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The dilation-free graph of a planar point set S is a graph
that spans S in such a way that the distance between two
points in the graph is no longer than their planar distance.
Metrically speaking, those graphs are equivalent to com-
plete graphs; however they have far fewer edges when
considering the Manhattan distance (we give here an
upper bound on the number of saved edges). This article
provides several theoretical, algorithmic, and complex-
ity features of dilation-free graphs in the l1-metric, giving
several construction algorithms and proving some of
their properties. Moreover, special attention is paid to the
planar case due to its applications in the design of printed
circuit boards. © 2006 Wiley Periodicals, Inc. NETWORKS,
Vol. 49(2), 168–174 2007
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1. INTRODUCTION

Given a geometric graph G, that is, a graph whose ver-
tices have fixed coordinates and whose edges are straight-line
segments, its dilation is the maximal ratio of the length of
the shortest path between two vertices and their geometric
distance. For communication or transportation networks, the
dilation tells us exactly how much longer it is to go through the
network rather than from one vertex to another on a straight
line. A network spanning an n-point set S with dilation one
and having the minimum number of edges will be called the
dilation-free graph of S, denoted by Mn(S) or simply Mn.
This graph is trivially well defined when considered in the l2-
metric, the Euclidean distance. Later in this article we prove
that Mn is also unique when the l1-metric (the Manhattan
distance) is used.
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When dealing with Euclidean distance, the dilation-free
graph of points in general position is the complete graph.
Despite this fact, a number of intermediate and acceptable
alternatives have been proposed in the literature (see, i.e.,
[6–8, 10]). Furthermore, the planar case has attracted atten-
tion as well, and thus in [1] planar graphs with no more than
O(n) edges and a dilation less than

√
10 are given. Finally,

other authors have studied the problem for certain subsets of
graphs (a survey of these results can be found in [5]).

However, not every practical situation involves the
Euclidean distance, as occurs in many applications in Com-
putational Geometry [9] or in the design of printed circuit
boards. In this latter case, it is more appropriate to use the
l1-metric (or Manhattan distance) because the problem is usu-
ally posed as how to connect a set of terminals in a circuit
using the shortest set of isothetic-drawn wires, that is, the
wires have to be parallel to the axes. We will prove that given
a point set S, the graph Mn(S) contains far fewer edges than
the complete graph, and therefore is the best connection lay-
out for those terminals. Figure 1 shows a graphical example
that compares the number of edges of the dilation-free graphs
on the same point set using the Euclidean and the Manhattan
distances.

This article is organized as follows. Section 2 takes a closer
look and explores the properties of Mn, and in addition, shows
two different algorithms for constructing it. In Section 3, pla-
nar dilation-free graphs are considered, producing a result
that characterizes when they exist and that can be easily
implemented. Also, it provides a simpler construction algo-
rithm for the planar case than the general one. Finally, we
present our conclusions in Section 4.

2. PROPERTIES AND ALGORITHMS

The main results of this article are established in this
section, which is subdivided into two parts. In the first sub-
section it is shown that dilation-free graphs have strictly
fewer edges than the complete graph, which is the most
important feature of the kind of distance we deal with, the
Manhattan distance. In the second subsection, two algorithms
for constructing Mn are given.
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FIG. 1. Two dilation-free graphs on the same point set using the Euclidean
and the Manhattan distances (for the sake of simplicity, the edges of Mn are
marked as straight-line segments).

First, a simple yet useful result is proved to characterize
whether or not two points are adjacent in Mn. Here and sub-
sequently, xi and yi denote the abscissa and ordinate of a
given point pi, an edge of Mn connecting two points pi and
pj is written as pipj, and a path joining pi and pj through
the points q1,q2, . . . , qn is shortened to piq1q2 . . . qnpj. The
reader should refer to [3] for additional graph-theoretic
notation.

Lemma 1. Let pi and pj be two points in a point set S.
Then pipj is an edge of Mn(S) if and only if the smallest-area
isothetic rectangle enclosing pi and pj contains no other point
in S.

Proof. If the point pk lies in this aforementioned rect-
angle, then the path pipkpj has the same length as pipj and
consequently pipj is not an edge of Mn (see Fig. 2). Con-
versely, if the rectangle does not contain any other point in S,
the length of any path connecting pi and pj is greater than its
Manhattan distance, and therefore, pipj is in Mn. ■

Owing to this lemma, the dilation-free graph of a point
set is well defined, because deciding whether two points are
adjacent in Mn(S) solely depends on their coordinates.

