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Abstract
We study the long-time behavior of the amount of material within the compart-

ments of a compartmental system for which the flow of material does not have to be
instantaneous and may even take an infinite time to occur. Results on the estruc-
ture of minimal sets for monotone skew-product semiflows, previously obtained by the
authors, are applied to this description.

1 Some previous results

In this section, we focus on some properties of monotone skew-product semiflows de-
termined by a family of functional differential equations with infinite delay. They were
proved by Novo et al. [7] and provide infinite delay version of significative results obtained
by Jiang and Zhao [4].

Let (Ω, σ, R) be a minimal flow over a compact metric space (Ω, d) and denote σ(t, ω) =
ω·t for each ω ∈ Ω and t ∈ R. In Rn, we take the maximum norm ‖v‖ = maxj=1,...,n |vj |
and the usual partial order relation

v ≤ w ⇐⇒ vj ≤ wj for j = 1, . . . , n ,

v < w ⇐⇒ v ≤ w and vj < wj for some j ∈ {1, . . . , n} .

We consider the Fréchet space X = C((−∞, 0], Rn) endowed with the compact-open topol-
ogy, i.e. the topology of uniform convergence over compact subsets, which is a metric space
for the distance

d(x, y) =
∞∑

m=1

1
2m

‖x− y‖m

1 + ‖x− y‖m
, x, y ∈ X ,
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where ‖x‖m = sups∈[−m,0] ‖x(s)‖. The subset

X+ = {x ∈ X | x(s) ≥ 0 for each s ∈ (−∞, 0]}

is a positive cone in X, because it is a nonempty closed subset X+ ⊂ X satisfying X+ +
X+ ⊂ X+, R+X+ ⊂ X+ and X+ ∩ (−X+) = {0}. Besides, it is normal and has an empty
interior. As usual, a partial order relation in X is induced, given by

x ≤ y ⇐⇒ x(s) ≤ y(s) for each s ∈ (−∞, 0] ,
x < y ⇐⇒ x ≤ y and x 6= y .

Let BU ⊂ X be the Banach space

BU = {x ∈ X : x is bounded and uniformly continuous}

with the supremum norm ‖x‖∞ = sups∈(−∞,0] ‖x(s)‖. Given r > 0 we will denote

Br = {x ∈ BU : ‖x‖∞ ≤ r} .

As usual, given I = (−∞, a] ⊂ R, t ∈ I, and a continuous function z : I → Rn, zt will
denote the element of X defined by zt(s) = z(t + s) for s ∈ (−∞, 0].

We consider the family of non-autonomous infinite delay functional differential equa-
tions

z′(t) = F (ω·t, zt) , t ≥ 0 , ω ∈ Ω , (1)ω

defined by a function F : Ω × BU → Rn, (ω, x) 7→ F (ω, x) satisfying the following condi-
tions:

(H1) F is continuous on Ω×BU and locally Lipschitzian in x for the norm ‖ · ‖∞.

(H2) For each r > 0, F (Ω×Br) is a bounded subset of Rn.

(H3) For each r > 0, F : Ω × Br → Rn is continuous when we take the restriction of the
compact-open topology to Br, i.e. if ωm → ω and xm

d→ x as m →∞ with x ∈ Br,
then limm→∞ F (ωm, xm) = F (ω, x).

(H4) If x, y ∈ BU with x ≤ y and xj(0) = yj(0) holds for some j ∈ {1, . . . , n}, then
Fj(ω, x) ≤ Fj(ω, y) for each ω ∈ Ω.

(H5) If x, y ∈ BU with x ≤ y and xi(0) < yi(0) holds for some i ∈ {1, . . . , n}, then
zi(t, ω, x) < zi(t, ω, y) for each t ≥ 0 and ω ∈ Ω.

(H6) There is an r > 0 such that all the trajectories with initial data in Br are uniformly
stable in Br and relatively compact for the product metric topology.

From Hypothesis (H1), the standard theory of infinite delay functional differential
equations (see Hino et al. [1]) assures that for each x ∈ BU and each ω ∈ Ω the system (1)ω

locally admits a unique solution z(t, ω, x) with initial value x, i.e. z(s, ω, x) = x(s) for each
s ∈ (−∞, 0]. Therefore, the family (1)ω induces a local skew-product semiflow

τ : R+ × Ω×BU −→ Ω×BU
(t, ω, x) 7→ (ω·t, u(t, ω, x)) ,

(2)
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where u(t, ω, x) ∈ BU and u(t, ω, x)(s) = z(t + s, ω, x) for s ∈ (−∞, 0].

Hypothesis (H4) implies that the semiflow is monotone, i.e. u(t, ω, x) ≤ u(t, ω, y)
provided that x ≤ y and whenever they are defined.

