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Resumen 
 

El locus STM2209-STM2208 (opvAB) es exclusivo de Salmonella enterica y presenta 

características típicas de genes adquiridos por transferencia horizontal. Fue descrito 

inicialmente como un locus reprimido por metilación Dam. Sin embargo, durante el 

desarrollo de esta tesis se ha establecido que la metilación Dam no reprime simplemente 

la expresión de opvAB, sino que forma parte de un mecanismo complejo de regulación 

que da lugar a dos subpoblaciones genéticamente iguales pero con distinto nivel de 

expresión de opvAB. Otro factor fundamental para la formación de estas subpoblaciones 

es OxyR, un factor de transcripción de tipo LysR.  

La regulación de la expresión de opvAB es transcripcional y se ejerce a través de una 

secuencia reguladora situada en la región 5’ previa al promotor de opvAB, en la cual se 

incluyen cuatro sitios GATC y sitios de unión de OxyR que solapan con ellos. 

La eliminación de los sitios GATC de esta secuencia reguladora elimina la variación de 

fase y permite la expresión constitutiva de opvAB. La síntesis de OpvA y OpvB 

modifica la estructura del lipopolisacárido, reduciendo la longitud predominante del 

antígeno O a 3-8 unidades de repetición. 

La expresión de opvAB y la consecuente alteración del la estructura del antígeno O 

divide las poblaciones de Salmonella enterica en dos subpoblaciones: la subpoblación 

mayoritaria OpvABOFF es virulenta y sensible a bacteriófagos que usan el antígeno O 

como receptor. La subpoblación minoritaria OpvABON es resistente a dichos 

bacteriófagos y avirulenta. La expresión variable de opvAB constituye un mecanismo 

epigenético y reversible de resistencia a bacteriófagos que utilizan el antígeno O como 

receptor. En presencia del bacteriófago, la subpoblación OpvABOFF es eliminada y se 

seleccionan las células OpvABON. Cuando el bacteriófago desaparece, la alta tasa de 

transición ON→OFF permite la rápida regeneración de la subpoblación OpvABOFF. 

La formación de subpoblaciones OpvABOFF y OpvABON depende de la formación de 

patrones de metilación específicos en los cuatro sitios GATC situados en la región 

reguladora de opvAB. En fase OFF, los sitios GATC1 y GATC3 están protegidos por la 

proteína OxyR y se encuentran desmetilados, mientras que GATC2 y GATC4 son 

metilados. En fase ON, el patrón es el contrario: OxyR protege los sitios GATC2 y 

GATC4 de ser metilados, mientras que GATC1 y GATC3 son metilados. 
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Resumen 
 

Se han identificado factores auxiliares que participan en la formación de las 

subpoblaciones OpvABOFF y OpvABON. SeqA es una proteína de unión a sitios GATC 

que reprime específicamente la tasa de transición OFF→ON. La proteína asociada al 

nucleoide HU es fundamental para la formación de la subpoblación OpvABON. 
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The genus Salmonella 

The genus Salmonella includes facultative, anaerobic, rod-shaped Gram-negative 

bacteria that are able to infect a wide variety of animal hosts including amphibians, 

reptiles, mammals, and birds. Salmonella belongs to the family Enterobacteriaceae and 

is phylogenetically close to the genera Escherichia, Shigella, and Citrobacter. 

The genus Salmonella is currently divided into two species, known as Salmonella 

enterica and Salmonella bongori [1]. Salmonella enterica includes six subspecies [2]: 

enterica (I), salamae (II), arizonae (IIIa), diarizonae (IIIb), houtenae (IV) and indica 

(VI). Historically, Salmonella enterica subsp. V was bongori, which is now considered 

a different species.  

Salmonella isolates from the same subspecies are further classified into serovars based 

on the White-Kauffman classification scheme [3], which relies on specific patterns of 

agglutination reactions based on antisera against two highly variable surface antigens, O 

(lipopolysaccharide O-antigen) and H (flagellar proteins) [2,4]. There are more than 

2,500 Salmonella serovars, most of which belong to the subsp. enterica [5]. Only 

serovars of this subspecies regularly colonize warm-blooded vertebrates [6], and so they 

account for 99% of human infections by Salmonella, while serovars of Salmonella 

bongori and the rest of Salmonella enterica subspecies are usually associated to cold-

blooded vertebrates or to the environment [7]. 

Serovars belonging to subsp. enterica differ in their host specificity and in the types of 

diseases they produce. Some serovars are host-restricted, while others can infect a wide 

variety of animal hosts  [8]. The diseases caused by subsp. enterica serovars vary from 

self-limiting gastroenteritis to life-threatening systemic infection, and the outcome of 

the disease depends on the specific serovar-host combination. For example, the 

specialist human-restricted serovar Typhi produces typhoid fever, whereas the generalist 

serovar Typhimurium produces mild gastroenteritis in humans but causes a systemic 

infection similar to human typhoid fever when infecting mice [9]. For this reason, the 

interaction between serovar Typhimurium and mice has been extensively used as a 

model for typhoid fever in humans [10], and most studies in Salmonella have employed 

this serovar. In this work, we have used the mouse-virulent strain Salmonella enterica 

subsp. enterica serovar Typhimurium ATCC 14028 [11]. For simplicity, it will be often 

abbreviated as Salmonella enterica. 
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Evolution of Salmonella 

Salmonella and Escherichia are close relatives, and diverged 120-160 million years ago 

[12]. Almost 25% of the Salmonella genome consists of genetic material that is absent 

in Escherichia coli [6,13]. The evolution of Salmonella pathogenicity (Figure I1) has 

involved the sequential acquisition of genetic elements, each contributing to different 

aspects of its lifestyle [14,15]. Amongst those elements are the Salmonella 

pathogenicity islands (SPIs), which are clusters of virulence genes in the chromosome. 

More than 10 SPIs have been described [16], including some which are serotype-

specific. These regions are absent in the chromosome of other Enterobacteriaceae, and 

usually have different G+C content than the average of the Salmonella chromosome, 

suggesting that they have been acquired by horizontal gene transfer [13,15]. 

  

 

Figure I1. Phylogeny of the genus Salmonella. The acquisition of SPI-1, SPI-2, and the ability to infect 

warm-blooded vertebrates is indicated. Modified from [17]. 

 

The best characterized SPIs are Salmonella pathogenicity island 1 (SPI-1) and 

Salmonella pathogenicity island 2 (SPI-2). SPI-1 was acquired first by the common 

ancestor of the two Salmonella species, and is involved in the invasion of intestinal 

epithelial cells in the animal host [18]. SPI-1 acquisition likely allowed Salmonella to 

become an intracellular pathogen associated with cold-blooded vertebrates [17]. SPI-2 
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allows Salmonella to survive in macrophages and colonize deeper tissues [19], and its 

acquisition marked the split of the two Salmonella species [17]. Hence, only members 

of Salmonella enterica have the ability to reach deep tissues and organs to produce 

systemic infections. 

The ancestor of subsp. enterica acquired the capacity to infect warm-blooded 

vertebrates, and different strains subsequently evolved to colonize a variety of hosts. 

Even though the mechanisms of host specificity are not fully understood, the presence 

of a virulence plasmid in some serovars of subsp. enterica has suggested the potential 

involvement of plasmid functions [7]. Another factor that may be involved in host 

specificity is the presence of different sets of fimbrial operons in different serovars 

[7,20]. 

 

Salmonella infection 

Infection with Salmonella enterica is usually caused by ingestion of contaminated food 

or water. Along the digestive track, Salmonella must endure adverse conditions that 

serve as protective mechanisms against bacterial infections.  

In the stomach, acid pH destroys the majority of microorganisms [21]. Activation of the 

acid tolerance response enables Salmonella to endure periods of severe acid stress 

[22,23]. 

In the small intestine, Salmonella finds high concentrations of bile, secreted in the 

duodenum during digestion. Bile has two main antibacterial activities: as a detergent 

that disrupts the cell envelope [24] and as a DNA damaging agent [25]. However, 

Salmonella and other enterobacteria are intrinsically resistant to high concentrations of 

bile [24], partly through activation of the general stress response [26] and by 

modification of the peptidoglycan structure [27]. 
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Figure I2. Diagram of Salmonella infection. The three main routes of Salmonella invasion of the 

intestinal epithelium are represented: adhesion and translocation through M cells, direct invasion of 

intestinal epithelial cells, and capture by dendritic cells. Reproduced from [28]. 

 

When Salmonella reaches the distal small intestine, a large array of adhesins and 

fimbriae allow the pathogen to adhere to the intestinal epithelium [29]. Salmonella is 

able to invade the intestinal epithelium through three different routes (Figure I2): (i) by 

inducing a phagocytosis-like process in non-phagocytic enterocytes, (ii) through 

specialized epithelial M cells, and (iii) through dendritic cells that intercalate epithelial 

cells by extending protrusions into the gut lumen [30,31]. The two first routes are 

mediated by the virulence-associated type 3 secretion system encoded on Salmonella 

pathogenicity island 1 (SPI-1) [32], with invasion of M cells being the predominant 

route of intestinal traversal [33]. 

After invasion, and depending on the host-serovar combination, Salmonella can cause 

two main kinds of infection outcomes: gastroenteritis and systemic infection. 

In gastroenteritis, the infection is localized in the intestine, and induces an inflammatory 

reaction in the intestinal mucosa. Accumulation of liquid in the intestinal lumen leads to 

diarrhea [34,35]. The inflammatory response creates a novel luminal niche, which 

favors growth of Salmonella over the resident microbiota of the intestine. Remarkably, 
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the cascade of events that takes place as consequence of inflammation produces the 

accumulation of tetrathionate (S4O6
2-) in the intestinal lumen [36]. Salmonella can use 

tetrathionate as electron acceptor for respiration to obtain energy for growth in the 

inflamed gut lumen, taking advantage over the resident microbiota, which must rely on 

less efficient fermentation processes. 

In systemic infection, Salmonella crosses the epithelial barrier and can survive inside 

phagocytes due to the possession of a second type 3 secretion system encoded on 

Salmonella pathogenicity island 2 (SPI-2), and disseminates through the lymphatic 

system reaching deep tissues. Salmonella can colonize multiple target organs, 

particularly the spleen, the liver, the gall bladder and the bone marrow, where bacteria 

can proliferate, potentially resulting in a fatal outcome [37].  

A fraction of individuals recovering from systemic infection become asymptomatic, 

life-long carriers of Salmonella, acting as reservoirs for future infections. In humans, 

serovar Typhi can establish chronic carriage in the gall bladder [37]. 

 

Lipopolysaccharide (LPS) 

The cell envelope of Gram negative bacteria can be divided in three layers: the 

cytoplasmic or inner membrane, the peptidoglycan cell wall, and the outer membrane. 

The outer membrane is highly asymmetrical: its inner leaflet consists mainly of 

phospholipids, while the outer leaflet is almost entirely composed of a particular kind of 

glycolipid known as lipopolysaccharide (LPS) [38].  

The LPS is essential for many aspects of the lifestyle of Salmonella, including 

swarming motility [39]; intestinal colonization [40]; invasion and intracellular 

replication [41–43]; and resistance to serum [44,45], bile [46], and cationic peptides 

[43]. LPS is also a common receptor for bacteriophages, including P22 [47].  

The LPS can be divided in three structural regions: lipid A (endotoxin), a highly 

conserved hydrophobic molecule which serves as an anchor to the membrane; the core 

saccharide, a genus-conserved short oligosaccharide; and the O-antigen, an 

immunogenic molecule made up by a number of repeats of the same saccharide unit 

composed of three to five sugars [48,49] (Figure I3A). Most of the structural diversity 
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of LPS is found in the O-antigen. Altered sugar composition, linkage, and number of O-

antigen repeats lead to the production of many different kinds of O-antigen molecules 

both between and within bacterial strains.  

 

 

Figure I3. A. Idealized structure of an LPS molecule. For simplicity, only four O-antigen repeat units are 

represented, but individual LPS molecules can have more than 100 O-antigen repeat units. B. 

Visualization in SDS-PAGE gel of a typical LPS structure from Salmonella enterica. The O-antigen chain 

modal lengths imposed by the regulators WzzST and WzzfepE are indicated. 

 

Synthesis of the O-antigen is complex and involves a large number of inner membrane 

proteins [50]. First, synthesis of a single O-antigen repeat unit linked to the lipid carrier 

undecaprenyl pyrophosphate takes place in the cytoplasmic leaflet of the inner 

membrane. The lipid-linked O-antigen unit is then flipped to the periplasmic leaflet of 

the inner membrane by the O-antigen flippase Wzx. In the periplasm, the O-antigen 

polymerase Wzy (also called Rfc in Salmonella) combines O-antigen repeat units in a 

growing O-antigen chain until preferred modal lengths conferred by O-antigen chain 

length regulators (also known as polysaccharide copolymerases or PCPs and commonly 

designated Wzz) are produced. Once the O-antigen chain is complete, it is ligated to the 
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lipid A-core by the O-antigen ligase WaaL and tranported to the outer membrane 

(Figure I4). 

 

Figure I4. Diagram of the synthesis of the O-antigen. 1. O-antigen repeat unit synthesis on the 

undecaprenyl pyrophosphate-lipid carrier in the cytoplasmic leaflet of the inner membrane. 2. Flipping of 

the lipid-linked O-antigen subunit to the perisplasmic leaflet by the O-antigen flippase Wzx. 3. Transfer 

to the O-antigen polymerase Wzy. 4. Addition of single lipid-linked O-antigen subunits to the growing O-

antigen chain. 5. Length regulation of the O-antigen chain by O-antigen chain regulators Wzz. 6. Ligation 

of the polymerized O-antigen chain to a lipid A-core molecule by the O-antigen ligase WaaL. 

Reproduced from [51]. 

 

Visualization of LPS in SDS-PAGE gels results in a typical “ladder” structure in which 

every step reflects the addition of a single O-antigen repeat unit (Figure I3B). Different 

O-antigen chain modal lengths are easily identified within the same bacterial strain by 

increased intensity of bands of a particular size range. As already stated, O-antigen 

chain modal lengths depend on O-antigen chain length regulators. As many other 

species in the Enterobacteriaceae family [52], Salmonella enterica displays two modal 

lengths (Figure I3B): long O-antigen (16-35 repeat units) is conferred by WzzST (also 

known as Rol, Cld or WzzB) [53], and very long O-antigen (>100 repeat units) by 

WzzfepE (FepE) [52]. In the absence of both Wzz regulators, Salmonella LPS displays a 

stochastic distribution, with bands decreasing in intensity as the O-antigen chain grows 

longer. 
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Albeit with remarkable variations in amino acid sequence, Wzz regulators share several 

structural properties: nearly all harbor transmembrane segments near the N and C 

termini and a hydrophilic α-helical periplasmic domain containing a coiled-coil region 

[54] and display a particular set of conserved amino acid residues near the N terminus 

[55]. Wzz regulators are known to form oligomers in a characteristic bell shape [56]. 

The mechanism for regulation of O-antigen chain length by Wzz regulators is not 

established, and has been the subject to considerable debate. Depending on the model, 

Wzz regulators have been proposed to act as molecular timers that modulate the ability 

of Wzy to elongate the O-antigen chain [57], as chaperones that assemble O-antigen 

synthesis machinery proteins in particular ratios [58], as scaffolds in which O-antigen 

chain lengths are conferred by the number of Wzz subunits in a given oligomer [55] or 

as rulers that set O-antigen chain length by direct interaction to the O-antigen chain 

[59]. Later on, the role of changes in the structure of the growing O-antigen in the 

interaction with the Wzz regulators has been incorporated into a chain-feedback model 

[60]. A hybrid model combining ruler and chain-feedback elements has been recently 

proposed and is supported by a large body of evidence [50]. According to this model, 

the interaction between Wzy and Wzz favors the formation of a longer O-antigen chain 

by direct binding of the growing O-antigen chain to the Wzz protein. However, when 

the O-antigen chain attains a particular length, higher-order structures begin to 

destabilize the interaction with Wzz. When the O-antigen chain reaches the tip of the 

bell-shaped Wzz oligomer, the lipid-linked O-antigen is freed from the O-antigen 

synthesis complex rendering it susceptible to ligation by WaaL to form a mature LPS 

molecule.  

The LPS molecule is subsequently exported to the outer membrane at a limited number 

of sites, in a ribbon-like shape that is largely immobile [61–63], probably due to strong 

lateral interactions between LPS molecules [64,65]. These interactions induce the 

assembly of a mechanically stable network in which the structure of the lipid A-core is 

rigid and well-defined [66] but the O-antigen is flexible and can adopt many 

conformations [67].  

