
XX Congreso de Ecuaciones Diferenciales y Aplicaciones
X Congreso de Matemática Aplicada
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matl@xanum.uam.mx, epc@xanum.uam.mx

Palabras clave: restricted 3-body problem, regularization, symplectic transformations

Resumen

We study a special case of the two body problem when the particles are restricted
to move in the space S1. We regularize all collisions using a symplectic transformation
and classify the trajectories in four families. After that, we add a third infinitesimal
body, getting four restricted three body problems on S1, corresponding to each one
of the previous families. Then, we apply only one symplectic transformation that
regularizes all the singularities due to binary collisions between the infinitesimal body
with each primary. We show the global dynamics in one of the restricted problems,
when the primaries are fixed at the poles of S1. We exhibit a particular set of solutions
which takes place when the primaries perform hyperbolic motions only.

1. Introduction.

One of the most famous problems in Mathematics is the well known three-body prob-
lem. Newton himself, after he explained the Kepler’s laws, turned his attention into the
three-body problem (Sun-Earth-Moon), but he faced some problems that remained un-
solved. Almost 100 years later, by 1772, Euler proposed a simpler formulation (see Sebehely
[3]). It was the first time when the restricted three-body problem was stated. This for-
mulation is a limit case of the three-body problem. Namely, two bodies, which are called
primaries, are moving under influence of mutual gravitational attraction in an Euclidean
space (two-body problem), while a third body, with a negligible mass, is attracted by the
previous two, but not influencing their motion.

Despite the efforts of many people, nowadays there is no more than partial results
about the restricted three-body problem. Most of these results have been obtained either
by adding restrictions or studying special cases. Here, we propose the restricted three-
body problem in a compact space. We restricted the motion to S1. As we will see later,
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the restriction of movement to the compact space endows the restricted problems with a
different dynamics, unlike what take place in the restricted problems defined in infinite
spaces.

A complete and well understand study about the restricted three-body problem on S1,
will be useful for the comprehension for others restricted problems and studies in Celestial
Mechanics. To our knowledge, there are not reports about restricted problems in compact
spaces, so this work could be the beginning of the study about this kind of problems in
compact spaces.

2. Two-body problem on S1.

Let m1 and m2 be two punctual masses restricted to move on the space S1 (centered at
the origin of the Euclidean plane), interacting among themselves through no other forces
than their mutual gravitational attraction according to Newton’s Law. As in the classical
two-body problem we study the above formulation as a central force problem. According
to second Newton’s Law and using polar coordinates, with the metric given by the arc
length, we write the equation of motion for this problem:

θ̈ = −M

θ2
+

M

(2π − θ)2
, (1)

where M = m1 + m2. It is natural to call this formulation the Kepler problem on S1 (see
figure 1).

Figura 1: the Kepler problem on S1.

The body m1 stays at the origin in this coordinate system, θ sweeps clockwise the
interval (0, 2π) and we choose unit of mass in such a way that the universal gravitational
constant equals 1. The lines of attraction force lie on S1 at both sides of each body, as
they are drawn for m2 in figure 1; (̇) is the derivative with respect to t.

Let q = θ and p = θ̇, so equation (1) becomes an autonomous Hamiltonian system
with one degree of freedom with its respective Hamiltonian:

H(q, p) =
1
2
p2 − M

q
− M

2π − q
. (2)
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Figura 2: phase portrait for the Kepler problem on S1.

There are other ways of drawing the attraction force lines, but is not difficult to show that
the associated flow generated by their respective vector fields are topologically conjugated
(see for example Franco [2, chapter 2]).

2.1. Dynamics for the Kepler problem on S1.

Since the Hamiltonian (2) is a constant of motion, it is easy to get the phase space
drawn in figure 2. Here, the configuration space corresponds to (0, 2π). We can see that
for the energy level h = −2M/π there is only one equilibrium point, it is denoted by
(qo, po) = (π, 0), and there are separatrices, namely orbits that are in the border between
two qualitative different sets of orbits. Thus we can classify the orbits according to the
levels of energy. In order to preserve the classic notation used for the Kepler problem, we
define:

h < −2M/π −→ elliptic orbits,
h = −2M/π −→ parabolic orbits and the equilibrium point,
h > −2M/π −→ hyperbolic orbits.

