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Abstract

Intuitively, a set of sites on a surface is in Euclidean position if points are so close to each other that planar
algorithms can be easily adapted in order to solve most of the classical problems in Computational Geometry.
In this work we formalize a definition of the term “Euclidean position” for a relevant class of metric spaces, the
Euclidean 2-orbifolds, and present methods to compute whether a set of sites has this property. We also show the
relation between the convex hull of a point set in Euclidean position on a Euclidean 2-orbifold and the planar
convex hull of the inverse image (via the quotient map) of the set.
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1. Introduction

There exist many applications of Computational Geometry in which the input and/or output data are
given on a surface other than the plane. It is generally assumed in those applications that if a given set
is contained on a small portion of the surface, then simple adaptations of planar algorithms (in order to
obtain, for instance, the convex hull, the Voronoi diagram or a triangulation with nice properties) can be
given. But we are not aware of a general framework for approaching the problem of deciding for which
data planar methods are still valid. The only steps in that direction are those given in [6], defining and
working with a new concept, theuclidean positionbut it is restricted to very specific surfaces such as
the cylinder, the torus, the cone and the sphere. It is the aim of this work to generalize that concept to
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a broad class of spaces, which are callaatlidean2-orbifolds. The paper is organized as follows. In
Section 2 we give definitions, describe the Euclidean 2-orbifolds and establish the notation that will be
used along this paper. The definition of Euclidean position together with the theorem that will allow us
to work with planar copies of the sets is introduced in Section 3. The relation between the convex hull
of a set on a 2-orbifold and the convex hull of one of its planar copies will be set in Section 4. Section 5
presents an algorithm to determine whether a set is in Euclidean position. We conclude in Section 6 with
some possible extension of this concept to the remainder surfaces.

2. Preliminaries

As for prerequisites, the reader is expected to be familiar with subjects in [12], but in order to facilitate
access to the individual topics, the paper is rendered as self-contained as possible. Thus, in this sectior
we fix the notation and introduce the basic definitions that will be used throughout the paper.

The set of planar motions is a group under the map composition, denotstb@®?). The orbit of
a point P € R? under the action of a discrete group of motiafisc Mo(R?) is the set formed by the
images ofP via the elements of", I' P = {g(P): g € I'’}. By identifying points at the same orbit, the
quotient spaceS = R?/I" can be constructed (Fig. 1) andgdfdenotes the quotient map,

¢:R? > S=R?/T,

the orbit/" P can be also written ag*(p) = {P’, P", P"”,...},forpe S=R?/TI.

A convenient way to visualize the orbit spage= R?/I" is to focus on dundamental domaijrthat is
a part of the plane which contains a representative of each orbit with at most one representative of each
orbit in its interior. If double points (points on the boundary) of a fundamental domain are deleted and its
p-image is considered, we obtain what we caluiadamental regionlf P € R? is not a fixed point for
any motion inI” (i.e., ¢ (P) is not asingular pointof S [12]), then the region

Vrp(P)={Q €R? d(Q, P) <d(Q,g(P)) Vg e I'},

whered denotes the euclidean distanceRf, is a fundamental domain (see [5,9] for a proof) which is
called aDirichlet domain Notice thatV;-»(P) is the topological closure of the Voronoi region Bfin
relation to its orbit and hence, it is convex. The quotient space inherits a metric from the plane:

ds(p,q)=ds(I'P, T Q)=min{d(P', Q") | P'eI'P, Q" e I'Q}.

The right-hand side also equals riliP, Q') | Q' € I' O}, because eaclR’ € I' P has the same set of
distances to the members BfQ. The latter expression shows thatis well-defined because for each

D

N

Fig. 1. A paint on the cylinder and its orbit on the plane.
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Fig. 2. The segment joining andg on S = R2/I" is thep-image of the shortest line segment (shown in dark) among those
matching one element df P with all the elements il Q.

P e R? there is at least a nearedt € I"' Q. Hence, it is natural to defindie segment joining and g
on S =R?/I" to be thep-image of P Q’, which is the shortest line segment among those matching one
element ofl" P with all the elements il Q.

As we have pointed out in the introduction, the first reference to the Eraidean positiorgoes
back to the work of Grima and Marquez [6], where a point set on the cylinder, the torus, the cone, or the
sphere is said to verify thieocal Euclidean Positioproperty (LEP property for short) if

(1) itis contained between opposite generatrices of the cylinder or the cone;

(2) itis contained in a quadrant (the region between two opposite parallels and two opposite meridians)
of the torus;

(3) itis contained in an hemisphere of the sphere.

