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Abstract. A Möbius triangulation is a triangulation on the Möbius band. A geometric realization
of a map M on a surface Σ is an embedding of Σ into a Euclidean 3-space R

3 such that each face
of M is a flat polygon. In this paper, we shall prove that every 5-connected triangulation on the
Möbius band has a geometric realization. In order to prove it, we prove that if G is a 5-connected
triangulation on the projective plane, then for any face f of G, the Möbius triangulation G − f
obtained from G by removing the interior of f has a geometric realization.
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1. Introduction. Let Σ be a surface with at most one boundary component,
and let M be a map on Σ. If Σ has a boundary, we suppose that some cycle of M
coincides with the boundary of Σ. Such a cycle of M is called the boundary of M
and denoted by ∂M . A vertex of M not on ∂M is called an inner vertex. A k-cycle
means a cycle of length k. A triangulation on Σ is a map on Σ such that each face is
bounded by a 3-cycle. In particular, a Möbius triangulation is a triangulation on the
Möbius band. For an inner vertex v of a triangulation, the link of v is the boundary
walk of the 2-cell region consisting of all faces incident to v. Throughout this paper,
we suppose that the graph of a map is simple, i.e., with no multiple edges and no
loops. For a cycle or path C in M , a chord of C means an edge xy of M such that
x, y ∈ V (C) but xy /∈ E(C). Hence C is induced in M if and only if C has no chord.

A geometric realization of a map M on a surface Σ is an embedding of Σ into
a Euclidean 3-space R

3 such that each face of M is a flat polygon. Steinitz’s theo-
rem states that a spherical map has a geometric realization if and only if its graph
is 3-connected [10]. Moreover, Archdeacon, Bonnington, and Ellis-Monanghan proved
that every toroidal triangulation has a geometric realization [1]. In general, Grünbaum
conjectured that every triangulation on any orientable closed surface has a geometric
realization [7], but Bokowski and Guedes de Oliveira recently showed that a triangu-
lation by K12 on the orientable closed surface of genus 6 has no geometric realization
[2]. (For related topics, see [5].)

Let us consider a geometric realization of a triangulation on the projective plane.
Let P denote the projective plane throughout this paper. Since the projective plane
itself is not embeddable in R

3, no map on P has a geometric realization. Let G be a
triangulation on P, and let f be a face of G. Let G−f denote the Möbius triangulation
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1 2 3

3 1

4

7

5 4

7

5

8

9

6

8

8

7

79

94

6 5
1 2

3

Fig. 1. A Möbius triangulation with no geometric realization.

obtained from G by removing the interior of f . Since the punctured surface obtained
from P by removing a 2-cell, the Möbius band, is embeddable in R

3, G− f might have
a geometric realization. The following is known.

Theorem 1.1 (Bonnington and Nakamoto [3]). Every triangulation G on the
projective plane P has a face f such that the Möbius triangulation G−f has a geometric
realization.

Brehm [4] has already found a Möbius triangulation with no geometric realization,
shown in Figure 1, in which both express the same triangulation. (In Figure 1, we
identify the vertices with the same label. In the right-hand side, the shaded part
means the hole.) Why does Brehm’s example have no geometric realization? We can
prove that for each of its spatial embedding, the two disjoint 3-cycles 123 and 456
have a linking number of at least 2. (See [9] for the definition of the linking number.)
However, two 3-cycles, each with an edge straight segment embedded in R

3, have a
linking number of at most 1, a contradiction. Hence, generalizing this example, we can
see that if a triangulation M on the Möbius band has a boundary cycle C of length
3 and a 3-cycle C′ disjoint from C which forms an annular region with C′, then M
never has a geometric realization.

A graph M is said to be cyclically k-connected if M has no separating set S ⊂
V (M) with |S| ≤ k − 1 such that each connected component of M − S has a cycle.
Then the cyclical 4-connectivity of a triangulation G on P is necessary for a geometric
realization of G − f for any face f of G. We conjecture as follows that it is also
sufficient.

Conjecture 1.2. Let G be a triangulation on the projective plane P. Then
G − f has a geometric realization for any face f of G if and only if G is cyclically
4-connected.

In this paper, we prove the following.
Theorem 1.3. Let G be a 5-connected triangulation on the projective plane P.

