A conforming mixed flnite element method for the coupling of uid ow with porous media ow

Gabriel N. Gatica ${ }^{1}$, Salim Meddahi ${ }^{2}$, Ricardo Oyarz ${ }^{1} a^{1}$
${ }^{1}$ Dpto. de Ingenierfa M atem\&tica, Universidad de Concepci\&n, C asilla 160-C, C oncepcion, Chile. E-mails: ggatica@ing-mat. udec.cl, royarzua@ing-mat.udec.cl.
${ }^{2}$ Dpto. de Matem\&ticas, Facultad de Ciencias, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo. E-mail: salim@uniovi.es.

Key words: Mixed flnite elements, Stokes equation, Darcy equation, conforming method

Abstract

We consider a porous media entirely enclosed within a uid region, and present a well posed conforming mixed flnite element method for the corresponding coupled problem. The interface conditions refer to mass conservation, balance of normal forces, and the Beavers-J oseph-Safiman law, which yields the introduction of the trace of the porous media pressure as a suitable Lagrange multiplier. The flnite element subspaces deflning the discrete formulation employ Bernardi-Raugel and Raviart-T homas elements for the velocities, piecewise constants for the pressures, and continuous piecewise linear elements for the Lagrange multiplier. We show stability, convergence, and a priori error estimates for the associated G alerkin scheme. Finally, we provide several numerical results illustrating the good performance of the method and conflrming the theoretical rates of convergence.

1 Introduction

The interest in developing e-cient numerical methods for approximating the solution to the coupling of uid ow (modelled by the Stokes equation) with porous media ow (modelled by the Darcy equation) has been increasing lately (see, e.g. [3], [6], [9], [12], and the references therein). In particular, the mathematical theory and the associated numerical analysis of a mixed variational formulation was recently provided in [9]. There, the coupling across the interface is determined by the Beavers-J oseph-Safiman conditions, which yields the introduction of the trace of the porous media pressure as a suitable Lagrange multiplier. In addition, well posedness of the corresponding continuous formulation and a detailed analysis of a nonconforming mixed flnite element method are given in [9]. We

Figure 1: Geometry of the problem.
remark that the nonconformity of this discrete scheme arises from the fact that the Lagrange multiplier is approximated by piecewise constants functions, which are certainly not contained in the Sobolev space for the traces on the interface. A similar formulation to [9] is studied in [6].

In this paper we consider for simplicity a particular case of the model from [9], which is given by a porous media entirely enclosed within the uid region, and introduce a new conforming mixed flnite element method. Up to the author's knowledge, the method proposed here is the flrst one which is conforming for the original formulation in [9] (see also (2.1) below). Other conforming methods are proposed in [9], but for an alternative formulation. Now, in order to describe the geometry we let > 2 be a bounded and simply connected domain in R^{2} with polygonal boundary i 2, and let > 1 be the annular region bounded by i 2 and another closed polygonal curve i 1 whose interior contains $\overline{>}_{2}$ (see Figure 1). Then, the transmission problem consists of an incompressible viscous uid occupying > 1 , which ows back and forth across i 2 into a porous media living in > 2 and saturated with the same uid.

In what follows, , >0 is the viscosity of the uid and K is a symmetric and uniformly positive deflnite tensor in >2 representing the permeability of the porous media divided by the viscosity. We also assume that there exists $\mathrm{C}>0$ such that $k K(x) z k \cdot C k z k$ for almost all $x 2>2$, and for all $z 2 R^{2}$. Then, the constitutive equations are given by the Stokes and Darcy laws, respectively, that is

$$
{ }_{1}\left(u_{1} ; p_{1}\right)=i p_{1} \mid+2, e\left(u_{1}\right) \text { in }>_{1} ; \text { and } u_{2}=j K r p_{2} \text { in }>2 ;
$$

where ($u_{1} ; u_{2}$) and ($p_{1} ; p_{2}$) denote the velocities and pressures in the corresponding domains, I is the identity matrix of $R^{2 \times 2},{ }_{1}\left(u_{1} ; p_{1}\right)$ is the stress tensor, and