In that work, it was proven that planar algorithms for computing several geometric structures (such as
convex hulls or Voronoi diagrams) are also valid on the respective surfaces if the point set verifies the
LEP property. Obviating the case of the sphere, we will take the definition above as the starting point to
generalize the LEP property to the 2-orbifolds.

3. Euclidean position

AsetAC S =R?/T is said to be ifEuclidean positiorif there exists a fundamental region containing
all segments joining pairs of points j#. In Section 5 we will see that this definition is in agreement with
the LEP property when it is restricted to the cylinder, the cone, or the torus. Although the definition
of Euclidean positiorrefers to setsd € S = R?/I", it would be useful to obtain a characterization of
the property in relation to the inverse image of the¢et(A). But, note thatp~1(A) is constituted by
whole orbits. Therefore, with the purpose of choosing a suitable representative of each orbit, we define a
planar copyof A to be any of the setd = ¢~(.4) N D, with D being the Dirichlet domain of a point
P € ¢~ 1(A). The point of the orbit of4 selected to construct the planar copy is not relevant in order to
determine whether the set is in Euclidean position, as is shown in the following theorem.
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Theorem 1. Let A € S = R?/I" be a point set without singular points. Then the following assertions are
equivalent

(a) Aisin Euclidean position,

(b) for any p € A, there does not exist a polygonal chain joining any two poit®’ € ¢~1(p) with
vertices onp~1(A) and such that the-image of each edge is the segment joiningghenages of
its ends,

(c) every planar copyﬁ of A is contained in the intersection of the open Dirichlet domains of its
points.

Proof. (a) = (b) Suppose, contrary to our claim, that it is possible to find a polygonal ¢hgming P

and P’ under the conditions stated in (b). Sineeand P’ belong to the same orbit, a fundamental domain
containing P and P’ on the boundary cannot give rise to a fundamental region contapiag™ P. On

the other hand, ifP is strictly contained inside a fundamental domain, there exists an«df€ that

crosses its boundary, and therefore the corresponding fundamental domain does not contain the segmer
joining the ends o (e), which contradicts the fact thad is in Euclidean position.

(b)= (c) LetA= ¢~1(A)N Dp be a planar copy aft, with D being the Dirichlet domain of a point
P € ¢~1(A). First of all, note that there is no point of on the boundary oDp; otherwise, a polygonal
chain joining 7 and another representatiy® of its orbit could be found, contrary to (b). This proves that
Ac D3, whereDj$ denotes the interior abp. Now, we fix Q € Aand prove thatd Dy, Itis obvious
that P € D sinceQ € Dp. Moreover, if any other poink e A (R# P)isnotinDy, there must exist
Q' € I'Q such thatd(R, Q') < d(R, Q) and henceQ PRQ’ is a polygonal chain that contradicts the
hypothesis.

(c) = (a) LetA be a planar copy afl andp € A; by the hypothesisA c D3, with P € AN g~1(p).
Now, giveng € A, there existsQ € ¢~ 1(g) N AcC Dj. Since bothP and Q are in D3, and the
Dirichlet domains are convex sets, the segmgR)¢(Q) = pq is strictly contained ip (D3 ), which is
a fundamental region. O

The theorem above is restricted to sets without singular points, since Dirichlet domains are defined
only for non-fixed points. Nevertheless, since fixed points are either rotation centers or points on the
axis of a reflexion, which are always on the boundary of any fundamental domaingttme&rge (which
are the singular points) cannot be contained in a fundamental region. Thus, a set containing such points
cannot be in Euclidean position as is asserted in the following proposition.

Proposition 1. A set on a surfac§ = R?/I" containing at least two points, one of them being a singular
point of S, cannot be in Euclidean position.