Then G − f has a geometric realization for any face f of G.
By Theorem 1.3, a Möbius triangulation M has a geometric realization if M is

obtained from a 5-connected triangulation G on P by removing a 2-cell.
Let M be a 5-connected Möbius triangulation with a boundary cycle C = v1 · · · vk

of length k. Let P be the map on P obtained from M by pasting a 2-cell to C. If k = 3,
then P is a 5-connected triangulation on P. If k = 4, then P can be extended to a 5-
connected triangulation on P by adding an edge v1v3 or v2v4. (If this is impossible, then
M would have edges v1v3 and v2v4, and hence M would contain a quadrangulation
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isomorphic to K4, contrary to the 5-connectivity of M .) If k ≥ 5, then P can be
extended to a 5-connected triangulation on P by adding a new vertex joined to all
vertices on C. Hence we have the following.

Corollary 1.4. Every 5-connected Möbius triangulation has a geometric real-
ization.

Let M be a map on a surface Σ with a boundary, and let C be the boundary cycle
of M . We say that M is internally k-connected if M is (k − 1)-connected and if for
any vertex v ∈ V (M − C), there are at least k disjoint paths from v to C. Clearly, if
G is a 5-connected triangulation on P, then for any v ∈ V (P ), G− v can be regarded
as an internally 5-connected Möbius triangulation whose boundary cycle has a length
of at least 5. Hence we can relax the condition of Corollary 1.4 to prove the following.

Corollary 1.5. Every internally 5-connected Möbius triangulation has a geo-
metric realization if the boundary cycle has a length of at least 5.

2. Split-K5’s in 5-connected triangulations. Put a 5-cycle C = v1v2v3v4v5

on P, called the boundary, so that C bounds a 2-cell R on P, where each vi is called
a node. (We always fix its orientation �C along the numbering of the vertices.) Join vi

to vi+2 and vi+3 by edges not in R for each i. Then the resulting graph is isomorphic
to K5 in which each face except R is triangular. (See the left-hand side of Figure 2.)
Consider a splitting (i.e., the inverse operation of an edge contraction) of vi into two
adjacent vertices, vi and v′i, of degree 3. There are two possibilities for the splitting.
When vi and v′i lie on C (we always suppose that vi and v′i appear on �C in this
order), {vi, v

′
i} is called a boundary pair of nodes, and each of vi and v′i is called a

boundary split node. (The path from vi to v′i on �C is called the boundary split interval
of {vi, v

′
i}.) Otherwise, {vi, v

′
i} is called an inner pair of nodes, and each of vi and v′i

is called an inner split node, where we always suppose that vi lies on C. Let K be a
map on P obtained from the above K5 by splittings of some of vi’s. A split-K5 is a
subdivision of K on P. (See the right-hand side of Figure 2.)

v0 v1 v2 v3

v3 v4 v0

v0 v1 v2 v3

v3 v4 v0

K5 Split-K5

v′1

v′2

v′3

v′3

Inner pair

Boundary pair

Fig. 2. K5 and split-K5.

The following is the most important claim in this paper. It guarantees that a
5-connected triangulation on P has a special type of a split-K5.

Lemma 2.1. Let G be a 5-connected triangulation on P, and let uvw be any face
of G. Then G has a split-K5 H such that

(i) the boundary ∂H of H coincides with the link of u in G.
(ii) H has at most one boundary pair of nodes.
(iii) if H has a boundary pair, then at least one of v and w is a boundary split

node, but the edge vw is not contained in a boundary split interval. Otherwise,
v or w is a node of H.
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In the following two sections, we give preliminaries for the proof of Lemma 2.1.
In section 5, we prove Lemma 2.1.

3. Lemmas. Let G be a graph on P, and let C be a contractible cycle of G, i.e.,
one bounding a 2-cell on P. (A cycle or a closed curve on a surface is essential if it
is not contractible.) Then C cuts P into two surfaces, one homeomorphic to an open
disk and the other homeomorphic to an open Möbius band. Let intC(G) denote the
graph consisting of the vertices and edges lying in the disk component of C, and let
IntC(G) be the graph consisting of the vertices and edges lying on C and in the disk
component of C. We define extC(G) and ExtC(G) analogously. Note that IntC(G) is
not necessarily an induced subgraph of G.

Let C = v1v2v3v4 · · · vk be a cycle. A closed segment [vi, vj ] is a vi − vj path
along �C. An open segment (vi, vj) is obtained by deleting the endvertices of the
corresponding closed segment. Moreover, we use the notations [vi, vj) and (vi, vj ],
defined similarly.

Lemma 3.1. Let G be a 5-connected triangulation on P. Let C = v1v2v3v4 be a
contractible 4-cycle in G. Then intC(G) contains no vertices.