$$
e\left(u_{1}\right):=\frac{1}{2}\left(r u_{1}+\left(r u_{1}\right)^{t}\right)
$$

is the strain tensor. Hereafter, given any normed space U, U^{2} and $U^{2 \times 2}$ denote, respectively, the space of vectors and square matrices of order 2 with entries in U. Also, the
superscript ${ }^{t}$ stands for the transpose matrix. Hence, given $f_{1} 2\left[L^{2}\left(>{ }_{1}\right)\right]^{2}$ and $f_{2} 2 L^{2}(>2)$ such that $\int_{\nu_{2}} f_{2}=0$, the coupled problem reads: Find $\left(u_{1} ; u_{2}\right)$ and $\left(p_{1} ; p_{2}\right)$ such that
where " is the unit outward normal to > $1, \mathrm{t}$ is the tangential vector on $\mathrm{i}_{2}, \bullet>0$ is the friction constant, and the Beavers-J oseph-Safiman law establishes that the slip velocity along i_{2} is proportional to the shear stress along i 2 (assuming also, based on experimental evidences, that $\mathrm{u}_{2} \mathrm{tt}$ is negligible). We refer to [2], [8], and [13] for further details on this interface condition.

Throughout the rest of the paper we utilize the standard terminology for Sobolev spaces, norms, and seminorms, employ 0 to denote a generic null vector, and use C and c, with or without subscripts, bars, tildes or hats, to denote generic positive constants independent of the discretization parameters, which may take difierent values at difierent places.

2 The continuous formulation

We put > := > 1 [$\mathrm{i}_{2}[$ > 2 and deflne the spaces

$$
\begin{gathered}
L_{0}^{2}(>):=\left\{q 2 L^{2}(>): \int q=0\right\} ; \\
{\left[H_{i_{1}}^{1}(>1)\right]^{2}:=\left\{\mathrm{v}_{1} 2\left[H^{1}\left(>{ }_{1}\right)\right]^{2}: \mathrm{v}_{1}=0 \text { on } \mathrm{i}_{1}\right\} ;}
\end{gathered}
$$

and

$$
H(\operatorname{div} ;>2):=\left\{\mathrm{v}_{2} 2\left[\mathrm{~L}^{2}(>2)\right]^{2}: \operatorname{div} \mathrm{v}_{2} 2 \mathrm{~L}^{2}(>2)\right\}:
$$

In addition, we let

$$
H:=\left[H_{i 1}^{1}(>1)\right]^{2} £ H(\operatorname{div} ;>2) \quad \text { and } \quad Q:=L_{0}^{2}(>) £ H^{1 / 2}(i 2)
$$

endowed with the product norms $k \mathrm{vk}_{\mathbf{H}}:=\mathrm{kv}_{1} \mathrm{k}_{\left[H^{1}\left(\gamma_{1}\right)\right]^{2}}+\mathrm{kv} \mathrm{v}^{\mathrm{k}} \mathrm{H}_{\mathrm{d}(\mathrm{div} ;>2)}$ for all $\mathrm{v}:=$
 $u:=\left(u_{1} ; u_{2}\right), p:=\left\{\begin{array}{ll}p_{1} & \text { in }>1 \\ p_{2} & \text { in }>2\end{array}\right.$, and introduce the Lagrange multiplier

$$
,:=p_{2}=i\left({ }_{1}\left(u_{1} ; p_{1}\right)^{\prime \prime}\right) 4^{\prime \prime} \text { on } \mathrm{i}_{2} \text { : }
$$

