A max-flow algorithm for positivity of Littlewood-Richardson coefficients

Peter Bürgisser and Christian Ikenmeyer

MFQI Sevilla, Nov. 2009

- 1 Littlewood-Richardson coefficients
- 2 LR-coefficients in terms of flows
- 3 Algorithmic idea
 - 4 The Residual Network
- 5 Ideas behind the Shortest Cycle Theorem
- 6 Extensions

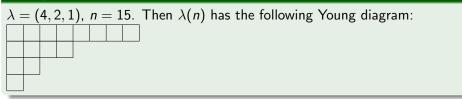
1 Littlewood-Richardson coefficients

- 2 LR-coefficients in terms of flows
- 3 Algorithmic idea
- 4 The Residual Network
- 5 Ideas behind the Shortest Cycle Theorem

6 Extensions

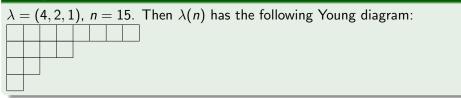
Given partitions λ , μ , ν , then the sequence of Kronecker coefficients $(k_{\lambda(n),\mu(n),\nu(n)})$ stabilizes, where $\lambda(n) := (n - |\lambda|, \lambda)$ denotes the partition of *n* that equals λ with additional first row.

Example



Given partitions λ , μ , ν , then the sequence of Kronecker coefficients $(k_{\lambda(n),\mu(n),\nu(n)})$ stabilizes, where $\lambda(n) := (n - |\lambda|, \lambda)$ denotes the partition of *n* that equals λ with additional first row.

Example



• Brion 1993, Vallejo 1999 and Briand, Orellana and Rosas 2009 gave upper bounds for *n* from which on the sequence is stable.

Given partitions λ , μ , ν with $|\nu| = |\lambda| + |\mu|$, then $(k_{\lambda(n),\mu(n),\nu(n)})$ stabilizes to the Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$.

Given partitions λ , μ , ν with $|\nu| = |\lambda| + |\mu|$, then $(k_{\lambda(n),\mu(n),\nu(n)})$ stabilizes to the Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$.

• Wide variety of interpretations in combinatorics, representation theory, geometry and in the theory of symmetric functions.

Given partitions λ , μ , ν with $|\nu| = |\lambda| + |\mu|$, then $(k_{\lambda(n),\mu(n),\nu(n)})$ stabilizes to the Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$.

- Wide variety of interpretations in combinatorics, representation theory, geometry and in the theory of symmetric functions.
- No polynomial-time algorithm for the computation of $c_{\lambda\mu}^{\nu}$ unless $\mathbf{P} = \mathbf{NP}$ (Narayanan 2006).

Given partitions λ , μ , ν with $|\nu| = |\lambda| + |\mu|$, then $(k_{\lambda(n),\mu(n),\nu(n)})$ stabilizes to the Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$.

- Wide variety of interpretations in combinatorics, representation theory, geometry and in the theory of symmetric functions.
- No polynomial-time algorithm for the computation of c^ν_{λμ} unless **P** = **NP** (Narayanan 2006).
- Problem LR_{>t}:
 "For a given integer t, do we have c^ν_{λµ} > t?".

"For a given integer t, do we have $c_{\lambda\mu}^{\nu} > t$?".

 Knutson and Tao 1999, Mulmuley and Sohoni 2005: LR_{>0} can be decided in polynomial time.

"For a given integer t, do we have $c_{\lambda\mu}^{\nu} > t$?".

- Knutson and Tao 1999, Mulmuley and Sohoni 2005: LR_{>0} can be decided in polynomial time.
- Geometric Complexity Theory: Mulmuley and Sohoni in 2005 asked for a combinatorial polynomial-time algorithm for LR_{>0}, like for max-flow or weighted matching problems in combinatorial optimization.

"For a given integer t, do we have $c_{\lambda\mu}^{\nu} > t$?".

