bc + 5b− 2n + 4 ∈ O(max{nb, nc, bc}2)

From these discussion we deduce the following results:

Theorem 6.1 BINPACKING ∈ PMCAM

Although the next result is a corollary of Theorem 1, we formulate it as another
theorem, in order to stress its relevance.

Theorem 6.2 NP ⊆ PMCAM

Proof. It suffices to make the following observations: the BINPACKING problem is
NP−complete, BINPACKING ∈ PMCAM and the class PMCAM is closed under
polybomial-time reduction. 2

This theorem can be extended, if we notice that the class PMCAM is closed under
complement.

Theorem 6.3 NP ∪ co−NP ⊆ PMCAM

7 A CLIPS Session for n = b = c = 2

In this section we show a session with the CLIPS simulator presented in [11] for a instance
of the BINPACKING problem: u = (2, (1, 2), 2, 2).

424

CLIPS (V6.10 07/01/98)

CLIPS> (load "SIMULATOR4.clp")

CLIPS> (reset)
CLIPS> (run)

Write the path and the file where the P-system is written:
/home/Fran/binpacking10.clp

* P-SYSTEM SUCESSFULLY LOADED *

Write the value of the parameter n : 2
Write the value of the parameter c : 2
Write the value of the parameter b : 2

Write the input multiset following the instructions given above:
z 1 , s 1 , z 2 , s 2 , s 2

Configuration number: 0

[environment [multiset]]

[skin [children 2]
[label 1]
[polarity 0]
[multiset , f 1 ,]]

[membrane
[number 2]
[children]
[father 1]
[label 2]
[polarity 0]
[multiset , f 1 , g 0 , C , C , z 1 , s 1 , z 2 , s 2 , s 2 ,]]

Configuration number: 1

[environment [multiset]]

[skin [children 2]
[label 1]
[polarity 0]
[multiset , f 2 ,]]

[membrane
[number 2]
[children]
[father 1]

425

[label 2]
[polarity 0]
[multiset , f 2 , g 1 , C , C , z 1 1 1 , s 1 1 1 , z 1 2 2 , s 1 2 2 ,

s 1 2 2 ,]]

Above we have the initial configuration and the first step that initialize the computa-
tion.

Now the generation stage takes place. In the first configuration of this stage can be
seen how it works. We get two membranes, one with the item number 1 in the first bin
and the other one with the item number 1 left out of the first bin.

Configuration number: 2

[environment [multiset]]
[skin [children 3 4]

[label 1]
[polarity 0]
[multiset , f 3 ,]]

[membrane
[number 4]
[children]
[father 1]
[label 2]
[polarity 0]
[multiset , f 3 , g 2 , C , C , z 1 -1 1 , s 1 0 1 , z 1 1 2 , s 1 1 2 ,

s 1 1 2 ,]]
[membrane

[number 3]
[children]
[father 1]
[label 2]
[polarity +]
[multiset , f 3 , g 2 , C , C , z , s 1 0 1 , z 1 1 2 , s 1 1 2 , s 1 1 2 ,]]

At the end of the generation stage we have four working membranes representing the
four possible subsets. Now the system moves to the checking stage.

Configuration number: 5

[environment [multiset]]
[skin [children 7 8 5 6]

[label 1]
[polarity 0]
[multiset , f 6 ,]]

[membrane
[number 8]
[children]
[father 1]
[label 2]
[polarity 0]
[multiset , f 6 , g 5 , t 0 , C , C , w , z 1 -1 2 , s 1 -1 2 , s 1 -1 2 ,]]

[membrane
[number 5]
[children]

426

[father 1]
[label 2]
[polarity 0]
[multiset , f 6 , g 5 , t 0 , C , C , z 1 -1 1 , s 1 -1 1 , w , w ,]]

[membrane
[number 6]
[children]
[father 1]
[label 2]
[polarity 0]
[multiset , f 6 , g 5 , t 0 , C , C , z 1 -1 1 , s 1 -1 1 , z 1 -1 2 ,

s 1 -1 2 , s 1 -1 2 ,]]
[membrane

[number 7]
[children]
[father 1]
[label 2]
[polarity 0]
[multiset , f 6 , g 5 , t 0 , C , C , w , w , w ,]]

At the end of the checking stage we can see that in the membrane number 7 there
still are one object W so the weight of its associated subset exceeded the capacity of the
bin. Thus this membrane will be dissolved in the next step becuase it did not represent a
solution to the problem.

Configuration number: 12

[environment [multiset]]
[skin [children 7 8 5 6]

[label 1]
[polarity 0]
[multiset , f 13 ,]]

[membrane
[number 8]
[children]
[father 1]
[label 2]
[polarity +]
[multiset , f 13 , G , z 0 , C1 , C1 , Z 1 2 2 , S 1 2 2 , S 1 2 2 ,]]

[membrane
[number 7]
[children]
[father 1]
[label 2]
[polarity +]
[multiset , f 13 , G , z 0 , C1 , C1 , W ,]]

[membrane
[number 5]
[children]
[father 1]
[label 2]
[polarity +]
[multiset , f 13 , G , z 0 , C1 , C1 , Z 1 1 1 , S 1 1 1 ,]]

[membrane

427

[number 6]
[children]
[father 1]
[label 2]
[polarity +]
[multiset , f 13 , G , z 0 , C1 , C2 , C1 , Z 1 1 1 , S 1 1 1 , Z 1 2 2 ,

S 1 2 2 , S 1 2 2 ,]]

For the last bin the system skip the generation stage, it introduces all the remaining
items in the bin and goes directly to the checking stage.