Ribbon-like dispositions have also been described for many inner and outer membrane 

proteins, suggesting that the whole cell envelope might be organized in a helical fashion 

[63,68]. 
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OxyR 

The OxyR protein belongs to the LysR-type family of transcriptional regulators 

(LTTRs) [69], the largest family of prokaryotic DNA-binding proteins [70]. A typical 

LTTR is made of approximately 330 amino acid residues with an N-terminal helix-turn-

helix DNA-binding motif. Members of this family can act as transcriptional repressors 

or activators, and regulate the expression of genes involved in  variety of cellular 

processes such as amino acid metabolism, oxidative stress, nitrogen fixation, 

degradation of aromatic compounds, and bacterial virulence [71]. The presence of a co-

inducer is usually necessary for LTTR function, but no inducer has been described for 

OxyR. Most LTTRs, including OxyR, are able to induce DNA bending [70]. 

OxyR functions as a tetramer (dimer of dimers) [72,73], which is the preferred structure 

for most LTTRs [74–78]. Others are known to form simple dimers in solution, which 

could be their active form [79][80]. Exceptionally, octamers [81] and hexamers [82] 

have also been described. 

OxyR controls a regulon of almost 40 genes in Escherichia coli and Salmonella [83], 

and OxyR homologs are present and play a role in hydrogen peroxide resistance in 

many different bacteria. The products of upregulated genes protect the cell from 

oxidative stress damage [84] and include enzymes such as catalases and 

alkylhydroperoxide reductases. The OxyR regulon has also a role in protection against 

heat stress [85], response to near-UV light  [86], singlet oxygen [87], lipid-peroxidation-

mediated cell damage [88] and neutrophil-mediated killing [89]. 

OxyR is both the sensor and the transducer of the oxidative stress signal, and undergoes 

a conformational change upon oxidation. In the presence of hydrogen peroxide, the 

sulphur residue of a particular cystein in the OxyR protein, Cys199, is oxidized and 

forms a reversible disulfide bond with Cys208. An oxyRC199S mutation produces an 

altered form of OxyR which cannot be oxidized but retains all the properties of the 

reduced form [90,91], and has been useful in a number of studies [92,93]. 

Oxidation of the OxyR tetramer causes a conformational change which results in the 

rearrangement of the dimers [72] and relaxes the DNA bending induced in the majority 

of the promoters of OxyR-regulated genes. In the oxidized conformation, OxyR induces 
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cooperative binding of the RNA polymerase [91] and promotes transcription of genes in 

the OxyR regulon. 

A general LTTR-binding DNA sequence has been defined as a palindromic sequence 

containing a T-X11-A consensus (where X is any nucleotide), based on a comparison of 

binding sites for LysR-type regulators in several species [94]. A single OxyR dimer 

recognizes the palindromic sequence ATAGxAxxxTxCTAT (where x is any 

nucleotide). The distance between two consecutive OxyR binding sites is 10 base pairs 

for the oxidized OxyR tetramer (which contacts four adjacent major grooves in the 

DNA) and 17 base pairs for the reduced OxyR tetramer (which binds two pairs of 

adjacent major grooves separated by a helical turn) [90]. 

Although originally described as the main regulator of the oxidative stress response, 

OxyR also controls transcription of certain genes irrespective of its oxidation state. 

Examples include the mom gene of bacteriophage Mu [95], the agn43 gene of 

Escherichia coli [96] and the gtr operon of Salmonella enterica [93]. The two latter 

systems have also been shown to be subject to phase variation, and will be discussed in 

more detail due to their relevant relationship to our own results. 

 

Dam methylation 

Base methylation is a DNA modification present in all kingdoms of life. C5-methyl-

cytosine and N6-methyl-adenine are found in bacterial, archaeal and eukaryotic 

genomes, whereas N4-methyl-cytosine is found only in bacteria  [97,98]. The methyl 

group of modified bases protrudes from the major groove of the double DNA helix, 

which is a typical place for recognition of DNA motifs by DNA-binding proteins [99]. 

Consequently, the methylation state of critical adenosine or cytosine moieties can 

regulate the interaction between DNA-binding proteins and their cognate DNA 

sequences [99,100]. The formation of N6-methyl-adenine also lowers the 

thermodynamic stability of DNA [101] and alters DNA curvature [102], which could 

further influence DNA-protein interactions. 

Base modification in bacterial genomes is performed by two kinds of 

methyltransferases: most are associated with restriction-modification systems that 

protect the cell from foreign unmethylated DNA [103,104], but some are solitary 
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methyltransferases that do not have a restriction enzyme partner [100]. One of this 

solitary methyltransferases is the Dam methylase of Gamma-proteobacteria. 

Dam is only found in a particular clade of bacteria consisting of the orders 

Enterobacteriales, Vibrionales, Aeromonadales, Pasteurellales, and Alteromonadales 

[105]. It is essential for viability in Vibrio cholerae and certain strains of Yersinia [106]. 

In Escherichia coli and Salmonella enterica a dam mutation causes pleiotropic defects 

but is not lethal [107,108]. 

Dam shares significant sequence identity with DNA methyltransferases such as MboI 

and DpnII, both of which have a restriction enzyme counterpart [105,109]. This 

relatedness suggests that Dam has evolved from an ancestral restriction-modification 

system. A crucial difference, however, is that the Dam methylase is highly processive, 

able to perform multiple methylation reactions before dissociating from the DNA 

molecule, whereas restriction-modification DNA methylases are distributive [110]. 

Dam methylation involves transfer of a methyl group from S-adenosyl-methyonine to 

the N6 amino group of the adenosine moiety of 5’GATC3’ sites [107]. Methylation 

occurs shortly after DNA replication, which means that hemimethylated GATC sites are 

the natural substrate of the Dam methylase. However, Dam methylates both 

hemimethylated and unmethylated GATC sites with similar efficiency [107]. DNA 

binding and/or methyl transfer are influenced by the flanking sequences of the GATC 

sites [111]. 

N6-methyl-adenine can be used as a signal for genome defense, DNA replication and 

repair, nucleoid segregation, regulation of gene expression, control of transposition, and 

host-pathogen interactions [105,107,109,112] (Figure I5). 

Dam plays a crucial role in the correction of replication errors by providing a way to 

identify the template DNA strand [113]. The formation of a mismatched base pair 

results in recognition by the MutS protein and the recruitment and assembly of the 

MutHLS complex. Methyl-directed mismatch repair is regulated by MutH, which nicks 

the nonmethylated (newly replicated) DNA strand at the nearest hemimethylated GATC 

site, ensuring that the parental template strand is not altered [114]. Degradation and 

resynthesis of the mismatched daughter strand eventually result in correction of the 

mismatched sequence. 
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Figure I5. Examples of roles of N6-methyl-adenine in enteric bacteria. Where known, the 

methylation-sensitive DNA-binding proteins involved in each process are indicated. Reproduced from 

[100]. 

 

Initiation of chromosome replication in E. coli requires binding of an ATP-bound form 

of the initiator protein DnaA to the replication origin (oriC), followed by separation of 

the two strands of the double helix and loading of DNA helicase. However, binding of 

DnaA at the oriC region is only possible if the GATCs located in the region are 

methylated; a hemimethylated origin is inactive [115]. Interestingly, the density of 

GATC sites in the oriC region is roughly tenfold higher than the average in the E. coli 

chromosome (11 GATC sites within 245 base pairs) [116]. 

Dam-dependent timing of DNA replication and nucleoid organization are controlled by 

a protein known as SeqA, which binds hemimethylated GATC sites in the oriC region, 

inhibiting further rounds of replication [117], and also to newly generated 

hemimethylated GATC sites along the chromosome, organizing the daughter 

chromosomes into nucleoid domains [118,119]. This will be discussed in the section 

dedicated to SeqA. 
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The involvement of Dam methylation in virulence was first described in Salmonella: the 

50% lethal dose (LD50) of a dam mutant is 10,000 fold higher than that of the wild type 

upon oral inoculation[120][121]. Pleiotropic effects caused by absence of Dam 

methylation might explain this extreme phenotype: dam mutants display a lower 

colonization capacity, reduced mobility, envelope instability, ectopic expression of 

fimbriae, sensitivity to bile salts, lower expression of virulence genes, and altered LPS 

O-antigen chain length [122–124]. 

Dam methylation-dependent transcriptional control of gene expression can be classified 

into two main types [125]:  

(i) Clock-like controls that use the methylation state of the DNA as a signal to 

couple gene expression to a particular stage of the cell cycle. Examples of 

activation by hemimethylation include the conjugal transfer gene traJ and 

the IS10 transposase gene [126,127]. Repression by hemimethylation 

include the chromosome replication gene dnaA [128].  

(ii) Switch-like controls that turn on and off gene expression based on 

differential methylation patterns of GATC sites typically found around the 

promoters of phase variation systems [129]. Because active methylation is 

not known to occur in bacteria, competition of DNA-binding proteins and 

Dam methylase is the only mechanism known to generate nonmethylation 

[130]. The decrease in processivity caused by certain DNA sequences 

around the GATC sites in some of these systems plays a role in the 

generation of nonmethylated DNA [111]. Several examples of this kind of 

epigenetic control will be discussed in the section dedicated to Dam-

regulated phase variation systems. 

 

SeqA 

The seqA gene is found only in a subset of Gram negative bacteria together with dam 

and mutH [105,131]. The SeqA protein was first described as a factor inhibiting 

reinitiation of DNA replication at the chromosomal replication origin oriC in 

Escherichia coli [132]. SeqA keeps the origin inactivated for about one third of the cell 

cycle by a process known as sequestration [133]. Sequestration depends on the high 
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concentration of GATC sites in this region [132], which provides multiple binding sites 

for SeqA. 

Although SeqA was initially believed to be a tetramer based on size-exclusion 

chromatographic experiments [134], current evidence suggest that the basic structural 

and functional SeqA unit is a dimer [119,135]. SeqA dimers preferentially bind to pairs 

of GATC sites less than 31 base pairs apart in vitro, especially if the two GATC sites 

are on the same face of the DNA helix [136,137]. SeqA shows much higher affinity for 

hemimethylated over fully methylated DNA and no binding to unmethylated DNA 

[138–140]. However, SeqA has been shown to bind a fully methylated oriC, probably 

due to the extraordinary concentration of GATC sites [139,141]. 

The main role of SeqA in the cells is the delay of primary and secondary replication 

initiations. SeqA delays the primary replication initiation event by binding to the fully 

methylated oriC until the cell reaches its critical mass, counteracting the DnaA protein 

that activates replication initiation [133,142–144]. After replication is initiated, 

preferential binding of SeqA over Dam [140] means that SeqA binds the newly 

generated hemimethylated GATC sites and sequesters oriC from Dam methylase and 

DnaA, thus preventing secondary replication initiation within a single cell cycle 

[132,133] 

During sequestration, re-initiation is further inhibited by three mechanisms: (i) 

inactivation of DnaA by hydrolysis of the ATP-form of DnaA to the ADP-form [145], 

(ii) titration of DnaA to the new DnaA binding sites generated by DNA replicaton 

[146], and (iii) repression of dnaA transcription by dnaA gene sequestration [133,147]. 

SeqA also forms foci which appear to track replication forks [148,149] and consist of 

several hundred SeqA molecules and about 100 kb of DNA [150]. The formation of 

these foci seems to be related to the organization, cohesion and final segregation of the 

newly formed chromosomes [136,151,152].  

SeqA is also involved in gene regulation [153]. Because SeqA binding delays Dam 

methylation, deletion of seqA results in an expression profile almost identical to Dam 

overproduction [153]. Interestingly, in Escherichia coli, the agn43 was one of the few 

genes that showed different expression in a dam-overproducing and in a seqA 

background. This suggests that SeqA plays a different role in this case, possibly altering 
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the competition between Dam methylation and OxyR binding at the agn43 upstream 

regulatory element [154]. SeqA binding could favor Dam methylation over OxyR 

binding. The same could be true for the Dam-methylated fimbrial operon std, where 

SeqA could favor Dam methylation over binding of the LysR-type transcription factor 

HdfR [155]. 

 

HU 

HU is a small, basic, dimeric DNA-binding protein that belongs to the DNABII family 

[156]. Together with other bacterial histone-like or nucleoid-associated proteins such as 

IHF, Fis, and H-NS, it is a major structural component of the nucleoid. HU is conserved 

among the majority of bacteria and is also present in archaea and in plant chloroplasts 

[157,158].  

In most bacteria, HU is encoded by a single gene, but members of the families 

Enterobacteriaceae and Vibrionaceae possess two unlinked and non-identical HU-

encoding genes, hupA and hupB [159]. HU can exist in three forms: the HU αβ 

heterodimer and the HU α2 and β2 homodimers. The αβ heterodimer is the dominant 

form throughout most of the cell cycle, except very early in exponential phase when the 

α2 homodimer is more abundant. The β2 homodimer is minoritary and only detected in 

late stationary phase [160]. Synthesis of hupB, however, is preferentially stimulated 

during cold shock [161]. 

Whereas single hupA and hupB mutations do not result in a significant growth defect, 

double hupA hupB mutants of E. coli and S. enterica are highly pleiotropic and grow 

slowly, but remain viable [162,163]. Interestingly, the HU mutation is lethal in Bacillus 

subtilis, which has no other histone-like protein [164]. 

The αβ heterodimer and the α2 and β2 homodimers have different DNA binding 

properties towards particular DNA structures [165]. As a whole, HU binds with relative 

non-specificity to DNA, albeit with a bias for AT-rich sequences [166,167], but shows a 

strong preference for binding to unusual DNA conformations  such as cruciforms, 

single-stranded breaks, mismatches, gaps and loops [168–171]. This is also consistent 

with its role in recombination and DNA repair [172–174]. 
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Histone-like proteins such as HU are able to alter DNA topology by bending, 

supercoiling and compacting it [175], leading to multiple effects in the cell including 

transcriptional regulation [176]. DNA supercoiling, bending and loop formation by 

binding of HU has also been shown in vitro [177–179], although a possible dual role in 

compaction and stiffening of the DNA has also been suggested [180]. 

HU is capable of inducing or stabilizing very different DNA bend angles [181,182]. In 

fact, HU creates a more flexible bend that other DNA-bending proteins, and might often 

stabilize previously bent DNA rather than bend DNA itself [183]. The ability of HU to 

form flexible bends instead of a rigid structure might be important for its biological 

function, facilitating the formation of higher-order protein-DNA complexes. 

In E. coli, the HU regulon includes genes responding to anaerobiosis, acid and osmotic 

stress, and SOS induction [184]. It has also recently been shown to be involved in 

biofilm formation by uropathogenic E. coli [185]. In Salmonella, HU regulates 

expression of a large number of genes related to virulence, motility, stress response and 

general physiology of the cell [163]. Several studies have shown that both the E. coli 

and Salmonella HU regulons show different degrees of overlap between genes regulated 

by the heterodimer and the two homodimers, although the hupA hupB mutation usually 

has the strongest effect on gene expression, followed by the hupA mutation, with the 

hupB mutation having the smallest effect [158,163]. 

The involvement of HU in direct interaction with a promoter has been studied in most 

detail in the gal promoter of E. coli. HU has a crucial role in the assembly of the Gal 

repressosome, a nucleoprotein complex that represses transcription of the partially 

overlapping gal promoters P1 and P2. The formation of the repressosome involves the 

formation of a DNA loop encompassing the promoter region and also requires binding 

of the LysR-type transcription factor GalR. GalR dimers interact with two spatially 

separated operators OE and OI and transiently form a DNA loop by tetramerization 

[186]. This creates a distorted region which can be now be bound by HU, which is 

already recruited by association with GalR [187] and can now be trasferred to the 

distorted locus, resulting in a highly stable repressosome [188]. 
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Formation of bacterial lineages 

The study of differentiation in bacterial species that undergo developmental programs 

has played a historic role in biology [189–191]. In addition, phenotypic differences 

between colonies [192] and within colonies [193,194] were described many years ago in 

bacterial species that do not undergo development. Despite their technical limitations, 

these early studies contributed to bring about the idea that phenotypic heterogeneity 

might be a common phenomenon in the bacterial world [195]. This view has been 

confirmed by single cell analysis technologies [196–200]. Furthermore, theoretical 

analysis has provided evidence that phenotypic heterogeneity can have adaptive value, 

especially in hostile or changing environments [201–203]. In certain cases, the adaptive 

value of subpopulation formation is illustrated by experimental evidence [26,204,205].  