- Knutson and Tao 1999, Mulmuley and Sohoni 2005: LR_{>0} can be decided in polynomial time.
- Geometric Complexity Theory: Mulmuley and Sohoni in 2005 asked for a combinatorial polynomial-time algorithm for LR_{>0}, like for max-flow or weighted matching problems in combinatorial optimization.
- Our contribution: A polynomial-time max-flow-type algorithm for LR_{>0} like requested by Mulmuley and Sohoni in 2005.

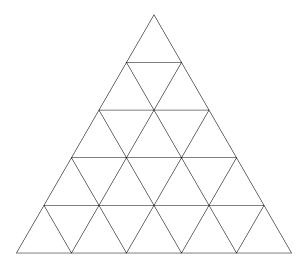
"For a given integer t, do we have $c_{\lambda\mu}^{
u} > t$?".

- Knutson and Tao 1999, Mulmuley and Sohoni 2005: LR_{>0} can be decided in polynomial time.
- Geometric Complexity Theory: Mulmuley and Sohoni in 2005 asked for a combinatorial polynomial-time algorithm for LR_{>0}, like for max-flow or weighted matching problems in combinatorial optimization.
- Our contribution: A polynomial-time max-flow-type algorithm for LR_{>0} like requested by Mulmuley and Sohoni in 2005.
- Furthermore we developed an algorithm to decide $LR_{>t}$ in time $\mathcal{O}(t^2 \text{poly}(n))$.

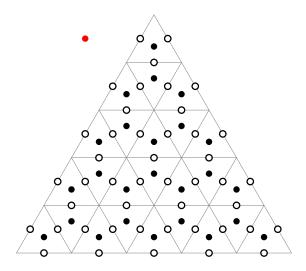
1 Littlewood-Richardson coefficients

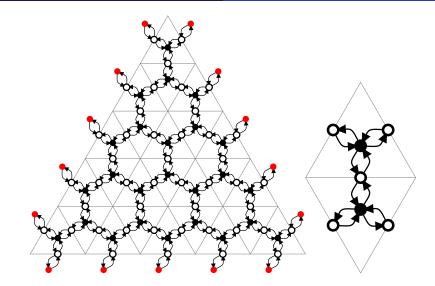
- 2 LR-coefficients in terms of flows
 - 3 Algorithmic idea
 - 4 The Residual Network
- 5 Ideas behind the Shortest Cycle Theorem

6 Extensions

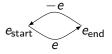


The graph Δ .





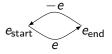
The digraph G.



A real mapping $f : E(G) \to \mathbb{R}$ satisfies the flow constraints, if for all vertices $v \in V(G)$ we have

$$\sum_{e \in E(G) \atop e_{end} = v} f(e) = \sum_{e \in E(G) \atop e_{start} = v} f(e).$$

These constraints define a subspace $U(G) \subset \mathbb{R}^{E(G)}$.



A real mapping $f : E(G) \to \mathbb{R}$ satisfies the flow constraints, if for all vertices $v \in V(G)$ we have

$$\sum_{e \in E(G) \atop e_{end} = v} f(e) = \sum_{e \in E(G) \atop e_{start} = v} f(e).$$

These constraints define a subspace $U(G) \subset \mathbb{R}^{E(G)}$. Define the subspace

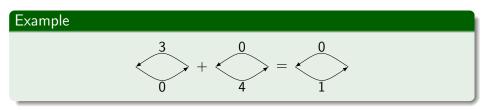
$$\mathsf{N}(G) := \{f \in \mathbb{R}^{\mathsf{E}(G)} \mid orall e \in \mathsf{E}(G) : f(e) = f(-e)\} \subset U(G)$$

generated by the 2-cycles. We set $\tilde{F}(G) := U(G)/N(G)$.

Note that each coset of $\tilde{F}(G)$ contains **exactly one** element f that has

- only nonnegative flow values
- and f(e) = 0 or f(-e) = 0 for all edges e.

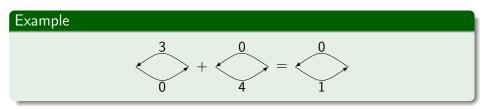
We call this system of representatives the vector space F(G) of flows on G.



