On the intersection of the classes of doubly diagonally dominant matrices and S-strictly diagonally dominant matrices

F. Pedroche ${ }^{1}$, R. Bru ${ }^{1}$, L. Cvetković ${ }^{2}$, V. Kostić ${ }^{2}$
${ }^{1}$ Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València. Camí de Vera s / n. 46022 València. Spain. E-mails: pedroche@imm.upv.es, rbru@imm.upv.es.
${ }^{2}$ Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad. Serbia, 21000 Novi Sad. E-mails: lilac@sbb.co.yu, vkostic@im.ns.ac.yu.

Keywords: H-matrices, Doubly diagonally matrices, S-strictly diagonally dominant matrices

Abstract

We denote by H_{0} the subclass of H-matrices consisting of all the matrices that lay simultaneously on the classes of doubly diagonally dominant (DDD) matrices $(A=$ $\left[a_{i j}\right] \in \mathbb{C}^{n \times n}:\left|a_{i i}\right|\left|a_{j j}\right| \geq \sum_{k \neq i}\left|a_{i k}\right| \sum_{k \neq j}\left|a_{j k}\right|, i \neq j$) and S-strictly diagonally dominant (S-SDD) matrices. Notice that strictly doubly diagonally dominant matrices (also called Ostrowsky matrices) are a subclass of H_{0}. Strictly diagonally dominant matrices (SDD) are also a subclass of H_{0}. In this paper we analyze some properties of the class $H_{0}=\mathrm{DDD} \cap S$-SDD.

1 Introduction

In this paper we analyze some properties of the matrices that lay simultaneously on the classes of doubly diagonally dominant (DDD) matrices, see [11] , and S-strictly diagonally dominant (S-SDD) matrices; see [4], [15]. This class, that we denote here by $H_{0}=$ $\mathrm{DDD} \cap S$-SDD is a subclass of H-matrices. In several practical applications H-matrices play a key role; e.g., in the numerical solution of Euler equations in fluid dynamics [7], in nonlinear boundary problems and in the Lyapounov stability analysis for large scale evolution systems (see [14] and the references therein, for more details). H-matrices were defined by Ostrowsky in [13] as a generalization of M-Matrices. H-matrices and M-matrices are called this way in homage to Hadamard and Minkowsky, respectively [15].

We recall that a nonsingular matrix A having all non-positive off-diagonal entries is called an M-matrix if the inverse is (entry-wise) nonnegative, i.e., $A^{-1} \geq O$; see, e.g.,
[1] for more characterizations. For any matrix $A=\left(a_{i j}\right) \in \mathbb{R}^{n \times n}$, its comparison matrix $\langle A\rangle=\left(\alpha_{i j}\right)$ can be defined by

$$
\alpha_{i i}=\left|a_{i i}\right|, \quad \alpha_{i j}=-\left|a_{i j}\right|, \quad i \neq j .
$$

A matrix A is said to be an H-matrix if $\langle A\rangle$ is a nonsingular M-matrix. In particular, A is a nonsingular H-matrix if and only if it is (strictly) generalized (row) diagonally dominant, i.e.,

$$
\begin{equation*}
\left|a_{i i}\right| w_{i}>\sum_{i \neq j}\left|a_{i j}\right| w_{j}, \quad i=1, \ldots, n, \tag{1}
\end{equation*}
$$

for some positive vector $w=\left(w_{1}, \ldots, w_{n}\right)^{T}$. This is equivalent to say that A is an H-matrix if and only if there exists a positive diagonal matrix $W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots, w_{n}\right)$ such that $A W$ is an strictly (row) diagonally dominant (SDD) matrix. Some useful characterizations of H-matrices (see, for example, [10], [8], [14], [9], [5]) are based on devising adequate scaling matrices W. A different strategy to the problem of finding classes of H-matrices resides in describing subclasses of H-matrices which are easily characterizable. Following this approach some new subclasses of H-matrices were introduced in [4]. In this paper we focus on the subclass of H_{0}-matrices. It is also interesting to note that SDD matrices are the simplest case for this class; these ideas are depicted in Figure 1 below.