Proof. Assume v ∈ V (intC(G)). Since G is 5-connected, extC(G) contains no
vertices. Then we can add only two edges v1v3 and v2v4 outside C, since T is simple.
Hence this contradicts that G is a triangulation.

Lemma 3.2. Let v be a vertex of a 5-connected triangulation G on P, and let
C be a contractible 5-cycle containing v in its interior. Then there exists a unique
contractible 5-cycle C so that IntC(G) contains all contractible 5-cycles which contain
v in their respective interiors.

Proof. Let C1 and C2 be contractible 5-cycles containing v in their interiors, and
suppose that IntC1(G) and IntC2(G) are inclusionwise incomparable, that is, neither
IntC1(G) ⊆ IntC2(G) nor IntC1(G) ⊇ IntC2(G). It suffices to prove that there is a
contractible 5-cycle C′ such that IntC′(G) contains both IntC1(G) and IntC2(G).

Since C1 and C2 are of length 5 and neither one is contained in the closed interior
of the other, they intersect in exactly two vertices. These two vertices divide Ci into a
segment lying in the interior of C3−i and one lying in the exterior of C3−i, where i =
1, 2. Combining the common segments and both interior segments yields a contractible
cycle, which contains v in its interior. By Lemma 3.1, its length is at least 5. Combining
the two exterior segments with the two common segments, we obtain a contractible
cycle C′ of length at most 5, since both C1 and C2 were 5-cycles. Since G is simple,
C′ contains no essential cycle, and hence it is a contractible cycle in G. Now C′ has
length 5 by Lemma 3.1 since it contains v in its interior. On the other hand, IntC′(G)
contains both IntC1(G) and IntC2(G), and the proof is complete.

Lemma 3.3. Let G be a 5-connected triangulation on P, and let C = v1v2v3v4v5

be a contractible 5-cycle in G. If G has no vertex in the exterior of C, then ExtC(G)
is isomorphic to K5.

Proof. We have to show that extC(G) contains every possible edge vivi+2 (in in-
dices modulo 5). A similar argument as in the proof of Lemma 3.1 does the trick.

The following lemma is an immediate consequence of 5-connectivity.
Lemma 3.4. Let G be a 5-connected triangulation on P, and let v ∈ V (G). Let

v′ and v′′ be two nonconsecutive neighbors of v. If v′ and v′′ have another common
neighbor w which is not adjacent to v, then the cycle vv′wv′′ is essential.

Let D be a plane graph with boundary cycle C and each inner face triangular,
and let x, y be distinct vertices of C. An internal x − y path is a path in D joining x
and y and intersecting C only at its endvertices.
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Lemma 3.5. Let D be a triangulation on the disk with boundary cycle C, and let
x, y be distinct vertices of C with xy /∈ E(C). Then D has an internal x − y path if
and only if D has no chord pq for some p, q ∈ V (D) − {x, y} such that x and y are
contained in distinct components of C − {p, q}.

Proof. The sufficiency is obvious and so we consider the necessity. Suppose that C
has a chord pq. By the assumption, x and y are contained in one, say D1, of the two
subgraphs D1, D2 such that V (D) = V (D1) ∪ V (D2) and V (D1) ∩ V (D2) = {p, q}.
In this case, we have to look for a required internal x − y path in D1. Hence in the
following argument, we may suppose that D has no chord. Observe that since C is
chordless, each vertex on C is adjacent to at least one vertex in D − C. Moreover,
we can see that intC(D) is connected. (For otherwise, i.e., if intC(D) is disconnected,
then there are two vertices p′, q′ ∈ C such that D−{p′, q′} is disconnected. However,
this is impossible since each inner face of D is triangular.) Hence we have an internal
x − y path in D.

Let C be a contractible cycle of length at least 4 in a triangulation G. Suppose that
vertices r1, r2, r3, r4 lie along C in this order, but they do not need to be consecutive
along C. Let us also assume that the segments [r1, r2], [r2, r3], [r3, r4], and [r4, r1]
have no chords in IntC(G). We say that IntC(G) is a 4-patch with nodes r1, r2, r3, r4.

We obtain the following three lemmas, carefully applying Lemma 3.5 to P .
Lemma 3.6. Let P be a 4-patch with nodes r1, r2, r3, r4. Assume that r1r4, r2r3 ∈

E(P ) and that u and v are vertices from (r1, r2) and (r3, r4), respectively. Then P −
{r1, r2, r3, r4} contains an u − v path, or a pair of antipodal nodes are adjacent.