In general, the evolutionary significance of the formation of bacterial subpopulations 

can be interpreted as the result of two different strategies: division of labor and bet-

hedging [199][206][207]. Division of labor, also known as cooperation, implies that 

there is an interaction between different phenotypes, and in a given environment both 

subpopulations together are fitter than any of them separately. Bet-hedging or risk-

spreading occurs when each subpopulation is fitter than the other in a particular 

environment, so that the population as a whole is fitter in a variety of conditions and 

prepared to adapt to an environmental change. 

Formation of bacterial lineages is governed by diverse mechanisms, including 

programmed genetic rearrangement [208] and contraction or expansion of DNA repeats 

at genome regions known as contingency loci [209,210]. In other cases, however, 

lineage formation is controlled by epigenetic mechanisms [130,200]. Although the 

known examples of non-genetic heterogeneity show disparate levels of complexity, 

epigenetic formation of bacterial subpopulations typically fits in the following, 

simplified model: certain cell-to-cell differences can serve as physiological signals, and 

signal propagation by a feedback loop generates an inheritable phenotype [200,211]. 

Cell-to-cell differences can be a consequence of environmental inputs or result from the 

noise intrinsical to many cellular processes [198,200,203]. An important factor that 

contributes to gene expression noise is the finite number effect: noise is more prevalent 

if the number of molecules involved in a process is limited [212–214]. This is relevant 

in gene expression since transcription and translation events are relatively infrequent 
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events, and also because transcription factors are often present in small numbers [215]. 

In turn, the feedback loops that propagate the initial state beyond can be relatively 

simple (e. g., the perpetuation of autogenous control beyond cell division) or involve 

complex mechanisms like the formation of inheritable DNA adenine methylation 

patterns in the genome [130,200,216]. Some feedback loops are stable enough to cause 

bistability, the bifurcation of a bacterial population into two distinct phenotypic states 

[211].   

If a feedback loop is metastable, reversion of the epigenetic state will occur after a 

certain number of cell divisions. Reversible bistability is usually known as phase 

variation, and typically involves reversible switching of gene expression from OFF to 

ON or from low to high expression [129,217,218]. Examples of phase variation have 

been described mostly in bacterial pathogens, and subpopulation formation is frequently 

viewed as a strategy that may facilitate evasion of the immune system during infection 

of animals [129,217]. This view is supported by the observation that phase-variable loci 

often encode envelope components or proteins involved in modification of the bacterial 

envelope [129,217]. 

Some phase-variable envelope modifications controlled by DNA adenine methylation 

play roles in bacteriophage resistance. For instance, phase variation in the gtrABC1 

cluster protects S. enterica against the T5-like phage SPC35, probably by an indirect 

mechanism [219]. In Haemophilus influenzae, DNA adenine methylation controls 

phase-variable resistance to bacteriophage HP1c1 but the underlying mechanism 

remains hypothetical [220]. Phase variation can also contribute to phage resistance 

without alteration of the bacterial surface. For instance, certain genes encoding 

restriction-modification systems show phase variation [221,222]. 

 

Phase variation systems regulated by Dam methylation 

Dam-dependent gene regulation often controls the synthesis or modification of envelope 

structures such as fimbriae or the LPS O-antigen [223]. Several of these systems show 

phase variation and are under epigenetic control. Binding of certain transcriptional 

regulators hinders Dam methylation, and creates heritable DNA methylation patterns 

(combinations of methylated and nonmethylated GATC sites). We will briefly discuss 
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three of them: pap and agn43 from Escherichia coli and gtr from Salmonella enterica 

and the bacteriophage P22. 

pap 

The pap operon of uropathogenic Escherichia coli encodes pyelonephritis-associated 

pili that mediate adhesion to the urinary mucosa and facilitate colonization of the 

kidneys  [224]. Pap pili expression is subject to phase variation, and switching between 

ON and OFF states is controlled by Dam methylation [225] (Figure I6).  

The biological role of pap phase variation is not well established, but could be related to 

evasion of the immune system, the establishment of a bind-release-bind mechanism that 

allows succesive generations of bacteria to ascend the urinary tract, and/or modulation 

of growth by contact-dependent inhibition [130]. 

The upstream regulatory sequence of the pap operon contains six binding sites for the 

leucine-responsive regulatory protein (Lrp). Two of these sites contain GATC motifs, 

which are called GATCdist (site 5) and GATCprox (site 2). In the OFF state, Lrp binds 

cooperatively and with high affinity to sites 1-3 and prevents RNA polymerase binding 

and transcription of pap. Lrp binding at sites 1-3 reduces the affinity of Lrp for sites 4-6 

and prevents methylation of GATCprox. Lack of protection by Lrp means that GATCdist 

is methylated. The high affinity of Lrp for the nonmethylated GATCprox and its inability 

to bind a methylated GATCdist create a feedback loop that propagates the OFF state. 

 

 

Figure I6. Diagrams for Dam methylation-dependent regulation of pap, agn43 and gtr phase 

variation. For simplicity, binding sites, Dam methylase and RNA polymerase are not represented. 

Cartoons not to scale. Modified from [93]. 
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Switching to the ON state requires that Lrp is translocated to sites 4-6. Translocation 

requires the ancillary protein PapI, which binds to Lrp [226] and preferentially increases 

its affinity for sites 4-6. Binding of Lrp to sites 4-6 inhibits methylation of GATCdist and 

permits methylation of GATCprox, contributing to propagate the ON state. One of the 

products of the pap operon, PapB, activates papI transcription [227,228], further 

propagating the ON state by a positive feedback loop. 

agn43 

The agn43 gene of Escherichia coli encodes the outer membrane protein Ag43, which 

belongs to the autotransporter family [229]. Expression of Ag43 promotes aggregation 

[230], biofilm formation [231,232] and virulence-related phenotypes such as persistence 

in the urinary tract [233,234] and increased uptake and survival in neutrophils [235]. 

Ag43 was initially denominated Flu (for fluffing) [230], although the original flu+ 

phenotype actually corresponds to non-expression of agn43. 

Transcription of agn43 is subject to phase variation under the control of Dam 

methylation and binding of OxyR [236,237]  (Figure I6).  The regulatory region of 

agn43 contains a single OxyR binding site overlapping with three GATC sites and the -

10 sequence of the promoter [238]. Binding of OxyR to the agn43 regulatory region 

results in repression of transcription and nonmethylation of the GATC sites [239–241]. 

Conversely, methylation of the GATC sites results in abrogation of OxyR binding 

[239,242]. Thus, methylation of the GATC sites and binding of OxyR are mutually 

exclusive, and the expression state of agn43 depends on the outcome of competition 

between OxyR binding and Dam methylation upon DNA replication [238,240]. The 

oxidation state of OxyR is not relevant for its role in regulation of agn43 [96]. 

Phase variation rates of agn43 are altered in a seqA mutant, and SeqA has been shown 

to bind hemimethylated DNA from the agn43 regulatory region in vitro [154]. The 

biological relevance of this is however unclear, since SeqA bound to agn43 DNA is 

easily displaced in vitro by both Dam and OxyR [243]. However, higher-order SeqA 

structures in vivo might behave in a different way. Indeed, introduction of additional 

SeqA-binding sites (GATC sites) in the proximity of agn43 also altered phase variation 

rates [243].  
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The ON to OFF transition rate is affected by the availability of OxyR at the replication 

fork: addition of three OxyR-binding sites upstream of agn43 acts like a sink that 

increases the local concentration of OxyR and biases the system toward the OFF state 

[243]. 

gtr 

Glycoltransferase (gtr) operons encode proteins that mediate the addition of sugars onto 

the basic LPS O-antigen structure [244,245]. Salmonella serovars generally carry 

between one and four gtr operons, although they are absent in some serovars [246]. 

These operons have also been found the genomes of Shigella [247] and in 

bacteriophages, including P22 [248]. There is evidence of extensive phage-mediated 

transfer of gtr operons [246]. 

Salmonella enterica serovar Typhimurium harbors two gtr operons  [93]. One of them, 

gtrABC1, has been shown to be crucial for faecal shedding and intestinal persistence in 

Salmonella, although constitutive high levels of expression lead to a defect in 

association with epithelial cells and reduced invasion of both epithelial cells and 

macrophages [244]. As already mentioned, phase variation of the same gtr operon 

confers transient resistance to the bacteriophage SPC35 [219]. Phase variation of gtr 

could also play a role in virulence [93]. 

Expression of most gtr operons is phase-variable [93], and all phase-varying gtr operons 

share a similar upstream regulatory element that contains three OxyR binding half-sites 

known as Oxy(A), OxyR(B), and OxyR(C); and four overlapping GATC sites: GATC1 

and GATC2 in OxyR(A), and GATC3 and GATC4 in OxyR(C). The OxyR binding half-

sites are placed in a way that the OxyR tetramer can bind either OxyR(AB) or 

OxyR(BC) [93,246]. 

OxyR acts as a repressor or an activator depending on which of its two possible 

complete binding sites is occupying. In the OFF state, GATC1 and GATC2 are 

methylated and OxyR binds to the OxyR(BC) binding site, acting as a repressor by 

blocking the access of the RNA polymerase to the promoter. In the ON state, the inverse 

methylation pattern is observed (GATC3 and GATC4 are methylated) and OxyR binds 

to the OxyR(AB) binding site, promoting transcription of gtr (Figure I6). DNA 

methylation confers heritability to the system by affecting which of the OxyR binding 
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sites is occupied, given that OxyR binding is decreased by methylation of GATC sites 

in each binding site. In turn, OxyR binding prevents Dam methylation of the 

overlapping GATC sites. 

As in agn43, the spacing of the OxyR binding sites is consistent with binding of the 

reduced form of OxyR, and gtr phase variation is not altered as a result of oxidative 

stress [93]. 

 

Bacteriophages 

There are eight different major phyla of bacteriophages, with very different molecular 

lifestyles and extremely distant relatedness, if any [249]. Tailed bacteriophages include 

95% of all the phages reported in the scientific literature, and probably make up the 

majority of phages in nature [250]. It is estimated that there are at least 1031 tailed 

virions in the biosphere, and that phages are 10 to 25-fold  more abundant than their 

bacterial hosts  [251–253], which makes phage the predominant biological entity on our 

planet [251,254]. Their abundance and ability to kill their bacterial hosts means that 

they play a critical role in virtually all natural processes. Phages are known to alter 

competition between bacterial strains and species [255,256], maintain bacterial diversity 

[257,258], and mediate horizontal gene transfer between bacteria [259,260]. 

Phages and bacteria are in a constant arms race that results in continuous cycles of 

mutually influenced co-evolution [261,262]. As an example, the adsorption machinery 

is the most rapidly evolving part of the tailed phage genome [263]. In turn, bacterial 

defense systems also show high variability (including phase variation) [222], rapid 

evolution, and a tendency for horizontal gene transfer [264].  

The specificity in the interaction between a bacteriophage and a bacterial cell is mostly 

determined by specificity of adsorption, which in turn is dependent on the nature and 

structural peculiarities of the receptors on the surface of the bacterial envelope [265]. 

Known receptors of Salmonella phages are the LPS O-antigen [266–269], flagellar 

proteins [270–272], the outer membrane protein for vitamin B12 uptake BtuB 

[271,273,274], the outer membrane protein OmpC [275,276], the outer membrane 

protein for drug efflux pump TolC [277], the outer membrane transport protein FhuA 

[278], and the Vi capsular antigen [279]. 

28 
 



Introduction 
 

A common feature of bacteriophages using the O-antigen as receptor is that their tail 

spike proteins not only recognize but also hydrolize the O-antigen, allowing the phage 

to penetrate through the O-antigen layer during infection [280]. 

Tailed phages have been traditionally assigned to the order Caudovirales and share a 

common structure consisting of a polyhedral, often icosahedral, head that contains a 

double-stranded DNA genome and is attached to a flexible tail. They also share a 

similar DNA packaging system relying on an ATP cleavage-powered DNA translocase 

[281]. 

Tailed phages can go through a lytic or lysogenic life cycle. Lytic infection results in 

production of phage progeny and destruction of the host. Lysogenic infection results in 

the integration of the phage genome in the host chromosome (creating a prophage) or in 

the persistence of the phage genome as an extrachromosomal element. The genes that 

are expressed from the prophage typically alter certain traits of the bacterial host. 

Prophages can be induced and result in a new lytic cycle [282]. 

The bacteriophages used in this work belong the traditional three families in the order 

Caudovirales: P22 belongs to Podoviridae (which includes 14% of tailed phages), 9NA 

to Siphoviridae (62%), and Det7 to Myoviridae (24%) [249]. These families are defined 

by morphology: the Podoviridae have short non-contractile tails, the Siphoviridae have 

long non-contractile tails, and the Myoviridae have long contractile tails (Figure I7). 

 

 

Figure I7. Idealized structures of bacteriophages belonging to the three families in the order 

Caudovirales. Podoviridae have short non contractile tails. Siphoviridae have long non-contractile tails. 

Myoviridae have long contractile tails. Modified from [283]. 
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A recent classification based on sequence similarity of  337 fully sequenced tailed 

phages infecting 18 bacterial genera belonging to the family Enterobacteriaceae [284] 

identified 56 different clusters and confirmed that, although tail morphology has been 

shown not to be the best indicator of relatedness [285,286], these three phages are 

indeed in very different groups.  

P22 belongs to the lambda supercluster of temperate phages which includes 81 different 

phages. A virulent version of P22 called P22 H5 carrying a mutation in the c2 gene 

[287] was used in some of our experiments. 

9NA constitutes the prototype phage of an isolated cluster which no close relatives. It 

forms clear plates with no indication of a lysogenic lifestyle [288]. 

Det7 is also lytic [289] and belongs to the Vi01-like cluster which is distantly related to 

T4 [284,290]. 

Clustering of the bacteriophages also showed a correlation with genome size and 

lifestyle. Again, the three phages were placed in three different groups: small temperate 

phages (P22, 44 Kb), small lytic phages (9NA, 53 Kb) and large phages (Det7, 158 Kb). 

Resistance to bacteriophages can be attained by a variety of mechanisms [291], 

including inhibition of DNA penetration, production of modified restriction 

endonucleases and blockage of the receptor by increased production of the extracellular 

matrix, but the most frequent cause of phage resistance are mutations affecting phage 

receptors [47,291,292]. Resistance to phages comes at a fitness cost, including an 

increased cost of deleterious mutations [293], decreased ability to metabolize carbon 

[294], reduced competitive ability [295], increased susceptibility to other phages [296] 

and reduction in virulence [297,298]. This may explain the adaptive value of phase 

variation in bacterial defense mechanisms [219,220,299]. 
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A previous study from our laboratory showed that STM2209-STM2208 (later renamed 

opvAB), a small locus of unknown function in the genome of Salmonella enterica, was 

derepressed in a Dam– mutant background [300]. Inspection of the region immediately 

upstream of opvAB revealed the existence of an element composed of four GATC sites 

arranged in perfect symmetry. This suggested that Dam might repress these genes 

directly through methylation of these GATC sites. Results obtained in this work pointed 

to a more complex regulation of opvAB: Dam methylation does not simply repress 

opvAB but controls a phase variation mechanism that results in the formation of 

OpvABOFF and OpvABON populations.  

On these grounds, we addressed the study of this locus with the following objectives: 

Objective 1. Characterization of the mechanism of regulation of opvAB by Dam 

methylation. 

Objective 2. Identification of the function of OpvA and OpvB. 

Objective 3. Analysis of the formation of OpvABOFF and OpvABON epigenetic lineages. 
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Bacterial strains and strain construction 

The strains of Salmonella enterica used in this study (Table M1) belong to serovar 

Typhimurium, and derive from ATCC 14028. For simplicity, S. enterica serovar 

Typhimurium ATCC 14028 is often abbreviated as S. enterica.  

Escherichia coli BTH101 (F– cya-99 araD139 galE15 galK16 rpsL1(Strr) hsdR2 mcrA1 

mcrB1) was used for bacterial two-hybrid assays. Escherichia coli CC118 λ pir 

[phoA20 thi-1 rspE rpoB argE (Am) recA1 (λ pir)] and E. coli S17-1 λ pir [recA pro 

hsdR RP4-2-Tc::Mu-Km::Tn7 (λ pir)] were used for directed construction of point 

mutations. Escherichia coli M15 [pREP4] (Qiagen, Valencia, CA) was used for 6xHis-

OxyRC199S production.  

