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F. Guillén González1, M.V. Redondo Neble2

1 Dpto. E.D.A.N., Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla. E-mail: guillen@us.es.
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Abstract

We present some improvements on the error estimates obtained by J.Blasco and
R.Codina [2, 3] for a viscosity-splitting in time scheme, with finite element approxi-
mation, applied to the 3D Navier-Stokes equations. The key is to obtain new error
estimates for the discrete in time derivative of velocity, which let us to reach, in par-
ticular, error of order one (in time and space) for the pressure approximation.

1 Introduction

We consider the unsteady, incompressible Navier-Stokes equations in a bounded domain
Ω ⊂ IR3:

(P )

{
ut + (u · ∇)u − ν ∆u + ∇ p = f , ∇ · u = 0 in Ω× (0, T ),
u = 0 on ∂Ω× (0, T ), u|t=0 = u0 in Ω,

where u(x, t) ∈ IR3 is the fluid velocity at position x ∈ Ω and time t ∈ (0, T ), p(x, t) ∈ IR
the pressure, ν > 0 the viscosity (which is assumed constant) and f(x, t) ∈ IR3 the external
force.

The main (numerical) difficulties of this problem are the coupling between the pressure
and the incompressibility condition and the nonlinearity of the convective terms.

Fractional step methods in time are widely used to approximate the problem (P ).
They allow us to separate the effects of different operators appearing in the problem.

The origin of these methods is generally credited to the works of Chorin [4] and Teman
[10]. They developed the well known projection method, where the idea is to split the con-
vection and diffusion terms to the incompressibility constraint and its Lagrange multiplier
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the pressure, avoiding the computation of the Stokes problem. It is a two step scheme:
first step is a Dirichlet-elliptic problem for an intermediate velocity and the second one is a
free divergence projection step equivalent to a Neumann-elliptic problem for the pressure.

The main drawback of projection methods are that the end-of-step velocity does not
satisfy the exact boundary conditions and the pressure of the scheme verifies “artificial”
boundary conditions. The convergence of this projection method, was proved in [11] for
the semidiscrete scheme and in [5] for a fully discrete scheme (when periodic boundary
conditions are considered).

Error estimates for projection methods can be seen in [8], [9] for time discrete schemes
and in [6] for a fully discrete scheme, with finite elements.

In this paper, we will study a viscosity-splitting scheme, introduced and studied by
J.Blasco and R.Codina [1, 2, 3]. It is a two-step scheme, where the main numerical
difficulties of (P) (namely, the treatment of nonlinear term (u · ∇)u and the relation
between incompressibility ∇ · u = 0 and pressure), are split into two different steps,
considering the diffusive terms in both steps.

Notice that both type of schemes, projection and viscosity-splitting schemes, can be
jointly used, because the second step of the viscosity-splitting scheme could be computed
with a projection method.

Considering a (regular) partition of [0, T ] of diameter k = T/M : {tm = mk}M
m=0, for a

given vector u = (um)M
0 with um ∈ X (a Banach space), let us to introduce the following

notation for discrete in time norms:

‖u‖l2(X) =

(
k

M∑
m=0

‖um‖2
X

)1/2

and ‖u‖l∞(X) = maxm=0,...,M‖um‖X

For simplicity, we will denote H1 = H1(Ω) etc., L2(H1) = L2(0, T ;H1) etc., and H1 =
H1(Ω)3 etc.

This paper is organized as follows. In Section 2, we present first the semi-discrete in
time scheme (which solution is denoted by um+1/2 and (um+1, pm+1)) and then the fully
discrete scheme (which solution is denoted by um+1/2

h and (um+1
h , pm+1

h )). We also hav
the choice for the finite element spaces and their approximation properties. Finally, some
known results and the main objectives of this paper are presented.

In Section 3, we introduce the problems verified by the semi-discrete in time errors
and we will obtain new O(k1/2) error estimates for em+1 = u(tm+1)−um+1 and em+1/2 =
u(tm+1) − um+1/2 in l∞(H1) ∩ l2(H2) and for em

p = p(tm) − pm in l2(H1). Previous
error estimates will be used to obtain O(k1/2) in l∞(L2) ∩ l2(H1) for the discrete in time
derivative of em+1/2 and em+1, which are applied to get O(k) for the discrete in time
derivative of em+1, in l2(L2) and in l∞(L2) ∩ l2(H1), where a constraint on the first
step of the scheme is imposed in the last case (in fact, these two estimates are obtained
independently). As a consequence, the improvement of the pressure error estimates to
order O(k) in l2(L2) and in l∞(L2) hold.