Lemma 3.7. Let P be a 4-patch with nodes r1, r2, r3, r4. Then P−{r1, r3} contains
an r2 − r4 path unless r1r3 ∈ E(P ).

Let P be a 4-patch with nodes r1, r2, r3, r4. An r2 − r4 diagonal in P is an r2 − r4

path Q = u1u2u3 · · ·uk−1uk (u1 = r2 and uk = r4) in P − {r1, r3} if there exists
indices i < j such that

(D1) the initial segment u1 · · ·ui is a segment of ∂P ,
(D2) the terminal segment uj · · ·uk is a segment of ∂P , and
(D3) the intermediate segment ui · · ·uj is a segment of P such that ui, uj ∈ V (∂P )

and that all other vertices lie in int(P ).
If Q is an r2 − r4 diagonal in P , then it is also an r4 − r2 diagonal. Further, if a patch
P with nodes r1, r2, r3, r4 contains an r2 − r4 path avoiding r1 and r3, then it also
contains an r2 − r4 diagonal.

We say that an r2 − r4 diagonal Q lies closest to r1 if the number of faces of P
bounded by Q and the segments incident with r1 is as small as possible.

Lemma 3.8. Let P be a 4-patch with nodes r1, r2, r3, r4, and let Q be the r2 − r4

diagonal closest to r1. Let ui and uj be the first and last vertex of the intermediate
segment of Q, respectively. Then r1 is adjacent to ui, ui+1, . . . , uj−1, uj in P .

4. Essential 3-linkages. A near triangulation R is a map on P with a distin-
guished face f such that every other face of R is triangular, and that the facial walk
along f is a cycle. Suppose that the boundary cycle of f , denoted by W , has a length
of at least 6. Let v1, v2, v3, v4, v5, v6 be six vertices that appear along W in this order
but that do not need to be consecutive along W . An essential 3-linkage (with respect
to v1, v2, v3, v4, v5, v6) is a collection L of three disjoint paths P1, P2, P3 so that Pi is
a vi − vi+3 path for i = 1, 2, 3. It is easy to see that W ∪ Pi contains some essential
cycle. Let Q1 be some minimal subpath of P1 so that W ∪Q1 still contains an essential
cycle. Also Q1, P2, P3 form an essential 3-linkage with possibly different endvertices.
By applying the same idea on P2 and P3, we obtain the following lemma.
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Lemma 4.1. Let L be an essential 3-linkage with respect to nodes v1, . . . , v6.
There exists an essential 3-linkage L′ so that every path in L′ intersects W only at
its endvertices.

The second result has been, in greater generality, proved by Robertson and Sey-
mour in [8]. We state it adapted to our needs.

Theorem 4.2 (Robertson and Seymour [8]). Let R be a near triangulation of P

and f = v1v2v3v4v5v6 its distinguished face of length 6. Then R contains an essential
3-linkage with respect to v1, v2, v3, v4, v5, v6 if and only if

(L1) R contains no pair of parallel nonhomotopic edges with common endvertices;
(L2) R does not contain a contractible cycle C of length at most 5 whose interior

contains f .
A pair of parallel nonhomotopic edges violating (L1) forms an essential cycle of

length 2. Traversing these two edges twice yields a contractible (but not simple) closed
walk whose “interior” contains all faces of R. This observation enables both conditions
(L1) and (L2) to be combined into a single condition, albeit with slight adaptations.
For practicality, we prefer the conditions to be written separately, since they are of
different flavors and have to be tackled with different approaches.

We look for essential 3-linkages in near triangulations. In the case when the length
of the distinguished face exceeds 6, we first decide which six vertices are the endvertices
of a linkage. The rest of this section is devoted to the proof of the following.

Proposition 4.3. Let G be a 5-connected triangulation of P, and let v be a vertex
of degree d ≥ 6. Let D = u1u2 · · ·ud be the link of v in G. Then the near triangulation
R = G − v contains an essential 3-linkage if and only if v is not contained in the
interior of a contractible cycle of length at most 5.

Proof. Clearly a cycle containing v in its interior meets each path in an essential 3-
linkage at least twice. The difficulty lies in the other direction—how to find a linkage—
if v is not contained in the interior of a “short” contractible cycle.

An edge e ∈ E(R) is said to be essential if the endvertices of e lie in D and D∪ e
contains an essential cycle. We shall split the proof of Proposition 4.3 with respect
to the number of essential edges. If R contains a set of three independent essential
edges, then no further proof is needed. This leaves us with the case where a maximal
set of independent essential edges contains at most two edges.