Bertani's lysogeny broth (LB) was used as standard liquid medium. Solid LB contained 

agar at 1.5% final concentration. Green plates [301] contained methyl blue (Sigma-

Aldrich, St. Louis, MO) instead of aniline blue. The indicator for monitoring β-

galactosidase activity in plate tests was 5-bromo-4-chloro-3-indolyl-β-D-

galactopyranoside (X-gal; Sigma-Aldrich, 40 µg/ml). Antibiotics were used at the 

concentrations described previously [302]. To grow oxyR strains on LB agar, 75 µl of a 

10 mg/ml catalase solution (Sigma-Aldrich, St. Louis, MO) were spread on the surface 

of the plates.  

 

Table M1. Basic strains of Salmonella enterica used in this study. Additional strains were constructed 

by introducing point mutations in some of these backgrounds. 

Strain name Genotype 
ATCC 14028 wild type 

SV4536 ∆dam-230 

SV5573 opvB::3xFLAG 

SV5574 ∆dam-230 opvB::3xFLAG 

SV5675 ∆opvB 

SV5676 opvA::lac (transcriptional) 

SV5677 opvB::lac (transcriptional) 

SV5679 opvB::lac (translational) 

SV5680 ∆dam-230 opvA::lac (transcriptional) 

SV5681 ∆dam-230 opvB::lac (transcriptional) 

SV5683 ∆dam-230 opvB::lac (translational) 

SV5734 opvA::lac (translational) 

37 
 



Materials and methods 
 

SV5735 ∆dam-230 opvA::lac (translational) 

SV5812 opvA::3xFLAG 

SV5813 ∆dam-230 opvA::3xFLAG 

SV5925 ∆oxyR::Cmr 

SV5989 ∆oxyR::Cmr opvB::lac (translational) 

SV5990 ∆dam-230 ∆oxyR::Cmr opvB::lac (translational) 

SV6001 ∆oxyR::Cmr opvB::3xFLAG 

SV6002 ∆dam-230 ∆oxyR::Cmr opvB::3xFLAG 

SV6004 ∆oxyR::Cmr opvA::3xFLAG 

SV6005 ∆dam-230 ∆oxyR::Cmr opvA::3xFLAG 

SV6013 ∆opvAB 

SV6397 oxyRC199S 

SV6401 OpvABON (mut. GATC) 

SV6727 opvAB::gfp 

SV6728 ∆dam-230 opvAB::gfp 

SV6786 ∆wzzST 

SV6791 ∆wzzfepE 

SV6796 ∆wzzST ∆wzzfepE 

SV6815 seqA::Tn10 opvB::lac (translational) 

SV7031 mut. GATC opvB::lac (translational) 

SV7032 ∆dam-230 mut. GATC opvB::lac (translational) 

SV7232 ∆oxyR::Cmr mut. GATC opvB::lac (translational) 

SV7233 ∆dam-230 ∆oxyR::Cmr mut. GATC opvB::lac (translational) 

SV7406 ∆oxyR 

SV7643 opvB::mCherry 

SV7645 opvB::mCherryON 

SV7874 seqA::Tn10 opvAB::gfp 

SV8020 ∆opvA 

SV8117 OpvBON (∆opvA) 

SV8118 OpvAON (∆opvB) 

SV8153 OpvBON ∆wzzST (∆opvA) 

SV8154 OpvBON ∆wzzfepE (∆opvA) 

SV8155 OpvBON ∆wzzST ∆wzzfepE (∆opvA) 

SV8488 ∆hupA opvAB::gfp 

SV8489 ∆hupB::Kmr opvAB::gfp 

SV8490 ∆hupA ∆hupB::Kmr opvAB::gfp 

SV8491 ∆hupA opvB::lac (translational) 

SV8492 ∆hupB::Cmr opvB::lac (translational) 

SV8493 ∆hupA ∆hupB::CmR opvB::lac (translational) 

 

The oligonucleotides used in this study are listed in Table M2. Targeted gene 

disruption was achieved using plasmids pKD3, pKD4 and pKD13 [303] and 

oligonucleotides PS1, PS2 or PS4. Verification of the constructs was achieved using 

oligonucleotides E1 and E2. Antibiotic resistance cassettes introduced during strain 
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construction were excised by recombination with plasmid pCP20 [303]. For the 

construction of transcriptional and translational lac fusions in the Salmonella 

chromosome, FRT sites generated by excision of Kmr cassettes were used to integrate 

plasmids pCE36, pCE37 or pCE40 [304]. Addition of 3xFLAG tag to protein-coding 

DNA sequences was carried out using plasmid pSUB11 as a template [305] and 

oligonucleotides F2209-5 + F2209-3 (for opvA), and F2208-5 + F2208-3 (for opvB).  

 

Table M2. List of oligonucleotides used in this work. 

Oligonucleotide name Sequence (5’→3’) 
2208mut1DIRnuevo gaaccgtcacataaaacaaaaaccatcaattttatttatatgatag 

2208mut1INVnuevo ctatcatataaataaaattgatggtttttgttttatgtgacggttc 

2208mut23DIRnuevo gaggaattttcatcgattttaattatttataaccatcgatatcatg 

2208mut23INVnuevo catgatatcgatggttataaataattaaaatcgatgaaaattcctc 

2208mut2DIRnuevo gaggaattttcatcgattttaattatttataacgatcgatatcatg 

2208mut2INVnuevo catgatatcgatcgttataaataattaaaatcgatgaaaattcctc 

2208mut3DIRnuevo gaggaattttgatcgattttaattatttataaccatcgatatcatg 

2208mut3INVnuevo catgatatcgatggttataaataattaaaatcgatcaaaattcctc 

2208mut4DIRnuevo ctatcattgatgtatttacccatcgatataaccagtgtgaatgtattg 

2208mut4INVnuevo caatacattcacactggttatatcgatgggtaaatacatcaatgatag 

Clo2208-3 agtcgagctcccatcatcgatataccatgc 

Clo2208-5 cgactctagactgatcatgatgacgtccac 

ClooxyR-3 tttttctagataacgccttgtcgaaatggc 

ClooxyR-5 ttttgagctcgaatatctggtggcgttagc 

delGATC-PS1 ccccgttggtgcctgaacgtgtaccgaatgaaccgtcacagtgtaggctggagctgcttc 

delGATC-PS2 agaattcgagtattttaaaggaaaataacaatacattcaccatatgaatatcctccttag 

deloxyR199-PS1 ccgatctggcgggcgagaaattgctgatgctggaagatgggtgtaggctggagctgcttc 

deloxyR199-PS2 tccgctcccgcttcaaaacagaaccccatcgcctgatcgccatatgaatatcctccttag 

envR-For-Dnase atcattcaacgtcgtgttgg 

envR-Rev-Dnase ttattttgggatggggttca 

F2208-3 ttcgacacatttcagcgcagagtttatctctgcgcaatgtcatatgaatatcctccttag 

F2208-5 agaatatcgtattgagaaaaagacaatgaatgaccgcgcagactacaaagaccatgacgg 

F2209-3 aacgtcgactaaatcaatttcactattttctccccgcattcatatgaatatcctccttag 

F2209-5 ttcagtattcgggttgactattagcgttttaaaagggatggactacaaagaccatgacgg 

FAMGATClargo-3 ttctccccgcatttcacatc 

FAMGATClargo-5 FAM-accttaccatgagctatgcc 

FAMGATClargoconFAM-3 FAM-ttctccccgcatttcacatc 

fepE3-PS1 atcgccagcgcgttttccattttacgcgagaccatcgcgtgtgtaggctggagctgcttc 

fepE5-PS4 acaagaaaaaaatcagtcatttgcaggttattcactgccgattccggggatccgtcgacc 

fepE-E1 aaactatcgggcccatcatc 

fepE-E2 tcctgcatgacctgaatcag 

HindIII-opvB-mCherry-5 gctaagcttagaatatcgtattgagaaaaagacaatgaatgaccgcgcaatggtgagcaagggcgagga 

His-oxyR-BamHI-5 aaaaggatccatgaatattcgtgatcttgaatatctggtg 

His-oxyR-SalI-3 aaaagtcgacttaaaccgcctgttttaacgc 

39 
 



Materials and methods 
 

hupA-E1 ttgtcgtgccataaggcttc 

hupA-E2 ttatgactgcaggcagtcag 

hupA-PS1-5 cgatgcttagcaagcgataaacacattgtaaggataacttgtgtaggctggagctgcttc 

hupA-PS2-3 tgatgagccccttcgataaaactgttcacagttatgcgtccatatgaatatcctccttag 

hupB-E1 gcattgaggaagttctgacg 

hupB-E2 atagagacttcacgcgcatc 

hupB-PS1-5 ggattcaggtgcgatataaattataaagaggaagagaagagtgtaggctggagctgcttc 

hupB-PS2-3 gcgcccttgtactttgtcacatcccccgaggggataacgccatatgaatatcctccttag 

KpnI-opvA-plasmidoGFP-3 ttttggtacccatcccttttaaaacgctaa 

KpnI-opvA-plasmidoGFP-5 ttttggtaccctgatcatgatgacgtccac 

mCherry tgatggccatgttatcctcc 

NdeI-opvB-mCherry-3 cgacatatgtttgacacatttcagtgcagagtttatctctgcgcaatgtagtcacgacgttgtaaaacg 

ompA-RT-Dir tgtaagcgtcagaaccgatacg 

ompA-RT-Rev gagcaacctggatccgaaag 

oxyR3-PS1 gtacgacgcggctccggcttaatgcatggcagataaaccagtgtaggctggagctgcttc 

oxyR3-PS2 gtacgacgcggctccggcttaatgcatggcagataaaccacatatgaatatcctccttag 

oxyR5-PS1 actgcgtgaggtcaaggtgctcaaggagatggcaagccaagtgtaggctggagctgcttc 

oxyR5-PS4 actgcgtgaggtcaaggtgctcaaggagatggcaagccaaattccggggatccgtcgacc 

OxyRBDIR gaggaattttgatcgattttaactatttataacgatcgatatc 

OxyRBINV gatatcgatcgttataaatagttaaaatcgatcaaaattcctc 

oxyRC199SDIR ggaagatggccactctctgcgcgatcagg 

oxyRC199SINV cctgatcgcgcagagagtggccatcttcc 
OxyRDDIR gtatttaccgatcgatataacctatgtgaatgtattgttattttc 

OxyRDINV gaaaataacaatacattcacataggttatatcgatcggtaaatac 

oxyR-E1 ggttaaacgagaaaccgctc 

oxyR-E2 cacctttaactacccaacc 

PE2208 cgacggatccaaggaaacgtcgactaaatc 

PE2209 cgacggatccctgcgaacgtatatttcttc 

PE5 attaggatccagccttgtcttcggaatgtc 

pKT25-seq3 ctgcaaggcgattaagttgg 

pKT25-seq5 ttatgccgcatctgtccaac 

pKT25-STM2208-PstI-5 aactgcagggatgcggggagaaaatagtg 

pKT25-STM2209-BamHI-3 cgggatcctcacatcccttttaaaacg 

pKT25-STM2209-PstI-5 aactgcagggatgaagaaatatacgttcg 

pUT18C-STM2208-BamHI-3 cgggatcctcatgcgcggtcattcattg 

pUT18C-STM2208-PstI-5 aactgcaggatgcggggagaaaatagtg 

pUT18C-STM2209-PstI-5 aactgcaggatgaagaaatatacgttcg 

RT2208-3 agctttgcatatgtttccgtttg 

RT2208-5 aatggcggcatggtatatcg 

RT2209-3 gctaatagtcaacccgaatac 

RT2209-5 gaagaaatatacgttcgcagc 

seqGATC-5 ccttaccatgagctatgcc 

STM2208-E1 aatatacgttcgcagccagg 

STM2208-E2 ttcgacacatttcagcgcag 

STM2208-PS1 gcgcggtcattcattgtctttttctcaatacgatattctggtgtaggctggagctgcttc 

STM2208-PS4 gggagaaaatagtgaaattgatttagtcgacgtttccttaattccggggatccgtcgacc 

STM2208stop-GFP-3 acttttactcttcgacacatttcagcgcagagtttatctctgcgcaatgtttatcacttattcaggcgta 

STM2208stop-GFP-5 cgctaacagaatatcgtattgagaaaaagacaatgaatgaccgcgcatgataagaaggagatatacatatgag 

STM2209-E1 ttaccgatcgatataaccag 
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STM2209-E2 ttgtatcatgctgcacgctc 

STM2209-PS1 tttcactattttctccccgcatttcacatcccttttaaaagtgtaggctggagctgcttc 

STM2209-PS4bis gttgctttttgttatttcagtattcgggttgactattagcattccggggatccgtcgacc 

STM2209-PS4tris aattcttatgtgtgggttttatcttatgaagaaatatacgattccggggatccgtcgacc 

wzzB3-PS1 tagctacgtagcgcattgcgtcccagcacaatcccggcacgtgtaggctggagctgcttc 

wzzB5-PS4 gtcttccgggcgtgggaacgatccggaacagattgatttgattccggggatccgtcgacc 

wzzB-E1 agagtggctccgataacttc 

wzzB-E2 atcaactggagcagctactg 

 

For the construction of strain SV7643 (opvB::mCherry), a fragment containing the 

promoterless mCherry gene and the kanamycin resistance cassette was PCR-amplified 

from pDOC-R, an mCherry-containing derivative of plasmid pDOC [306] using primers 

HindIII-opvB-mCherry-5 and NdeI-opvB-mCherry-3. The construct was integrated into 

the chromosome of S. enterica using the Lambda Red recombination system [303]. For 

the construction of strain SV6727 (opvAB::gfp), a fragment containing the promoterless 

green fluorescent protein (gfp) gene and the chloramphenicol resistance cassette was 

PCR-amplified from pZEP07 [307] using primers STM2208stop-GFP-5 and 

STM2208stop-GFP-3. The fragment was integrated into the chromosome of S. enterica 

using the Lambda Red recombination system [303]. An opvB::gfp transcriptional fusion 

was formed downstream of the opvB stop codon, and the strain remained OpvAB+. For 

the construction of strains SV7645, SV8117, and SV8118, plasmid pKD46 was 

introduced in SV6401, and the PCR products used for construction of strains SV7643, 

SV8020 and SV5675 were integrated into the chromosome of SV6401 using the 

Lambda Red recombination system [303]. 

Transductional crosses using phage P22 HT 105/1 int201 ([308] and G. Roberts, 

unpublished data) were used for construction of strains with altered chromosomal 

markers. The transduction protocol has been described elsewhere [309]. To obtain 

phage-free isolates, transductants were purified by streaking on green plates. Phage 

sensitivity was tested by cross-streaking with the clear-plaque mutant P22 H5.  
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Plasmids 

Plasmids constructed for this study are listed in Table M3. 

DNA fragments were amplified using oligonucleotides pairs PE5 + PE2209 and PE5 + 

PE2208. The resulting PCR fragments were cloned onto the pGEM-T plasmid 

(Promega, Madison, WI) to obtain plasmids pIZ1758 and pIZ1759, respectively. 

 For construction of pIZ1885, a DNA fragment containing oxyRC199S was amplified 

using oligonucleotides His-oxyR-BamHI-5 and His-oxyR-SalI-3, and cloned into pQE30 

(Qiagen, Valencia, CA) using the BamHI and SalI sites.  

The opvA and opvB genes were PCR amplified using oligonucleotides pKT25-

STM2209-PstI-5 + pKT25-STM2209-BamHI-3 (pIZ1812), pUT18C-STM2208-PstI-5 + 

pUT18C-STM2208-BamHI-3 (pIZ1905), pUT18C-STM2209-PstI-5 + pKT25-STM2209-

BamHI-3 (pIZ1906), pKT25-STM2208-PstI-5 + pUT18C-STM2208-BamHI-3 

(pIZ1907), and cloned onto plasmids pUT18C and pKT25 using the PstI and BamHI 

sites. Recombinant plasmids carrying opvA and opvB were sequenced using 

oligonucleotides pKT25-seq5 and pKT25-seq3. 

For construction of the plasmid pIZ2011, a DNA fragment containing opvA and the 

native opvAB promoter was PCR-amplified using primers KpnI-opvA-plasmidoGFP-5 + 

KpnI-opvA-plasmidoGFP-3). The amplification product was cloned into pDOC-R 

[306]. The resulting plasmid produces an OpvA-mCherry fusion protein. 

Plasmid pTP166 [310] was kindly provided by Martin G. Marinus, University of 

Massachusetts, Worcester, MA. 

Table M3. List of plasmids constructed for this study. 

