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Resumen

We consider the one-dimensional linear wave equation with Dirichlet boundary
conditions in a bounded interval, and with a control acting on a single point which
moves following a regular trajectory in time. We analyze the exact controllability
problem.

1. Introduction

We consider the one-dimensional linear wave equation, on a finite interval domain
(0, L), with an interior control f which acts on a single moving (in time) point x = γ(t),





utt − uxx = f(t)δγ(t)(x), in 0 < x < L, 0 < t < T,

u(0, t) = u(L, t) = 0, in 0 < t < T,
u(x, 0) = u0(x), ut(x, 0) = u1(x) in 0 < x < L.

(1)

Here, δγ(t) represents the Dirac measure on x = γ(t) and the function γ describes the
trajectory in time of the location of the control. We assume that the function γ : [0, T ] →
(0, L) belongs to the class γ ∈ C1([0, T ]).

We are interested in the following exact controllability problem: Given T > 0, some
initial data (u0, u1) and final data (v0, v1), find a control f such that the solution u of (1)
satisfies

u(x, T ) = v0(x), ut(x, T ) = v1(x), ∀x ∈ (0, L). (2)

Let us briefly describe some related results and the main motivation of this problem.
When the control acts in an interior open set ω or one of the extremes of the domain

(0, L), it is well known that the corresponding exact controllability property of the wave
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equation holds, for some sufficiently large time T (see [9]). On the other hand, in most
practical situations, the support of the control is required to be very small compared to
the total size of the domain (0, L) and therefore it is very natural to consider a limit
situation where the subinterval ω is reduced to a single point γ ∈ (0, L). It turns out that
the controllability property of system (1) depends on the location of γ. Indeed, it can be
shown that this property holds if and only if the only eigenfunction of the Laplacian with
homogeneous Dirichlet boundary conditions and vanishing on x = γ is the identically zero
one (see [10], [11], [1] or the more recent reference [5], for example). In the sequel, the
points γ for which this spectral property is satisfied will be referred to as strategic points.

The property of γ being strategic is difficult to establish in practice since it is extremely
unstable. In fact γ ∈ (0, L) is strategic if and only if it is irrational with respect to the
length of the interval L. Consequently, controllability properties over points are hard to
use in practice.

To overcome this difficulty one may consider controls supported on moving points
{γ(t)}0≤t≤T , as suggested in [11]. The main advantage of moving controls is that it is easy
to construct trajectories {γ(t)}0≤t≤T for which the strategic property holds for γ(t) ∈ (0, L)
a.e. in t ∈ [0, T ]. For example, this is the case when we assume that the control is located
at a point that moves in time with constant velocity. In this case, γ(t) is irrational, and
therefore strategic, a.e. in t ∈ [0, T ]. Therefore, the exact controllability is likely to hold
for such moving controls. The aim of this work is to show that this is indeed the case
under suitable conditions on the function γ(t).

It is worth noting that in the context of parabolic equations a similar situation appears.
We refer to [3], [7], [1], [11] and the references therein for a detailed analysis of this related
problem.

The rest of this paper is divided as follows: in section 2 we state the main results,
namely the existence of solutions for system (1) in suitable functional spaces and the exact
controllability property. Both results can be reduced, by classical duality arguments, to
some suitable regularity and observability estimates for the uncontrolled wave equation
respectively. In section 3 we give the proof of these estimates.

2. Main results

We assume that the function γ : [0, T ] → (0, L) belongs to C1 and satisfies the following
hypothesis: There exist constants c1, c2 such that

0 < c1 < |γ′(t)| ≤ c2 < 1 for all t ∈ (0, T ). (3)

The control f(t) in (1) is assumed to belong to H−1(0, T ) and the initial data (u0, u1)
in the class

(u0, u1) ∈ L2 ×H−1(0, L).

We define the weak solutions of system (1) by transposition (see [8]). To do that
let ψ ∈ L1(0, T ; L2(0, L)) be a function and consider the non-homogeneous adjoint wave
equation 




ϕtt − ϕxx = ψ(x, t) in 0 < x < L, 0 < t < T,
ϕ(0, t) = ϕ(L, t) = 0 in 0 < t < T,
ϕ(x, T ) = ϕt(x, T ) = 0, in 0 < x < L, 0 < t < T.