Assume next that R contains a set of two independent essential edges. The four
endvertices of these essential edges split the f -facial walk into four open segments. Let
us choose essential edges e = r1r4 and e′ = r3r6 in such a way that the union of two
consecutive open segments (r1, r6)∪ (r3, r4) in D contains as few vertices as possible.
Suppose that (r1, r3) contains a vertex, say v2, and that (r4, r6) contains a vertex,
say v5. Now if r1r6 ∈ E(R) − E(D), then the contractible cycle vr4r1r6 separates v2

from v5, and if r3r4 ∈ E(R) − E(D), then the contractible cycle vr3r4r1 separates
v2 from v5. Neither can happen since G is 5-connected. By Lemma 3.6, we can join
v2 and v5 by a path avoiding r1, r2, r3, and r4, and hence we can find an essential
3-linkage.

So we assume that there exists a set of two independent essential edges e = w1w3

and e′ = w2w4 so that w1, w2, and w3 lie consecutively along D. We may also assume
that w4 lies closer to w3 than to w1 along D, and that no essential edge incident with
w2 has the other endvertex in (w3, w4). Denote the vertices along D by v1, v2, v3, . . . , vd

so that v1 = w1 and v2 = w2 (also v3 = w3, but then this may not go on). Add to R
the new edges v1vk, where k = 6, . . . , d−1, and denote the resulting near triangulation
with R′, with the distinguished face of size 6.
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It is easy to see that R′ satisfies (L1), since the newly added edges do not have
their essential counterparts. Similarly, a short contractible cycle C containing the
distinguished face of R′ in its interior, i.e., contradicting (L2), would have to use
some new edge v1vk, where k ≥ 6. Now C would contain vertices vk, w1, w2, and w3,
which implies that vertices vk and w3 have a common neighbor in R. This contradicts
Lemma 3.4 since C is contractible. Hence R′ contains an essential 3-linkage. Since all
new edges share a common endvertex, we can, if necessary, transform the linkage into
an essential 3-linkage in R.

Suppose next that there is an essential edge but we cannot find a set of two
independent essential edges. Let e = w1w2 be the essential edge, and assume that
the segment (w1, w2) is as short as possible. Since G is simple, w1 and w2 are not
consecutive along D. Denote the vertices of D so that w1 = v3 and v4 lies in (w1, w2).
As (w1, w2) is as short as possible, we have w2 
= v1.

As in the previous case, let R′ be the near triangulation obtained by adding new
edges v1vk, where k = 6, . . . , d − 1. We will argue that R′ has an essential 3-linkage.

If R′ does not satisfy (L1), then an essential edge e′ must be incident with both
v1 and vk for some k satisfying 6 ≤ k ≤ d. By interlacing essential edges incident
to vk ∈ [w1, w2] = [v3, w2], we clearly have vk 
= v3. On the other hand, vk cannot
lie in (w1, w2) = (v3, w2), as two independent essential edges cannot exist, and hence
vk = w2. But this contradicts 5-connectivity of G, since the 4-cycle vv1vkv3 = vv1w2w1

separates v2 and v4.
Next assume that R′ contradicts (L2). The short cycle C contradicting (L2) can

be divided into three segments: the first one between v1 and w1, the second between
w1 and w2, and the third between w2 and v1. Their lengths are at least 2, 2, and 1,
respectively, using the fact that neither v1 and w1 = v3 nor w1 and w2 are consecutive
along D, and the fact that C uses one of the new edges. Since the length of C is at
most 5, all lower bounds are sharp. By Lemma 3.4, C must pass through v2, and also
C must pass through v4 and w2 = v5. On the segment between w2 and v1 the cycle C
uses exactly one edge, namely v1w2 = v1v5, and it also has to use one new edge. This
is a contradiction, so R′ satisfies both (L1) and (L2), and R′ contains an essential
3-linkage. As in the previous case we can, if necessary, transform the linkage into an
essential 3-linkage in R.

We are left with the case where R contains no essential edges. Even if we add
new edges to the interior of f , we cannot contradict (L1), and our only concern will
be meeting the condition (L2).