Hence, proceeding as in [9], we flnd that the mixed variational formulation of (1.1) reads: Find (u; $(\mathrm{p} ;$,) $) 2 \mathrm{H} £ \mathrm{Q}$ such that

$$
\begin{array}{rlrl}
a(u ; v)+b(v ;(p ;,)) & =\int_{>_{1}} f_{1} \phi v_{1} & & 8 v:=\left(v_{1} ; v_{2}\right) 2 H ; \tag{2.1}\\
b(u ;(q ;>)) & =i \int_{\rangle_{2}} f_{2} q & 8(q ; \gg) 2 Q ;
\end{array}
$$

where $a: H £ H!R$ and $b: H £ Q!R$ are the bilinear forms deflned by

$$
\begin{aligned}
& a(u ; v):=2 \neq \int_{\nu_{1}} e\left(u_{1}\right): e\left(v_{1}\right)+\frac{\prime \prime}{\bullet} \int_{i_{2}}\left(u_{1} \phi t\right)\left(v_{1} \phi t\right)+\int_{\nu_{2}} K^{-1} u_{2} \phi v_{2} ; \\
& b(v ;(q ; \gg)):=i \int_{\nu_{1}} q d i v v_{1} i \int_{\nu_{2}} q \operatorname{div} v_{2}+h v_{1} \phi^{\prime \prime} i v_{2} t^{\prime \prime} ;>\dot{x}_{2} ;
\end{aligned}
$$

with $h ;{ }_{i} \dot{i}_{i_{2}}$ being the duality pairing of $H^{-1 / 2}\left(i_{2}\right)$ and $H^{1 / 2}\left(i_{2}\right)$ with respect to the $L^{2}\left(i_{2}\right)$-inner product.

We employ the classical Babuska-Brezzi theory to prove that (2.1) is well posed.
Theorem 2.1 There exists a unique $(\mathrm{u} ;(\mathrm{p} ;$,) $) 2 \mathrm{H} £ \mathrm{Q}$ solution to (2.1). In addition, there exists $\mathbf{C}>0$, depending on fl , f , and the boundedness constants for \mathbf{a} and b , such that

$$
\mathrm{k}(\mathrm{u} ;(\mathrm{p} ;,)) \mathrm{k}_{\mathbf{H} \times \mathbf{Q}} \cdot \widetilde{C}\left\{\mathrm{kf}_{1} \mathrm{k}_{\left[L^{2}(>1)\right]^{2}}+k \mathrm{f}_{2^{2}} \mathrm{~L}^{2}(>2)\right\}:
$$

3 The Galerkin formulation

Let T_{1} and T_{2} be regular triangulations of $»_{1}$ and $»_{2}$, respectively, by triangles T of diameter h_{T}, and assume that the vertices of T_{1} and T_{2} coincide on the interface i 2 . We let $\mathrm{h}:=\operatorname{maxf} \mathrm{h}_{1} ; \mathrm{h}_{2} \mathrm{~g}$, where $\mathrm{h}_{i}:=\operatorname{maxf}_{\mathrm{h}} \mathrm{h}_{T}: \mathrm{T} 2 \mathrm{~T}_{i} \mathrm{~g}$ for each $\mathrm{i} 2 \mathrm{f} 1 ; 2 \mathrm{~g}$. Then, for each T $2 \mathrm{~T}_{2}$ we let RTo(T) be the local R aviart-T homas space of lowest order, that is

$$
\operatorname{RT}_{0}(\mathrm{~T}):=\operatorname{span}\left\{\binom{1}{0} ;\binom{0}{1} ;\binom{\mathrm{x}_{1}}{\mathrm{x}_{2}}\right\} ;
$$

where $x:=\binom{x_{1}}{x_{2}}$ is a generic vector of R^{2}. In addition, for each $T 2 T_{1}$ we let $B R(T)$ be the local Bernardi-R augel space (see [4], [7]), that is

$$
B R(T):=\left[P_{1}(T)\right]^{2} \quad \operatorname{spanf} \cdot 2 \cdot 3 "{ }_{1} ; \cdot 1 \cdot 3 " 2 ; \cdot 1 \cdot 2 " 3 g ;
$$

 ward normals to the opposite sides of the corresponding vertices of T. Hereafter, given a non-negative integer k and a subset S of $\mathrm{R}^{2}, \mathrm{P}_{k}(\mathrm{~S})$ stands for the space of polynomials deflned on S of degree - k. Hence, we deflne the following flnite element subspaces for
$\longrightarrow \quad$ ___

