XX Congreso de Ecuaciones Diferenciales y Aplicaciones X Congreso de Matemática Aplicada Sevilla, 24-28 septiembre 2007 (pp. 1–7)

On the intersection of the classes of doubly diagonally dominant matrices and S-strictly diagonally dominant matrices

<u>F. Pedroche¹</u>, R. Bru¹, L. Cvetković², V. Kostić²

¹ Institut de Matemàtica Multidisciplinar, Universitat Politècnica de València. Camí de Vera s/n.

46022 València. Spain. E-mails: pedroche@imm.upv.es, rbru@imm.upv.es. ² Department of Mathematics and Informatics, Faculty of Science, University of Novi Sad. Serbia, 21000

Novi Sad. E-mails: lilac@sbb.co.yu, vkostic@im.ns.ac.yu.

Keywords: H-matrices, Doubly diagonally matrices, S-strictly diagonally dominant matrices

Abstract

We denote by H_0 the subclass of *H*-matrices consisting of all the matrices that lay simultaneously on the classes of doubly diagonally dominant (DDD) matrices $(A = [a_{ij}] \in \mathbb{C}^{n \times n} : |a_{ii}||a_{jj}| \geq \sum_{k \neq i} |a_{ik}| \sum_{k \neq j} |a_{jk}|, i \neq j$) and *S*-strictly diagonally dominant (*S*-SDD) matrices. Notice that strictly doubly diagonally dominant matrices (also called Ostrowsky matrices) are a subclass of H_0 . Strictly diagonally dominant matrices (SDD) are also a subclass of H_0 . In this paper we analyze some properties of the class $H_0 = \text{DDD} \cap S$ -SDD.

1 Introduction

In this paper we analyze some properties of the matrices that lay simultaneously on the classes of doubly diagonally dominant (DDD) matrices, see [11], and S-strictly diagonally dominant (S-SDD) matrices; see [4], [15]. This class, that we denote here by $H_0 = DDD \cap S$ -SDD is a subclass of H-matrices. In several practical applications H-matrices play a key role; e.g., in the numerical solution of Euler equations in fluid dynamics [7], in nonlinear boundary problems and in the Lyapounov stability analysis for large scale evolution systems (see [14] and the references therein, for more details). H-matrices were defined by Ostrowsky in [13] as a generalization of M-Matrices. H-matrices and M-matrices are called this way in homage to Hadamard and Minkowsky, respectively [15].

We recall that a nonsingular matrix A having all non-positive off-diagonal entries is called an M-matrix if the inverse is (entry-wise) nonnegative, i.e., $A^{-1} \ge O$; see, e.g.,

[1] for more characterizations. For any matrix $A = (a_{ij}) \in \mathbb{R}^{n \times n}$, its comparison matrix $\langle A \rangle = (\alpha_{ij})$ can be defined by

$$\alpha_{ii} = |a_{ii}|, \quad \alpha_{ij} = -|a_{ij}|, \quad i \neq j.$$

A matrix A is said to be an H-matrix if $\langle A \rangle$ is a nonsingular M-matrix. In particular, A is a nonsingular H-matrix if and only if it is (strictly) generalized (row) diagonally dominant, i.e.,

$$|a_{ii}|w_i > \sum_{i \neq j} |a_{ij}|w_j, \quad i = 1, \dots, n,$$
 (1)

for some positive vector $w = (w_1, \ldots, w_n)^T$. This is equivalent to say that A is an H-matrix if and only if there exists a positive diagonal matrix $W = diag(w_1, w_2, \ldots, w_n)$ such that AW is an strictly (row) diagonally dominant (SDD) matrix. Some useful characterizations of H-matrices (see, for example, [10], [8], [14], [9], [5]) are based on devising adequate scaling matrices W. A different strategy to the problem of finding classes of H-matrices resides in describing subclasses of H-matrices which are easily characterizable. Following this approach some new subclasses of H-matrices were introduced in [4]. In this paper we focus on the subclass of H₀-matrices. It is also interesting to note that SDD matrices are the simplest case for this class; these ideas are depicted in Figure 1 below.

Figure 1: DDD matrices and some subclasses of H-matrices

2 S-SDD matrices

We begin with some definitions which can be found, e.g., in [2], [4], [6], [15].