For h < −2M/π the orbits are elliptic, meaning that the orbit of the particle m2 is a
collision-ejection orbit, this orbit never reaches the equilibrium point (the antipodal point
of the origin). For h = −2M/π, the no-equilibrium orbits are parabolic, meaning that
m2 comes from collision and reaches the equilibrium point at infinite time. The last case,
when h > −2M/π (the hyperbolic orbits) also correspond to a collision-ejection but now
the body m2 comes from ejection, pass through the equilibrium point and dies in collision
again.

However, in the three cases the no-equilibrium orbits present a common feature, p →
±∞ as either q → 0+ or q → 2π−. This common behavior means that the Hamiltonian
(2) is singular at two points, q = 0 and q = 2π.
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Figura 3: regularized phase space for the Kepler problem on S1.

2.2. Regularization.

Since there are two singularities in the Hamiltonian (2), corresponding to q = 0 and
q = 2π, we have to regularize them in order to pass across the singularity. We shall turn
the singularities into elastic bounce using a transformation of coordinates and a re-scaling
of time. Using the ideas of Érdi [1], we define

q = g(φ),
dq

dt
f(q) =

dq

dτ
,

where φ is the new position variable and τ the new time.

Lemma 1 . The transformation T is symplectic and it is a global regularization for the
Hamiltonian (2) if and only if g(φ) = π sinφ + π and f(q) = q(2π − q).

By applying the functions of this lemma to the Hamiltonian H, we obtain a new one on
the zero level energy,

0 ≡ H̃(φ, φ′) =
1
2
(φ′)2 − 2πM − hπ2 cos2 φ. (3)

After the regularization, the change of coordinates places the origin at the antipodal
point of the old origin of coordinates and φ sweeps clockwise the interval [−π/2, π/2].

By using the Hamiltonian (3), for every fix h, we can draw the orbits to get the
regularized phase portrait depicted in the figure 3. If we analyze the phase portrait, we
can see that the singularities became elastic bounce at φ = −π

2 and φ = π
2 ; in this way we

obtain well-defined solutions for all τ . All the above is summarized in the following result.

Theorem 1 . The Kepler problem on S1 has the following solutions, depending on the
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energy levels as follows:

−h > −2M
π −→ hyperbolic solutions

φ(τ) = sin−1(sn(
√

2π
√

2M + hπτ)) for h > 0,
φ(τ) = ±2

√
πMτ for h = 0,

−h = −2M
π −→

{
parabolic solutions φ(τ) = 2 arctan

(
− e±2

√
πMτ

)
,

equilibrium solution φ(τ) = 0,

−h < −2M
π −→ elliptic solutions.

defined for all τ ∈ R.

3. Restricted three-body problem on S1 with one fix center.

3.1. Statement and classification.

Once we have studied the two-body problem on S1, we can state the restricted three-
body problem with one fix center, when the massless particle is also restricted to move
on the compact space S1. Let µ and 1 − µ be the masses of two bodies, which we call
primaries, with µ ∈ (0, 1). The third body has a negligible mass which we denote as m.

Since the primaries constitute a two-body problem on S1, we fix the primary body µ at
(0, 1) ∈ S1, so the primaries are in the Kepler problem on S1 (see figure 4). According to
the motion of the primary 1−µ stated in theorem 1, we obtain four restricted three-body
problems on S1 with one fix center:

restricted with two fixed centers, if 1− µ is at the equilibrium point,

parabolic restricted, if 1− µ follows the parabolic solutions,

elliptic restricted, if 1− µ moves like the elliptic solutions and

hyperbolic restricted, if 1− µ follows the hyperbolic solutions.

Figura 4: the restricted three-body problem on S1.

The equations of motion for the massless particle m constitutes a Hamiltonian system
with its respective Hamiltonian:

K(x, y, τ) =
y2

2
− µ

π
2 − x

− µ
π
2 + x

− 1− µ

x− φ(τ)
− 1− µ

π − (x− φ(τ))
, (4)
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where x is the position coordinate and (′) stands for d/dτ ; φ is the position for the (1−µ)-
body. Let us remember that the origin is at (0,−1) ∈ S1 and the variables x and φ sweep
clockwise the interval (−π/2, π/2). The lines of attraction force lie over S1, as we explained
in the previous section.

Thus, we have a non-autonomous Hamiltonian system with one degree of freedom.
Moreover, this Hamiltonian system is reversible, namely this system satisfies the reversed
involution (q, p, t) → (q,−p,−t).

On the other hand, as we can see, the Hamiltonian (4) is not well defined when its
denominators vanish. It is because of the collisions between the infinitesimal body with one
of the primaries or because of total collision. From here on, we shall study the dynamics
of the negligible mass m while there is not total collision. In order to do that, we shall
regularize all the singularities due to binary collisions.