Let z(t, ω0, x0) be a bounded solution of equation (1)ω0 . From Hypotheses (H1-H3)
the omega-limit set of the trajectory of the point (ω0, x0)

O(ω0, x0) = {(ω, x) ∈ Ω×BU : ∃ tm ↑ ∞ with ω0·tm → ω , u(tm, ω0, x0)
d→ x}

is a positively τ -invariant compact subset for the product metric topology, which admits
a flow extension.

Under Hypotheses (H1–H6), the following result was proved in [7].

Theorem 1.1. Assume that Hypotheses (H1–H6) hold and let (ω0, x0) ∈ Ω×Br be such
that O(ω0, x0) ⊂ Ω×Br. Then O(ω0, x0) = {(ω, c(ω)) : ω ∈ Ω} is a copy of the base and

lim
t→∞

d(u(t, ω0, x0), c(ω0·t)) = 0 ,

where c : Ω → BU is a continuous map.

2 Application to compartmental systems

Compartmental systems have been widely used as a mathematical model for the study
of the dynamical behavior of many processes in biological and physical sciences which
depend on local mass balance conditions (see Jacquez and Simon [2, 3] for a review of
compartmental systems with or without delay, Györi [6], Györi and Eller [5] and Wu and
Freedman [8]).

Firstly, we introduce the model with which we are going to deal as well as some
notation. Let us suppose that we have a system formed by n compartments C1, . . . , Cn

among which there is a flow of material through some pipes; we denote by Pi,j the pipe
taking material from the ith comparment to the jth one for i, j ∈ {1, . . . , n} with i 6= j.
We call C0 the environment surrounding the system and, for each i ∈ {1, . . . , n}, zi will
denote the amount of material within the compartment Ci. Let g̃i,j : R × R → R+ be
the so-called transport function determining the volume of material flowing from Cj to Ci

given in terms of the time t and the value of zj in t for i ∈ {0, . . . , n}, j ∈ {1, . . . , n}. For
each i ∈ {1, . . . , n}, we will assume that there exists an incoming flow of material Ĩi from
the environment into the compartment Ci which only depends on time.

Thus, considering a non-instantaneous flow of material among the compartments leads
us to a model governed by the following system of infinite delay differential equations:

z′i(t) = −g̃0,i(t, zi(t))−
n∑

j=1
j 6=i

g̃j,i(t, zi(t)) +
n∑

j=1
j 6=i

∫ t

−∞
g̃i,j(τ, zj(τ))hi,j(t− τ)dτ + Ĩi(t), (3)

i ∈ {1, . . . , n}, where hi,j ∈ L1([0,+∞), R+) is the transit time density function, which
has integral 1 on [0,+∞) and satisfies

∫∞
0 s hi,j(s)ds < +∞.
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2.1 The system on the hull

For simplicity, we define g̃i,0 : R × R → R, (t, v) 7→ Ĩi(t) for i ∈ {1, . . . , n} and denote
g̃ = (g̃i,j)i,j : R × R → Rm, where m = n(n + 1). For each t ∈ R, let g̃t : R × R →
Rm, (s, v) 7→ g̃(t + s, v) as usual.

Hereafter, the following property will be assumed:

(C1) For all i, j ∈ {0, . . . , n}, g̃i,j ∈ C(R2, R+) and is uniformly continuous and bounded
on all the sets of the form R× {v0} for v0 ∈ R.

Under Hypothesis (C1), it is easy to check that the family {g̃t : t ∈ R} is equicon-
tinuous and that the sets {g̃t(s, v) : t ∈ R} have compact closure in Rm for all s, v ∈ R.
Consequently, since R2 is separable and Rm is complete, the set Ω = cls{g̃t : t ∈ R}
turns out to be compact and metrizable when the compact-open topology is considered on
C(R2, Rm) (see [1]). Henceforth, Ω will be considered to be endowed with this topology.

Now, we define a flow on Ω by

σ : R× Ω −→ Ω
(t, (ωi,j)i,j) 7→ (ωi,j · t)i,j ,

where ωi,j · t(s, v) = ωi,j(t + s, v) for all i, j and all t, s, v ∈ R. Again, we will use the
notation σ(t, ω) = ω · t, t ∈ R, ω ∈ Ω. It is clear that the flow σ is continuous.