Configuration number: 16

[environment [multiset]]
[skin [children 8 5 6]

[label 1]
[polarity 0]
[multiset , f 17 ,]]

[membrane
[number 8]
[children]
[father 1]
[label 2]
[polarity -]
[multiset , t 1 , d 2 , C1 , C2 , C1 , C2 , W , W ,]]

[membrane
[number 5]
[children]
[father 1]
[label 2]
[polarity -]
[multiset , t 1 , d 2 , C1 , C2 , C1 , C2 , W ,]]

[membrane
[number 6]
[children]
[father 1]
[label 2]
[polarity -]
[multiset , t 1 , d 2 , C1 , C2 , C1 , C2 , W , W , W ,]]

When the checking stage ends the system detects that one membrane of the three
remaining membranes must be dissolved because it did not encodes a solution of the
problem. Nevertheless the other two membranes do enconde a solution and they released
objects YES in the skin.

Configuration number: 24

[environment [multiset]]
[skin [children]

[label 1]
[polarity 0]
[multiset , f 25 , YES , YES ,]]

At the last step of the computation the system released the answer into the environ-
ment.

428

Configuration number: 25

[environment [multiset YES ,]]
[skin [children]

[label 1]
[polarity +]
[multiset , NO , YES ,]]

The system has reached a halting configuration in the step number 25
and the element YES has been released into the environment.

8 Conclusions

In this paper we have presented an effective solution for the BINPACKING problem
through a family of recognizer P systems with active membranes. This has been done in
the framework of complexity classes in cellular computing with membranes.

The design presented here is very similar to the solutions to numerial NP-complete
problems studied in [9], [10] and [12]. The strong similarities in their designs show that the
idea of a cellular programming language is posible, indicating some “subroutines” that can
be used in a variety of situations and therefore could be useful for attacking new problems
in the future. As an example of the usefulness of the subroutines outlined in [12], let us
see how the design of the solutions for the BINPACKING would look like:

BINPACKING
for i=1, . . . , b-1 do
gen− subsets(ni)
calc− weight(ni)

rename
check − weight
marker − leq
counter(n)

clean− dissolve
end for.

calc− weight(nb)
rename

check − weight
marker − leq
counter(n)

clean− dissolve
detector
answer

The CLIPS simulator for P systems presented in [11] is a very useful tool that has
helped to debug the design and to understand better how the P systems from the family
Π work.

Acknowledgement. This work is supported by the Ministerio de Ciencia y Tec-
noloǵıa of Spain, by the Plan Nacional de I+D+I (2000–2003) (TIC2002-04220-C03-01),

429

cofinanced by FEDER funds, and by a FPI fellowship (of the second author) from the
University of Seville.

References

[1] Cordón-Franco, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Sancho-
Caparrini, F.: A Prolog simulator for deterministic P systems with active membranes,
New Generation Computing, in press.

[2] Păun, Gh.: Computing with membranes, Journal of Computer and Systems Sciences,
61, 1 (2000), 108–143.

[3] Păun, Gh.: Membrane Computing. An Introduction, Springer-Verlag, 2002.

[4] Păun, Gh., Rozenberg, G.: A guide to membrane computing, Theoretical Computer
Sciences, 287 (2002), 73–100.

[5] Păun, Gh., Rozenberg, G., Salomaa, A.: Membrane computing with external output,
Fundamenta Informaticae, 41, 3 (2000), 313–340.

[6] Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Solving VALIDITY
problem by active membranes with input, Proceedings of the Brainstorming Week on
Membrane Computing, M. Cavaliere, C. Martin-Vide, and Gh. Păun (eds), Report
GRLMC 26/03, 279–290.

[7] Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Teoŕıa de la Com-
plejidad en modelos de computacion celular con membranas, Editorial Kronos, 2002.

[8] Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial com-
plexity class in P systems using membrane division, Proceedings of the 5th Workshop
on Descriptional Complexity of Formal Systems, E. Csuhaj-Varjú, C. Kintala, D.
Wotschke, and Gy. Vaszyl (eds.), 2003, 284–294.

[9] Pérez-Jiménez, M.J., Riscos-Núñez, A.: Solving the Subset-Sum problem by active
membranes, New Generation Computing, in press.

[10] Pérez-Jiménez, M.J., Riscos-Núñez, A.: A linear-time solution for the Knapsack prob-
lem using active membranes, Lecture Notes in Computer Science, 2933 (2004), 140–
152.

[11] Pérez-Jiménez, M.J., Romero-Campero, F.J.: A CLIPS Simulator for Recognizer P
Systems with Active Membranes, in this volume.

[12] Riscos-Núñez, A., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Towards a pro-
gramming language in cellular computing, in this volume.

[13] CLIPS Web Page: http:// www.ghg.net/clips/CLIPS.html

[14] The P Systems Web Page: http://psytems.disco.unimib.it/

430