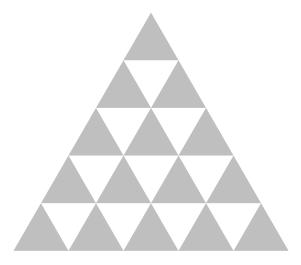
Note that each coset of $\tilde{F}(G)$ contains **exactly one** element f that has

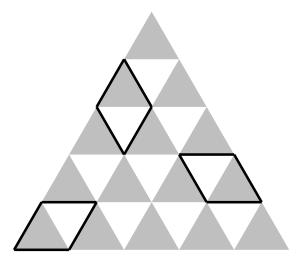
- only nonnegative flow values
- and f(e) = 0 or f(-e) = 0 for all edges e.

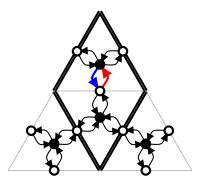
We call this system of representatives the vector space F(G) of flows on G.



 Canonical injection: (Oriented) cycles C(G) → Flows F(G) (flow value of 1 on all cycle edges)







Define the throughput $\stackrel{\wedge}{\textcircled{}}$ w.r.t. a flow $f \in F(G)$ as

$$\bigoplus(f) := f(\mathsf{blue}) - f(\mathsf{red}).$$

Analogously define \bigotimes , \bigotimes and so on.

Define the slack σ of a rhombus $\langle \rangle$ w.r.t. a flow f as

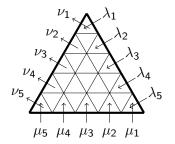
$$\sigma(\langle \rangle, f) := \langle \rangle(f) + \langle \rangle(f)$$
$$= \langle \rangle(f) + \langle \rangle(f).$$

Define the slack σ of a rhombus $\langle \rangle$ w.r.t. a flow f as

$$\sigma(\langle \rangle, f) := \langle \rangle(f) + \langle \rangle(f)$$
$$= \langle \rangle(f) + \langle \rangle(f).$$

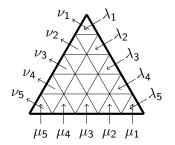
Definition (Hive flow)

We call a flow f a **hive flow**, if its slack w.r.t. all rhombi is nonnegative.



Theorem (Hive flow description)

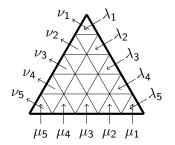
Given three partitions λ , μ and ν with $|\nu| = |\lambda| + |\mu|$, then the Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$ equals the number of integral hive flows f with throughputs as in the figure.



Theorem (Hive flow description)

Given three partitions λ , μ and ν with $|\nu| = |\lambda| + |\mu|$, then the Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$ equals the number of integral hive flows f with throughputs as in the figure.

Proof: Integral hive flows $\stackrel{\text{bij.}}{\longleftrightarrow}$ integral hives by Knutson & Tao, Buch. \Box

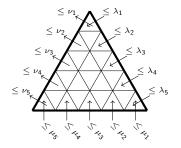


Theorem (Hive flow description)

Given three partitions λ , μ and ν with $|\nu| = |\lambda| + |\mu|$, then the Littlewood-Richardson coefficient $c_{\lambda\mu}^{\nu}$ equals the number of integral hive flows f with throughputs as in the figure.

Proof: Integral hive flows $\stackrel{\text{bij.}}{\longleftrightarrow}$ integral hives by Knutson & Tao, Buch. **Flow description suitable for optimization techniques!**

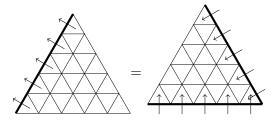
- 1 Littlewood-Richardson coefficients
- 2 LR-coefficients in terms of flows
- 3 Algorithmic idea
 - 4) The Residual Network
- 5 Ideas behind the Shortest Cycle Theorem
- 6 Extensions



Definition (b-bounded hive flow)

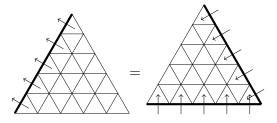
Given a vector of three partitions $b=(\lambda, \mu, \nu)$ with $|\nu| = |\lambda| + |\mu|$, then a hive flow f is called *b*-bounded, if its throughputs satisfy the constraints in the figure.