Figure 1: DDD matrices and some subclasses of H-matrices

$2 \quad S$-SDD matrices

We begin with some definitions which can be found, e.g., in [2], [4], [6], [15].
Definition 1 Given a matrix $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}$, let us define the ith deleted absolute row sum as

$$
r_{i}(A)=\sum_{j \neq i, j=1}^{n}\left|a_{i j}\right|, \quad \forall i=1,2, \ldots, n
$$

and the i th deleted absolute row-sum with columns in the set of indices $S=\left\{i_{1}, i_{2}, \ldots\right\} \subseteq N:=\{1,2, \ldots n\}$ as

$$
r_{i}^{S}(A)=\sum_{j \neq i, j \in S}\left|a_{i j}\right|, \quad \forall i=1,2, \ldots, n
$$

Given any nonempty set of indices $S \subseteq N$ we denote its complement in N by $\bar{S}:=N \backslash S$. Note that for any $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}$ we have that $r_{i}(A)=r_{i}^{S}(A)+r_{i}^{\bar{S}}(A)$.

Definition 2 Given a matrix $A=\left(a_{i j}\right) \in \mathbb{C}^{n \times n}, n \geq 2$ and given a nonempty subset S of $\{1,2, \ldots, n\}$, then A is an S-strictly diagonally dominant matrix if the following two conditions hold

It was shown in [6] that an S-strictly diagonally dominant matrix (S-SDD) is a nonsingular H-matrix. In particular, when $S=\{1,2, \ldots n\}$, then $A=\left(a_{i j}\right) \in C^{n \times n}$ is a strictly diagonally dominant matrix (SDD). It is easy to show that an SDD matrix is an S-SDD matrix for any proper subset S, but the converse is not always true [3].

Notice that condition 1) of definition 2 implies that the diagonal of any S-SDD matrix is nonzero. We also note that condition 1) can be substituted for $\left|a_{i i}\right|>r_{i}^{S}(A)$, for some $i \in S$, since the condition 2) ensures that 1) will be satisfied for all $i \in S$; see [4].

The class of S-SDD can be expressed equivalently in the following way. For arbitrary nonempty proper set of indices S let us define the interval $J_{A}(S)$ as

$$
\begin{equation*}
J_{A}(S):=\left(\mu_{1}^{S}(A), \mu_{2}^{S}(A)\right), \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{1}^{S}(A):=\max _{i \in S} \frac{r_{i}^{\bar{S}}(A)}{\left|a_{i i}\right|-r_{i}^{S}(A)} \quad \text { and } \quad \mu_{2}^{S}(A):=\min _{j \in \bar{S}, r_{j}^{S}(A) \neq 0} \frac{\left|a_{j j}\right|-r_{j}^{\bar{S}}(A)}{r_{j}^{S}(A)} . \tag{4}
\end{equation*}
$$

By convention, when $S=\emptyset$ or $S=N$ we define $J_{A}(S)=(0,+\infty)$. Furthermore, when $r_{j}^{S}(A)=0, \forall j \in \bar{S}$ then we take $\mu_{2}^{S}(A)=+\infty$.

The next lemma, which is proved in [2], shows another characterization of S-SDD matrices. Here we denote by $A[S]$ the principal submatrix of A with indices from the set S.

Lemma 1 Given $S \in N$, let $A[S]$ and $A[\bar{S}]$ be strictly diagonally dominant matrices. Then $A \in C^{n \times n}$ is an S-SDD matrix if and only if the interval $J_{A}(S)$ given by (3) is nonempty.

3 Doubly diagonally dominant matrices

The class of DDD matrices, see [11], is defined as follows.

$$
\begin{equation*}
\left\{A=\left[a_{i j}\right] \in \mathbb{C}^{n \times n}:\left|a_{i i}\right|\left|a_{j j}\right| \geq r_{i}(A) r_{j}(A), \quad i \neq j\right\} \tag{5}
\end{equation*}
$$

Example 1 The matrices $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right]$ are DDD matrices.
Example 2 The matrix

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
\frac{1}{2} & 1 & \frac{1}{2} \\
0 & \frac{1}{2} & 1
\end{array}\right]
$$

is $D D D$ but it is not into the class H_{0}, i.e., is not an S-SDD matrix for any S. But it is a nonsingular H matrix.

We remark that we are interested in DDD matrices with at least one equality in (5). Otherwise, we would have SDDD (Ostrowsky) matrices or simply SDD matrices, which are known classes.

$4 \quad H_{0}$-matrices

In order to study the class $H_{0}=\mathrm{DDD} \cap S$-SDD we can adopt three points of view: a) we can stay in the DDD class and look for conditions to be in the class S-SDD, b) we can stay in the class S-SDD and look for conditions to be in the DDD class and c) we can impose all the conditions to be in the class $\operatorname{DDD} \cap S$-SDD and try to simplify the derived relations.