Once we have defined the term Euclidean position, and the relation between a point set having this
property and its planar copies has been verified, it is time to establish the correspondence between the
convex hulls of both the set and its copies.
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4. Euclidean position and convex hull

The convex hull is one of the most relevant structures in Computational Geometry, and according
to our objectives, it is a good test to check the “planar behaviour” of sets in Euclidean position. This
motivates the study of the relation between the convex hull of a set in Euclidean position on an Euclidean
2-orbifold and the convex hull of its inverse image on the plane. The planar concept of convexity has
been generalized to surfaces in several ways [7,8]. Bringing up the definition given in [6,11], a set
A C §=R?/I' is said to bemetrically convexf the segment between any two points4flso lies inA.
Themetrically convex hull CK(A) (convex hullhenceforth) is defined as the smallest metrically convex
set containingA. It can be easily shown that, as in the pla@é&ls(.A4) can be obtained by intersecting all
the convex sets containing.

The next proposition shows that if a set is in Euclidean position on a surface then it really behaves as
a planar set, to the effect that it is isometric to one of its planar copies. We leave to the reader the details
of the proof due to its simplicity, but it should be clear that the second assertion is a direct consequence
of the first one, and the former can be easily deduced from Theorem 1.

Proposition 2. Let A be a planar copy of a setl € § =R?/I". Then, the following assertions hold

(1) Aisin Euclidean position if and only i restricted toA, ¢l 7, is an isometry.
(2) If Aisin Euclidean position, thesl is convex if and only ifd is convex.

Notice that althoughd € § =R?/TI" is convex, the connected componentgot(A) need not be this
way, as is shown in Fig. 3.

Before dealing with the main theorem in this section, we prove a preliminary result and set the
following notation that will be used henceforth. We will use the textreme point®f a point set3
(either inR? or on § = R?/I") to refer to points of the set which are on the boundary of its convex hull,
that is,0 (CH(B)) N B, denotedEXT(5).

Proposition 3. LetA = ¢~1(A4) N Dp be a planar copy of a point set € S = R2/I", beingP € ¢~ 1(A).
Then, the following assertions are equivatent

(@) p(EXT(A)) is in Euclidean position,
(b) Aisin Euclidean position,
(c) CHg(A) is in Euclidean position.

N

NI

Fig. 3. The connected components in the plane of a convex set in the Mdebius strip can be non-convex.
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Proof. (a)= (b) AssumeAthaqo(EXT(ﬁ)) is in Euclidean position; then, there must exist a fundamental
domainD such thaEXT(A) c D°, and by convexity irR?, A ¢ D°. Then, A = ¢(A) C ¢(D°), which
is a fundamental region afi= R?/I" and this completes the proof.

(b) = (c) First of all we prove that giveR, O € CHg2(A), thenR is the nearest representative/irR
to 0. Otherwise,Q ¢ D and since the Dirichlet domains are convex sets, there must existEXT(A)
such thatV ¢ Dy or, equivalently,R ¢ Dy . Reasoning as before, there must also existEXT(.A) such
thatV ¢ Dy. We have then found pointg, V € A such thatV ¢ Dy, and by Theorem 14 is not in
Euclidean position, contrary to the hypothesis. R

Note that we have actually proved thatCHRz( A Is an isometry and therefore,(CHg2(A)) is in

Euclidean position, by Proposition 2. Moreover, sirﬁﬁdRz(E) is convex, the same proposition states
that sop(CHg,(A)) is.

Then, 9(CHg,(A)) is a set in Euclidean position which contaii$is(.A) (since it is convex and
containsA = ¢(A)), and this proves thaHs(A) is also in Euclidean position.

(c) = (@) It suffices to show thap(EXT(A)) € CHg(A), but this is quite obvious to prove since

EXT(A) € A and, thereforep(EXT(A)) € ¢(A) = A C CHs(A). O

The next theorem establishes that the convex hull of a set of sites in Euclidean position on an Euclidean
2-orbifold can be obtained as theimage of the convex hull of one of its planar copies. Fig. 4 explains
the result.

Theorem 2. Let A= ¢~1(A)NDp be a planar copy of a point set € § =R?/I" in Euclidean position,
beingP € p~1(A). Then

CHs(A) = ¢(CHg2(A)).

Proof. Let us begin by noting that proof of (by (c) in Proposition 3 shows thap(ﬁ) =
¢(CHg2(¢~1(A)N Dp)) is in Euclidean position and contai@$Hg(.A), so the result is stated by showing
the other inclusion.