 P^b denotes the polyhedron of all *b*-bounded hive flows.



Definition (Overall throughput)

For a flow f on G we define $\delta(f)$ as the sum of throughputs in the figure.



Definition (Overall throughput)

For a flow f on G we define $\delta(f)$ as the sum of throughputs in the figure.

Lemma

• For all
$$f \in P^b$$
 we have $\delta(f) \leq |\nu|$.

2 $c_{\lambda\mu}^{\nu}$ equals the number of integral $f \in P^{b}$ with $\delta(f) = |\nu|$.

Lemma

• For all
$$f \in P^b$$
 we have $\delta(f) \leq |\nu|$.

2 $c_{\lambda\mu}^{\nu}$ equals the number of integral $f \in P^{b}$ with $\delta(f) = |\nu|$.

Algorithmic idea

 $f \leftarrow 0$. while f is not maximal w.r.t. δ in P^b do adjust $f \in P^b$ such that f stays integral and in P^b and $\delta(f)$ increases by at least a fixed amount. end while We have that f is maximal w.r.t. δ in P^b and integral. return whether $\delta(f) = |\nu|$.

- 1 Littlewood-Richardson coefficients
- 2 LR-coefficients in terms of flows
- 3 Algorithmic idea
- The Residual Network
- 5 Ideas behind the Shortest Cycle Theorem

6 Extensions

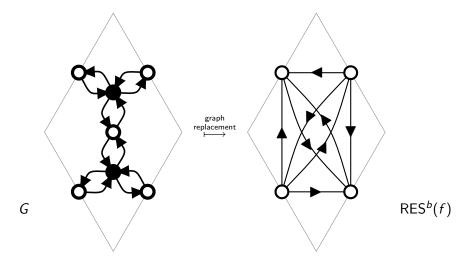
Lemma

For a given integral flow $f \in P^b$ one can algorithmically find an integral flow $g \in P^b$ with the same throughput and with **no overlapping rhombi** that have zero slack.

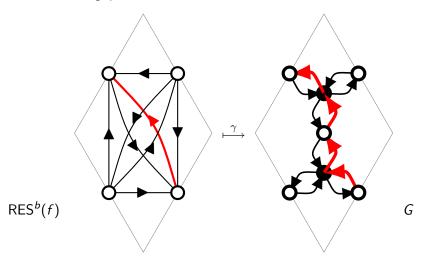
Proof mainly according to A. S. Buch 2000.

So assume for this talk that rhombi with zero slack **do not overlap**.

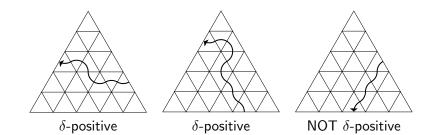
Replace each rhombus that has zero slack with the following graph:



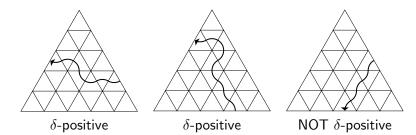
A flow on $\text{RES}^{b}(f)$ induces a flow on G via a canonical map γ , which preserves the thoughputs on all vertices:



When does $\delta(f)$ increase by adding $\gamma(c)$? $\delta(f + \gamma(c)) > \delta(f) \iff \delta(\gamma(c)) > 0 \iff: c \text{ is } \delta\text{-positive}$



When does $\delta(f)$ increase by adding $\gamma(c)$? $\delta(f + \gamma(c)) > \delta(f) \iff \delta(\gamma(c)) > 0 \iff: c \text{ is } \delta\text{-positive}$



Theorem (Shortest Cycle Theorem)

Given an integral flow $f \in P^b$ and a δ -positive cycle c on $\text{RES}^b(f)$, shortest among all δ -positive cycles on $\text{RES}^b(f)$, then $f + \gamma(c) \in P^b$.

Theorem (Shortest Cycle Theorem)

Given an integral flow $f \in P^b$ and a δ -positive cycle c on $\text{RES}^b(f)$, shortest among all δ -positive cycles on $\text{RES}^b(f)$, then $f + \gamma(c) \in P^b$.