We proceed naively. Let us assign labels v1, v2, . . . , vd to neighbors of v in the
order of their indices. Add new edges of the form v1vk, where k = 6, . . . , d − 1. The
newly obtained near triangulation R′ may contain an essential 3-linkage, and we win.
On the other hand, it may not, as we contradict (L2), and we lose. In this case, R′

contains a short cycle C which uses a new edge v1v� for some � ∈ {6, . . . , d − 1}.
Hence we assume that we lose for every assignment of labels v1, v2, . . . , vd to the

consecutive neighbors of v. Now fix an assignment of labels so that there exists a cycle
Cv contradicting (L2) using a new edge v1vk, where k is as large as possible.

Let us denote w1 = v1, w2 = v2, w3 = v3, w4 = vk−1, w5 = vk, and w6 =
vk+1. Further, let us add new edges joining w1 to vertices of (w6, w1) and additional
new edges joining w3 to vertices of (w3, w4). We denote the newly obtained near
triangulation by Rw. We claim that Rw contains an essential 3-linkage.

Assume that this is not the case, and let Cw be the obstruction according to (L2).
Clearly Cw contains at least one new edge. Observe that Cw cannot contain both a
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new edge incident with w1 and a new edge incident with w3, since a segment of Cw of
length at most 2 would join two nonconsecutive vertices of D. The cycle Cw cannot
contain a new edge incident with w1 since this would contradict maximality of k.
Hence, Cw contains a new edge incident with w3. Now let C′ be the cycle containing
the edges of Cw lying outside Cv and the edges of Cv lying outside of Cw. Then C′ is
a contractible cycle containing f in its interior. Let P ⊆ Cw ∪Cv be the v1 − v3 path
whose edges lie in the interior of C′. Since it connects two nonconsecutive vertices
along f , its length is at least 3. This implies that the length of C′ is at most 5, a
contradiction.

Hence Rw contains an essential 3-linkage, and consequently R also contains an
essential 3-linkage. This completes the proof of Proposition 4.3.

5. Proof of Lemma 2.1. In this section, we shall prove Lemma 2.1. We begin
with the following proposition.

Proposition 5.1. Let G be a 5-connected triangulation on P, and let u ∈ V (G).
Then G has a split-K5 H whose boundary coincides with the link of u in G.

Proof. We will split the analysis into two cases regarding the properties of u and
treat one of the two cases by referring to [6]. Let D be the link of u.

Case 1. G contains a contractible 5-cycle C = v1v2v3v4v5 such that u ∈ V (intC(G)).
By Lemma 3.2, we may assume that C is the maximal 5-cycle containing u in

its interior. Since G is 5-connected, there exist internally disjoint u − vi paths Pi for
i = 1, . . . , 5.

In order to find a suitable split-K5, we need to find a subgraph of ExtC(G)
which contracts to the zigzag cycle v1v3v5v2v4. This task has been treated in greater
generality in [6, subsection: Finding a suitable cycle minor U in Gx]. Hence we can
obtain a split-K5 H ′ whose boundary is C. Now let

H = (H ′ − E(C)) ∪ D ∪
5⋃

i=1

(Pi − {v}).

Then H is a split-K5 with boundary D, in which there is no boundary pair.
Case 2. u does not lie in the interior of a contractible 5-cycle.
Then we clearly have |D| = deg(u) = k ≥ 6. Let f be the distinguished face

of G − v with boundary D. By Theorem 4.2, G − v contains an essential 3-linkage
L = {P1, P2, P3} with respect to u1, u2, u3, u4, u5, u6, where Pi joins ui and ui+3 for
i = 1, 2, 3. We may also assume that each Pi in L has no chord. Then L divides
the near triangulation G − v into three patches R12, R23, and R13, whose nodes
are (u1, u2, u5, u4), (u2, u3, u6, u5), and (u3, u4, u1, u6) lying on their boundary in this
order, respectively.

We first claim that these patches contain two vertex-disjoint diagonals. Let us
first prove that every two patches, say R12 and R23, contain diagonals with disjoint
endvertices. Suppose this is not the case, and let, say, u2 be an endvertex of every
possible diagonal in both R12 and R23. By Lemma 3.7, we have u2u4 ∈ E(R12) and
u2u6 ∈ E(R23). This contradicts the 5-connectivity of G since {u, u2, u4, u6} separates
v5 and v1 in G. Hence we may assume that R12 contains a u1−u5 diagonal D15 and that
R23 contains a u2 − u6 diagonal D26. We first suppose that D15 and D26 are disjoint.
In this case, we can obtain a required split-K5 H such that H = D ∪ L ∪ D15 ∪ D26.

