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1 Dpto. Matemáticas (ETSII), Universidad de Castilla la Mancha, Edificio Politécnico, Avda. Camilo
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Resumen

In this paper we consider an optimal design problem in wave propagation proposed
in [1] in the one-dimensional situation: Given two materials at our disposal with dif-
ferent Young’s modulus and different density, the problem consists of finding the best
distributions of the two initial materials in a rod in order to minimize the vibration
energy in the structure under periodic loading of driving frequency Ω. We comment
on relaxation and optimality conditions, and perform numerical simulations of the
optimal configurations. We also prove the existence of classical solutions in certain
cases.

1. Introduction

In [1] a structural model was proposed for the design of finite structures made up of
two given materials in the context of wave propagation. The model is an optimal design
problem in which the distribution of two given materials is optimized so as to minimize
a cost functional related to the vibration or propagation of waves along the medium. In
practice, this model may be useful for the systematic design of wave filters, damping of
waves, or wave guides. The authors develop a numerical method for the optimization of
those structures based on topology optimization (see [2]), but there is no mathematical
analysis of the model. In the numerical examples, they also observe the surprising fact
that no microstructure appears between the two materials when one tries to design a filter
or to minimize the vibration energy. Our aim here is to analyze mathematically the model
proposed in [1] in the one-dimensional situation for longitudinal propagation.

We consider the one-dimensional wave equation

ρwtt = (Ewx)x,
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where t is the time variable, x the space variable, w is the displacement, and E and ρ
are the Young’s modulus and material density respectively. Notice we do not consider
any damping term in our equation. We are interested in time-harmonic solutions under
periodic loading of the previous equation, i.e. in solutions of the form

w(x, t) = u(x) exp(iΩt),

where Ω is the driving frequency and u the amplitude function. Then the amplitude, u,
verifies the equation (

E(x)u′
)′ + Ω2ρ(x)u = 0.

Now, let us assume that we have two materials at our disposal, and consequently the
elastic coefficient, E(x), and the density, ρ(x), take two values on, E1, E2 (0 < E1, E2)
and ρ1, ρ2 (0 < ρ1, ρ2) respectively. We make the technical assumption

E1 ≤ E2, ρ1 ≤ ρ2,

and that at least one of the inequalities is strict (otherwise we would just have one mate-
rial). If we have a rod of length l, that we represent by the interval [0, l], and we distribute
the two materials in the rod, the elastic coefficient function and the density function are
respectively

E(x) = E1χ(x) + E2(1− χ(x)), ρ(x) = ρ1χ(x) + ρ2(1− χ(x)),

where χ is the characteristic function of the (measurable) subset of the rod where we place
the first material. Now it is natural to consider the following optimal design problem,

(P) MinAad
J(χ),

where the admissible set of designs is

Aad = {χ : characteristic function of a measurable subset of [0, l]} ,

the cost functional is the vibration energy

J(χ) =
∫ l

0

[
Ω2(ρ1χ(x) + ρ2(1− χ(x)))|u(x)|2 + (E1χ(x) + E2(1− χ(x)))|u′(x)|2

]
dx,

and u is computed from χ through the state equation

[(E1χ(x) + E2(1− χ(x)))u′]′ + Ω2(ρ1χ(x) + ρ2(1− χ(x)))u = 0,
(E1χ(0) + E2(1− χ(0)))u′(0) = γ, (E1χ(l) + E2(1− χ(l)))u′(l) = 0,

γ is a fixed given nonzero number. Here we consider the case of boundary conditions
corresponding to one external load on the left extreme of the rod, and homogeneous
Neumann boundary conditions on the other extreme. Roughly speaking, the optimal design
problem consists of determining the best distribution (i.e., the best χ) of the two given
materials in the rod in order to minimize the vibration energy in the structure, so that we
minimize the vibration amplitude along the rod. Notice that our optimal design problem
indeed is an optimal design problem for an ODE, as we have simplified the wave equation
by considering time harmonic solutions.
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We do not consider any volume constraint in this problem, and this is in accordance
with the physical nature of the problem since waves propagate better through homogeneous
materials than through mixtures of two materials. However the problems makes perfect
sense if we impose a restriction on the amount of the materials that we may use, as for
instance the constraint ∫ l

0
χ(x) dx ≤ δ, or

∫ l

0
χ(x) dx = δ,

with δ ∈ (0, l) a fixed constant.
The solutions of the state equations are understood as weak solutions. That equation

is obviously nonelliptic; however by the Fredholm’s alternative, we can claim the existence
of a unique solution for any boundary data if and only if Ω2 is not an eigenvalue for the
problem

−
[
(E1χ(x) + E2(1− χ(x)))u′

]′ = λ(ρ1χ(x) + ρ2(1− χ(x)))u, u ∈ H1(0, l), (1a)

(E1χ(0) + E2(1− χ(0)))u′(0) = 0, (1b)

(E1χ(l) + E2(1− χ(l)))u′(l) = 0. (1c)

Recall that, as the operator involved is compact and self-adjoint, we know that there exists
an increasing (maybe not strictly) sequence of eigenvalues. For the sake of simplicity, and
in order to formulate the optimal design problem, we will assume that Ω2 is far away of
any eigenvalue of the problem (1a-1c) for any characteristic function χ. This hypothesis
makes physical sense (see [1]).