In this communication we explore the options a) and c).
Before giving sufficient conditions for a DDD matrix to be an S-SDD matrix we establish the following result.

Lemma 2 Let $A \in \mathbb{C}^{n \times n}$ and $S \subseteq N:=\{1,2, \ldots, n\}$. If

1) $A[S]$ and $A[\bar{S}]$ are $S D D$ matrices
2) $r_{i}^{S}(A) r_{j}(A)>r_{j}^{\bar{S}}(A)\left|a_{i i}\right|, \quad \forall i \in S, \forall j \in \bar{S}$
3) $r_{i}(A) r_{j}^{\bar{S}}(A)>r_{i}^{S}(A)\left|a_{j j}\right|, \quad \forall i \in S, \forall j \in \bar{S}$
then A is an S-SDD matrix.
Proof We first note that 1) implies: $\left|a_{i i}\right|>r_{i}^{S}(A), \forall i \in S$ and $\left|a_{j j}\right|>r_{j}^{\bar{S}}(A), \forall j \in \bar{S}$. According to Lemma 1 , we only have to show that the interval $J_{A}(S)$ given by equation (3) is nonempty. Note that condition 2) can be written as

$$
\begin{equation*}
r_{i}^{S}(A) r_{j}^{S}(A)>r_{j}^{\bar{S}}(A)\left[\left|a_{i i}\right|-r_{i}^{S}(A)\right], \quad \forall i \in S, \forall j \in \bar{S} \tag{6}
\end{equation*}
$$

and since $A[S]$ is SDD, equation (6) implies that $r_{i}^{S}(A) r_{j}^{S}(A)>0, \quad \forall i \in S, \forall j \in \bar{S}$.
Now, from (6) and the definition of $\mu_{1}^{S}(A)$, see equation (4), we conclude that

$$
\mu_{1}^{S}(A)>\frac{r_{i}^{\bar{S}}(A) r_{j}^{\bar{S}}(A)}{r_{i}^{S}(A) r_{j}^{S}(A)}, \quad \forall i \in S, \forall j \in \bar{S}
$$

In a similar way, condition 3) yields to

$$
\begin{equation*}
r_{i}^{\bar{S}}(A) r_{j}^{\bar{S}}(A)>r_{i}^{S}(A)\left[\left|a_{j j}\right|-r_{j}^{\bar{S}}(A)\right], \quad \forall i \in S, \forall j \in \bar{S} \tag{7}
\end{equation*}
$$

and this equation jointly with the definition of $\mu_{2}^{S}(A)$, equation (4), leads to

$$
\mu_{2}^{S}(A)<\frac{r_{i}^{\bar{S}}(A) r_{j}^{\bar{S}}(A)}{r_{i}^{S}(A) r_{j}^{S}(A)}, \quad \forall i \in S, \forall j \in \bar{S}
$$

and the proof follows.
In the following result we show that when A is a DDD matrix then we can replace the condition 1) of Lemma 2 by the simple condition $\left|a_{i i}\right|>r_{i}^{S}(A)$ for some $i \in S$.

Proposition 1 Let $A \in \mathbb{C}^{n \times n}$ be a $D D D$ matrix. Let $S \subseteq N:=\{1,2, \ldots, n\}$. If

1) $\left|a_{i i}\right|>r_{i}^{S}(A)$ for some $i \in S$
2) $r_{i}^{S}(A) r_{j}(A)>r_{j}^{\bar{S}}(A)\left|a_{i i}\right|, \quad \forall i \in S, \forall j \in \bar{S}$
3) $r_{i}(A) r_{j}^{\bar{S}}(A)>r_{i}^{S}(A)\left|a_{j j}\right|, \quad \forall i \in S, \forall j \in \bar{S}$
then A is an S-SDD matrix.
Proof Since A is a DDD matrix we have that

$$
\left|a_{i i} \|\left|a_{j j}\right| \geq r_{i}(A) r_{j}(A), \quad i \neq j\right.
$$