Plasmid name Description 
pIZ1758 pGEM-T::[PE5-PE2209] 

pIZ1759 pGEM-T::[PE5-PE2208] 

pIZ1812 pKT25::opvA 

pIZ1885 pQE30::oxyRC199S 

pIZ1905 pUT18C::opvB 

pIZ1906 pUTC18C::opvA 

pIZ1907 pKT25::opvB 

pIZ2011 pDOC-R::opvA 
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Bacteriophages 

Bacteriophages 9NA [288,311] and Det7 [31,289] were kindly provided by Sherwood 

Casjens, University of Utah, Salt Lake City. Bacteriophage P22 H5 is a virulent 

derivative of bacteriophage P22 that carries a mutation in the c2 gene [287], and was 

kindly provided by John R. Roth, University of California, Davis. For simplicity, P22 

H5 is abbreviated as P22 throughout the text.  

 

RNA extraction 

RNA was extracted from S. enterica stationary phase cultures (O.D.600 ~3), using the 

SV total RNA isolation system (Promega, Madison, WI) as described at 

http://www.ifr.ac.uk/safety/microarrays/protocols.html. The quantity and quality of the 

extracted RNA were determined using an ND-1000 spectrophotometer (NanoDrop 

Technologies, Thermo Scientific, Waltham, MA). To diminish genomic DNA 

contamination, the preparation was treated with DNase I (Turbo DNA free; Applied 

Biosystems, Foster City, CA). 

 

Quantitative reverse transcriptase PCR and calculation of relative 

expression levels 

An aliquot of 0.6 µg of DNase I-treated RNA was used for complementary DNA 

(cDNA) synthesis using the High-Capacity cDNA Archive kit (Applied Biosystems, 

Foster City, CA). Quantitative reverse transcriptase (RT)-PCR reactions were 

performed in an Applied Biosystems 7500 Fast Real-Time PCR System. Each reaction 

was carried out in a total volume of 25 µl on a 96-well optical reaction plate (Applied 

Biosystems, Foster City, CA) containing 12.5 µl Power SYBR Green PCR Master Mix 

(Applied Biosystems, Foster City, CA), 11.5 µl cDNA (1/10 dilution), and two gene-

specific primers (RT2209-5 + RT2209-3 for opvA, RT2208-5 + RT2208-3 for opvB) at a 

final concentration of 0.2 µM each. Real-time cycling conditions were as follows: (i) 

95ºC for 10 min and (ii) 40 cycles at 95ºC for 15 sec, and 60ºC for 1 min. A no-template 

control was included for each primer set. Melting curve analysis verified that each 

reaction contained a single PCR product. Gene expression levels were normalized to 
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transcripts of ompA, a housekeeping gene that served as an internal control, using 

oligonucleotides ompA-RT-Dir and opmA-RT-Rev.  

 

β-galactosidase assays 

Levels of β-galactosidase activity were assayed as described previously [312], using the 

CHCl3-sodium dodecyl sulfate permeabilization procedure.  

 

Protein extracts and Western blotting analysis 

Total protein extracts were prepared from bacterial cultures grown at 37ºC in LB 

medium until stationary phase (O.D.600 ~3). A volume containing ~2.5 x 108 cells were 

collected by centrifugation and suspended in 50 µl of Laemmli sample buffer [1.3% 

SDS, 10% (v/v) glycerol, 50 mM Tris-HCl, 1.8% β-mercaptoethanol, 0.02% 

bromophenol blue, pH 6.8]. Proteins were resolved by Tris-Glycine-PAGE using 12% 

gels (for OpvB) or Tris-Tricine-PAGE 15% gels (for OpvA). Conditions for protein 

transfer have been described elsewhere [155]. Primary antibodies were anti-Flag M2 

monoclonal antibody (1:5,000, Sigma-Aldrich, St. Louis, MO) and anti-GroEL 

polyclonal antibody (1:20,000; Sigma-Aldrich, St. Louis, MO). Goat anti-mouse 

horseradish peroxidase-conjugated antibody (1:5,000; Bio-Rad, Hercules, CA) or goat 

anti-rabbit horseradish peroxidase-conjugated antibody (1:20,000; Santa Cruz 

Biotechnology, Santa Cruz, CA) was used as secondary antibody. Proteins recognized 

by the antibodies were visualized by chemoluminescence using the luciferin–luminol 

reagents of Supersignal West Pico Chemiluminiscent Substrate (Thermo Scientific, 

Waltham, MA) and developed in a LAS3000 mini system (Fujifilm, Tokyo, Japan). 

 

Subcellular fractionation 

Subcellular fractionation was performed as previously described [313], with some 

modifications. Briefly, bacteria were grown in LB medium at 37ºC and spun down by 

centrifugation at 15,000 x g for 5 min at 4ºC, then resuspended twice in cold phosphate-

buffered saline (PBS, pH 7.4). The bacterial suspension was either mixed with Laemmli 
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buffer (total protein extract) or disrupted by sonication. Unbroken cells were further 

removed by low-speed centrifugation (5,000 x g, 5 min, 4ºC). The supernatant was 

centrifuged at high speed (100,000 x g, 30 min, 4ºC) and the new supernatant was 

recovered as the cytosol fraction. The pellet containing envelope material was 

suspended in PBS with 0.4% Triton X-100 and incubated for 2 h at 4ºC. The sample 

was centrifuged again (100,000 x g, 30 min, 4ºC) and divided into the supernatant 

containing mostly inner membrane proteins and the insoluble fraction corresponding to 

the outer membrane fraction. An appropiate volume of Laemmli buffer was added to 

each fraction. After heating (100ºC, 5 min) and clearing by centrifugation (15,000 x g, 5 

min, room temperature), the samples were analyzed for protein content by SDS-PAGE. 

 

Primer extension 

The oligonucleotides PE2209 and PE2208, complementary to internal regions of the 

genes opvA and opvB respectively, were end-labeled with [32P]ATP and annealed to 10 

µg of total RNA prepared from S. enterica strains bearing plasmids pIZ1758  and 

pIZ1759. The end-labeled primer was extended with avian myeloblastosis virus reverse 

transcriptase (Boehringer Mannheim, Mannheim, Germany) under conditions described 

previously [314]. The products of reverse transcription were analyzed in urea-

polyacrylamide gels and visualized using a FLA-5100 Imaging system (Fujifilm, 

Tokyo, Japan). 

 

Directed construction of point mutations 

Mutation of GATC sites within the opvAB regulatory region was achieved using the 

QuikChange® Site-Directed Mutagenesis Kit (Stratagene, La Jolla, CA). Briefly, a ~1.3 

Kb fragment of the opvAB region containing the 4 GATC sites was cloned into the 

pGEM-T plasmid using the oligonucleotides Clo2208-5 and Clo-2208-3. Mutations in 

every GATC were then introduced using oligonucleotides harboring CATC changes 

(labeled as DIRnuevo and INVnuevo). The resulting plasmids containing the fragment 

with one or more CATC sites was then digested with XbaI and SacI, cloned onto the 

suicide plasmid pDMS197 [307] and propagated in E. coli CC118 λ pir. Plasmids 
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derived from pMDS197 were transformed into E. coli S17-1 λ pir. The resulting strains 

were used as donors in matings with S. enterica ATCC 14028 harboring a Cmr cassette 

from pKD3 in place of the 4 GATC sites (constructed using oligonucleotides delGATC-

PS1 and delGATC-PS2) as recipients. Antibiotic resistance cassettes from pKD3 and 

pKD4 were also introduced in opvB::lac and opvAB::gfp backgrounds. The resulting 

strains were used as intermediates in the construction of point mutations. Tcr 

transconjugants were selected on E plates supplemented with tetracycline. Several Tcr 

transconjugants were grown in nutrient broth (beef extract, 5 g/l, peptone, 5 g/l) and 

plated in plates containing nutrient broth supplemented with 5% sucrose. Individual 

tetracycline-sensitive segregants were then screened for cloramphenicol or kanamycin 

sensitivity and examined for the incorporation of the mutant allelle by Sau3AI digestion 

and DNA sequencing using external oligonucleotides. Mutation of OxyR binding sites 

was achieved in the same way using primers labelled OxyRB and OxyRD.  

Construction of the oxyRC199S mutation was achieved with the same protocol, using the 

oligonucleotides ClooxyR-5 and ClooxyR-3 for cloning onto pGEM-T, and the 

oligonucleotides oxyRC199SDIR and oxyRC199SINV for site-directed mutagenesis. A 

strain with an antibiotic resistance cassette in place of the oxyR gene (constructed using 

oligonucleotides deloxyR199-PS1 and deloxyR199-PS2) was used as a recipient in this 

case. 

 

Measurement of the efficiency of phage adsorption 

The efficiency of phage adsorption was calculated as described by Gabig et al. [315]. 

Briefly, P22 bacteriophages were added to S. enterica cells from an LB liquid overnight 

culture at a multiplicity of infection of 0.1, and the mixture was incubated at 37ºC. 

Samples were taken every 2 min, centrifuged for 1 min at 15,000 x g, and the 

supernatant was titrated on the S. enterica wild type strain ATCC 14028. The sample 

obtained at time zero (a sample taken immediately after addition of bacteriophages to 

the cell suspension) was considered to correspond to 100% unadsorbed phages, and the 

remaining numbers were calculated relative to this. 
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Electrophoretic visualization of lipopolysaccharide profiles 

To investigate LPS profiles, bacterial cultures were grown in LB overnight. Bacterial 

cells were harvested and washed with 0.9% NaCl. The O.D.600 of the washed bacterial 

suspension was measured to calculate cell concentration. A bacterial mass containing 

about 3 x 108 cells was pelleted by centrifugation. Treatments applied to the bacterial 

pellet, electrophoresis of crude bacterial extracts, and silver staining procedures were 

performed as described by Buendía-Clavería et al. [316]. 

 

Calculation of phase transition frequencies 

Phase transition rates were estimated as described by Eisenstein [317]. Briefly, a strain 

harboring an opvB::lac fusion was plated on LB + X-gal. After 16 h growth at 37ºC, 

colonies displaying ON and OFF phenotypes were chosen, resuspended in PBS and 

respread on new plates. Phase transition frequencies were calculated using the formula 

(M/N)/g where M is the number of cells that underwent a phase transition, N the total 

number of cells scored, and g the total number of generations that gave rise to the 

colony. 

 

Macrophage infection experiments 

The rate of intramacrophage replication after 18 h infection was performed in J774 

mouse macrophages as described previously [318]. Briefly, macrophages were seeded at 

a density of 5 x 105 in 24-well plates and grown in DMEM medium supplemented with 

10% (v/v) fetal bovine serum at 37°C, 5% CO2. Bacteria were added to the wells at 

macrophage-to-bacteria ratio of 0.1. Phagocytosis was allowed to proceed for 30 min 

before washing three times with PBS and adding fresh DMEM media supplemented 

with 20 µg/ml gentamicin. Macrophages were lysed by using 1% Triton X-100, and the 

number of viable bacteria that survived the gentamicin treatment was determined by 

subsequent plating onto LB agar plates. The replication rate was determined as the ratio 

between the number of bacteria at time 18 h and the number of internalized bacteria 

after 30 min phagocytosis.  
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Measurement of survival in serum 

Survival in guinea pig serum (Sigma-Aldrich, St. Louis, MO) was analyzed as described 

elsewhere [45] with some modifications. Briefly, exponential cultures of S. enterica 

were serially diluted in PBS + 2 mM MgCl2 to 2 x 104 c.f.u./ml. Guinea pig serum was 

added to 30% final concentration and the mixtures were incubated at 37ºC without 

shaking. Samples were taken at 30 min intervals by plating on LB agar, and viable 

counts were expressed as a percentage of the initial concentration (% survival).  

 

Bacterial two-hybrid analysis 

The Bacterial Adenylate Cyclase Two-Hybrid (BACTH) system [319] was used to test 

interaction between two membrane proteins. Plasmid pairs pKT25::opvA + 

pUT18C::opvB and pKT25::opvB + pUT18C::opvA (as well as pertinent controls) were 

co-transformed into an E. coli CyaA– strain (BTH101). Transformants were plated on 

LB + ampicillin + kanamycin + X-gal medium at 30°C for 30 h. To quantify the 

interaction between hybrid proteins, bacteria were grown overnight at 30°C in LB + 

ampicillin + kanamycin liquid medium supplemented with 0.5 mM isopropyl-β-D-1-

thiogalactopyranoside (IPTG). β-galactosidase assays were carried out as described 

above. A level of β-galactosidase activity at least five fold higher than that measured for 

vectors alone is considered a positive interaction. 

 

Fluorescence microscopy 

Bacterial cells from 1.5 ml of an exponential culture in LB at 37°C (O.D.600 ~0.15) were 

collected by centrifugation, washed and resuspended in PBS. Cells were fixed in 4% 

formaldehyde solution and incubated at room temperature for 30 minutes. Finally, cells 

were washed, resuspended in PBS, and stored at 4ºC. Images were obtained by using an 

Olympus IX-70 Delta Vision fluorescence microscope (Olympus, Tokyo, Japan) 

equipped with a 100X UPLS Apo objective. Pictures were taken using a CoolSNAP 

HQ/ICX285 camera (Roper Technologies, Sarasota, FL) and analyzed using ImageJ 

software (Wayne Rasband, Research Services Branch, National Institute of Mental 
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Health, MD). Z-stacks (optical sections separated by 0.2 µm) of mCherry fluorescence 

were taken with the same microscope. Maximal intensity projections are shown. 

 

Flow cytometry 

Bacterial cultures were grown at 37ºC in LB or LB + phage (P22 H5, 9NA, or Det7) 

until exponential (O.D.600 ~0.3) or stationary phase (O.D.600 ~4). Cells were then diluted 

in PBS to a final concentration of ~107/ml. Data acquisition and analysis were 

performed using a Cytomics FC500-MPL cytometer (Beckman Coulter, Brea, CA). 

Data were collected for 100,000 events per sample, and were analyzed with CXP and 

FlowJo8.7 software. Data are represented by a dot plot (forward scatter [cell size] vs 

fluorescence intensity [opvAB::gfp expression]). 

 

Bacteriophage challenge 

Overnight cultures were diluted 1:100 in 3 ml LB and grown in aeration by shaking at 

37ºC until they reached an optical density O.D.600 ~0.3. One hundred µl of a 

bacteriophage lysate (P22 H5, 9NA, or Det7) were added (M.O.I. ≥10), and O.D.600 was 

subsequently measured at 1 h intervals. 

 

Virulence assays 

Eight-week-old female BALB/c mice (Charles River Laboratories, Santa Perpetua de 

Mogoda, Spain) were inoculated with pairwise combinations of the wild type, an 

OpvABON strain, and a ∆opvAB strain at a 1:1 ratio. Bacterial cultures were previously 

grown overnight at 37°C in LB without shaking. Oral inoculation was performed by 

feeding the mice with 25 µl of PBS containing 0.1% lactose and 108 bacterial colony-

forming units (c.f.u.). Intraperitoneal inoculation was performed with 104 c.f.u. in 200 

µl of PBS. Bacteria were recovered from the spleen and the liver of infected mice at 2 

days post-infection (intraperitoneal challenge) or 5 days post-infection (oral challenge). 

A competitive index (CI) was calculated as described elsewhere [320]. To permit strain 
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discrimination, ATCC 14208 was tagged with trg::MudJ (Kmr), an allele that is neutral 

for virulence [321]. When necessary, cross-streaking on green plates with P22 H5 was 

used to discriminate phage-resistant isolates [301].  

 

Purification of OxyR protein 

For 6xHis-OxyRC199S purification, plasmid pIZ1885 was transformed into E. coli M15 

[pREP4] (Qiagen, Valencia, CA). M15/pIZ1885 was grown in LB broth containing 

ampicillin, and expression of 6xHis-OxyRC199S was induced with 1 mM IPTG. After 3 h 

of induction, cells were centrifuged and resuspended in 10 ml of lysis buffer (20 mM 

Tris, 300 mM NaCl, 10 mM imidazole) per g of pelleted cells, and were lysed by 

sonication. The suspension was centrifuged at 10,000 x g for 30 min and the supernatant 

containing the soluble fraction of 6xHis-OxyRC199S was transferred to a HisTrap HP 

nickel affinity chromatography column (GE Healthcare, Wauwatosa, WI). The column 

was washed with 4 ml of lysis buffer, 4 ml of washing buffer (20 mM Tris, 300 mM 

NaCl, 30 mM imidazole) and 4 ml of the same buffer with 50 mM imidazole. Protein 

elution was performed with 3 ml of elution buffer (20 mM Tris, 300 mM NaCl, 300 

mM imidazole). Elution fractions enriched in 6xHis-OxyRC199S were selected and 

combined. Imidazole was removed by transferring to an Amicon® ultra centrifugal filter 

(Merck Millipore, Darmstadt, Germany) and washing with storage buffer (20 mM Tris, 

300 mM NaCl, 10% glycerol) or by dialyzing in cellulose membranes (Sigma-Aldrich, 

St. Louis, MO). 6xHis-OxyRC199S was either used immediately or frozen in liquid 

nitrogen and stored at -80ºC. 