Definition 1 Given a matrix $A = (a_{ij}) \in \mathbb{C}^{n \times n}$, let us define the *i*th deleted absolute row sum as

$$r_i(A) = \sum_{j \neq i, j=1}^n |a_{ij}|, \quad \forall i = 1, 2, \dots, n,$$

and the *i*th deleted absolute row-sum with columns in the set of indices $S = \{i_1, i_2, \ldots\} \subseteq N := \{1, 2, \ldots n\}$ as

$$r_i^S(A) = \sum_{j \neq i, j \in S} |a_{ij}|, \quad \forall i = 1, 2, \dots, n.$$

Given any nonempty set of indices $S \subseteq N$ we denote its complement in N by $\overline{S} := N \setminus S$. Note that for any $A = (a_{ij}) \in \mathbb{C}^{n \times n}$ we have that $r_i(A) = r_i^S(A) + r_i^{\overline{S}}(A)$.

Definition 2 Given a matrix $A = (a_{ij}) \in \mathbb{C}^{n \times n}$, $n \ge 2$ and given a nonempty subset S of $\{1, 2, \ldots, n\}$, then A is an S-strictly diagonally dominant matrix if the following two conditions hold

$$\begin{array}{ll} i) & |a_{ii}| > r_i^S(A) & \forall i \in S, \\ ii) & (|a_{ii}| - r_i^S(A)) \left(|a_{jj}| - r_j^{\bar{S}}(A) \right) > r_i^{\bar{S}}(A) r_j^S(A) & \forall i \in S, \forall j \in \bar{S}. \end{array}$$

$$(2)$$

It was shown in [6] that an S-strictly diagonally dominant matrix (S-SDD) is a nonsingular H-matrix. In particular, when $S = \{1, 2, ..., n\}$, then $A = (a_{ij}) \in C^{n \times n}$ is a strictly diagonally dominant matrix (SDD). It is easy to show that an SDD matrix is an S-SDD matrix for any proper subset S, but the converse is not always true [3].

Notice that condition 1) of definition 2 implies that the diagonal of any S-SDD matrix is nonzero. We also note that condition 1) can be substituted for $|a_{ii}| > r_i^S(A)$, for some $i \in S$, since the condition 2) ensures that 1) will be satisfied for all $i \in S$; see [4].

The class of S-SDD can be expressed equivalently in the following way. For arbitrary nonempty proper set of indices S let us define the interval $J_A(S)$ as

$$J_A(S) := (\mu_1^S(A), \mu_2^S(A)), \tag{3}$$

where

$$\mu_1^S(A) := \max_{i \in S} \frac{r_i^{\overline{S}}(A)}{|a_{ii}| - r_i^S(A)} \quad \text{and} \quad \mu_2^S(A) := \min_{j \in \overline{S}, r_j^S(A) \neq 0} \frac{|a_{jj}| - r_j^S(A)}{r_j^S(A)}.$$
(4)

By convention, when $S = \emptyset$ or S = N we define $J_A(S) = (0, +\infty)$. Furthermore, when $r_i^S(A) = 0, \forall j \in \overline{S}$ then we take $\mu_2^S(A) = +\infty$.

The next lemma, which is proved in [2], shows another characterization of S-SDD matrices. Here we denote by A[S] the principal submatrix of A with indices from the set S.

Lemma 1 Given $S \in N$, let A[S] and $A[\overline{S}]$ be strictly diagonally dominant matrices. Then $A \in C^{n \times n}$ is an S-SDD matrix if and only if the interval $J_A(S)$ given by (3) is nonempty.

3 Doubly diagonally dominant matrices

The class of DDD matrices, see [11], is defined as follows.

$$\{A = [a_{ij}] \in \mathbb{C}^{n \times n} : |a_{ii}||a_{jj}| \ge r_i(A) r_j(A), \quad i \ne j\}$$
(5)

Example 1 The matrices $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix}$ are DDD matrices.

Example 2 The matrix

$$\begin{bmatrix} 1 & 1 & 0 \\ \frac{1}{2} & 1 & \frac{1}{2} \\ 0 & \frac{1}{2} & 1 \end{bmatrix}$$

is DDD but it is not into the class H_0 , i.e., is not an S-SDD matrix for any S. But it is a nonsingular H matrix.