In Section 4, we will obtain new error estimates for the fully discrete scheme. We
describe the problems verified by the discrete errors (comparing semi-discrete in time
scheme and fully discrete scheme). Firstly, we will consider the O(h) error estimates for
em+1

d = um+1−um+1
h and em+1/2

d = um+1/2−um+1/2
h in l∞(L2)∩l2(H1), which implying an

improve for the estimates of the discrete velocities in the W 1,6(Ω)-norm whether h2/k ≤ C.
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Afterwards, the O(h) error estimates for the discrete in time derivative of em+1
d in l2(L2)

and in l∞(L2) ∩ l2(H1) are obtained independently, where again a constraint on the first
step of the scheme must be imposed in the last case. Moreover, O(k + h2) error estimates
for em+1

d in l2(L2) is deduced. Finally, the pressure error estimates of order O(h) in l2(L2)
and in l∞(L2) hold.

2 Description of the scheme and known results

2.1 Temporal Discretization

For simplicity, we consider the uniform partition of the time interval [0, T ] with time
step k = T/M , {tm = m k}M

m=0. Given (fm)M
m=1 an approximation of f(tm) we define

(um, pm)M
m=1 an approximation of the solution (u, p) of (P ) in t = tm by means of the

following first order splitting in time scheme:

Initialization: u0 = u0

Time step m + 1 :

Substep 1: Given um, to find um+1/2 solution of:

(S1)m+1


um+1/2 − um

k
+ (um · ∇)um+1/2 − ν∆um+1/2 = f(tm+1),

um+1/2|∂Ω = 0.

Substep 2: Given um+1/2, to find um+1 and pm+1 solution of:

(S2)m+1


um+1 − um+1/2

k
− ν∆(um+1 − um+1/2) +∇ pm+1 = 0,

∇ · um+1 = 0,

um+1|∂Ω = 0.

Adding (S1)m+1 and (S2)m+1, one has the following relation, which can be interpreted
as a consistency relation:

(S3)m+1


um+1 − um

k
+ (um · ∇)um+1/2 − ν∆um+1 +∇ pm+1 = f(tm+1),

∇ · um+1 = 0,

um+1|∂Ω = 0.

2.2 Spatial discretization

We use a first order finite element approximation. Let Ω be a 3D polyhedron (or a 2D
polygon) such that Stokes problem in Ω has H2 ×H1 regularity for velocity and pressure
respectively.

We consider a family of finite dimensional spaces Vh ⊂ H1
0(Ω) and Qh ⊂ L2

0(Ω) defined
from finite element methods associated to a family of regular triangulations of the domain
Ω with mesh size h. Vh and Qh are thus required to satisfy:
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• the Brezzi-Babuska stability condition: inf
qh∈Qh\{0}

(
sup

v∈Vh\{0}

(qh,∇ · vh)
‖vh‖ |qh|

)
≥ β > 0.

• the approximating properties:

1
h

inf
vh∈Vh

|u− vh|+ inf
vh∈Vh

‖u− vh‖+ inf
qh∈Qh

|p− ph| ≤ C h ‖(u, p)‖H2×H1

We use the notation | · | and (·, ·) as the norm and the inner product in L2 and ‖ · ‖ as the
norm in H1

0 .

The fully discrete scheme is described as follows:
Initialization: Let u0

h ∈ Vh be an approximation of u0

Step of time m + 1:
Subtep 1: Given um

h ∈ Vh, to compute um+1/2
h ∈ Vh such that, for each vh ∈ Vh:

(S1)m+1
h

{
(
um+1/2

h − um
h

k
,vh) + c(um

h ,um+1/2
h ,vh) + (∇um+1/2

h ,∇vh) = (fm+1,vh),

where c(w,u,v) = {(w · ∇u,v)− (w · ∇v,u)}/2.
Substep 2: Given um+1/2

h , to compute (um+1
h , pm+1

h ) ∈ Vh × Qh such that, for each
(vh, qh) ∈ Vh ×Qh:
(S2)m+1

h
1
k
(um+1

h − um+1/2
h ,vh) + (∇(um+1

h − um+1/2
h ),∇vh)− (pm+1

h ,∇ · vh) = 0,

(∇ · um+1
h , qh) = 0.

With respect to the effective computation of this scheme, in each time step, we have:

1. (S1)m+1
h as three discrete linear convection-diffusion equations.

2. (S2)m+1
h as a discrete Stokes problem.