(4)
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It is well known that system (4) admits a unique solution ϕ of (4) in the class

ϕ ∈ C([0, T ]; H1
0 (0, L)) ∩ C1([0, T ]; L2(0, L)). (5)

Multiplying the equations in (1) by ϕ and integrating by parts we easily obtain, at
least formally, the following identity:

∫ L

0
< u1(x), ϕ(x, 0) >1 dx−

∫ L

0
u0(x)ϕt(x, 0) dx+ < f,ϕ(γ(t), t) >t

1 dt

=
∫ T

0

∫ L

0
ψ(x, t)u(x, t) dx dt, for all ψ ∈ L1(0, T ; L2(0, L)), (6)

where < ·, · >1 and < ·, · >t
1 denote the duality products between H1

0 (0, L) and its dual,
and between H1

0 (0, T ) and its dual respectively.
We adopt identity (6) as the definition of solutions of (1), in the sense of transposition.
The following result establishes the existence of solutions for system (1).

Theorem 2.1 Assume that γ : [0, T ] → (0, L) is in the class γ ∈ C1([0, T ]) and satisfies
the hypothesis (3). Given any initial data (u0, u1) ∈ L2 ×H−1(0, L) and f ∈ H−1(0, T ),
there exists an unique solution u of (1), in the sense of transposition, in the class

u ∈ C([0, T ]; L2(0, L)) ∩ C1([0, T ]; H−1(0, L)).

Moreover, there exists a one-to-one correspondence between the data and the solution
in the given spaces.

Concerning the exact controllability problem of system (1) the following result holds:

Theorem 2.2 Let T > 2L and γ : [0, T ] → (0, L) be a function in the class γ ∈ C1([0, T ])
satisfying the hypothesis (3). Then, system (1) is exactly controllable, i.e. for any initial
data (u0, u1) ∈ L2 × H−1(0, L) and final data (v0, v1) ∈ L2 × H−1(0, L), there exists a
control f ∈ H−1(0, T ) such that the solution u of (1) satisfies (2).

The proof of the existence result above (Theorem 2.1) can be obtained from a suitable
regularity property stated below (estimate (8)) by a straightforward duality argument.
We refer to [8] for a general description, and [6] or [2] where this is done for very similar
problems.

The proof of the exact controllability property (Theorem 2.2) is also a straightforward
consequence of the observability inequality (9) below and the Hilbert Uniqueness Method
introduced by J.-L. Lions in [9]. We also refer to [6] and [2] where this method is applied
for similar problems.

3. Observability

As we have said, the main results in this paper can be obtained from some inequalities
for the uncontrolled wave equation. In this section we prove these inequalities.
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Consider the system




ϕtt − ϕxx = 0, in 0 < x < L, 0 < t < T,
ϕ(0, t) = ϕ(L, t) = 0, in 0 < t < T,
ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), in 0 < x < L.

(7)

We assume that (ϕ0, ϕ1) ∈ H1
0 × L2(0, L). The following holds:

Proposition 3.1 Assume that γ ∈ C1 satisfies the hypothesis (3). Then, there exists a
constant c(γ) > 0 such that the solution ϕ of (7) satisfies

∫ T

0

∣∣∣∣
d

dt
ϕ(γ(t), t)

∣∣∣∣
2

dt ≤ c(γ)
∥∥(ϕ0, ϕ1)

∥∥2

H1
0×L2 . (8)

Moreover, if T > 2L, then there exists a constant C(γ) > 0 such that

∥∥(ϕ0, ϕ1)
∥∥2

H1
0×L2 ≤ C(γ)

∫ T

0

∣∣∣∣
d

dt
ϕ(γ(t), t)

∣∣∣∣
2

dt. (9)

Remark 3.1 Estimate (8) is a regularity result for the trace of the solution of the wave
equation ϕ(x, t) on the curve defined by the trajectory γ. This result cannot be obtained
from classical arguments or semigroup theory.

Estimate (9) is an observability inequality which establishes that the total energy of the
solutions of the wave equation can be estimated from the value of the solution ϕ at γ(t)
for a large enough time interval t ∈ (0, T ).

Proof. Note that it is enough to consider smooth solutions since for other solutions
we can argue by density. We first prove the estimate (8).