Algorithm LRPA

 $f \leftarrow 0$. while there is a δ -positive cycle on $\text{RES}^{b}(f)$ do search for a shortest δ -positive cycle c on $\text{RES}^{b}(f)$. $f \leftarrow f + \gamma(c)$. end while return whether $\delta(f) = |\nu|$.

Theorem (Shortest Cycle Theorem)

Given an integral flow $f \in P^b$ and a δ -positive cycle c on $\text{RES}^b(f)$, shortest among all δ -positive cycles on $\text{RES}^b(f)$, then $f + \gamma(c) \in P^b$.

Algorithm LRPA

```
f \leftarrow 0.

while there is a \delta-positive cycle on \text{RES}^{b}(f) do

search for a shortest \delta-positive cycle c on \text{RES}^{b}(f).

f \leftarrow f + \gamma(c).

end while

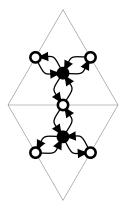
return whether \delta(f) = |\nu|.
```

Lemma (Optimality Test)

Given a flow $f \in P^b$, then f maximizes δ in P^b iff on $\text{RES}^b(f)$ there is no δ -positive cycle.

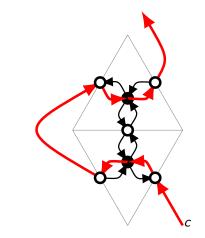
24

- 1 Littlewood-Richardson coefficients
- 2 LR-coefficients in terms of flows
- 3 Algorithmic idea
- 4 The Residual Network
- Ideas behind the Shortest Cycle Theorem

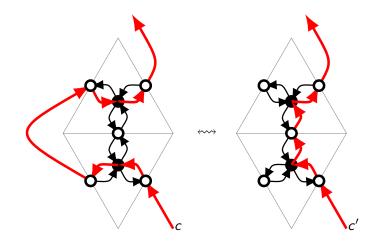


Assume that there is no rhombus with zero slack and thus no subgraph replacement.

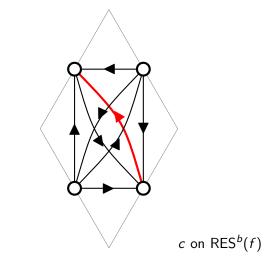
Let
$$\diamondsuit$$
 have slack $\sigma(\diamondsuit, f) = 1$.



$$\sigma(\langle \rangle, f) = 1$$
. Recall $\sigma(\langle \rangle, c) = \langle \rangle(c) + \langle \rangle(c) = -2$
Hence $\sigma(\langle \rangle, f + c) = \sigma(\langle \rangle, f) + \sigma(\langle \rangle, c) = -1 < 0$
and thus $f + c$ is **not a hive flow**.

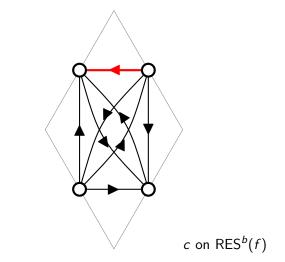


f + c is not a hive flow, but c was not a shortest cycle. $\sigma(\diamondsuit, c') = \diamondsuit(c') + \diamondsuit(c') = -1$ and f + c' is a hive flow, because $\sigma(\diamondsuit, f + c') = 0$. Now let $\sigma(\diamondsuit, f) = 0$ and thus the subgraph is replaced:



$$\sigma(\langle \rangle, \gamma(c)) = \langle \rangle(c) + \langle \rangle(c) = 0.$$

Now let $\sigma(\diamondsuit, f) = 0$ and thus the subgraph is replaced:



$$\sigma(\langle \rangle, \gamma(c)) = \langle \rangle(c) + \langle \rangle(c) = 1.$$

Lemma

The graph replacement ensures that all rhombi with $\sigma(\langle \rangle, f) = 0$ have $\sigma(\langle \rangle, f + \gamma(c)) \ge 0$ for all cycles c on $\text{RES}^{b}(f)$.

Lemma

The graph replacement ensures that all rhombi with $\sigma(\langle \rangle, f) = 0$ have $\sigma(\langle \rangle, f + \gamma(c)) \ge 0$ for all cycles c on $\text{RES}^{b}(f)$.