 

Gel mobility shift assay 

A DNA fragment containing predicted OxyR binding sites in the opvAB regulatory 

region and labelled with 6-carboxyfluorescein (6-FAM) was prepared by PCR 

amplification using primers FAMGATClargo-5 and FAMGATClargo-3. The PCR 

product was purified with the Wizard® SV Clean-Up System (Promega, Madison, WI). 

The envR control fragment was prepared using primers envR-For-Dnase and envR-Rev-

Dnase [322], and was kindly provided by Elena Espinosa. Thirty five ng were used for 
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each reaction. The FAM-labelled probe was incubated at room temperature for 30 min 

with increasing concentrations of purified 6xHis-OxyRC199S in a final volume of 20 µl 

with 1x OxyR binding buffer [25 mM Tris-HCl pH 7.5, 50 mM KCl, 5 mM MgCl2, 5% 

glycerol, 50 µg/ml bovine serum albumin (BSA), 1 mM DTT, 1 µg/ml poly(dI-dC)]. 

Protein-DNA complexes were subjected to electrophoresis at 4ºC in a 5% non-

denaturing polyacrylamide gel in Tris-glycine-EDTA buffer (25 mM Tris-HCl pH 7.5, 

380 mM glycine, 1.5 mM EDTA). The gel was then analysed in a FLA-5100 Scanner 

(Fujifilm, Tokyo, Japan). 

 

DNA methylation in vitro 

PCR fragments were methylated in vitro using Dam methylase (New England Biolabs, 

Ipswich, MA) according to the manufacturer’s instructions and subsequently digested 

with MboI (New England Biolabs). The undigested product was purified using the 

Wizard® SV Clean-Up system (Promega, Madison, WI).  

 

DNase I footprinting 

DNA probes containing the opvAB promoter and the upstream regulatory region, 

labelled with 6-carboxyfluorescein (6-FAM) at the opposite ends, were prepared by 

PCR amplification using the primer pairs FAMGATClargo-5 + FAMGATClargo-3 and 

seqGATC-5 + FAMGATClargoconFAM-3. Dam-methylated versions of the probes were 

prepared as described above. DNase I footprinting was performed as described 

elsewhere [323] with minor modifications. DNase I footprinting reactions were 

performed in 15 µl reaction volumes containing 1x OxyR binding buffer and 2 µM 

6xHis-OxyRC199S. The binding reaction was allowed to equilibrate at room temperature 

for 30 min. One µl (0.05 units) of DNase I (Roche Farma, Barcelona, Spain) was then 

added, mixed gently and incubated at room temperature for 5 min. The reaction was 

stopped by addition of 2 µl EDTA 100 mM followed by vigorous vortexing and thermal 

denaturation at 95ºC for 10 min. Digestion products were desalted using MicroSpin G-

25 columns (GE Healthcare, Wauwatosa, WI) and analysed on an ABI 3730 DNA 
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Analyzer along with GeneScan 500-LIZ size standards (Applied Biosystems, Foster 

City, CA). 

 

SMRT sequencing 

Cultures of S. enterica were enriched in OpvABON cells if needed. SMRTbell™ 

template libraries were prepared according to the instructions from Pacific Biosciences 

(Menlo Park, CA), following the procedure and checklist for 1 kb template preparation 

and sequencing. Briefly, for preparation of 600 base pair libraries, 4 µg of genomic 

DNA were sheared in microTubes using adaptive focused acoustics (Covaris, Woburn, 

MA). Size range was monitored on an Agilent 2100 Bioanalyzer f (Agilent 

Technologies, Santa Clara, CA). DNAs were end-repaired and ligated to hairpin 

adapters applying components from the DNA/Polymerase Binding Kit 2.0 from Pacific 

Biosciences. Reactions were carried out according to the manufacturer´s instructions. 

SMRTbell™ templates were exonuclease-treated for removal of incomplete reaction 

products. A mixture of exonuclease III and exonuclease VII (Affymetrix, High 

Wycombe, UK) was utilized. Conditions for annealing of sequencing primers and 

binding of polymerase to purified SMRTbell™ templates were assessed with the 

Calculator in RS Remote, Pacific Biosciences. Six movies were taken for both states on 

the PacBio RSII (Pacific Biosciences, Menlo Park, CA) using P4-C2 chemistry at 2 h 

collection time.  Secondly, stationary phase cultures were enriched for OpvABON cells 

and libraries were prepared as given above. In this case five movies were taken using 

P4-C2 chemistry at 3 h collection time.  

Resulting data were mapped to the complete genome sequence (GenBank accession 

number CP001363.1) of Salmonella enterica subsp. enterica serovar Typhimurium 

strain ATCC 14028, using the BLASR algorithm (PMID 22988817) as implemented in 

Pacific Biosciences’ SMRT Portal 2.1.0 within the 

“RS_Modification_and_Motif_Analysis.1” protocol applying default parameter 

settings. According to the setup of the experiment the secondary analysis jobs were 

named “OpvABOFF” and “OpvABON”. Besides the global methylation pattern, the 

methylation status of four GATC sites upstream of the opvAB operon was inferred using 

SMRT View investigating the chromosomal positions 2,361,489 and 2,361,490 
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(GATC1), 2,361,439 and 2,361,440 (GATC2), 2,361,416 and 2,361,417 (GATC3) and 

2,361,366 and 2,361,367 (GATC4). 

 

Southern blot 

Genomic DNA was isolated by phenol extraction and ethanol precipitation from 

stationary cultures in LB (O.D.600 ~4). Sixteen µg of each DNA sample were digested 

with HaeIII and AccI (New England Biolabs, Ipswich, MA), purified and divided into 

four fractions, three of which were subsequently digested with DpnI, MboI or Sau3AI 

(New England Biolabs). After digestion the samples were run in a 2% TAE-agarose gel 

at 100 V for 2 hours. After electrophoresis, the DNA was denatured by treatment of the 

gel in acid conditions (0.25 M HCl, two washes 15 min each), followed by 

alkalinization (0.5 M NaOH, 1.5 M NaCl) and neutralization (0.5 M Tris, 1.5 M NaCl, 

pH 7.5; two washes, 30 min each). The gel was then washed in SSC 10x buffer (1.5 M 

NaCl, 150 mM trisodium citrate, pH 7) and the DNA was transferred by vacuum to an 

Amersham Hybond-N+ membrane (GE Healthcare, Wauwatosa, WI) using a model 785 

Vacuum Blotter (Bio-Rad, Hercules, CA). The DNA in the membrane was then 

immobilized by UV crosslinking. A radioactive probe was prepared by PCR using 

dCTP [α-32P] (Perkin Elmer, Waltham, MA) and oligonucleotides 2208mut1DIRnuevo 

and 2208mut4INVnuevo. After  the PCR reaction, non-incorporated nucleotides were 

removed by treatment in a Sephadex G-25 column (illustra MicroSpin G-25 columns, 

GE Healthcare, Wauwatosa, WI) following manufacturer’s instructions. Prior to 

hybridization the double-stranded DNA probe was denatured by heating at 95ºC for 3 

min, followed by incubation on ice. Hybridization with the probe was performed 

overnight at 42ºC in hybridization buffer (0.5 M sodium phosphate pH 7.2, 10 mM 

EDTA, 7% SDS). Excess probe was removed with washing buffer (40 mM sodium 

phosphate pH 7.2, 1% SDS) at 38ºC (three washes, 30 min each). The membrane was 

developed using a FLA-5100 Scanner (Fujifilm, Tokyo, Japan). 
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Statistical analysis 

The Student’s t test was used to determine if the differences in our experiments were 

statistically significant. 
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STM2209-STM2208 (opvAB) is a S. enterica-specific locus 

STM2209 and STM2208 are contiguous loci annotated as putative protein-coding genes 

in the chromosome of Salmonella enterica. The STM2209 and STM2208 ORFs are 

conserved in Salmonella enterica serovar Typhimurium strains ATCC 14028, SL1344, 

and LT2 (GenBank accession numbers CP001363.1, FQ312003.1 and AE006468.1, 

respectively), in the vicinity of the sugar transport gene setB [324]. The STM2209 and 

STM2208 ORFs are also conserved in other Salmonella enterica serovars but not in 

Salmonella bongori nor in the genera Escherichia and Shigella. Alignment of the 

predicted amino acid sequences of STM2209 and STM2208 using BLASTP [325] 

detected no obvious homologs of STM2209-STM2208 outside Salmonella enterica. A 

diagram of the chromosome region in Salmonella enterica and related 

Enterobacteriaceae is shown in Figure C1.1.  

 

 

 

Figure C1.1. Diagram of the region containing STM2209-STM2208 on the Salmonella enterica 

chromosome. The homologous regions of Salmonella bongori, E.coli, and Shigella flexneri are also 

shown. The STM2209-STM2208 operon is shown in yellow. Black arrows represent conserved genes. 

White arrows represent non conserved genes. Grey arrows represent genes found at a different 

chromosome location on the S. enterica chromosome. 
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Both STM2209 and STM2208 have low G+C content (37% for STM2209 and 38% for 

STM2208) compared to both the average of the region (53%) and that of the Salmonella 

enterica genome (52%) [326]. Because horizontally acquired genes often have 

distinctive base composition, specifically low G+C content [327,328], these 

observations suggest that STM2209-STM2208 may have been acquired by horizontal 

gene transfer. The organization of the STM2209 and STM2208 ORFs suggests that they 

may be part of a single transcriptional unit: both coding sequences are on the same 

DNA strand, and are separated by only one nucleotide. Genome sequence analysis in 

silico predicts that STM2209 may encode a small peptide of 40 amino acids, while 

STM2208 may be a larger protein product of 221 amino acids. In silico analysis of 

protein structure using the TMHMM transmembrane prediction software [329] predicts 

the existence of one transmembrane domain in STM2209, and two transmembrane 

domains in STM2208 (Figure C1.2). In silico analysis also indicates that STM2208 

shares a domain with proteins belonging to the Wzz superfamily of O-antigen chain 

length regulators. This family includes proteins involved in lipopolysaccharide 

biosynthesis that confer a modal distribution of chain length on the O-antigen 

component of lipopolysaccharide [58]. This domain is also found in bacterial tyrosine 

kinases [330]. Because STM2209-STM2208 was later confirmed to be involved in O-

antigen chain length control and it is subject to phase variation (see below), in the 

course of this work we renamed the STM2209-STM2208 locus as opv (for O-antigen 

phase variation) so that the STM2209 gene is henceforth known as opvA, and the 

STM2208 gene as opvB. 
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Figure C1.2. Prediction of STM2209 (OpvA) and STM2208 (OpvB) transmembrane domains using 

the the TMHMM transmembrane prediction software. Red bars indicate one transmembrane domain 

in STM2209 and two transmembrane domains in STM2208. The x axis indicates amino acid residues. 

 

Expression of the opvAB locus is regulated by Dam methylation 

A previous study showed that opvA and opvB are expressed at higher levels (13 fold for 

opvA and 8 fold for opvB) in a S. enterica Dam– mutant [300]. These observations 

suggested that expression of the putative opvAB transcriptional unit might be repressed 

by Dam methylation. To confirm Dam-dependent regulation, transcriptional and 

translational lac fusions were constructed in both genes. Protein variants tagged with the 

3xFLAG epitope were also constructed. The effect of Dam methylation on opvAB 

expression was monitored by β-galactosidase assays, qRT-PCR, and Western blotting in 

isogenic Dam+ and Dam– strains. Higher level of β-galactosidase activity, higher 

amount of retrotranscribed opvAB mRNA, and increased level of the OpvB-3xFLAG 

product were detected in the Dam– background (Figure C1.3). The OpvA-3xFLAG 

product was easily detected in a Dam– background but was hardly visible in the Dam+ 

background, presumably due the combined effects of its low level of expression and its 

small size. Although the extent of derepression differed slightly depending on the 
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method, expression of opvAB was significantly higher in a Dam– background in all 

experiments. These results confirm that Dam methylation represses opvAB. 

Furthermore, our ability to detect Dam-dependent regulation with both transcriptional 

lac fusions and qRT-PCR suggests that Dam-dependent regulation of opvAB may be 

transcriptional. 

 

 

Figure C1.3. Regulation of opvAB by Dam methylation. A. Levels of opvA and opvB mRNAs, 

measured by qRT-PCR (Dam+: white histograms; Dam–: black histograms). Level of opvA mRNA in 

Dam– background is considered 100%. Values are averages and standard deviations from 7 independent 

experiments. B. β-galactosidase activity of transcriptional opvA::lac and opvB::lac fusions in Dam+ and 

Dam– backgrounds (white and black histograms, respectively). Values are averages and standard 

deviations from 3 independent experiments. C. β-galactosidase activities of translational opvA::lac and 

opvB::lac fusions in Dam+ and Dam– backgrounds (white and black histograms, respectively). Values are 

averages and standard deviations from 3 independent experiments. D. Western blot analysis of OpvA-

3xFLAG and OpvB-3xFLAG proteins in Dam+ and Dam– backgrounds. 
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Characterization of the opvAB transcriptional unit 

To characterize the opvAB transcriptional unit, we mapped the 5' terminus of the 

putative opvAB transcript using primer extension (Figure C1.4). Because opvA and 

opvB are expressed at low levels in Dam+ S. enterica [300], a DNA fragment containing 

the region upstream of opvAB and part of the coding sequence of opvAB was cloned on 

the pGEM-T multicopy vector to obtain higher amounts of transcript(s). The resulting 

plasmids (pIZ1758 and pIZ1759) were introduced in the wild type strain, and two 

primer extension reactions were performed. One reaction was primed by an 

oligonucleotide complementary to opvA (PE2209), and the second reaction by an 

oligonucleotide complementary to opvB (PE2208). Both reactions yielded extension 

products with identical 3’ ends (Figure C1.4), indicating the existence of a single 

transcription initiation site, six nucleotides upstream of the start codon of opvA 

proposed in the XBASE (http://www.xbase.ac.uk/) and NCBI 

(http://www.ncbi.nlm.nih.gov/) databases. A DNA sequence reminiscent of a canonical 

ribosome-binding site is however missing in this putative mRNA organization. For this 

reason, we propose that translation of opvA may be actually initiated at position +25, 10 

nucleotides downstream a putative ribosome binding site (5’ TGTGG 3’). This 

hypothesis is supported by additional evidence: a translational lac fusion constructed 

upstream +25 proved to be non functional: β-galactosidase activity was not detected in a 

Dam– background. Altogether, these observations may indicate that OpvA consists of 

34 amino acids and not 40 amino acids as described in the Salmonella enterica ATCC 

14028 genome annotation. 
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Figure C1.4. Identification of the transcription initiation site of opvAB by primer extension. Putative 

-35 and -10 promoter modules and the +1 site are shown in boldface. The transcription initiation site is 

indicated by an arrow. 

 

In silico analysis of the DNA sequence upstream of the +1 site identified DNA 

sequences with features similar to those of canonical, sigma70-dependent promoters 

[331]: (i) a putative -10 module including the motif 5' TAAAAT 3', which shows 5/6 

matches with the consensus sequence [331]; (ii) a putative spacer, 17 nucleotides long; 

and (iii) a 5' GTGAAT 3' sequence defining a putative -35 module, with 3/6 matches 

with the consensus sequence [331]. We propose that opvA and opvB are co-transcribed 

from this promoter, an hypothesis consistent with the observation that the OpvA and 

OpvB products are co-expressed (Figure C1.3). 

 

Identification of OxyR as a regulator of opvAB 

A genetic screen based on the T-POP3 transposon [332] was used to search for positive 

regulators of opvAB. For this purpose, a Dam– strain carrying a lac translational fusion 

in opvB (SV5683) was used. This strain forms deep blue colonies on LB supplemented 

with X-gal. Isolates carrying T-POP3 insertions were selected on LB + tetracycline + 

64 
 



Chapter I 
 

kanamycin + X-gal, and white colonies were sought. Only a small white colony was 

obtained in the screen. Cloning and sequencing of T-POP3 boundaries indicated that T-

POP3 had inserted in the oxyR gene. OxyR– mutants are severely impaired to form 

colonies on LB plates [333], thus explaining the small colony size of the isolate. 