2.1. Dilation-Free Graphs and Complete Graphs
Are Distant Apart

The aim of this subsection is to state that, contrary to the
Euclidean case, dilation-free graphs in the l1-metric with at
least five points contain strictly fewer edges than the complete
graph. Besides that, we will also quantify this difference.

Denoting |G| as the number of edges of G and Kn as
the complete graph on n vertices, the first assertion can be
reformulated as follows.

Lemma 2. For every point set S such that |S| = n ≥ 5, we
have |Mn(S)| < |Kn|.

Proof. Consider the smallest isothetic rectangle that
encloses S. By definition, every side of this rectangle is deter-
mined by at least one point of S, so if |S| ≥ 5 then it has an
interior vertex or two vertices on the same side of the rectan-
gle. In either case, it is possible to find a vertex that lies on
the shortest path between two other points. ■

Note that although the graph Mn(S) has fewer edges than
Kn, they are metrically equivalent, that is, both of them con-
tain the same information about distances among points.

FIG. 2. Geometric proof of Lemma 1.

A natural question that arises now is how much the graphs
differ, or more explicitly, if there exists an upper bound on
|Kn −Mn| when n grows. The next result gives such a bound.

Theorem 3. Let S be a set of n points. Then |Kn − Mn| ∈
�(n2).

Proof. Suppose that Mn contains c
(n

2

)
edges. Then the

subgraph induced by a randomly chosen subset of five points
would have, in expectation, 10c edges. However by Lemma 2,
all five-element subsets induce graphs with at most nine
edges, so c ≤ 9

10 and |Kn − Mn| ≥ 1
10

(n
2

)
for n ≥ 5. ■

An important point to note here is that despite the above
result, dilation-free graphs may have a quadratic number of
edges. Consider, for example, the graph of Figure 3 where the
points are placed in convex position and every wedge contains
a quarter of them. In this case, points lying in opposite wedges
are joined in Mn so the number of edges is quadratic.

2.2. Computational Construction

Having established the minimum number of edges of
Kn − Mn, we devote the rest of this section to the compu-
tational construction of Mn. We propose two algorithms: the
first one, which runs in optimal O(n log n + m) time, where
m is the number of edges of Mn, and a preprocessing method,
which decides in time O(log n) whether or not an edge of the
complete graph belongs to Mn. This preprocessing algorithm
runs in time O(n log n) in the worst case.

Note that Lemma 1 provides a “brute force” approach,
which can be carried out in time O(n3). Every edge of Mn

can be computed by checking if the smallest-area isothetic
rectangle defined by its extremes contains any other point.

FIG. 3. In the worst case, Mn has O(n2) edges.
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Our first algorithm, running in optimal time O(n log n +
m), uses a line sweep approach: For each point p to the left
of the sweep line, a(p) and b(p) will denote the points above
and below p, respectively, having ordinates closest to that of
p in the vertical slab bounded on the left by p and on the right
by the sweep line (see Fig. 4 where the pointers a and b have
been represented as arrows). Then, whenever the sweep line
crosses p, a single binary search will place it within the list

of points to the left of the sweep line sorted by ordinate. The
neighbors of p in Mn will be found by following chains of
a and b pointers from the points next to p in that sorted list,
and for a neighbor of p, its a or b pointer will be redirected
to p. Consider, for instance, the point p5 in Figure 4. Once
the point is inserted, the pointer a(p3) is redirected to p5, and
all the previous points, joined to p3 by a chain of b pointers,
are joined to p5.

Algorithm DFG
let P := {p1, p2, . . . , pn} be the points ordered from left to right;
set L := {−∞, +∞};
set a(pi) := +∞ and b(pi) := −∞ for all i = 1, . . . , n;
let Mn be the graph with P as vertex set and no edges;
for i := 1 to n do

insert pi in L;
let r and s be the points next to pi in L at its left and right;
while r �= −∞ do

add rpi to Mn;
a(r) := pi;
r := b(r);

while s �= +∞ do
add spi to Mn;
b(s) := pi;
s := a(s);

return Mn as the output.

Theorem 4. Algorithm DFG constructs the dilation-free
graph of a n-point set in optimal time �(n log n + m), where
m is the number of edges.