The setp~(CHg(A)) N Dp is convex by Proposition 2, since it is a planar copyChig(A) (note
that P € ¢ 1(A) € ¢~ (CHg(A))), which is also a convex set, and it is in Euclidean position by
Proposition 3. Moreovek (CHg(A)) N Dp containsg1(A) N Dp = A, and thereforaCHg2(A) C

PRNNE

Fig. 4. The convex hull of a set of sites in Euclidean positiorSaran be obtained as teimage of the convex hull of one of
its planar copies.
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¢~1(CHs(A)) N Dp; hence,p(CHg2(A)) € ¢(9p~1(CHs(A)) N Dp) = CHy(A) and the theorem fol-
lows. O

5. Determining the Euclidean position

Theorem 2 establishes the relation between the convex hull of a set of sites in Euclidean position
AC S=R?/I" and any of its planar copie?t. Roughly speaking, it says th&@Hg(.A) can be computed
as thep-image ofCHRz(E), if A isin Euclidean position.

In this context, to decide whether a point set is in Euclidean position becomes a very important task.
We begin this section by proving that the definition of Euclidean position coincides with the LEP property
previously introduced in [6] when it is restricted to the cylinder, the cone, or the torus. With this aim, we
recall that Theorem 1 reduces this problem to checking if a planar copy of the set lies in the intersection
of the open Dirichlet domains of its points.

We first consider the group generated by a single translation, say in the horizontal direction, that gives
rise to the cylinder; then, the Dirichlet domain of any point is a parallel-sided strip with fixed width
(Fig. 5(a)). Therefore, the only restriction for a set to be in Euclidean position is that its planar copies
be contained inside a vertical strip of width half of the modulo of the translation. For any wider set, the
Dirichlet domain of the leftmost site does not contain the rightmost’s ang-ihgage of this strip is just
the region between two opposite generatrices on the cylinder. Similar arguments can be applied to the
cone, which is generated from a single rotation (Fig. 5(b)).

This study can be extended to the flat torus generated, as usual, by two orthogonal translations with
the same modulo. In this case, the Dirichlet domains are squares, and mimicking the reasoning followed
in the cylinder, both in the horizontal and in the vertical directions, it is easily seen that the condition for
a set to be in Euclidean position is that its planar copies must be contained inside a square of size half of
the modulo of the translations, which corresponds @jivith the region included between two opposite
parallels and two opposite meridians on the surface.

An optimal (N) algorithm to determine whether a set 8fpoints is in Euclidean position on the
cylinder, the cone, or the torus is developed in [6]. It checks if the orthogonal projection of the set on a
circle is contained in a covering arc of length lesser than

Comments above are summarized in the next theorem.

(@) (b)

Fig. 5. Dirichlet domain of a point for a group generated by a single (a) translation or (b) rotation.
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Fig. 6. The orbit of a point on a surface generated by two reflections with orthogonal axis.

Theorem 3. A set A of N points on the cylinder, the cone, or the torus is in Euclidean position if and
only if it verifies the LEP property. Moreover, it take&N) time to decide if4 is in Euclidean position
on any of these surfaces.

It is worthwhile to point out here that the case of the torus generated from two non-orthogonal
translations will be included in the general result given in Theorem 4, since the different configuration of
the generators changes some of the properties involving the metric of the surface [2].

We have already seen that the equivalence with the LEP property provides optimal algorithms to check
the Euclidean position of point sets on surfaces generated from a single translation (the cylinder), a single
rotation (the cone), or two orthogonal translations (the torus). Now, we turn our attention to point sets on
surfaces generated only by reflections, as depicted in Fig. 6.

The bisector of a point and its image by a reflection is the axis of the reflection. Moreover, seen in
Fig. 6, the Dirichlet domain has the same shape for any non-fixed point (that is, a point which is on
neither of the axes), and it is easy to check that for any € A and P € ¢~%(p), the representative
of I'Q which is the nearest t® is always at the same half-planes (defined by the axisy.ads a
consequence, the following proposition holds.

Proposition 4. A set.A of N points on a surface§ = R?/I", whereI” is generated by one reflection,
is in Euclidean position if and only if the axis of the reflection does not split any planar .dopfy.A.
Moreover, it take® (V) time to decide ifd is in Euclidean position on this surface.

To make our work complete, it remains to consider surfaces which are generated from glide reflections.
The simplest case is the twisted cylinder, which is generated from the composition of one reflection and
one translation such that it reflects in thexis and translates theaxis by distance 1.