However, the isolate formed large colonies on LB + catalase, a standard procedure that 

permits colony formation by OxyR– mutants [333]. To confirm that oxyR loss-of-

function abolished opvAB expression in a Dam– background, the oxyR gene was 

disrupted using lambda Red recombineering. The resulting strain (SV5925), which 

carries a null oxyR allele, was used in further experiments. 

Analyses of β-galactosidase activity and Western blotting showed that expression of 

opvAB is virtually abolished in an OxyR– background (Figure C1.5). As above (Figure 

C1.4), high levels of β-galactosidase and of the OpvA-3xFLAG and OpvB-3xFLAG 

products were detected in the Dam– background only. These experiments indicate that 

OxyR is essential for the expression of opvAB. Interestingly, putative OxyR binding 

sites are found in the promoter region of opvAB (see below). 

 

Figure C1.5. Regulation of opvAB expression by Dam methylation and OxyR. A. Effect of an oxyR 

null mutation on the β-galactosidase activity of translational opvA::lac and opvB::lac fusions in Dam+ and 

Dam–backgrounds (white and black histograms, respectively). Values are averages and standard 

deviations from 3 independent experiments. B. Western blot analysis of the effect of an oxyR null 

mutation on the levels of OpvA-3xFLAG and OpvB-3xFLAG proteins in Dam+ and Dam– backgrounds. 
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OxyR is a global transcription factor that can sense oxidative stress by direct oxidation. 

In the oxidized state, OxyR activates the expression of oxidative stress-responding 

genes [84]. However, OxyR also acts as a transcriptional regulator irrespective of its 

oxidation state. In the absence of oxidative stress, OxyR remains mostly in the reduced 

form due to the reducing environment of the cell [91]. Several observations suggested 

that the oxidative state of OxyR is not relevant for opvAB regulation. One was that an 

H2O2 concentration sufficient to promote the expression of genes belonging to the 

classical OxyR regulon (genes activated by oxidative damage) showed no effect on the 

expression of opvAB. Furthermore, the spacing between the half sites in the putative 

OxyR binding sites described below is consistent with specific binding of the reduced 

form of OxyR [90]. To determine the effect of oxidation of OxyR upon opvAB 

expression, we constructed a point mutant version of the oxyR gene (strain SV6397). 

The resulting OxyRC199S protein is locked in the reduced form as it cannot form the 

disulfide bond required for oxidation [90,91]. Dam+ and Dam– strains harboring this 

mutation showed levels of opvAB expression similar to those described above for strains 

carrying the wild type oxyR allele. These observations suggest that oxidation of OxyR is 

not necessary for opvAB expression. 

 

opvAB expression undergoes phase variation under the control of Dam 

methylation and OxyR 

In the course of our experiments with strains carrying opvA::lac or opvB::lac fusions in 

a wild type background, we detected phenotypic heterogeneity when culture aliquots 

were spread on plates containing X-gal. These strains formed white colonies that later 

turned pale blue, indicating low expression of opvA and opvB. However, deep blue 

colonies were also seen, especially on plates that contained high numbers of colonies (e. 

g., ≥ 1,000 colonies). Whenever a blue colony was isolated and streaked out for single 

colonies, a mixture of white and blue colonies was obtained. This observation suggested 

that opvAB expression might undergo phase variation, and that switching from OFF to 

ON might occur at lower frequencies than switching from ON to OFF. 
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Phase variation frequencies in the opvAB locus were calculated using the formula 

(M/N)/g where M is the number of cells that underwent a phase transition, N the total 

number of cells, and g the total number of generations that gave rise to the colony [317]. 

An opvB::lac translational fusion was used for these experiments. The frequency of 

OFF→ON transition was estimated to be (6.1 ± 1.7) x 10-5 per cell and generation. The 

ON→OFF switching rate was around 1,000-fold higher: (3.7 ± 0.1) x 10-2 per cell and 

generation. Phase variation of opvAB expression was also unaffected by the oxidation 

state of OxyR. The OFF→ON transition rate calculated in LB + catalase in an oxyRC199S 

background was (1.4 ± 0.3) x 10-4 compared to (1.2 ± 0.1) x 10-4 in the wild type. The 

ON→OFF transition rate was also virtually identical: (3.2 ± 0.1) x 10-2 compared to (3.0 

± 0.1) x 10-2 in the wild type 

Phase variation was abolished in both Dam– and OxyR– mutants (Figure C1.6). Lack of 

Dam methylation locks opvAB expression in the ON state, and lack of OxyR locks 

opvAB expression in the OFF state. An oxyR mutation is epistatic over a dam mutation, 

an observation that may indicate that activation of opvAB transcription by OxyR is 

Dam-methylation sensitive. However, both Dam methylation and OxyR are needed to 

establish phase-variable expression of opvAB. 

 
 

Figure C1.6. Visual observation of phase variation on LB + X-gal plates in strains carrying an 

opvB::lac fusion in different backgrounds. Strains in the upper row are SV5679 (Dam+ OxyR+), 

SV5683 (Dam– OxyR+), SV7031 (Dam+ OxyR+ mut. GATC) and SV7032 (Dam– OxyR+ mut. GATC). 

OxyR–derivatives (SV5989, SV5990, SV7232 and SV7233) are shown in the lower row. 
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Site-directed mutagenesis of GATC sites upstream of the opvAB 

promoter abolishes phase variation 

In silico analysis of the DNA sequence upstream of the opvAB promoter revealed the 

existence of 4 GATC sites arranged in a symmetrical pattern (Figure C1.7A). In 

addition, the region contains two putative OxyR binding sites very similar to the 

consensus sequence [91]. These sites overlap with GATC sites number 2 and 4 

respectively (Figure C1.7A).  

 

Figure C1.7. Effect of GATC mutations on opvAB expression. A. Diagram of the regulatory region of 

opvAB, showing GATC sites (red squares), putative OxyR-binding-sites (orange bars), putative -35 and -

10 modules (green boxes) and the transcription initation site (black arrow). B. Effect of eliminating the 4 

GATC sites upstream of the opvAB promoter on opvAB expression, monitored by comparing the β-

galactosidase activity of a translational opvB::lac fusion in Dam+ and Dam– backgrounds (white and black 

histograms, respectively). Values are averages and standard deviations from 6 independent experiments. 

C. Effect of eliminating the 4 GATC sites upstream of the opvAB promoter on opvAB expression, 

monitored by Western blot analysis of OpvB-3xFLAG levels in different backgrounds. 
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Because of the pleiotropy of dam mutations, alteration of gene expression in Dam– 

mutants does not necessarily indicate direct Dam-dependent control [122]. To confirm 

that Dam methylation directly controls opvAB expression, the GATC sites present in the 

promoter region of opvAB were eliminated by site-directed mutagenesis. If opvAB 

repression by Dam methylation depends directly on methylation of the GATC sites 

within the opvAB regulatory region, we reasoned, elimination of the GATC sites should 

lock opvAB expression in the ON state. To test this prediction, point mutations were 

engineered to transform the opvAB 5’GATC3’ sequences to 5’CATC3’ sequences, 

which are not a substrate for Dam methylase activity (strain SV6401). Furthermore, the 

four base pair substitutions introduced in the opvAB regulatory region do not destroy 

known critical regions of the OxyR binding sequence [90]. 

β-galactosidase activity assays and Western blotting analysis proved that regulation by 

Dam methylation was abolished when the GATC sites were eliminated (Figure C1.7, A 

and B). Expression of opvAB was ~2 fold higher in the GATC-less mutant (SV7031) 

than the Dam– mutant (SV5683) (Figure C1.7, A and B), but opvAB expression was 

locked in the ON state in both strains (Figure C1.6). Construction of strain SV6401 

thus permitted to analyze the consequences of opvAB constitutive expression avoiding 

the pleiotropic effects of dam mutations (see below). From now on this strain will be 

referred to as opvAB-constitutive or OpvABON. 

 

The OpvA and OpvB gene products are proteins located in the inner 

(cytoplasmic) membrane of Salmonella enterica 

The subcellular location of OpvA and OpvB was investigated using 3xFLAG-tagged 

variants. Electrophoretic separation of cell fractions (cytosol, cytoplasmic membrane 

and outer membrane) was performed, and Western analysis of the separated protein 

preparations was carried out with a commercial anti-FLAG antibody. The results 

unambiguously showed that OpvA and OpvB are located in the S. enterica inner 

(cytoplasmic) membrane (Figure C1.8). 
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Figure C1.8. Distribution of OpvA and OpvB proteins tagged with a 3xFLAG epitope in subcellular 

fractions of S. enterica. Anti-FLAG Western hybridization is shown for three fractions: cytoplasm, inner 

membrane, and outer membrane.  

 

Localization of the OpvA and OpvB proteins in the envelope 

To further determine the location and distribution of OpvA and OpvB, a chromosomal 

opvB::mCherry fusion was constructed downstream of the opvB gene (so that the strain 

remains OpvAB+). In a wild type background, expression of opvB::mCherry was low in 

most cells (Figure C1.9A). However, rare cells with high levels of expression of 

opvB::mCherry were detected (Figure C1.9A), an observation consistent with the 

occurrence of phase variation skewed towards the OFF state. Expression of 

opvB::mCherry was also monitored in an opvAB-constitutive (OpvABON) strain 

engineered by elimination of GATC sites upstream of the opvAB promoter. In an 

OpvABON background, all cells displayed high levels of fluorescence, similar to those 

of the rare fluorescent cells visualized in a wild type background (Figure C1.9B). In 

fluorescent cells, OpvB was seen forming helical intertwining ribbons in the inner 

membrane (Figure C1.9, A and B). 

The subcellular distribution of OpvA was examined using a plasmid-borne 

opvA::mCherry fusion. This experimental choice was based on the consideration that 

construction of an mCherry fusion in the upstream gene opvA would likely prevent 

opvB expression because of a polarity effect. In the strain carrying plasmid-borne 

opvA::mCherry, intense fluorescence was observed in all cells (Figure C1.9C), 

presumably because opvA::mCherry overexpression from the multicopy plasmid 

abolished phase variation. This construction was useful, however, to permit clear-cut 

observation of helical intertwining ribbons formed by OpvA (Figure C1.9D).  
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Figure C1.9. Analysis of OpvA and OpvB localization by fluorescence microscopy.  A. Localization 

of OpvB-mCherry in a wild type background. B. Localization of OpvB-mCherry in an OpvABON strain. 

In both panels, cells enclosed in boxes are shown with higher magnification on the right. C. Localization 

of plasmid-borne OpvA-mCherry. D.  Z-stacks of a single cell from panel C accompanied by an idealized 

representation of the ribbon-like protein distribution. Scale bar: 1 µm. 

 

Evidence for interaction between OpvA and OpvB in the cytoplasmic 

membrane 

OpvA may represent a novel example of a membrane peptide, an emerging class of 

functional molecules [334,335]. Because certain membrane peptides have been shown 

to interact with membrane protein partners, we investigated whether OpvA interacts 

with the inner membrane protein OpvB. To test interaction between OpvA and OpvB in 

vivo, we used the Bacterial Adenylate Cyclase Two-Hybrid (BACTH) assay, a 

procedure that permits the detection of specific interactions between inner membrane 

proteins [336]. opvA and opvB were independently cloned on plasmids pUT18C and 

pKT25. Four plasmid constructs were obtained (pUT18C-opvA, pKT25-opvA, pUT18C-

opvB, and pKT25-opvB), and their interaction was tested in an E. coli CyaA– mutant 

(BTH101). Functional complementation was determined by measuring β-galactosidase 

activity. High levels of β-galactosidase activity were obtained with both plasmid pairs, 
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compared with the basal activities of the plasmid vectors or with the activity of one 

fusion protein only (Figure C1.10). These results suggest that OpvA and OpvB may 

interact indeed, an observation consistent with the similar distribution pattern described 

for OpvA and OpvB. 

 

 

Figure C1.10. Analysis of the in vivo interaction between OpvA and OpvB using the BACTH 

system. The E. coli BTH101 strain was co-transformed with plasmids encoding fusion proteins or empty. 

The basal level of β-galactosidase activity measured with empty vectors was approximately 90 Miller 

units. Values are averages and standard deviations from 3 independent experiments. 

 

Constitutive expression of opvAB reduces P22 adsorption to S. enterica 

During strain construction experiments by P22 HT transduction, we obtained reduced 

numbers of transductants whenever the OpvABON strain (SV6401) was used as a 

recipient. This observation, combined with the fact that OpvA and OpvB are 

components of the cell envelope, raised the possibility that constitutive synthesis of 

OpvA and OpvB might impair adsorption of bacteriophage P22. To test this hypothesis, 

we compared the kinetics of P22 adsorption to the wild type strain, to an OpvABON 

strain (SV6401), and to a strain that harbors a deletion of opvAB (SV6013). Suspensions 

of P22 bacteriophage and S. enterica were mixed, and samples were taken every two 

minutes, and centrifuged. The supernatant was subsequently titrated to monitor the 

presence of unattached phages (Figure C1.11). Adsorption of P22 to S. enterica cells 

was found to be severely impaired in the OpvABON strain (SV6401), which proved to be 

largely refractory to phage P22 attachment. In contrast, P22 adsorption remained 
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unaltered in a strain carrying a opvAB deletion (SV6013). These experiments suggest 

that phase variation of opvAB may split clonal populations of S. enterica into two 

subpopulations, one of which is P22-sensitive while the other is P22-resistant. 

 

 

Figure C1.11. Effect of constitutive expression of opvAB on adsorption of bacteriophage P22 to S. 

enterica. The efficiency of P22 attachment to S. enterica is shown as the percentage of non adsorbed 

phages relative to the initial number. Strains are represented by squares (wild type), triangles (SV6013, 

ΔopvAB), and circles (SV6401, OpvABON). Values are averages and standard deviations from 6 

independent experiments. 

 

Constitutive expression of opvAB alters chain length distribution in the 

lipopolysaccharide O-antigen of S. enterica 

Because phage P22 is known to attatch to the LPS of Salmonella enterica to initiate 

infection [337], we examined whether the OpvABON strain (SV6401) showed LPS 

alterations. Migration of the LPS in polyacrylamide gel is known to be affected by the 

number and size of repeating oligosaccharide units in long-chain LPS, such that bands 

in the profile represent progressively larger concatemers of the repeating 

oligosaccharide units [338]. Comparison of the LPS profiles in strain SV6401 and the 

wild type revealed drastic alterations in the length of O-antigen chains (Figure C1.12). 

Wild type Salmonella LPS shows a bimodal distribution typical of many 

Enterobacteriaceae, with higher amounts of bands with 16-35 and >100 repeats 

[49,52,58,339]. Strain SV6401 showed a unimodal distribution, with bands 

concentrated in the 3-8 repeat range. This short and homogeneous LPS might well 
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explain reduced phage P22 attachment. No alteration of the LPS profile was detected in 

a strain carrying a opvAB deletion (SV6013), in agreement with its ability to permit a 

normal level of P22 adsorption (Figure C1.11). The main conclusion from these 

experiments was that expression of opvAB alters O-antigen chain length. 

 

 

Figure C1.12. Lipopolysaccharide profiles of the wild type strain (lane 1), SV6013 (ΔopvAB) (lane 

2), SV6401 (OpvABON) (lane 3), as observed by electrophoresis and silver staining. 

 

Roles of OpvA and OpvB in control of O-antigen chain length 

Constitutive expression of opvAB leads to the production of a particular form of O-

antigen in the S. enterica LPS with a modal length of 3-8 repeat units. To investigate the 

role of individual OpvA and OpvB proteins in control of O-antigen chain length, non-

polar mutations in opvA and opvB were constructed in the wild type and in an OpvABON 

background. In the wild type, lack of either OpvA or OpvB did not alter the 

electrophoretic profile of LPS (Figure C1.13), an observation consistent with two 

known facts: the subpopulation of cells that express opvAB in wild type Salmonella is 

very small, and an OpvAB– mutant displays an LPS profile identical to that of the wild 
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type. In contrast, OpvA– OpvBON and OpvAON OpvB– mutants showed differences with 

the parental OpvABON strain and also with the wild type: 

(i) Absence of OpvB (OpvAON) yielded a seemingly disorganized LPS with no clear 

modal length (Figure C1.13), reminiscent of the LPS produced in the absence of the 

modal length regulators WzzST and WzzfepE [52,57,340]. 