Proof. Primarily, it will be shown that every edge con-
structed by DFG is in Mn. If pipj is one of these edges, then
we may assume that i < j without loss of generality and that
yi < yj, because the other case is symmetrical. The edge pipj

is built by the algorithm just when the sweeping line is on pj;
thus, we will freeze the values of pointers a and b, and the
list L to those they have at that moment.

If pi is next to pj in L then it has the closest ordinate to pj

below it. Thus, the isothetic rectangle defined by both points
is empty and by Lemma 1, pipj ∈ Mn.

On the other hand, we claim that if qpj is in Mn and b(q) �=
−∞, then b(q)pj is also an edge of Mn. To show this, divide

FIG. 4. During the execution of DFG, a new point is included in Mn.

the smallest area isothetic rectangle R defined by b(q) and pj

into two rectangles: R1, which is the intersection of R with
the rectangle given by pi and pj, and R2 = R\R1. As we
have just seen in the previous paragraph, R1 does not contain
interior points. Moreover, no point lies inside R2, because this
contradicts that pj has the closest ordinate to q below it and
to the left of the sweeping line. Hence, R contains no points
and b(q)pj is in Mn by Lemma 1.

Reciprocally, suppose now that the edge pipj ∈ Mn is not
built by DFG. We can assume that both points are not adjacent
in L; hence, let pk be the vertex adjacent to pj and below it.
Certainly, k < i because, to the contrary, pk will lie inside the
rectangle defined by pi and pj, and this contradicts that pipj

is in Mn.
This means that a(pi) �= pj, but there exists a point pk

with k < j such that a(pk) = pj. Moreover, k < i holds,
because, to the contrary, pk will be contained in the rectangle
defined by pi and pj, which contradicts that pipj is an edge of
Mn. Beginning with pk and following successively the pointer
b, we can construct a sequence of points q1q2 . . . qt , where
b(pk) = q1, b(qi) = qi+1, ∀i ∈ {1, . . . , t − 1} and b(qt) =
−∞. If pi is one of the points of this sequence then pipj will
be constructed by DFG and the proof is complete. Let us
show that statement.

Suppose the plane is divided into four isothetic wedges
centered at pi. Then the northeastern wedge is free of points
of this sequence because, to the contrary, pipj will not be an
edge of Mn.
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FIG. 5. Planar dilation-free graphs for the Euclidean distance.

On the other hand, suppose the sequence begins at the
northwestern wedge. Assume for the time being that it also
ends there, then certainly b(qt) = pi. On the contrary, if it
follows to the southwestern wedge and qi is the last point
in the northwestern one, then b(qi) = pi and so qi+1 = pi.
Finally, if the sequence “jumps” to the southeastern wedge,
again we have b(qi) = pi, where qi is the last point to the
northwest of pi.

Finally, consider the algorithm’s running time in the worst
case. It is clear that a point insertion in the sorted list L can be
done in O(log n) time. On the other hand, notice that every
step of following a pointer a or b can be viewed as moving
from one extreme of an edge of Mn to another. Because after
using it the pointer is redirected, one can consider that every
edge is used at most once. Hence, the algorithm’s running
time is �(n log n + m). ■

Again, Lemma 1 suggests a new algorithm for checking
whether or not a pair of points pi and pj are joined in Mn. From
that result it clearly follows that pi and pj are not adjacent
if and only if there exists a third point pk in the enclosing
rectangle containing pi and pj. From this, the idea of the
algorithm is to check for any of these rectangles whether or
not contain another point.

This task can be efficiently done by arranging the points
in a layered range tree (for details, we refer the reader to [2]),
which is previously constructed in O(n log n) time. Once we
have this tree, it only remains to query repeatedly about every
rectangle in the way which was described.

Algorithm EDGE TEST
let S := {p1, p2, . . . , pn} be the set of points;
let G be the graph having vertex set S and no edges;
let T be the layered tree of S;
let pi and pj be a pair of points;
make a query in the rectangle defined by pi and pj;
if the rectangle is empty

then answer “pipj is an edge of Mn(S)”
else answer “pipj is not an edge of Mn(S)”

Theorem 5. Given a set of points S, Algorithm EDGE-TEST
checks if two points are joined in Mn(S). This can be done in
O(log n) time.

Proof. The correctness of the algorithm comes from
Lemma 1.