It is well-known that in principle we cannot hope the previous optimal design problem
to admit optimal solutions, and in general we need to study relaxation for it (see [4] and
the references therein).

The plan of the paper is the following. Section 2 is devoted to state a relaxation result
for our optimal design problem and to give necessary conditions of optimality for the
relaxed formulation of the problem. In Section 3 we obtain qualitative properties of the
optimal solutions of the relaxed problem, being able to prove, in certain cases, that there
are optimal solutions in the form of characteristic functions, what implies the existence of
minimizers for the original optimal design problem (P). Finally, in Section 4 we perform
numerical simulations by using a gradient method based on the sensitivities computed in
Section 2 and analyze numerically examples of practical interest.

2. Relaxation

Relaxation for optimal control or optimal design problems for ODE’s is a classical
subject. In this sense our optimal design problem fits into this framework and relaxation
for it is straightforward, and so to prove the relaxation result stated below is standard
(basic references on the subject are [4, 5, 6]).

Theorem 2.1 The optimal design problem

(P̃) MinA?
ad

J̃(E(θ), ρ(θ)),
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where the admissibility set is

A?
ad = {θ ∈ L∞(0, l) : 0 ≤ θ ≤ 1} ,

E(θ) and ρ(θ) are given by

E = E(θ) = E1E2/(E1 + θ(E2 − E1)), ρ = ρ(θ) = ρ1θ + ρ2(1− θ),

the cost functional is

J̃(E, ρ) =
∫ l

0

[
Ω2ρ(x)|u(x)|2 + E(x)|u′(x)|2

]
dx,

and u is computed from the pair (E, ρ) through the state equation[
Eu′

]′ + Ω2ρu = 0, (2a)

E(0)u′(0) = γ, E(l)u′(l) = 0 (2b)

is a relaxation of the optimal design problem (P).

We will need for the numerical simulations the gradient of the cost functional J̃ in the
relaxed problem (P̃). Its computation is direct by using the classical adjoint method.

Theorem 2.2 The functional J̃ in problem (P̃) is Gâteaux differentiable on the set A?
ad,

and the Gâteaux derivative at θ̄ in the direction of the admissible variation θ (admissible
variations means that θ ∈ L∞(0, l) such that there exists h0 > 0 such that for every
h ≤ h0, θ̄ + hθ ∈ A?

ad) is given by

J̃ ′(θ̄; θ) =
∫ l

0
{[E′(θ̄(x))(ū′(x)p̄′(x) + |ū′(x)|2)

+ Ω2(ρ2 − ρ1)(ū(x)p̄(x)− |ū(x)|2)]θ(x)

− (E′(θ̄(x))ū(x)p̄(x)θ(x))′} dx,

where ū is the state associated to θ̄ (i.e. the solution of (2a-2b) for the pair (E(θ̄)ρ(θ̄))),
and p̄ is the adjoint state, being in this case the unique solution of

[E(θ̄)p̄′]′ + Ω2ρ(θ̄)p̄ = 2(Ω2ρ(θ̄)ū− [E(θ̄)ū′]′), (3a)

E(θ̄(0))p̄′(0) = −2γ, E(θ̄(l))p̄′(l) = 0. (3b)

Using the Taylor expansion of the cost functional we obtain, as a direct consequence
of the previous result, the following maximum principle.

Corollary 2.1 If θ̄ (with θ̄ an element of the interior of A?
ad) is an optimal solution for

problem (P̃) then
J̃ ′(θ̄; θ − θ̄) ≥ 0

for any θ such that θ − θ̄ is an admissible variation.
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3. Existence of Solutions for Problem (P)

In this section we explore the consequences of the optimality conditions given in the
form of a maximum principle in Corollary 2.1 on the optimal solutions. Our objective is
to check whether it is possible to prove existence results for the original optimal design
problem (P). In the case that E1 = E2 (and we assume then that E1 = E2 = 1), the
design variable does not act on the principle part of the state equation and the problem
is mathematically much simpler, we are able to prove that indeed any optimal solution
for problem (P̃) is a characteristic function, so that the original optimal design problem
admits minimizers. We use the optimality conditions in this particular case to show the
result, which is given in Theorem 3.1. The general situation is more difficult and does
not seem possible to use the same argument, however we give a condition implying the
existence of at least one optimal solution in the form of a characteristic function. We divide
this section into two subsections corresponding to the two cases.