3.2. Regularization.

Let us work on the configuration of masses outlined in figure 4. The other case is
obtained by symmetry. The set of singularities due to binary collisions between the in-
finitesimal mass with each primary is ∆bin = {q|q = π

2 , q = φ(τ)}. This set depends on the
position of the primary 1 − µ, so it depends on τ . The regularization that we developed
de-singularizes the Hamiltonian (4) by means of only one transformation of coordinates
and only one time re-scaling. Moreover, the transformation is symplectic and it depends
on τ . In accordance with what we did in the last section, we shall replace the singularities
by elastic bounces.

After we apply the global regularization to the Hamiltonian (4), we obtain a new one
on the zero level energy, which describes the dynamics of the negligible mass for all time
while there is not total collision in the restricted three-body problem on S1 with one fix
center. In addition, this Hamiltonian has sense for the four restricted problems that we
scheme at the beginning of this section. We don’t write here this resultant Hamiltonian
because of its size.

4. Restricted three-body problem on S1 with two fix cen-
ters.

Now we are in the case when the mass 1 − µ remains at the equilibrium point. Thus
φ(τ) = 0 for all τ , and by substituting this in the regularized Hamiltonian obtained from
(4), we obtain the energy equation for the negligible mass in the restricted three-body
problem on S1 with two fix centers:

0 =
1
2
p2 − π2

16
K̄ cos2 q − π(sin q + 1)

sin q + 3
− µ

4π sin q

sin2 q − 9
. (5)

The expression (5) is an autonomous Hamiltonian of one degree of freedom, so we shall
depict the qualitative dynamics for the infinitesimal body.

From the change of coordinates introduced through the last regularization, the position
coordinate q sweeps counterclockwise the interval [−π

2 , π
2 ], matching the points (0, 1) and

(0,−1) on S1. The origin is at the point (−1, 0) on S1 (see figure 5).
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Figura 5: the restricted three-body problem on S1 with two fixed centers.

4.1. Dynamics.

In order to describe the dynamics for the negligible mass m, we begin looking for
possible equilibrium points. First, we write the zero velocity set, namely those points
where m presents velocity equals zero,

{
q ∈

[
− π

2
,
π

2

] ∣∣∣∣ K̄ = −16 sec2 q(sin2 q + 4µ sin q − 2 sin q − 3)
π(sin2 q − 9)

}
. (6)

This set is obtained by putting p = 0 in the equation (5).

Proposition 1 . The restricted three-body problem on S1 with two fix centers has only
one equilibrium point for each µ ∈ (0, 1); and for each qo ∈ (−π

2 , π
2 ), exists only one µo

for which qo defines an equilibrium point.

Following with the qualitative study of the motion for m, we state the next result.

Proposition 2 . For every µ ∈ (0, 1) given, the zero velocity set for the restricted three-
body problem on S1 with two fixed centers contains two elements if K̄ < K̄eq, one element
(equilibrium point) if K̄ = K̄eq and is empty if K̄ > K̄eq.

Using the reversibility property of this problem and the two previous propositions we can
depict the phase space for m. We distinguish three great families of orbits according to
energy levels (see figure 6). We do a classification of the motions as we did for the two-body
problem on S1 and so, we obtain the next theorem.

Theorem 2 . The restricted three-body problem on S1 with two fixed centers has the
following solutions according to energy level:

solutions of elliptic type for K̄ < K̄eq,

solutions of parabolic type and a equilibrium point for K̄ = K̄eq and

solutions of hyperbolic type for K̄ > K̄eq,

for every µ ∈ (0, 1).
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Figura 6: regularized phase space for the restricted three-body problem on S1 with two fixed
centers.

5. A particular set of solutions.

Let us begin with the definition of the type of solutions we exhibit further ahead.

Definition 1 . The solution (q̂(τ), p̂(τ)) for (6) is an apparent equilibrium solution if
p̂′(τ) = 0.

These kind of solutions mean that the infinitesimal body is attracted by both primaries
with equal forces for every τ . We show in the next theorem the existence of these solutions
and it is truth only for the symmetric linear hyperbolic case. Namely, when the primary
1− µ is performing a linear motion and for the value µ = 1/2.

Theorem 3 . The restricted three-body problem on S1 has apparent equilibrium solutions
if and only if φ(τ) =

√
2πτ and µ = 1

2 . And this solution is given by q̂(τ) = 1
4(π +

√
8πτ).
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