On the other hand, the query time in a layered range tree
is known to be O(log n + k) where k is the number of points
reported in the query range [2]. For our purposes, it is only
interesting to know whether or not the range is empty so the
constant k can be dismissed. ■

3. PLANAR DILATION-FREE GRAPHS

In the design of land transportation networks, it is desir-
able for a network to have not only minimal dilation, but also
to contain no crossing lines. This and many other applica-
tions lead us to study dilation-free graphs where the planar
restriction is imposed. Turning our attention to the Euclidean
distance once again, we have come across a surprising result
about this issue in the literature [4]: namely, exactly four infi-
nite families of planar dilation-free graphs exist, plus a single
one (see Fig. 5).

The same problem can be posed using the Manhattan dis-
tance, because most of the uses of the l1-metric concern
the design and construction of printed circuit boards where
the wires are not allowed to intersect except at a terminal.
In this section, we discuss the conditions under which the
dilation-free graph of a point set may be planar, and we
present an algorithm for testing such conditions. Finally,
we give another algorithm, simpler than DFG, for construct-
ing the planar dilation-free graph on a point set whenever it
is possible.

We say that Mn(S) is geometrically planar or simply pla-
nar, if no crossing edges exist in the straight-line drawing of
Mn(S). Four points pi, pj, pk and pl in S are said to form an
empty quadrilateral if there exists a positive area isothetic
rectangle such that no point in S lies in its interior and every
side of the rectangle contains exactly one of the those four
points.

A key concept for the rest of the section will be the top-
strip of a point. Let pi be a point in S and let pj and pk be

FIG. 6. Two alternatives for the top-strip pi.
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FIG. 7. Cases considered in Theorem 6.

the points below it with closest abscissa to its left and to
its right (see Fig. 6). Suppose that pj is above pk . Then the
top-strip of pi, denoted by pi, becomes the following plane
subset:

pi = {(x, y) ∈ R2 : yi < y ≤ yk and xj ≤ x}

If pk is above pj then we define pi as

pi = {(x, y) ∈ R2 : yi < y ≤ yj and x ≤ xk}

Analogously, the bottom-, left- or right-strip of a point
could be defined. Later, the role of these strips will be
clear.

Theorem 6. Given a point set S, the following conditions
are equivalent:

(a) Mn is planar.
(b) No empty quadrilateral exists in S.
(c) The interior of every top-strip is empty.

(d) The interior of every top-, bottom-, left-, or right-strip is
empty.

Proof. We prove that condition (b) is equivalent to the
other three assertions. First, suppose that Mn is not geometri-
cally planar; thus, the straight-line representation of Mn has
two crossing edges. The extremes of these edges define an
isothetic rectangle, which does not contain any other point in
its interior, and so it is an empty quadrilateral. Reciprocally,
consider an empty quadrilateral defined by four points. Then,
the two pairs of opposite vertices must be adjacent in Mn and
their edges, as straight-lines, have to intersect at a crossing
point.

Let us prove now the equivalence between (b) and (c).
Suppose that pi, pj, pk , and pl are four points in S forming an
empty quadrilateral. Assume, without loss of generality, that
pi, pj, pk , and pl are strictly higher, leftmost, rightmost, and
lower, respectively, than the other three points, and that pl is
to the right of pi. Considering all the possible cases (which
appear in Fig. 7), we claim that the top-strip pi is not empty.
Firstly, if pj is the point with closest abscissa to pi to its left
and pl to its right, then pi contains pk . On the contrary, if
any other point p is below pi with closest abscissa to its left
or right then p is necessarily below pl and the top-strip pi

contains pj or pk . Finally, if two points p and p′ are the points
of closest abscissa at the left and right of pi (again below
it), then they lie beneath pl and the top-strip contains pj or pk

depending on whether p is below p′ or vice versa. Conversely,
if the top-strip pi defined by pi, pj, and pk contains pl, then
by sectioning the strip by an isothetic line through pl we get
our empty quadrilateral.

Similarly, the equivalence between (b) and (d) can be
proved, and this completes the proof. ■

This result gives rise to an algorithm for testing the pla-
narity of Mn, which relies on assertion (c) of the theorem. This
algorithm is divided into two steps: first, an auxiliary graph
is constructed as the data structure, and second, the graph
is transversed checking some conditions to obtain the final
answer. To build the graph, the list of points is transversed
twice.