3.1. Case E1 = E2

We assume that E1 = E2 = 1 and our problem now, that we denote as (P̃1), is the
following

MinA?
ad

J̃(ρ(θ)),

where the admissibility set is

A?
ad = {θ ∈ L∞(0, l) : 0 ≤ θ ≤ 1} ,

ρ(θ) is given by
ρ(θ) = ρ1θ + ρ2(1− θ),

the cost functional is

J̃(θ) =
∫ l

0

[
Ω2ρ(θ(x))|u(x)|2 + |u′(x)|2

]
dx,

and u is computed from θ through the state equation[
u′

]′ + Ω2ρ(θ(x))u = 0,

u′(0) = γ, u′(l) = 0

Following Theorem 2.1, this problem is in the relaxed form and therefore it admits at
least one optimal solution. The following result establishes that any optimal solution is
actually a classical one (classical solution means a solution in the form of a characteristic
function).

Theorem 3.1 Any optimal solution, θ̄, for problem (P̃1) takes on only the values {0, 1},
i.e. any optimal solution for (P̃1) is a characteristic function.
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3.2. General case

The existence of classical solutions for the general situation of (P̃) is not clear in general
as far as the authors are able to claim, although something may be said about this. We
do not state a formal result in this section, but show using new ideas that the problem
admits optimal solutions in certain cases. All the technical details are included in [3], but
we give numerical evidence of this in the next section.

4. Numerical Approach and Examples

After the analysis carried out in the previous sections, this section is devoted to show
several numerical simulations for our problem. The approach that we follow in the pre-
sent work is to approximate directly the optimal solutions for the relaxed optimal design
problem (P̃) by a gradient method. Of course this implies approximation of the states
and adjoint states, i.e. solutions of the homogenized state equation (see Theorem 2.1) and
the corresponding adjoint equation (see Theorem 2.2). We believe that this approach will
certainly give good approximations of the optimal designs for problem (P̃).

The numerical algorithm used in this work is a variable step-size descent method given
by

θk+1 = θk − J̃ ′(θk)sk,

where sk is a small positive step such that J̃(θk+1) < J̃(θk), J̃ ′(θk) is the gradient of the
cost functional respect to the control, computed in Section 2, and the step sk is looked
for as the step that minimizes J̃(θk+1(sk)) (we use a descent method for computing sk).
On the other hand, since the control must verify that 0 ≤ θk+1 ≤ 1, then the updating
formula can be easily compacted by

θk+1 = máx(0,mı́n(1, θk − J̃ ′(θk)sk)),

being the same that we obtained by using a projected gradient method. Concerning the
stopping criteria, it has been checked that the cost functional slightly changes its value
and therefore, the L∞−norm of the difference J̃(θk+1) − J̃(θk) reduces to zero, as we
approximate to the minimum. All numerical examples belonging to this work have been
obtained under the stopping criteria, tol = 10−5, requiring for convergence about 15
iterations of the algorithm, on average. It has also been tested that very similar results
are obtained when we run the same numerical examples with different mesh sizes.

For the sake of briefness, we illustrate our approach through two numerical examples.
In both of them, the design domain is an elastic rod of unit length subjected to time
harmonic longitudinal excitation of amplitude γ in the left end. Material properties are
E2 = 200 GPa, ρ2 = 7,800 kg/m3, and E1 = 70 GPa, ρ1 = 2700 kg/m3 corresponding to
steel and aluminum, respectively. In previous sections it has been possible to prove that
optimized solutions are classical when the Young’s modulus E keeps constant along the
rod and to show that there are cases with E varying its value in which still there are
classical solutions. In general, numerical simulations indicate that optimized layouts are
classical, and therefore, there is no microstructure among the two phases we are mixing.

In the first example we have used the frequency value Ω = 50 kHz. Even though we let
the control θ vary continuously between 0 and 1 during the optimization process, we can
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see in Figure 1(a) that the optimized solution obtained is classical at the end of the process.
Notice that this configuration make the wave damp itself in an optimized way, as it travels
along the rod (see Figure 1(b)). Similar conclusions as before can be obtained in the second
example for Ω = 200 kHz (see Figure 1(c) and (d)). We can repeat the same numerical
examples but keeping constant the Young’s modulus, for instance, E2 = E1 = 70 GPa.
The numerical results for Ω = 50 kHz and 200 kHz (Figure 2) corroborate the existence
of classical solutions such as it was analytically proved.
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Figura 1:

It is important to notice that (for this particular case E2 = E1) we initially tried with
a numerical approach based on optimality conditions. Although in some situations such
algorithm gave us the same results as the ones obtained by the gradient method, the fact
is that it did not enjoy good convergence properties in general, but when it did we got
similar results.

In view of the numerical results we can state that, even though the design problem
treated is this paper is rather different to the band-gap one, as we commented in the
Introduction, the optimized finite structures (almost periodic in some cases) obtained (for
minimum vibration energy) for a particular value of Ω, not avoid (like in the band-gap
situation) but make rather difficult the wave can propagate itself along the rod only at
that corresponding value of Ω.

To conclude, it is worth emphasizing that first, all this analysis makes sense for high
frequency values (typically greater than 10 kHz), otherwise the optimal designs are “bo-
ring” because they would correspond to take only the material with higher ratio (Ei/ρi),
for i = 1, 2, and second, the same layouts we present here are obtained whenever the
product Ω l keeps constant.
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Figura 2:
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