Note that

$$
\begin{align*}
\left|a_{i i} \|\left|a_{j j}\right|\right. & \geq r_{i}(A) r_{j}(A) \\
& =\left[r_{i}^{S}(A)+r_{i}^{\bar{S}}(A)\right]\left[r_{j}^{S}(A)+r_{j}^{\bar{S}}(A)\right] \\
& =r_{i}^{S}(A) r_{j}^{S}(A)+r_{i}^{S}(A) r_{j}^{\bar{S}}(A)+r_{i}^{\bar{S}}(A) r_{j}^{S}(A)+r_{i}^{\bar{S}}(A) r_{j}^{\bar{S}}(A) \\
& =r_{i}^{S}(A) r_{j}(A)+r_{i}^{S}(A) r_{j}^{\bar{S}}(A)-r_{i}^{S}(A) r_{j}^{\bar{S}}(A)+r_{i}^{\bar{S}}(A) r_{j}^{S}(A)+r_{i}^{\bar{S}}(A) r_{j}^{\bar{S}}(A) \\
& =r_{i}^{S}(A) r_{j}(A)+r_{i}(A) r_{j}^{\bar{S}}(A)-r_{i}^{S}(A) r_{j}^{\bar{S}}(A)+r_{i}^{\bar{S}}(A) r_{j}^{S}(A) \tag{8}
\end{align*}
$$

and using conditions 2) and 3) we conclude

$$
\left|a_{i i}\right|\left|a_{j j}\right|>r_{j}^{\bar{S}}(A)\left|a_{i i}\right|+r_{i}^{S}(A)\left|a_{j j}\right|-r_{i}^{S}(A) r_{j}^{\bar{S}}(A)+r_{i}^{\bar{S}}(A) r_{j}^{S}(A)
$$

from which we obtain

$$
\left(\left|a_{i i}\right|-r_{i}^{S}(A)\right)\left(\left|a_{j j}\right|-r_{j}^{\bar{S}}(A)\right)>r_{i}^{\bar{S}}(A) r_{j}^{S}(A)
$$

and this holds $\forall i \in S, \forall j \in \bar{S}$. In conclusion, we have that A is an S-SDD matrix.

In the next section we will show some properties of the matrices that lay on the class H_{0}.

4.1 Set of pairs of indices

In this section we consider $N:=\{1,2, \ldots, n\}$, such that $n \geq 2$. Let us define the set $N_{2}=\{(i, j): i, j \in N, i \neq j\}$. Obviously, $\operatorname{card}\left(N_{2}\right)=\frac{n(n-1)}{2}$.

Definition 3 Let $A \in \mathbb{C}^{n \times n}$ be a $D D D$ matrix such that $n \geq 2$. We define the set of pairs of indices

$$
E(A)=\left\{(i, j) \in N_{2}:\left|a_{i i}\right|\left|a_{j j}\right|=r_{i}(A) r_{j}(A)\right\} .
$$

We denote its complement by $\overline{E(A)}=N_{2} \backslash E(A)$.
Example 3 Given the following DDD matrix

$$
A=\left[\begin{array}{ccc}
1 & 0.5 & 0.5 \\
0.5 & 1 & 0.5 \\
0 & 1 & 2
\end{array}\right]
$$

we have $N_{2}=\{(1,2),(1,3),(2,3)\}$ and $E(A)=\{(1,2)\}$.
Definition 4 We define the class of matrices $H_{0}(S)$ which is formed by square matrices A of order n such that they are simultaneously DDD matrices and S-SDD matrices for some proper subset $S \subseteq N$.

Example 4 The matrix given by example 3 is $D D D$ and $\{1,2\}-S D D$, therefore it belongs to the class $H_{0}(\{1,2\})$.

Lemma 3 Let $A \in \mathbb{C}^{n \times n}$ such that $A \in H_{0}(S)$ for some proper subset S and such that there exists $i \in N: r_{i}(A)=0$. Then $(i, j) \in \overline{E(A)}, \forall j \in N$.

Proof Let us suppose that there exists $j \in N:(i, j) \in E(A)$. Therefore $\left|a_{i i}\right|\left|a_{j j}\right|=$ $r_{i}(A) r_{j}(A)=0$ which implies $a_{i i}=0$ or $a_{j j}=0$. But this is a contradiction because A is a nonsingular H-matrix.

Remark 1 Note that this lemma still holds when A is a DDD matrix whose diagonal entries are nonzero.

Lemma 4 Let $A \in \mathbb{C}^{n \times n}$ such that $A \in H_{0}(\underline{S)}$ for some proper subset S and such that there exists $i \in S:\left|a_{i i}\right|=r_{i}(A)$. Then $(i, j) \in \overline{E(A)}, \forall j \in \bar{S}$.