Algorithm BUILD G
let G be the graph having S as vertices and no edges and let L be
the points {p1, . . . , pn} ordered from top to bottom;
for j := 1 to n do

for every pi with i < j such that pi is to the left of pj, add
the edge pipj to G and delete pi from L;

let L be {p1, . . . , pn};
for j := 1 to n do

for every pi with i < j such that pi lies to the right of pj, add
the edge pipj to G and delete pi from L;

return G.
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Algorithm BUILD G assures us that every point in
G is joined to the two points below it to its left and
its right with closest abscissa. This is all we need to

test whether or not every top-strip pi is empty, and
according to Theorem 6, to conclude whether Mn(S) is
planar.

Algorithm PLANAR TEST DFG
let {p1, . . . , pn} be the points labeled in the order from top to bottom;
let L be a list of them from left to right;
let G the graph obtained by running BUILD G with {p1, . . . , pn} as input;
for i := 1 to n do

Search for the point pi in L and let pj and pk be the previous
and the following ones;
m := max(j, k);
if pipm is not an edge of G then

Mn is not planar and exit
else

delete pi from L;
conclude that Mn is planar.

Proposition 7. Algorithm PLANAR TEST DFG determines
if there exists a planar dilation-free graph on a given point
set. This is done in optimal �(n) time.

Proof. Suppose pi, pj and pk are three points satisfying
the conditions of the first instruction inside the loop, and
assume that k > j. If pipk is not an edge of G, then a fourth
point, namely pl, is joined to pi and is contained in the top-
strip pi, as shown in Figure 8.

On the other hand, building the auxiliary graph is the step
that dominates the computation. During this step, every vertex

is considered at most once, and hence, the complete running
time of the algorithm is �(n), which is the best possible. ■

Once we test whether Mn(S) of a given point set S is planar
or not, let us see how Mn(S) can be constructed. We propose
a simpler though not faster algorithm than DFG consisting of
transversing the points twice, from top to bottom and from
bottom to top. Going down, every encountered point pi is
joined to the two points above it of closest abscissa to its
left and right; and in the backward transversal every point is
joined to those of closest abscissa to the left and the right, but
beneath it.

Algorithm PLANAR DFG
let P := {p1, p2, . . . , pn} be the points ordered from top to bottom;
set L := {−∞, +∞};
set Mn to be the graph with P as vertex set and no edges;
for i := 1 to n do

insert pi in L;
let r and s be the points next to pi in L to its left and right;
if r �= −∞ then

add pir to Mn;
if s �= +∞ then

add pis to Mn;
set now P := {p1, p2, . . . , pn} as the points ordered from bottom to top;
set again L := {−∞, +∞};
for i := 1 to n do

insert pi in L;
let r and s be the points next to pi in L to its left and right;
if r �= −∞ then

add pir to Mn;
if s �= +∞ then

add pis to Mn;
return Mn as the output.
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FIG. 8. A geometric proof of the algorithm’s validity.

Theorem 8. Algorithm PLANAR DFG yields the dilation-
free graph Mn of a point set in optimal time �(n log n).

Proof. Suppose pipj is an edge in Mn and assume that
pi is to the left of pj and above it. If these two points were
not joined along the top to bottom transversal when we meet
pi, then there exists a point pk with closer abscissa than pj

to the right of pi. Because pipj is in Mn, their enclosing
rectangle does not contain pk and so pk is lower than pj. A sim-
ilar reasoning can be argued when meeting pj in the second
transversal, and so a point pl exists with closer abscissa than
pi at the left of pj, and again, it should be placed above pi.
Thus, the interior of the top-strip pl necessarily contains pk ,
but this contradicts that Mn is planar as previously proved in
Theorem 6.

It is obvious that the whole algorithm works in time
O(n log n) and what only remains to be shown is that it is
optimal. The basic idea of the proof is to project the points of
S onto the bisector y = x, and thus to reduce it to an instance
of the problem of sorting n numbers, which has a well-known
lower bound of O(n log n). ■

4. CONCLUSIONS

Although metrically speaking, dilation-free graphs in the
Manhattan distance record the same information as complete
graphs, we have proved that the former contains many fewer
edges than the latter. We give one algorithm for constructing
such a graph, running in �(n log n + m) time, and a second
one that tests in O(log n) time if a pair of points are joined
in Mn after a preprocessing stage that works in O(n log n)

time. In addition, we have also characterized whether the
dilation-free graph of a set of points is planar or not, pro-
viding an algorithm for checking this condition that runs in
O(n log n) time. Finally, whenever possible, this planar graph
is algorithmically constructed in O(n log n) time.
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