Now consider the case when D15 and D26 share an inner vertex. Let us try to push
the diagonals away: suppose that D15 and D26 are closest to u4 and u3, respectively.
If D15 and D26 are not vertex disjoint, then the terminal segment S of D15 intersects
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the initial segment S′ of D26 at P2. Let w be the first vertex of S, and let w′ be the last
vertex of S′. Then, by Lemma 3.8, we have both u4w ∈ E(R12) and u3w

′ ∈ E(R23).
If w 
= w′, then we can find a u2 − u4 diagonal in R12 through wu4 and a u3 − u5

diagonal in R23 through u3w
′. Since they are disjoint, we are done, similarly as above.

Suppose that w = w′. Since u4w ∈ E(R12), we focus on the 4-patch R′
12 with

nodes u1, u2, w, u4 contained in R12. Note that u1w /∈ E(R′
12). (For otherwise,

{u, u1, w, u3} separates u2 and u4, since u3w ∈ E(R23). This contradicts the 5-
connectivity of G.) Hence R′

12 admits a u2 − u4 diagonal D24, avoiding w and u1, by
Lemma 3.7. Let D35 be the u3−u5 diagonal of R23 through u3w. Then D∪L∪D24∪D35

is a required split-K5 in G since D24 and D35 are disjoint.
By Proposition 5.1, a 5-connected triangulation on P has a split-K5 H whose

boundary coincides with the link of a specified vertex. Let [a, b] denote the path in
H joining two vertices a and b which is contained in the path joining two nodes in
H , where 1 ≤ i < j ≤ 5. Moreover, we denote (a, b) = [a, b] − {a, b}, and also use the
notations [a, b) and (a, b] similarly.

The following claims that a boundary pair of nodes can be “moved” in a sense.
Lemma 5.2. Suppose that a triangulation G on P has a split-K5 H with boundary

C. Let {a′, a′′} be a boundary pair of nodes of H, and let Q be the plane subgraph
of G corresponding to a face of H with nodes a′, a′′, b, c. Then, for some vertex a of
[a′, a′′] in G, we can find a split-K5 H ′ with boundary C such that a is a node of H ′

contained in neither a boundary pair nor an inner pair. Moreover, if b is contained
in a boundary pair, then the number of the boundary pairs can be decreased in H ′;
otherwise, b might be contained in a new boundary pair of H ′.

Proof. We may suppose that a vertex y of (a′, c] and a vertex z of (a′, a′′] are not
adjacent in Q. (For otherwise, replacing [a′, y) with zy, we can regard z as a new a′.)
Then, by Lemma 3.5, we can take an internal a′ − x path P for some x on either
(a′′, b] or (b, c). In the former case, let H ′ = H − (a′′, x)∪P (or H ′ = H − (a′′, b′)∪P
when x is in (b, b′) for an inner pair {b, b′}). See Figure 3. Then we can decrease
the number of boundary split pairs. In the latter case, let H ′ = H − (a′′, b) ∪ P (or
H ′ = K − (a′′, b′) ∪ P when {b, b′} is an inner pair), in which x might be a new
boundary pair.

b c

a′′

b c

a′

x

x

z

y

a′′ a′

Fig. 3. Eliminate or move a boundary split node.

Now we shall prove Lemma 2.1.
Proof of Lemma 2.1. Let G be a 5-connected triangulation on P, and let uvw be

any face of G. By Proposition 5.1, G has a split-K5 H whose boundary ∂H coincides
with the link of u in G. Let v1, v2, v3, v4, v5 be five nodes of H (where �∂H is fixed
along the ordering of v1, . . . , v5); some vi’s might be contained in boundary or inner
pairs {vi, v

′
i} of nodes.

We shall deform H to satisfy conditions (ii) and (iii) in the lemma. We may
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suppose that the edge vw is contained in [v1, v2] so that �vw is along �∂H. Moreover,
we may suppose that neither v1 nor v2 is a boundary split node. (For otherwise, we
can apply Lemma 5.2 to {v1, v

′
1} or {v2, v

′
2}.)

We first show that one of v and w can be chosen as a node in a new split-K5.
Hence we may suppose that v 
= v1 and w 
= v2. Let R be the plane subgraph of
G corresponding to a face of H incident to [v1, v2]. Suppose that R is bounded by
[v1, v2], [v1, v4], [v4, v

′
4], and [v2, v

′
4] of H , when {v4, v

′
4} is a boundary split pair.