With the aim of finding efficient algorithms to test if a point set on the twisted cylinder is in Euclidean
position, our first attempt is to combine characterizations given for surfaces generated separately from
both a translation and a reflection. But, arguments followed for surfaces generated by a reflection fail
here, since examples can be found of point sets on the twisted cylinder which are in Euclidean position
and such that any of their planar copies are traversed by the axis of the reflection, as we will see below.

The simple behaviour of surfaces generated by single translations is not maintained when the generatot
is a glide reflection. Notice that the LEP property involves the existence of “maximal regions” for the
Euclidean position, in the sense that they are not contained in any larger one having that property and for
the moment, we have not been able to characterize such king of regions on the twisted cylinder. Moreover,
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we have found three different families, two of them consisting of an infinite number of such “maximal
regions”, and they are not even an exhaustive list since point sets can be constructed in Euclidean positior
which are not strictly contained inside any of them, as we see immediately after.

The shape of the Dirichlet domains in the case of the twisted cylinder strongly depend on the
location of the point considered. Set an orthogonal coordinate system whasis is the axis of
the glide reflection and it is translated by distance 1; then, the orbit of a geint) is the set
{(x +n,(=D"y); n e Z}, and the fundamental regions are vertical parallel-sided strips of width 1
in which double points on opposite sides of the boundary are identified by a twist. Given a point
P(a, b) (b # 0), the bisector of the segment fromto its image by a glide reflectiog P) = (a + 1, —b)
is the straight line

1 1
r(P) y= i(x - (a+ E))

Similarly,

1 1
I"](P): y= —z(x — (Cl — E))

is obtained as the bisector 8fandg—%(P) = (a — 1, —b). Bothr,(P) andr;(P) intersect theD X axis
in (a+ % 0) and(a — % 0), respectively, and their slopes only depend omytle®ordinate ofP.

Lines r,(P), r(P), x = a + 1 (that bisects the segment froRYa, b) to g?(P) = (a + 2, b)) and
x =a — 1 (that bisects the segment fraPa, b) to g~2(P) = (a — 2, b)) constitute the boundary of the
Dirichlet domain ofP. Some Dirichlet domains are depicted in Fig. 7.

Now, let D be the fundamental domain having as sides the linesO andx = 1, and consider the
portion of the curvesi;: x = %1 —yZanduy: x = % + y2 which lie insideD (see Fig. 8). For any two
pointsP € u; N D andQ € u, N D with the samey-coordinate, let; (respectivelys,) be the segment of
the tangent line ta; (respectively tai,) on P (respectivelyQ) with end pointsP (respectivelyQ) and
its point of intersection with the-axis. For each paifP, Q), theg-image on the twisted cylinder of the
open region bounded by the vertical half-lines rooted at pdnénd Q, the segments; ands, and the
x-axis (the shaded region in Fig. 8) is a maximal region for the Euclidean position. We denote the family
constituted by these sets &s.

A second familyF, of maximal regions can be built as theimages of the open regions bounded by
the intersection of the angular sectors delimited by the tangent linesandu, on P and Q and lines
joining these points witki0, 0) and(0, 1), respectively (Fig. 9(a)).

Finally, F3 is constituted by the—images of the translations in the horizontal direction of the open
set delimited by the curves: x = ¥ — y? andus: x = —3 + y? (Fig. 9(b)).

EFH 'r-'}-\'

Fig. 7. The shape of the Dirichlet domain in groups generated by a glide reflection strongly depends on the height of the point.
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x=0 x=1

. y=0

(a) (b)

Fig. 8. (a) Constructing sets of the famify; and (b) the two extreme cases.

(0,0)] |

Yy u,

(a) (b)

Fig. 9. Planar copy of a set of (& and (b).F3.

Proposition 5. The sets ofF;, F, and 3 are maximal for the Euclidean position on the twisted cylinder.
Moreover, they do not constitute an exhaustive list. That is, sets can be found in Euclidean position which
are contained in neither of these families.

Proof of Proposition 5 is laborious (on account of the bothersome calculations) rather than difficult.
In order to shorten the paper, we have not included here the detailed verifications but we refer the reader
to an extended version of the paper which can be found in [3]. Note that members of fafpikes 73
are examples of sets in Euclidean position which are traversed by the axis of the reflection.

Since we have not been able to characterize the maximal regions for the Euclidean position on the
twisted cylinder (and, as a consequence, for any surface generated by a group containing a reflection
glide) we have to develop new methods to provide an algorithm which check whether a point set on this
surface is in Euclidean position. Our algorithm will takéXJog N) time, more expensive than the linear
time needed for groups generated by other motions. R

Let A= {p1,..., py} be aseton the twisted cylinder ap= {1, ..., Py} one of its planar copies.