We remark that we are interested in DDD matrices with at least one equality in (5). Otherwise, we would have SDDD (Ostrowsky) matrices or simply SDD matrices, which are known classes.

4 H_0 -matrices

In order to study the class $H_0 = \text{DDD} \cap S$ -SDD we can adopt three points of view: a) we can stay in the DDD class and look for conditions to be in the class S-SDD, b) we can stay in the class S-SDD and look for conditions to be in the DDD class and c) we can impose all the conditions to be in the class DDD $\cap S$ -SDD and try to simplify the derived relations.

In this communication we explore the options a) and c).

Before giving sufficient conditions for a DDD matrix to be an S-SDD matrix we establish the following result.

Lemma 2 Let $A \in \mathbb{C}^{n \times n}$ and $S \subseteq N := \{1, 2, \dots, n\}$. If

- 1) A[S] and $A[\overline{S}]$ are SDD matrices
- **2)** $r_i^S(A) r_j(A) > r_j^{\overline{S}}(A) |a_{ii}|, \quad \forall i \in S, \forall j \in \overline{S}$
- **3)** $r_i(A) r_j^{\overline{S}}(A) > r_i^S(A) |a_{jj}|, \quad \forall i \in S, \, \forall j \in \overline{S}$

then A is an S-SDD matrix.

Proof We first note that 1) implies: $|a_{ii}| > r_i^S(A)$, $\forall i \in S$ and $|a_{jj}| > r_j^{\overline{S}}(A)$, $\forall j \in \overline{S}$. According to Lemma 1, we only have to show that the interval $J_A(S)$ given by equation (3) is nonempty. Note that condition 2) can be written as

$$r_i^S(A) r_j^S(A) > r_j^{\overline{S}}(A) \left[|a_{ii}| - r_i^S(A) \right], \quad \forall i \in S, \, \forall j \in \overline{S}$$

$$\tag{6}$$

and since A[S] is SDD, equation (6) implies that $r_i^S(A) r_j^S(A) > 0$, $\forall i \in S, \forall j \in \overline{S}$.

Now, from (6) and the definition of $\mu_1^S(A)$, see equation (4), we conclude that

$$\mu_1^S(A) > \frac{r_i^{\overline{S}}(A) \, r_j^{\overline{S}}(A)}{r_i^S(A) \, r_j^S(A)}, \quad \forall i \in S, \, \forall j \in \overline{S}$$

In a similar way, condition 3) yields to

$$r_i^{\overline{S}}(A) r_j^{\overline{S}}(A) > r_i^S(A) \left[|a_{jj}| - r_j^{\overline{S}}(A) \right], \quad \forall i \in S, \, \forall j \in \overline{S}$$

$$\tag{7}$$

and this equation jointly with the definition of $\mu_2^S(A)$, equation (4), leads to

$$\mu_2^S(A) < \frac{r_i^{\overline{S}}(A) r_j^{\overline{S}}(A)}{r_i^S(A) r_j^S(A)}, \quad \forall i \in S, \, \forall j \in \overline{S}$$

and the proof follows.

In the following result we show that when A is a DDD matrix then we can replace the condition 1) of Lemma 2 by the simple condition $|a_{ii}| > r_i^S(A)$ for some $i \in S$.

Proposition 1 Let $A \in \mathbb{C}^{n \times n}$ be a DDD matrix. Let $S \subseteq N := \{1, 2, ..., n\}$. If

- 1) $|a_{ii}| > r_i^S(A)$ for some $i \in S$
- **2)** $r_i^S(A) r_j(A) > r_j^{\overline{S}}(A) |a_{ii}|, \quad \forall i \in S, \forall j \in \overline{S}$
- **3)** $r_i(A) r_j^{\overline{S}}(A) > r_i^S(A) |a_{jj}|, \quad \forall i \in S, \forall j \in \overline{S}$

then A is an S-SDD matrix.