Let us introduce some more notation. Let g : Ω × R → Rm, (ω, v) 7→ ω(0, v). This
map is continuous on Ω. We denote g = (gi,j)i,j . It is easy to check that, for all ω =
(ωi,j)i,j ∈ Ω and all i ∈ {1, . . . , n}, ωi,0 is a function dependent only on t; thus, we can
define Ii = ωi,0, i ∈ {1, . . . , n}. Let F : Ω×BU → Rn be the map defined by

Fi(ω, x) = −g0,i(ω, xi(0))−
n∑

j=1
j 6=i

gj,i(ω, xi(0)) +
n∑

j=1
j 6=i

∫ 0

−∞
gi,j(ω · τ, xj(τ))hi,j(−τ)dτ + Ii(ω),

for (ω, x) ∈ Ω×BU and i ∈ {1, . . . , n}.
We have a family of infinite delay differential equations corresponding to (1)ω

z′(t) = F (ω·t, zt) , t ≥ 0 , ω ∈ Ω. (1)ω

If ω = g̃ is taken in (1)ω, we recover equation (3).

2.2 Conditions for the system

More properties of the map g̃ will be needed in order to apply the aforementioned results
of [7]. The following hypotheses will be assumed throughout the reminder of this section.

(C2) g̃i,j is locally Lipschitz in its second variable with Lipschitz constant independent
from t.

(C3) g̃i,j(t, v) ≤ g̃i,j(t, w) for all t, v, w ∈ R and all i, j whenever v ≤ w.

(C4) g̃i,j(t, 0) = 0 for all t ∈ R and all i, j.
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(C5) g̃ = (g̃i,j)i,j is a recurrent function, i.e. the flow σ is minimal on Ω.

This last property holds for instance if g̃, i.e. all the transport and input functions are
almost periodic or almost automorphic in t.

Now, we can define the total mass of the system (1)ω as

M : Ω×BU −→ R

(ω, x) 7→
n∑

i=1

xi(0) +
n∑

i=1

n∑
j=1
j 6=i

∫ 0

−∞

(∫ 0

s
gj,i(ω · τ, xi(τ))dτ

)
hi,j(−s)ds.

Under assumptions (C1–C5), σ is a minimal flow on Ω and hypotheses (H1–H5) are sat-
isfied. In particular, the skew-product semiflow (2) can be defined.

Proposition 2.1. The total mass M is a continuous function on all the sets of the form
Ω×Br with r > 0. Moreover, we have that

d

dt
M(τt(ω, x)) =

n∑
i=1

(Ii(ω · t)− g0,i(ω · t, zi(t, ω, x))) for t ≥ 0.

Proposition 2.2. Let (ω, x) ∈ Ω× BU . If there exists r > 0 such that zt(ω, x) ∈ Br for
all t ≥ 0, then, for all ε > 0, there exists δ > 0 such that

‖z(t + s, ω, x)− z(t, ω · s, y))‖ < ε

for all t ≥ 0 whenever y ∈ Br and d(zs(ω, x), y) < δ.

Corollary 2.3. If there exists a bounded solution of equation (1)ω, then all solutions of
(1)ω are bounded as well.

Thus, Hypothesis (H6) is satisfied and Theorem 1.1 may be applied to our equation.
In particular, when a bounded solution exists, and hence all the solutions are bounded,
we deduce that they are asymptotically of the same type as the transport functions,
i.e. asymptotically almost periodic (resp. almost automorphic) if g̃ is almost periodic
(resp. almost automorphic). This result is a generalization of the asymptotic constancy
of solutions for the autonomous case.

2.3 Long-time behavior of the solutions

In order to state precisely some subsequent results, two definitions on the way pipes
connect compartments will be needed. Let I = {1, . . . , n}.

Definition 2.4. Given i, j ∈ I, a pipe Pi,j is said to carry material (from compartment
Cj to compartment Ci) if, for all t, v ∈ R, v = 0 whenever g̃i,j(t, v) = 0.

Definition 2.5. Let τ : P(I) → P(I), J 7→ ∪i∈J{j ∈ I \ {i} : Pj,i carries material}. A
subset J of I is said to be irreducible if τ(J) ⊂ J and no proper subsets of J have that
property.

Note that τ(I) ⊂ I, so there is always some irreducible subset of I. Our next result
gives a useful property of the irreducible sets.
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Proposition 2.6. If a subset J of I is irreducible, then, for all i, j ∈ J with i 6= j, there
exist s ∈ N and i1, . . . , is ∈ J such that Pi1,i, Pi2,i1 , . . . , Pis,is−1 and Pj,is carry material.

Let J1, . . . , Jk be all the irreducible subsets of I and let J0 = I \ ∪k
l=1Jl. These sets

reflect the geometry of the compartmental system in a good enough way as to describe
the long-time behavior of the solutions, as we will see below.