Proof Let us suppose that there exists $j \in \bar{S}:(i, j) \in E(A)$. Therefore $\left|a_{i i} \|\left|a_{j j}\right|=\right.$ $r_{i}(A) r_{j}(A)$ and using the hypothesis $\left|a_{i i}\right|=r_{i}(A)$ we conclude that $\left|a_{j j}\right|=r_{j}(A)$. Therefore we have

$$
\left(\left|a_{i i}\right|-r_{i}^{S}(A)\right)\left(\left|a_{j j}\right|-r_{j}^{\bar{S}}(A)\right)=r_{i}^{\bar{S}}(A) r_{j}^{S}(A), \quad \text { with } \quad i \in S, j \in \bar{S}
$$

and the condition $i i$) of the definition of S-SDD matrices is not satisfied. Therefore A does not belong to $H_{0}(S)$, which is a contradiction.

The counterpart of the previous lemma is the following.

Lemma 5 Let $A \in \mathbb{C}^{n \times n}$ such that $A \in H_{0}(\underline{S)}$ for some proper subset S and such that there exists $i \in \bar{S}:\left|a_{i i}\right|=r_{i}(A)$. Then $(i, j) \in \overline{E(A)}, \forall j \in S$.

As a consequence of the two previous results we have the following.
Proposition 2 Let $A \in \mathbb{C}^{n \times n}$ such that $A \in H_{0}(S)$ and let T be the set of indices

$$
T=\left\{i \in N:\left|a_{i i}\right|=r_{i}(A)\right\} .
$$

Then $T \subseteq S$ or $T \subseteq \bar{S}$.

Acknowledgement

F. Pedroche and R. Bru are supported by the Spanish DGI grant MTM2004-02998. L. Cvetković and V. Kostić are supported by the Provincial Secretariat of Science and Technological Development of Vojvodina, Serbia, grant 01123.

Bibliography

[1] A. Berman, and R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, New York. Reprinted and updated, SIAM, Philadelphia, 1994.
[2] R. Bru, L. Cvetkovic., V. Kostic and F. Pedroche. Sums of S-strictly diagonally dominant matrices Electron. Trans. Numer. Anal., 2007 (submitted).
[3] R. Bru, F. Pedroche, and D. B. Szyld. Subdirect sums of S-Strictly Diagonally Dominant matrices, Electron. J. Linear Algebra, 15:201-209, 2006.
[4] L. Cvetkovic. H-matrix theory vs. eigenvalue localization Numerical Algorithms, 42: 229-245, 2006.
[5] L. Cvetkovic and V. Kostic. New criteria for identifying H-matrices, J. Comput. Appl. Math., 180:265-278, 2005.
[6] L. Cvetkovic, V. Kostic and R. S. Varga. A new Geršgoring-type eigenvalue inclusion set, Electron. Trans. Numer. Anal., 18:73-80, 2004.
[7] L. Elsner and V. Mehrmann. Convergence of Block-Iterative Methods for Linear Systems Arising in the Numerical Solution of Euler Equations. Numerische Mathematik, Vol. 59, pp. 541-560, 1991.
[8] T. B. Gan, and T. Z. Huang. Simple criteria for nonsingular H-matrices, Linear Algebra Appl., 374:317-326, 2003.
[9] T-Z Huang, J-S Leng, E.L. Wachspress and Y. Y. Tang. Characterization of H-matrices. Computers §3 Mathematics with applications, 48 (10-11): 1587-1601, 2004.
[10] B. Li, L. Li, M. Harada, H. Niki, M. J. Tsatsomeros, An iterative criterion for H-matrices, Linear Algebra Appl., 271:179-190, 1998.
[11] B. Li and M. J. Tsatsomeros. Doubly diagonally dominant matrices. Linear Algebra and its Applications, 261:221-235, 1997.
[12] J. Liu and Y. Huang. Some properties on Schur complements of H-matrices and diagonally dominant matrices. Linear Algebra and its Applications, 389:365-380, 2004.
[13] A. M. Ostrowski, (1937), Über die Determinanten mit überwiegender Hauptdiagonale, Comentarii Mathematici Helvetici 10 pp. 69-96.
[14] P. Spiteri. A new characterization of M-matrices and H-matrices. BIT Numerical Mathematics, 43:1019-1032, 2003.
[15] R. S. Varga. Geršgorin and his circles. Springer Series in Computational Mathematics, vol. 36. Springer, Berlin, Heidelberg, 2004.