Proof Since A is a DDD matrix we have that

$$|a_{ii}||a_{jj}| \ge r_i(A) r_j(A), \quad i \ne j$$

Note that

$$\begin{aligned} |a_{ii}||a_{jj}| &\geq r_i(A) r_j(A) \\ &= [r_i^S(A) + r_i^{\bar{S}}(A)] [r_j^S(A) + r_j^{\bar{S}}(A)] \\ &= r_i^S(A) r_j^S(A) + r_i^S(A) r_j^{\bar{S}}(A) + r_i^{\bar{S}}(A) r_j^S(A) + r_i^{\bar{S}}(A) r_j^{\bar{S}}(A) \\ &= r_i^S(A) r_j(A) + r_i^S(A) r_j^{\bar{S}}(A) - r_i^S(A) r_j^{\bar{S}}(A) + r_i^{\bar{S}}(A) r_j^S(A) + r_i^{\bar{S}}(A) r_j^{\bar{S}}(A) \\ &= r_i^S(A) r_j(A) + r_i(A) r_j^{\bar{S}}(A) - r_i^S(A) r_j^{\bar{S}}(A) + r_i^{\bar{S}}(A) r_j^S(A) \\ \end{aligned}$$

$$(8)$$

and using conditions 2) and 3) we conclude

$$|a_{ii}||a_{jj}| > r_j^{\bar{S}}(A)|a_{ii}| + r_i^{\bar{S}}(A)|a_{jj}| - r_i^{\bar{S}}(A)r_j^{\bar{S}}(A) + r_i^{\bar{S}}(A)r_j^{\bar{S}}(A)$$

from which we obtain

$$(|a_{ii}| - r_i^S(A)) (|a_{jj}| - r_j^{\bar{S}}(A)) > r_i^{\bar{S}}(A)r_j^S(A)$$

and this holds $\forall i \in S, \forall j \in \overline{S}$. In conclusion, we have that A is an S-SDD matrix.

In the next section we will show some properties of the matrices that lay on the class H_0 .

4.1 Set of pairs of indices

In this section we consider $N := \{1, 2, ..., n\}$, such that $n \ge 2$. Let us define the set $N_2 = \{(i, j) : i, j \in N, i \ne j\}$. Obviously, $card(N_2) = \frac{n(n-1)}{2}$.

Definition 3 Let $A \in \mathbb{C}^{n \times n}$ be a DDD matrix such that $n \ge 2$. We define the set of pairs of indices

$$E(A) = \{ (i,j) \in N_2 : |a_{ii}| |a_{jj}| = r_i(A) r_j(A) \}.$$

We denote its complement by $\overline{E(A)} = N_2 \setminus E(A)$.

Example 3 Given the following DDD matrix

$$A = \left[\begin{array}{rrrr} 1 & 0.5 & 0.5 \\ 0.5 & 1 & 0.5 \\ 0 & 1 & 2 \end{array} \right]$$

we have $N_2 = \{(1,2), (1,3), (2,3)\}$ and $E(A) = \{(1,2)\}.$

Definition 4 We define the class of matrices $H_0(S)$ which is formed by square matrices A of order n such that they are simultaneously DDD matrices and S-SDD matrices for some proper subset $S \subseteq N$.

Example 4 The matrix given by example 3 is DDD and $\{1,2\}$ -SDD, therefore it belongs to the class $H_0(\{1,2\})$.

Lemma 3 Let $A \in \mathbb{C}^{n \times n}$ such that $A \in H_0(S)$ for some proper subset S and such that there exists $i \in N : r_i(A) = 0$. Then $(i, j) \in \overline{E(A)}, \forall j \in N$.

Proof Let us suppose that there exists $j \in N$: $(i, j) \in E(A)$. Therefore $|a_{ii}||a_{jj}| = r_i(A)r_j(A) = 0$ which implies $a_{ii} = 0$ or $a_{jj} = 0$. But this is a contradiction because A is a nonsingular H-matrix.

Remark 1 Note that this lemma still holds when A is a DDD matrix whose diagonal entries are nonzero.

Lemma 4 Let $A \in \mathbb{C}^{n \times n}$ such that $A \in H_0(S)$ for some proper subset S and such that there exists $i \in S : |a_{ii}| = r_i(A)$. Then $(i, j) \in \overline{E(A)}, \forall j \in \overline{S}$.