- There are more involved cases.
- Other problems arise when we have overlapping rhombi with zero slack.

- 1 Littlewood-Richardson coefficients
- 2 LR-coefficients in terms of flows
- 3 Algorithmic idea
- 4 The Residual Network
- 5 Ideas behind the Shortest Cycle Theorem

Algorithm LRPA

 $f \leftarrow 0.$

while there is a δ -positive cycle on RES^b(f) do search for a shortest δ -positive cycle c on RES^b(f). $f \leftarrow f + \gamma(c)$. end while

return whether $\delta(f) = |\nu|$.

Algorithm LRPA

 $f \leftarrow 0.$

while there is a δ -positive cycle on $\text{RES}^{b}(f)$ do search for a shortest δ -positive cycle c on $\text{RES}^{b}(f)$. $f \leftarrow f + \gamma(c)$. end while

return whether $\delta(f) = |\nu|$.

Capacity scaling method (without technicalities)

```
f \leftarrow 0.

for k down to 0 do

while there is a \delta-positive cycle on \operatorname{RES}_{2^k}^b(f) do

search for a shortest \delta-positive cycle c on \operatorname{RES}_{2^k}^b(f).

f \leftarrow f + 2^k \cdot \gamma(c).

end while

end for

return whether \delta(f) = |\nu|.
```

Theorem (Main Theorem)

The capacity scaling version of the LRPA decides $LR_{>0}$ in polynomial time.

For strictly decreasing partitions:

Corollary (Multiplicity freeness)

Let $f \in P^b$ integral with $\delta(f) = |\nu|$. Then $c_{\lambda\mu}^{\nu} > 1$ iff there exists a cycle on $\text{RES}^b(f)$.

For strictly decreasing partitions:

Corollary (Multiplicity freeness)

Let $f \in P^b$ integral with $\delta(f) = |\nu|$. Then $c_{\lambda\mu}^{\nu} > 1$ iff there exists a cycle on $\text{RES}^b(f)$.

Corollary

The capacity scaling version of the LRPA combined with the check for multiplicity freeness can decide whether $c^{\nu}_{\lambda\mu} = 0$, $c^{\nu}_{\lambda\mu} = 1$ or $c^{\nu}_{\lambda\mu} > 1$ in polynomial time.

For strictly decreasing partitions:

Corollary (Multiplicity freeness)

Let $f \in P^b$ integral with $\delta(f) = |\nu|$. Then $c_{\lambda\mu}^{\nu} > 1$ iff there exists a cycle on $\text{RES}^b(f)$.

Corollary (Fulton's Conjecture)

The following three conditions are equivalent:

$$c_{\lambda\mu}^{\nu} = 1,$$

2
$$\exists N: c_{N\lambda N\mu}^{N\nu} = 1,$$

First proved by Knutson, Tao and Woodward in 2004.

36

Not yet published:

We can define a more general residual network RES that allows to reach all δ -maximal flows in P^b by adding cycles in RES. Efficient enumerating of these cycles results in:

Theorem

- There exists an algorithm for deciding $LR_{>t}$ in time $\mathcal{O}(t^2 \operatorname{poly}(n))$.
- There exists an algorithm for computation of $c_{\lambda\mu}^{\nu}$ in time $\mathcal{O}((c_{\lambda\mu}^{\nu})^2 \operatorname{poly}(n)).$

Not yet published:

We can define a more general residual network RES that allows to reach all δ -maximal flows in P^b by adding cycles in RES. Efficient enumerating of these cycles results in:

Theorem

- There exists an algorithm for deciding $LR_{>t}$ in time $\mathcal{O}(t^2 poly(n))$.
- There exists an algorithm for computation of $c_{\lambda\mu}^{\nu}$ in time $\mathcal{O}((c_{\lambda\mu}^{\nu})^2 \text{poly}(n)).$

These algorithms efficiently enumerate all hive flows with maximal throughput for given λ, μ, ν .

They can also be used for efficient enumeration of all hive flows with maximal throughput for fixed λ, μ and variable ν .

Thank you.