(See Figure 4. Since the other two cases shown in the figure are similar, we omit the
details.) Observe that there are no two vertices x and y in [v1, v2] joined by a chord.
(For otherwise, {x, y, u} would be a 3-cut of G, contrary to the 5-connectivity of G.)
Hence, by Lemma 3.5, we can find an internal path P from v to a vertex on (v1, v4],
to a vertex on (v4, v

′
4], or to (v2, v

′
4]. In the first and second cases, adding P to H

and deleting a segment suitably, we obtain a split-K5 with v a node. If we do not
have these cases, then there is a vertex s in [v1, v) and a vertex t in (v′4, v2) which are
adjacent in R. In this case, we must have an internal path P ′ from w to some vertex
r of (v′4, v2) in R. Similarly to the previous two cases, we obtain a split-K5 with w a
node.

v1 v2

v4 v′4

v w v1 v2

v4

v w v1 v2

v4

v′4

v w

Fig. 4. Take a path from v or w.

We may suppose that v is a node. If v is a boundary split node, then put v = v′1,
and suppose that vw is contained in [v′1, v2]. Otherwise, put v = v1. If v4 is contained
in a boundary pair {v4, v

′
4}, then we apply Lemma 5.2 to eliminate the boundary pair

{v4, v
′
4}, fixing v, or move the boundary pair toward v2. (Otherwise, we proceed to v2.)

Then, fixing the new v4, we apply Lemma 5.2 to {v2, v
′
2} if {v2, v

′
2} is a boundary split

pair. Similarly, we apply Lemma 5.2 to {v5, v
′
5} and {v3, v

′
3} in this order if necessary.

Then, the resulting split-K5 has at most one boundary split pair containing v.

6. Proof of the theorem. In this section, we shall prove Theorem 1.3. The
main part of the proof, which is to make a geometric realization of a 5-connected
triangulation G on P with any one face f removed, depends on the technique developed
in [3].

Lemma 6.1 (Bonnington and Nakamoto [3]). Let T be a Möbius triangulation
with boundary C. Suppose that T has a split-K5 H with boundary C and at most one
boundary pair of nodes.

(i) If H has no boundary pair and we let v1, v2, v3, v4, v5 be the nodes of T lying
on C in this order, then let e be the edge of [v1, v2] incident to v1.

(ii) If H has a boundary pair {v1, v
′
1} and we let v1, v

′
1, v2, v3, v4, v5 be the nodes

of T lying on C in this order, then let e be the edge of [v′1, v2] incident to v′1.
Then T has a geometric realization T̂ such that all edges on C except e can be seen
from some fixed point x ∈ R

3.
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v5

v1

v2

v3

v4

v5

v1

v2

v3

v4 v′1

Fig. 5. Examples of geometric realizations of T .

Figure 5 shows examples of geometric realizations of split-K5’s satisfying
Lemma 6.1. The left-hand side shows one with exactly five nodes v1, v2, v3, v4, v5 on
the boundary, and the right-hand side shows one with exactly one boundary split pair
{v1, v

′
1}. (Note that a triangulation G dealt with in Lemma 6.1 might have several

inner pairs of nodes.) In both parts of figure, we can see all segments on ∂H , except
a side of [v1, v2] incident to v1 in the left-hand case and a side of [v′1, v2] incident to
v′1 in the right-hand case.

Now we shall prove Theorem 1.3.
Proof of Theorem 1.3. Let G be a 5-connected triangulation on P, and let f be any

face of G bounded by uvw. Let C be the link of u. Then, by Lemma 2.1, G contains
a split-K5 H such that

(i) the boundary ∂H of H coincides with C,
(ii) H has at most one boundary split pair, and
(iii) if H has a boundary pair, then v is a boundary split node of H , but vw is

not contained in a boundary split interval; otherwise, v or w is a node of H .
Consider the Möbius triangulation G′ = G−u with boundary C. We apply Lemma

6.1 to G′ and the above H . Then we get a geometric realization Ĝ′ of G′ such that
from some point x ∈ R

3, all edges on C except vw can be seen.
First, we put the vertex u at x ∈ R

3. For each edge pq of Ĝ′ lying on C, let
Δpq ∈ R

3 denote the triangular disk with x, p, q as its vertices. Now, for any edge
h ∈ E(C) − {vw}, we shall fit Δh into the body of Ĝ′, where Δh corresponds to
a face of G incident to h and v. Since each h ∈ E(C) − {vw} can be seen from
x ∈ R

3, the interior of Δh does not collide with Ĝ′. Moreover, for any two distinct
h, h′ ∈ E(C)−{vw}, the interiors of Δh and Δh′ do not collide internally, since h and
h′ can be seen from x simultaneously. So we get a geometric realization of G−f .
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