2.3 Known Results and Objectives

Assuming the following regularity for the exact solution (u, p) of problem (P):

(R1) u ∈ L∞(H2 ∩V), p ∈ L∞(H1), ut ∈ L∞(L2) ∩ L2(H1), utt ∈ L2(V′)

where V = {v ∈ H1
0 : ∇ · v = 0 in Ω, v = 0 on ∂Ω }), and the constraints on discrete

parameters:
h2 ≤ C k,

the following error estimates hold ([1, 3]):

‖u(tm)− um
h ‖l∞(L2)∩l2(H1) ≤ C (k + h) and ‖p(tm)− pm‖l2(L2) ≤ C

√
k

Moreover, the estimate ‖pm−pm
h ‖l2(L2) ≤ C h/

√
k can be obtained with similar arguments.

The objectives of this work are:
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1. To improve the order of error estimate in pressure, from O(
√

k +h/
√

k) to O(k +h).

2. To improve the norm of error estimates in velocity and pressure, concretely from
l∞(L2) to l∞(H1) in velocity and from l2(L2) to l∞(L2) in pressure.

3. To improve the order of error estimate in velocity in norm L2(L2), from O(k +h) to
O(k + h2)

The main result of this paper can be written as follows. Assuming the following
additional regularity hypotheses:

(R2)
{

pt ∈ L2(H1), ut ∈ L∞(H1) ∩ L2(H2), utt ∈ L2(L2) ∩ L∞(H−1)
uttt ∈ L2(V′),

√
tuttt ∈ L2(H−1)

then,
‖p(tm)− pm

h ‖l2(L2) ≤ C (k + h), ‖u(tm)− um
h ‖l2(L2) ≤ C (k + h2).

Moreover, assuming the following hypothesis for initial step:

|(u(t1)− u1)− (u(t0)− u0)| ≤ C k2, |(u1 − u1
h)− (u0 − u0

h)| ≤ C k h

then
‖u(tm)− um

h ‖l∞(H1) ≤ C (k + h), ‖p(tm)− pm
h ‖l∞(L2) ≤ C (k + h).

Therefore, we have that this scheme has the same analytical results than Euler’s type
schemes, improving their numerical treatment (since the main difficulties are split). In
the following two sections, we will present an outline of the proof (see [7] for a complete
explanation of the results).

Unfortunately, in order to assure the additional regularity hypotheses (R2), it is nec-
essary to assume that ut(0) ∈ H1, which implies a non local compatibility condition for
the data u0 and f ([12]). In this sense, we could relax it approximating the first step with
several auxiliary initial steps with a sufficiently small time step. Then, the approximate
solutions obtained from these preliminary steps could serve as initial data for our fractional
step algorithm at subsequent time steps.

3 Error estimates for the time discrete scheme

We decompose the total error in their temporal and spatial parts, introducing the corre-
sponding time discrete scheme.

The following notations will used for the time discrete errors in t = tm+1:

em+1/2 = u(tm+1)− um+1/2, em+1 = u(tm+1)− um+1, em+1
p = p(tm+1)− pm+1,

and for the discrete in time derivatives of errors

δ t em+1 =
em+1 − em

k
, δ t em+1/2 =

em+1/2 − em−1/2

k
.

These discrete in time errors verify the following problems:

(E1)m+1


1
k
(em+1/2 − em)−∆em+1/2 = −∇ p(tm+1) + Em+1 + NLm+1

em+1/2|∂Ω = 0,
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where

Em+1 = −1
k

∫ tm+1

tm

(t− tm)utt(t) dt−
(∫ tm+1

tm

ut · ∇
)

u(tm+1)

is the consistency error, and

NLm+1 = −
(
em · ∇

)
u(tm+1)− (um · ∇)em+1/2 = −

(
em · ∇

)
um+1/2 − (u(tm) · ∇)em+1/2

are residual terms depending of the quadratic terms. On the other hand,

(E2)m+1


1
k
(em+1 − em+1/2)−∆(em+1 − em+1/2)−∇pm+1 = 0 in Ω

∇ · em+1 = 0 in Ω, em+1|∂Ω = 0.

Adding (E1)m+1 and (E2)m+1, we arrive at:

(E3)m+1

{
δtem+1 −∆em+1 +∇em+1

p = Em+1 + NLm+1 in Ω,

∇ · em+1 = 0 in Ω, em+1|∂Ω = 0.

Theorem 3.1 The following error estimate holds (for k small enough):

‖em+1
p ‖l2(L2) ≤ C k.