We observe that in the one-dimensional wave equation one can change the variables x
by t and t by x without altering the equation. Thus, D’Alambert formula can be used to
obtain the solution ϕ(x, t) in terms of the solution at one extreme, say x = 0, instead of
the data at t = 0 as usual. Indeed, we have

ϕ(x, t) =
1
2

[ϕ(0, t− x) + ϕ(0, t + x)] +
1
2

∫ t+x

t−x
ϕx(0, s) ds. (10)

If ϕ is defined on (x, t) ∈ [0, L] × [0, T ] this formula holds only for those values (x, t)
for which 0 ≤ t − x ≤ t + x ≤ T . However, we can extend the solution of the wave
equation ϕ to (x, t) ∈ (0, L) × (−∞,∞) and formula (10) is still valid for the whole
domain (x, t) ∈ (0, L) × (0, T ). This is always posible because the wave equation with
Cauchy data at t = 0 is well-posed for t ≥ 0 and t ≤ 0.

In particular, taking into account the homogeneous Dirichlet boundary conditions in
(7) we have

ϕ(γ(t), t) =
1
2

∫ t+γ(t)

t−γ(t)
ϕx(0, s) ds.

Therefore,

2
d

dt
ϕ(γ(t), t) = (1 + γ′(t))ϕx(0, t + γ(t))− (1− γ′(t))ϕx(0, t− γ(t)), (11)

4



Pointwise control of the 1-d wave equation

and

4
∫ T

0

∣∣∣∣
d

dt
ϕ(γ(t), t)

∣∣∣∣
2

dt

≤ 2
∫ T

0
(1 + γ′(t))2 |ϕx(0, t + γ(t))|2 dt + 2

∫ T

0
(1− γ′(t))2 |ϕx(0, t− γ(t))|2 dt

≤ 2 sup
t∈[0,T ]

(1 + γ′(t))2
∫ T+γ(T )

γ(0)
|ϕx(0, s)|2 ds +

2 sup
t∈[0,T ]

(1− γ′(t))2
∫ T−γ(T )

−γ(0)
|ϕx(0, s)|2 ds

≤ 4
∫ T+γ(T )

γ(0)
|ϕx(0, s)|2 ds + 4

∫ T−γ(T )

−γ(0)
|ϕx(0, s)|2 ds ≤ 8

∫ T+γ(T )

−γ(0)
|ϕx(0, s)|2 ds

≤ C
∥∥(ϕ0, ϕ1)

∥∥2

H1
0×L2(0,L)

.

Here, the last inequality can be obtained by classical multipliers techniques (see [9]).
Now, we prove the estimate (9). We divide the analysis in two cases depending on the

sign of γ′.
Case A: Assume that −∞ < −c2 ≤ γ′(t) ≤ −c1 < 0 for all t ∈ (0, T ). From identity

(11), we can estimate |ϕx(0, t− γ(t))| as follows:

|ϕx(0, t− γ(t))|2

=
(

1 + γ′(t)
1− γ′(t)

ϕx(0, t + γ(t))− 2
1− γ′(t)

d

dt
ϕ(γ(t), t)

)2

=
(

1 + γ′(t)
1− γ′(t)

)2

|ϕx(0, t + γ(t))|2 +
(

2
1− γ′(t)

)2 ∣∣∣∣
d

dt
ϕ(γ(t), t)

∣∣∣∣
2

−2
1 + γ′(t)
1− γ′(t)

ϕx(0, t + γ(t))
2

1− γ′(t)
d

dt
ϕ(γ(t), t)

≤ (1 + a)
(

1 + γ′(t)
1− γ′(t)

)2

|ϕx(0, t + γ(t))|2 +
(

1 +
1
a

)(
2

1− γ′(t)

)2 ∣∣∣∣
d

dt
ϕ(γ(t), t)

∣∣∣∣
2

for any a > 0 to be chosen later. Here we have used Young’s inequality.
Multiplying by 1− γ′(t) and integrating in t ∈ (0, T ) we obtain,

∫ T

0
|ϕx(0, t− γ(t))|2 (

1− γ′(t)
)
dt

≤ (1 + a)
∫ T

0

1 + γ′(t)
1− γ′(t)

|ϕx(0, t + γ(t))|2 (
1 + γ′(t)

)
dt

+
(

1 +
1
a

)∫ T

0

4
1− γ′(t)

∣∣∣∣
d

dt
ϕ(γ(t), t)

∣∣∣∣
2

dt

≤ (1 + a)
1− c1

1 + c1

∫ T+γ(T )

γ(0)
|ϕx(0, s)|2 dt

+
(

1 +
1
a

)
4

1 + c1

∫ T

0

∣∣∣∣
d

dt
ϕ(γ(t), t)

∣∣∣∣
2

dt. (12)
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Therefore,
∫ T−γ(T )

−γ(0)
|ϕx(0, t)|2 dt− (1 + a)