Proof Let us suppose that there exists $j \in \overline{S}$: $(i, j) \in E(A)$. Therefore $|a_{ii}||a_{jj}| = r_i(A)r_j(A)$ and using the hypothesis $|a_{ii}| = r_i(A)$ we conclude that $|a_{jj}| = r_j(A)$. Therefore we have

$$(|a_{ii}| - r_i^S(A)) (|a_{jj}| - r_j^{\overline{S}}(A)) = r_i^{\overline{S}}(A) r_j^S(A), \quad \text{with} \quad i \in S, j \in \overline{S}$$

and the condition ii) of the definition of S-SDD matrices is not satisfied. Therefore A does not belong to $H_0(S)$, which is a contradiction.

The counterpart of the previous lemma is the following.

Lemma 5 Let $A \in \mathbb{C}^{n \times n}$ such that $A \in H_0(S)$ for some proper subset S and such that there exists $i \in \overline{S} : |a_{ii}| = r_i(A)$. Then $(i, j) \in \overline{E(A)}, \forall j \in S$.

As a consequence of the two previous results we have the following.

Proposition 2 Let $A \in \mathbb{C}^{n \times n}$ such that $A \in H_0(S)$ and let T be the set of indices

$$T = \{ i \in N : |a_{ii}| = r_i(A) \}.$$

Then $T \subseteq S$ or $T \subseteq \overline{S}$.

Acknowledgement

F. Pedroche and R. Bru are supported by the Spanish DGI grant MTM2004-02998. L. Cvetković and V. Kostić are supported by the Provincial Secretariat of Science and Technological Development of Vojvodina, Serbia, grant 01123.

Bibliography

- A. Berman, and R. J. Plemmons, Nonnegative matrices in the mathematical sciences, Academic Press, New York. Reprinted and updated, SIAM, Philadelphia, 1994.
- [2] R. Bru, L. Cvetkovic., V. Kostic and F. Pedroche. Sums of S-strictly diagonally dominant matrices *Electron. Trans. Numer. Anal.*, 2007 (submitted).
- [3] R. Bru, F. Pedroche, and D. B. Szyld. Subdirect sums of S-Strictly Diagonally Dominant matrices, *Electron. J. Linear Algebra*, 15:201–209, 2006.
- [4] L. Cvetkovic. H-matrix theory vs. eigenvalue localization Numerical Algorithms, 42: 229-245, 2006.
- [5] L. Cvetkovic and V. Kostic. New criteria for identifying H-matrices, J. Comput. Appl. Math., 180:265–278, 2005.
- [6] L. Cvetkovic, V. Kostic and R. S. Varga. A new Geršgoring-type eigenvalue inclusion set, *Electron. Trans. Numer. Anal.*, 18:73–80, 2004.
- [7] L. Elsner and V. Mehrmann. Convergence of Block-Iterative Methods for Linear Systems Arising in the Numerical Solution of Euler Equations. *Numerische Mathematik*, Vol. 59, pp. 541-560, 1991.
- [8] T. B. Gan, and T. Z. Huang. Simple criteria for nonsingular H-matrices, Linear Algebra Appl., 374:317–326, 2003.
- [9] T-Z Huang, J-S Leng, E.L. Wachspress and Y. Y. Tang. Characterization of H-matrices. Computers & Mathematics with applications, 48 (10-11): 1587-1601, 2004.
- [10] B. Li, L. Li, M. Harada, H. Niki, M. J. Tsatsomeros, An iterative criterion for H-matrices, Linear Algebra Appl., 271:179–190, 1998.
- B. Li and M. J. Tsatsomeros. Doubly diagonally dominant matrices. *Linear Algebra and its Appli*cations, 261:221–235, 1997.
- [12] J. Liu and Y. Huang. Some properties on Schur complements of *H*-matrices and diagonally dominant matrices. *Linear Algebra and its Applications*, 389:365–380, 2004.
- [13] A. M. Ostrowski, (1937), Über die Determinanten mit überwiegender Hauptdiagonale, Comentarii Mathematici Helvetici 10 pp. 69–96.
- [14] P. Spiteri. A new characterization of M-matrices and H-matrices. BIT Numerical Mathematics, 43:1019-1032, 2003.
- [15] R. S. Varga. Geršgorin and his circles. Springer Series in Computational Mathematics, vol. 36. Springer, Berlin, Heidelberg, 2004.