Outline of the proof: It is based on the following three steps:

1. H2 error estimates. Using the H2 × H1-regularity of Stokes problem verified by
(em+1, em+1

p ) (passing in (E3)m+1 the term δtem+1 at the left hand side) and the H2-
regularity of the Poisson-Dirichlet problem verified by em+1/2 (passing in (E3)m+1

the term
1
k
(em+1/2 − em) at the left hand side), one can prove that

em+1/2, em+1 are bounded in l∞(H2)

2. Making (δt(E1)m+1, δtem+1/2) + (δt(E2)m+1, δtem+1), using a discrete Gronwall’s
lemma jointly with the proof for the initial step ‖δte1‖L2 ≤ C k1/2, one can prove:

‖δtem+1‖l∞(L2)∩l2(H1) + ‖δtem+1/2‖l∞(L2)∩l2(H1) ≤ C k1/2

3. Duality argument. Making (δt(E3)m+1, A−1 δtem+1), A being the Stokes operator,
one can prove

‖δtem+1‖l∞(V′)∩l2(L2) ≤ C k,

for k small enough (which becomes from to apply the generalized discrete Gronwall’s
lemma jointly with the proof for the initial step ‖δte1‖V′ ≤ C k)

Theorem 3.2 Assuming |δte1| ≤ C k, the following error estimates hold

‖em+1‖l∞(H1) ≤ C k and ‖em+1
p ‖l∞(L2) ≤ C k.

Outline of the proof: It is based on the error estimate ‖δtem+1‖l∞(L2)∩l2(H1) ≤ C k,
obtained by making (δt(S3)m+1, δtem+1). Notice that in this case, the proof for the initial
step is not clear.
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4 Error estimates for the spatial discretization

We define the spatial discrete errors:

em+1
d = um+1 − um+1

h , em+1/2
d = um+1/2 − um+1/2

h , em+1
p,d = pm+1 − pm+1

h

Then, the problems verified by these errors are:

(E1)m+1
h

{
1
k
(em+1/2

d − em
d ,vh) + (∇ em+1/2

d ,∇vh) = NLm+1
h (vh), ∀vh ∈ Vh,

where NLm+1
h (vh) = c(em

d ,um+1/2,vh)− c(um
h , em+1/2

d ,vh), and

(E2)m+1
h


1
k
(em+1

d − em+1/2
d ,vh) + (∇ (em+1

d − em+1/2
d ),∇vh)

−(em+1
p,d ,∇ · vh) = 0, ∀vh ∈ Vh

(∇ · em+1
d , qh) = 0, ∀ qh ∈ Qh

Adding (E1)m+1
h and (E2)m+1

h , one has for each (vh, qh) ∈ (Vh, Qh):

(E3)m+1
h

{
(δtem+1

d ,vh) + (∇ em+1
d ,∇vh)− (em+1

p,d ,∇ · vh) = NLm+1
h (vh),

(∇ · em+1
d , qh) = 0.

Theorem 4.1 For k small enough, the following error estimate holds:

‖em+1
d ‖l2(L2) ≤ C(k + h2)

Outline of the proof: It is based on the following steps:

1. Making (δt(E1)m+1
h , δte

m+1/2
h ) + (δt(E2)m+1

h , δtem+1
h ), one can arrives at

‖δtem+1
d ‖l∞(L2)∩l2(H1) + ‖δte

m+1/2
d ‖l∞(L2)∩l2(H1) ≤ C.

2. The following additional scheme estimate is obtained:

um+1
h is bounded in l∞(W1,3 ∩ L∞). (1)

3. Duality argument. Making ((E3)m+1
h , A−1

h em+1
h ), Ah being the discrete Stokes op-

erator.

Theorem 4.2 For k small enough, the following estimate holds

‖em+1
p,d ‖l2(L2) ≤ C h.

Outline of the proof: It is based on the following estimate

‖δtem+1
d ‖l2(L2) ≤ C h,

which is obtained by making (δt(E3)m+1
h , A−1

h δtem+1
h ), using again the additional scheme

estimate (1).

Theorem 4.3 Assuming |δte1
d| ≤ C h, then

‖em+1
d ‖l∞(H1) ≤ C h and ‖em+1

p,d ‖l∞(L2) ≤ C h.

Outline of the proof: It is based on the error estimate

‖δtem+1
d ‖l∞(L2)∩l2(H1) + ‖δte

m+1/2
d ‖l∞(L2)∩l2(H1) ≤ C h,

which is obtained as in step 1 of the proof of Theorem 4.1.
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