Let K be a minimal subset of Ω × BU for the semiflow (2). In virtue of Theorem
1.1, K will be of the form K = {(ω, x(ω)) : ω ∈ Ω} where x is a continuous map from
Ω into BU . It is clear that, in such circumstances, x gives the solution of (1)ω in that
z(t, ω, x(ω)) = x(ω·t)(0) for all ω ∈ Ω and all t ∈ R.

Let us check that, on any minimal subset of Ω × BU for the semiflow (2), each com-
partment is either empty all the time or it is never empty.

Proposition 2.7. If there exist i ∈ J, ω ∈ Ω and t ∈ R such that xi(ω)(t) = 0, then
xi ≡ 0.

All of the subsequent results give qualitative information about the long-time behavior
of the solutions. Let us see that, provided that we are working on a minimal set, if the
system is closed, i.e. it has no inflow from the environment and has no outflow either,
then the total mass is constant, all compartments out of an irreducible subset are empty
and, in an irreducible subset, either all compartments are empty or all are never empty.

Theorem 2.8. Suppose that the system is closed, i.e. g̃0,i ≡ 0, Ĩi ≡ 0 for all i ∈ I. For
each c ≥ 0, there exists a minimal subset K of Ω× BU such that M |K ≡ c. Conversely,
if K is a minimal subset of Ω × BU , then there exists c ≥ 0 such that M |K ≡ c. If
K = {(ω, x(ω)) : ω ∈ Ω} is a minimal subset of Ω×BU , then

(i) xi ≡ 0 for all i ∈ J0.

(ii) If, for some l ∈ {1, . . . , k}, there exists jl ∈ Jl such that xjl
≡ 0, then xj ≡ 0 for all

j ∈ Jl.

In our next result, it is seen that, provided that we are working on a minimal set,
if there is no inflow from the environment, then the total mass is non-increasing, all
compartments out of an irreducible subset are empty and, in any irreducible subset with
some outflow of material, all compartments are empty. Besides, if an irreducible subset
has no outflow of material, then its compartments are all empty or all never empty.

Theorem 2.9. If Ĩi ≡ 0 for all i ∈ I, then

(i) M is non-increasing.

(ii) If K = {(ω, x(ω)) : ω ∈ Ω} is a minimal subset of Ω×BU , then xi ≡ 0 for all i ∈ J0.

(iii) If K = {(ω, x(ω)) : ω ∈ Ω} is a minimal subset of Ω × BU and, for some l ∈
{1, . . . , k}, there exists jl ∈ Jl such that g0,jl

(ω, v) > 0 for all ω ∈ Ω and all v ∈ R
with v > 0, then xj ≡ 0 for all j ∈ Jl.
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(iv) Suppose that, for some l ∈ {1, . . . , k}, g̃0,jl
≡ 0 for all jl ∈ Jl. Define the mass of Jl

as
Ml : Ω×BU −→ R

(ω, x) 7→
∑
i∈Jl

xi(0) +
∑
i∈Jl

∑
j∈Jl
j 6=i

∫ 0

−∞

(∫ 0

s
gj,i(ω · τ, xi(τ))dτ

)
hi,j(−s)ds.

Then, for each c ≥ 0, there exists a minimal subset K = {(ω, x(ω)) : ω ∈ Ω}
of Ω × BU such that xi ≡ 0 for all i ∈ I \ Jl and Ml|K ≡ c. Conversely, if
K = {(ω, x(ω)) : ω ∈ Ω} is a minimal subset of Ω × BU such that xi ≡ 0 for all
i ∈ I \ Jl, then there exists c ≥ 0 such that Ml|K ≡ c. Moreover, if there exists
jl ∈ Jl such that xjl

≡ 0, then xj ≡ 0 for all j ∈ Jl.

Finally, in a non-closed system, i.e. a system which may have any inflow and any
outflow of material, if there exists a bounded solution in an irreducible set which has some
inflow, then all compartments of that irreducible set are never empty and there must be
some outflow from the irreducible set. In particular, we have the following result.

Theorem 2.10. Let us suppose that there exists a bounded solution of equation (1)ω. Let
K = {(ω, x(ω)) : ω ∈ Ω} be a minimal subset of Ω×BU . If, for some l ∈ {1, . . . , k}, there
exist jl ∈ Jl and ω0 ∈ Ω such that Ijl

(ω0) > 0, then

(i) xj(ω)(t) > 0 for all j ∈ Jl, all t ∈ [0,+∞) and all ω ∈ Ω.

(ii) There exist j ∈ Jl, ω1 ∈ Ω and v1 ∈ (0,+∞) such that g0,j(ω1, v1) > 0.

In the general frame of non-closed systems, some results on the existence of bounded
solutions of (1)ω have been studied; specifically, the linear case is particularly interesting
and some results in this direction have been reached.
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