We construct the convex hull of, CHg2(A), and we denot&XT(A) = {P;, ..., P, } the set of extreme
points of A sorted clockwise. By Proposition 3, in order to knowdifis in Euclidean position, it suffices
to check ifEXT(A) is inside the intersection of the open Dirichlet domains.
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Notice that since the Dirichlet domain of any point is always contained inside a vertical band two units
wide centered at the point, the vertical width of the convex hull has to be smaller than or equal to one if
the set is in Euclidean position.

Now, we will split EXT(.A) into several polygonal chains. First of all, the four vertices having one
of the smallest or the largest coordinates (the top, the bottom, the right-most and the left-most vertices)
split the convex hull into at most four monotone polygonal chains (we denote Hybl andbr those
polygonal chains; see Fig. 10). Additionally, we split into two polygonal chains any of those four chains
that is intersected by the axis of the glide reflection, that for the sake of simplicity we will suppose is the
O X axis. For instance, if the chain contains points at both sides of the axis, the two new polygonal
chains obtained will be denoted byandmr. In this way, we can obtain up to six polygonal chains, each
one of them being a monotone chain with all its points at the same side of the axis of the glide reflection.

The next step is to associate a partition of th& axis with each one of the previous polygonal chains.
This partition will be determined by the intersection points of the prolongation of each segment in the
polygonal chain with the) X axis. If the polygonal chain intersects tlieX axis, that intersection will
determine an unbounded interval that will be denoteddffig. 11). R

Now, we will describe our procedure regarding the chidirLet P be a vertex oEXT(A) andR;(P)
the intersection betweerltr(eX axis andr;(P). If R,(P) belongs tosg then the Dirichlet domain of
P does not contaifeXT(.A), and.A is not in Euclidean position. First of all, we find the interval of the
partition associated with the polygonal whetg P) is. Secondly, we consider the straight line joining
R,(P) and the vertex of greatest absolute value ordinate among the three vertices that define the interval

tr

OoX
bl br

br
bl br

bl

Fig. 10. A convex hull divided in five polygonal chains.

Se

i —X% > OX

Fig. 11. Partition of thed X axis corresponding to the polygortal
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=

Fig. 12. Comparing the slopes it can be deduced that) divides EXT(A) and that it cannot be contained in the Dirichlet
domain of P. The opposite situation is given f@r (at least, for this polygonal).

whereR,(P) is. If the slope of this line is greater than the slope;,0P), thenr;(P) intersectsEXT(]f)
(Fig. 12) and the set is not in Euclidean position.

Following a similar reasoning for the other polygonal chains (considet) instead ofr;(P), when
necessary) it can be determinedeXT(.A) is inside the Dirichlet domains of its vertices.

The procedure followed above leads to the next algorithm, that decides whether #/'ssites on the
twisted cylinder is in Euclidean position in(® log N) time.

Algorithm EP-TWISTCYL.
Input A= {p1,..., py} asetof sites on the twisted cylinder.

(1) Construct a planar cop&At_ {P1,..., Py}, of A,
(2) Construct the extreme pomtsﬂf EXT(A) ={Py,..., Py}
(3) Check the width 0EXT(A). Is it smaller or equal than one’>
YES — Report.Ais notin Euclidean position.
NO — Goto Step4.
(4) Construct the polygonals, tl, br, bl, mr andml, their induced partitions over the X axis and the
interval Se
(5) Fromj =1to H find R;(P;;) andR,(P;)).
(a) Do they belong tGe?
YES — Report:Ais notin Euclidean position.
NO — Goto Step 5b.
(b) For each polygonal chain, find the interval of its associated partition in wiRicH#;)
(respectivelyR, (P;;)) is and compare the slope of P;;) (respectivelyr,(P;;)) and that of the
straight line j Jomlng the point with the corresponding vertex of the convex hull.

Does the line intersect the hull? N
YES — Report:Ais notin Euclidean position.

NO — [j—j+1]
(6) ReturnA is in Euclidean position.

Thus, we have the following result:
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Proposition 6. It is possible to decide whether a setdfsites on the twisted cylinder is in Euclidean
position inO(N log N) time.