1− c1

1 + c1

∫ T+γ(T )

γ(0)
|ϕx(0, t)|2 dt

≤
(

1 +
1
a

)
4

1 + c1

∫ T

0

∣∣∣∣
d

dt
ϕ(γ(t), t)

∣∣∣∣
2

dt. (13)

Now we take the constants T0, a such that T0 − γ(T0) + γ(0) = 2L and 0 < a < 1+c1
1−c1

− 1
respectively. Then, from the 2L-periodicity of the solutions of the wave equation (7) and
the fact that γ is decreasing we can estimate the left hand side of (13) with T = T0 as
follows

∫ T0−γ(T0)

−γ(0)
|ϕx(0, t)|2 dt− (1 + a)

1− c1

1 + c1

∫ T0+γ(T0)

γ(0)
|ϕx(0, t)|2 dt

≥
(

1− (1 + a)
1− c1

1 + c1

)∫ 2L

0
|ϕx(0, t)|2 dt. (14)

Combining this last inequality with (13) we obtain that there exist constant C > 0 such
that ∫ T0

0

∣∣∣∣
d

dt
ϕ(γ(t), t)

∣∣∣∣
2

dt ≥ C

∫ 2L

0
|ϕx(0, t)|2 dt ≥ C ′‖(ϕ0, ϕ1)‖H1

0×L2(0,L),

where the last inequality is the classical boundary observability inequality for the one-
dimensional wave equation (see, for example, [4]). Finally, inequality (9) follows for any
T > T0 and, in particular, for T > 2L.

Case B: Assume now that 0 < c1 < γ′(t) < c2 < 1 for all t ∈ (0, T ). From identity
(11), we estimate now |ϕx(0, t + γ(t))| as follows,

|ϕx(0, t + γ(t))|2

=
(

1− γ′(t)
1 + γ′(t)

ϕx(0, t− γ(t))− 2
1 + γ′(t)

d

dt
ϕ(γ(t), t)

)2

=
(

1− γ′(t)
1 + γ′(t)

)2

|ϕx(0, t− γ(t))|2 +
(

2
1 + γ′(t)

)2 ∣∣∣∣
d

dt
ϕ(γ(t), t)

∣∣∣∣
2

−2
1− γ′(t)
1 + γ′(t)

ϕx(0, t− γ(t))
2

1 + γ′(t)
d

dt
ϕ(γ(t), t)

≤ (1 + a)
(

1− γ′(t)
1 + γ′(t)

)2

|ϕx(0, t− γ(t))|2 +
(

1 +
1
a

)(
2

1 + γ′(t)

)2 ∣∣∣∣
d

dt
ϕ(γ(t), t)

∣∣∣∣
2

for any a > 0 to be chosen later.
Multiplying by 1 + γ′(t) and integrating in t ∈ (0, T ) we obtain,

∫ T

0
|ϕx(0, t + γ(t))|2 (

1 + γ′(t)
)
dt

≤ (1 + a)
∫ T

0

1− γ′(t)
1 + γ′(t)

|ϕx(0, t− γ(t))|2 (
1− γ′(t)

)
dt

+
(

1 +
1
a

)∫ T

0

4
1 + γ′(t)

∣∣∣∣
d

dt
ϕ(γ(t), t)

∣∣∣∣
2

dt. (15)

6



Pointwise control of the 1-d wave equation

Therefore,

∫ T+γ(T )

γ(0)
|ϕx(0, t)|2 dt− (1 + a)

1− c1

1 + c1

∫ T−γ(T )

−γ(0)
|ϕx(0, t)|2 dt

≤
(

1 +
1
a

)
4

1 + c1

∫ T

0

∣∣∣∣
d

dt
ϕ(γ(t), t)

∣∣∣∣
2

dt.

Now we take the constants T0, a such that T0 − γ(T0) + γ(0) = 2L and 0 < a < 1+c1
1−c1

− 1
respectively. Then, from the 2L-periodicity of the solutions of the wave equation (7) and
the fact that γ is increasing we can estimate the left hand side of (13) with T = T0 as in
(14). Then, we can argue as in the previous case. This concludes the proof.
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Masson, RMA 8 & 9, Paris, 1988.

[10] J.-L. Lions, Some methods in the mathematical analysis of systems and their control, Gordon and
Breach, 1981.

[11] J.-L. Lions, Pointwise control for distributed systems, in Control and estimation in distributed para-
meter systems, edited by H.T. Banks, SIAM, 1992.

7