Proof. Steps 1 and 4 of the algorithm take linear timgNJog N) time is required by Step 5. Each
iteration in Step 2 needs logarithmic time, aNdof them are needed in the worst case. So, the whole
algorithm takes QV log N) time. O

Note that depending on the position of the vertex it is possible to exclude some of the tests in Step 2.
Moreover, if the planar copy is at one side of the axis we only need to consider the polygonaltchains
andtr if the points have positive ordinate, brandbr otherwise.

Once we have studied the simplest cases of discrete groups generated by a single motion, it is time
to advance to the general case. In this task we will consider the following question: given a&point
which are the elements of its orbit that can “metrically affeBt(in the sense that they can be Voronoi
neighbors ofP)? The answer to this question can be found in [10] where it is established that points in a
certain fundamental domain are metrically affected only by the elements of the orbits lying in the proper
domain or in the finite union of some of its copies.

Lemma1[10]. Given a discrete group of motiorsand a Dirichlet domainD, there exists a finite subset
I'* ={g1, g2, ..., gn} Of I such that for every poinP € D and for every poinQ € R? — Uj—18;(D),
there exists another poi@* U;fl:l g;(D) such thatQ* is in the same orbit tha and

d(P, Q%) <d(P, Q).

As a consequence it happens that

m

Vrr(P) | Jg;(D).

j=1

The authors in [10] also prove that is bounded, and a case analysis yields that 37 is an upper
bound for all possible realizations and all groups.
At this point, we can prove the main result of this section:

Theorem 4. Given a setA of N sites on a Euclideag-orbifold S = R?/I", it is possible to determine if
P isin Euclidean position in

(1) Q(N) time if I does not contain a glide reflectipn
(2) O(NlogN), otherwise.

Proof. By Lemma 1, points of a planar cop§ of a setA4 in Euclidean position are only affected by the
points ofUSf;l gj (ﬁ), with {g1, ..., g} being a finite subset of the generating grdup

We have already described a method to determing i§ inside the Dirichlet domain of any of its
points when any motion is considered. So it only remains to apply this procedures to every motion
g.i=1,...,m.If the answers to the: tests are affirmative (and recall that< 37), then it is possible
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to ensure thatl is not metrically affected by other points @f*(.4) but only by its owns points and, by
Theorem 1, we conclude that is in Euclidean position.

If g; is a reflection, a translation or a rotation, this procedure t&k@g) time, and @GN log N) time
is required when it is a glide reflection.o

6. Conclusions and open problems

In this paper, we have generalized to 2-orbifolds the definitiorEotlidean positionpreviously
introduced for a few surfaces by Grima and Marquez in [6]. We have characterized this property and
provided algorithms to check whether a point set is in Euclidean position. A natural step now is to try an
extension of this notion of planar behavior to other surfaces.

A first approximation is given in [6], where a more general definition is presented in the Algebraic
Topology field. More specifically, given a point sdton a surface, a sequence of sélg.A), k > 1
is recursively defined, as the set of segments joining points,af (A), with Go(A) being the set of
segments joining pairs of points jA. This sequence obviously converges to the metrically convex hull
CH(A). In [6], the authors propose to sdtto be in Euclidean position IEH(.A) is simply connected,
that is, if CH(.A) does not contains “holes”, the definition of which matches with the intuitive idea of
planar behavior on a surface (see Fig. 13).

Another possible generalization is by starting from the conceptudfpoint brought from the
Differential Geometry. Acut pointof a point p is the pointg such that if we prolongate the shortest
geodesic joiningp andg, the geodesic so obtained is not longer a minimizing geodesic [1,4]. The set
of all the cut points of a given point is calledcat loci. Thus, the notion of Euclidean position could be
extended as follows: If4 is a set of sites on a surface, we skto be in Euclidean position i€o(A)
does not intersect the cut loci of any of its points. If we consider, for instance, the cylinder, it is easy
to see that the cut loci of a point is its opposite generatrix [13], hence this new definition agrees with
the LEP property introduced in [6]; and it can be checked that the same happens for the cone and the
torus.

It remains to check if these generalizations are consistent with that given in this paper for Euclidean
2-orbifolds, and find methods for checking whether a set is in Euclidean position under these new
definitions.

Fig. 13.CH(A) (shaded) has a “hole” due to the high values of the curvature in a certain region of the surfdcis, rsat in
Euclidean position.
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