(ii) Absence of OpvA (OpvBON) yielded an LPS with the modal lengths typically 

conferred by WzzST and WzzfepE [52] but also showed a preferred OpvABON -like modal 

length in the lower weight band region (Figure C1.13). 

These observations suggested that the function of OpvA might be to prevent the 

formation of normal O-antigen so that OpvB could then impose its preferred modal 

length. To test this hypothesis, LPS structure was analyzed in an OpvA– OpvBON 

background in the absence of either WzzST or WzzfepE. The results support the view that 

OpvB needs OpvA to prevent O-antigen formation by customary modal length 

regulators. In the absence of WzzST, OpvB alone was able to produce an O-antigen 

similar to that found in the OpvABON strain (Figure C1.13). In contrast, lack of WzzfepE 

did not seem to facilitate OpvB function, suggesting that OpvB may mainly compete 

with WzzST. This preference may be related to the fact that both WzzST and OpvB 

convey relatively short preferred modal lengths: 3-8 for OpvB and 16-35 for WzzST 

[53,57,341] compared with >100 for WzzfepE [52]. 
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Figure C1.13. Analysis of the roles of OpvA and OpvB in the control of O-antigen chain length. LPS 

profiles of S. enterica strains carrying mutations in opvAB and O-antigen length regulator genes wzzST and 

wzzfepE, as observed by electrophoresis and silver staining. 
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Selection of OpvABON S. enterica cells upon bacteriophage challenge 

Because the LPS O-antigen is a typical receptor for bacteriophages [47], we considered 

the possibility that opvAB phase variation might cause resistance to bacteriophages that 

use the O-antigen as receptor. On these grounds, we tested whether opvAB expression 

resulted in increased Salmonella resistance to the virulent phages 9NA [288,311] and 

Det7 [31,289]. We also tested the historic phage P22, using a virulent mutant to avoid 

lysogeny [287]. Three strains (wild type, ∆opvAB and OpvABON) were challenged with 

9NA, Det7, and P22. The experiments were carried out by inoculating an exponential 

culture of S. enterica with an aliquot of a phage suspension at a multiplicity of infection 

≥10, and monitoring bacterial growth afterwards. The results are shown in Figure C2.1, 

and can be summarized as follows: 

(i) Growth of the OpvABON strain was not affected by the presence of 9NA, Det7, or 

P22, suggesting that the strain was resistant to these bacteriophages.  

(ii) A culture of the wild type strain became clear 1-2 hours after P22 infection, 

suggesting that cell lysis had occurred. However, bacterial growth was observed around 

4 hours after infection, and was interpreted as occurrence of P22 resistance. Infection 

with either 9NA or Det7 did not cause clearing but growth retardation. As in P22 

infection, growth resumed 4 hours after infection. 

(iii) Cultures of the ∆opvAB strain infected with 9NA, Det7, or P22 became clear or 

almost clear. Growth was detected later, albeit with significant delay compared with the 

wild type. The explanation of this phenomenon is that growth of the ∆opvAB strain in 

the presence of 9NA, Det7, or P22 selects phage-resistant mutants (see below). 

A tentative interpretation of these observations was that the wild type strain contained a 

subpopulation of OpvABON cells that survived phage challenge. Because opvAB phase 

variation is skewed towards the OFF state, the small size of the OpvABON 

subpopulation caused growth retardation (albeit to different degrees depending on the 

phage). In contrast, the OpvABON strain grew normally, an observation consistent with 

the occurrence of phage resistance in the entire bacterial population. This interpretation 

was supported by analysis of the LPS profiles of wild type and OpvABON strains grown 

in the presence of P22, 9NA, and Det7 until stationary phase (O.D.600 ~4)  (Figure 

C2.1). After phage challenge, the wild type contained an LPS different from the LPS 
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found in LB (Figure C2.1D), and similar or identical to the LPS found in the OpvABON 

strain (Figure C1.12). In contrast, the LPS from the OpvABON strain did not change 

upon phage challenge (Figure C2.1D). 

 

 

Figure C2.1. Effect of phage challenge on S. enterica growth and LPS structure. Growth of the wild 

type strain (squares), a ∆opvAB strain (circles), and an OpvABON strain (triangles) in LB + P22 (A), LB + 

9NA (B), and LB + Det7 (C). Values are averages and standard deviations from ≥ 6 independent 

experiments. D. LPS structure of the wild type and OpvABON strains after growth in LB, LB + P22, LB + 

9NA, and LB + Det7. 

 

Confirmation that challenge of the wild type with P22, 9NA, and Det7 selected 

OpvABON S. enterica cells was obtained by flow cytometry analysis (Figure C2.2). 

Expression of opvAB was monitored using a green fluorescent protein (gfp) fusion 

constructed downstream opvB (so that the strain remains OpvAB+). In the absence of 

phage, most S. enterica cells expressed opvAB at low levels; however, a small 

subpopulation (approximately 0.18%) that expressed opvAB at high levels was also 

detected. Phage challenge yielded mostly S. enterica cells with high levels of opvAB 
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expression. These observations provide additional evidence that phages P22, 9NA, and 

Det7 kill the OpvABOFF subpopulation, and that OpvABON cells overtake the culture. 

 

 

 

Figure C2.2. Flow cytometry analysis of OpvABOFF and OpvABON subpopulations. GFP fluorescence 

distribution in an ATCC 14028 derivative carrying an opvB::gfp fusion before (t = 0) and after growth in 

LB, LB + P22, LB + 9NA, and LB + Det7 (t= 8 h).  

 

Reversibility of OpvAB-mediated bacteriophage resistance 

If the above model was correct, we reasoned, cessation of phage challenge should 

permit resuscitation of a phage-sensitive subpopulation as a consequence of opvAB 

phase variation. This prediction was tested by isolating single colonies from cultures in 

LB + phage. After removal of phage by streaking on green plates, individual isolates 

were cultured in LB and re-challenged with P22, 9NA, and Det7 (≥ 20 isolates for each 

phage). All were phage-sensitive and their LPS profile was identical to that obtained 

before phage challenge. Representative examples are shown in Figure C2.3. Unlike the 

wild type, individual isolates of the ∆opvAB strain remained phage-resistant after single 

colony isolation and were considered mutants (see below). 
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Figure C2.3. Reversibility of the phage-resistant phenotype in the wild type strain. Left: Growth of 

the wild type strain (black squares), a ∆opvAB strain (black circles), and an OpvABON strain (black 

triangles) in LB + P22 (A), LB + 9NA (B), and LB + Det7 (C). The same symbols in white indicate 

phage-resistant isolates which were re-challenged. Values are averages and standard deviations from ≥ 3 

independent experiments. Right: LPS profiles of the wild type strain in LB (left), LB + phage  (center) 

and of an isolate that had survived phage challenge, subsequently grown in LB (right).  
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Mutational bacteriophage resistance in the absence of OpvAB 

Challenge of a ∆opvAB strain with phages P22, 9NA, and Det7 prevented growth for 4-

6 h, and growth resumed afterwards (Figures C2.1 and C2.3). To investigate the 

cause(s) of phage resistance in the absence of OpvAB, individual colonies were isolated 

from stationary cultures of a ∆opvAB strain in LB + P22, LB + 9NA, and LB + Det7. 

Phage was removed by streaking on green plates. Independent isolates (each from a 

different culture) were then tested for phage resistance. Sixty seven out of 72 

independent isolates turned out to be phage-resistant, thus confirming that they were 

mutants. Analysis of LPS in independent phage-resistant mutants revealed that a large 

fraction of such mutants displayed visible LPS anomalies (Figure C2.4). The few 

mutant isolates (5/67) that did not show LPS alterations may have LPS alterations that 

cannot be detected in gels or carry mutations that confer phage resistance by 

mechanisms unrelated to the LPS. Whatever the case, these experiments support the 

conclusion that resistance of S. enterica to phages P22, 9NA, and Det7 in the absence of 

OpvAB is mutational.  

To determine whether isolates resistant to one phage were also resistant to other phages 

that target the O-antigen, cross-resistance was tested by growth in LB upon phage 

inoculation. Sixty seven mutants (24 P22-resistant, 24 9NA-resistant, and 19 Det7-

resistant) were tested (Table C2.1). The main conclusions from these experiments were 

as follows: 

(i) Major alteration of LPS conferred resistance to all three phages. 

(ii) More subtle LPS alteration (as observed in 16/24 P22-resistant mutants) conferred 

incomplete resistance to 9NA but did not confer resistance to Det7. Five P22-resistant 

mutants that did not show clear LPS alterations also conferred incomplete resistance to 

9NA. 
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Figure C2.4. Mutational resistance to bacteriophage in a ∆opvAB strain. Top. LPS profiles of a 

∆opvAB strain (first lane from the left on each gel) and 24 independent P22-resistant derivatives, as 

observed by electrophoresis and silver staining. Middle. LPS profiles of a ∆opvAB strain and 24 

independent 9NA-resistant derivatives. Bottom. LPS profiles of a ∆opvAB strain and 24 independent 

Det7-resistant derivatives.  
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 P22 9NA Det7   P22 9NA Det7 
ΔopvAB - - - 9NA-10 + + + 
P22-1 + + + 9NA-11 + + + 
P22-2 + +/- - 9NA-12 + + + 
P22-3 + + + 9NA-13 + + + 
P22-4 + +/- - 9NA-14 + + + 
P22-5 + +/- - 9NA-15 + + + 
P22-6 + +/- - 9NA-16 + + + 
P22-7 + +/- - 9NA-17 + + + 
P22-8 + +/- - 9NA-18 + + + 
P22-9 + +/- - 9NA-19 + + + 
P22-10 + +/- - 9NA-20 + + + 
P22-11 + +/- - 9NA-21 + + + 
P22-12 + +/- - 9NA-22 + + + 
P22-13 + +/- - 9NA-23 + + + 
P22-14 + + + 9NA-24 + + + 
P22-15 + +/- - Det7-1 + + + 
P22-16 + +/- - Det7-2 + + + 
P22-17 + +/- - Det7-3 + + + 
P22-18 + +/- - Det7-5 + + + 
P22-19 + +/- - Det7-6 + + + 
P22-20 + +/- - Det7-9 + + + 
P22-21 + +/- - Det7-10 + + + 
P22-22 + +/- - Det7-11 + + + 
P22-23 + +/- - Det7-12 + + + 
P22-24 + +/- - Det7-13 + + + 
9NA-1 + + + Det7-14 + + + 
9NA-2 + + + Det7-16 + + + 
9NA-3 + + + Det7-17 + + + 
9NA-4 + + + Det7-18 + + + 
9NA-5 + + + Det7-19 + + + 
9NA-6 + + + Det7-20 + + + 
9NA-7 + + + Det7-22 + + + 
9NA-8 + + + Det7-23 + + + 
9NA-9 + + + Det7-24 + + + 
 

Table C2.1. Cross-resistance in phage-resistant mutants. Resistance to P22, 9NA and Det7 was 

measured by growth in LB upon phage inoculation, indicated by symbols + (complete resistance), +/- 

(partial resistance) and – (no resistance). 
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Constitutive expression of opvAB reduces S. enterica resistance to 

guinea pig serum 

O-antigen chain length has been described to be crucial for serum resistance in Salmonella 

[52,342–345]. Survival in serum was analyzed by treating exponentially growing cells with 

30% non-immune guinea pig serum. Constitutive expression of opvAB caused increased killing 

by serum (Figure C2.5).  

 

Figure C2.5. Survival in presence of 30% guinea pig serum. Strains are represented by squares (wild 

type), circles (ΔopvAB), and triangles (OpvABON). Values are averages and standard deviations from 5 

independent experiments. 

 

Constitutive expression of opvAB reduces S. enterica proliferation in 

macrophages 

Additional screens and phenotypic assays were performed in search for functions of ovpAB 

phase variation besides the formation of a P22-resistant subpopulation with reduced resistance 

to serum. The trials included: (i) growth in various media at different temperatures and different 

osmolarities; (ii) resistance to acidic pH, cationic peptides, bile, and hydrogen peroxide; (iii) 

motility; (iv) biofilm formation; (v) and invasion of and proliferation in epithelial and 

macrophage cell lines. Most trials did not show differences associated either to loss or 

constitutive expression of opvAB. A remarkable exception was that constitutive expression of 

opvAB impaired intracellular proliferation within macrophages (Figure C2.6). On the other 

hand, a strain carrying an opvAB deletion showed intramacrophage proliferation at a level 

similar to that of the wild type strain.  
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Figure C2.6. Rate of intramacrophage proliferation for the wild type strain, a ΔopvAB strain, and 

an OpvABON strain. Values are averages and standard deviations from 3 independent experiments. 

Proliferation of the wild type strain is considered 100%. 

 

Constitutive expression of opvAB reduces S. enterica virulence 

Because the LPS plays roles in the interaction between S. enterica and the animal host 

[49,52,344], and virulence-related phenotypes had been found for the OpvABON strain 

(Figures C2.5 and C2.6) we tested whether OpvAB-mediated alteration of O-antigen 

chain length affected Salmonella virulence. For this purpose, competitive indexes (CI's) 

[320] were calculated upon oral and intraperitoneal challenge of BALB/c mice. The 

CI’s of the OpvABON strain were found to be lower than those of the wild type and the 

∆opvAB strain (Table C2.2). Because the wild type, the OpvABON strain and the 

∆opvAB strain show similar or identical growth rates in LB (Figure C2.7), the 

conclusion from these experiments was that expression of opvAB reduces Salmonella 

virulence. 

Pair of strains Mouse, 
oral infection 

Mouse, 
intraperitoneal 

infection 
OpvABON vs wild 

type 0.15 ± 0.07 0.32 ± 0.10 

ΔopvAB vs wild 
type 1.11 ± 0.18 1.15 ± 0.16 

OpvABON vs 
ΔopvAB 0.25 ± 0.10 0.38 ± 0.15 

 

Table C2.2. Competitive indexes of opvABON and ∆opvAB strains of S. enterica. Values are averages 

± standard deviations of 4 experiments. 
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Figure C2.7. Effect of opvAB expression on growth in LB. Growth in LB of a wild type strain 

(squares), a ΔopvAB strain (circles), and an OpvABON strain (triangles). Values are averages and standard 

deviations of 3 independent experiments. 
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Both the absence and the overexpression of Dam methylase increase 
opvAB expression and abolish phase variation 

Genes under Dam methylation control fall into two categories. One includes genes in 

which methylation and nonmethylation provide opposite signals [200]. An example is 

the traJ gene of the Salmonella virulence plasmid, which is repressed by GATC 

methylation [346]. In this class of genes, expression of the dam gene from a multicopy 

plasmid does not alter the wild type phenotype [346]. In other genes, however, a 

plasmid-borne dam gene does alter the gene expression pattern. This phenomenon is 

usually an indication that Dam dependent transcriptional control involves the formation 

of Dam methylation patterns (combinations of methylated and nonmethylated GATC 

sites) [200]. To ascertain whether opvAB belonged to the "simple" or the "complex" 

class of Dam methylation-dependent genes, the effect of introducing a dam gene carried 

on plasmid pTP166 was assayed. The results were as follows: 

(i) In a wild type background, an opvB::lac translational fusion showed phase variation, 

and formed white (OpvABOFF) and  blue (OpvABON) colonies in the presence of X-gal. 

In a dam background, phase variation was abolished, and all colonies were Lac+ 

(OpvABON). Plasmid pTP166 yielded an intermediate phenotype (Figure C3.1A), 

suggesting that formation of the OpvABOFF and OpvABON subpopulations might 

involve the establishment of a DNA methylation pattern in the GATC sites of the 

opvAB control region, rather than methylation or nonmethylation of the full set of 

GATC sites. A similar phenomenon occurs in the gtr operon [93] which is repressed in 

a dam background while introduction of a cloned dam gene results in an intermediate 

phenotype.  

(ii) Expression of opvB::lac was also monitored by β-galactosidase assays (Figure 

C3.1B). Lack of Dam methylation increased expression of the opvAB operon as 

previously described. Introduction of the dam gene carried on the pTP166 plasmid 

yielded an intermediate opvAB expression level, as in the colonies described above. 

(ii) Expression of an opvAB::gfp transcriptional fusion was monitored by fluorescence 

analysis (Figure C3.1C). A major OpvABOFF subpopulation and a minor OpvABON 

subpopulation were detected in the wild type. In a dam background, a single population 

in the ON state was observed, in accordance with the results obtained with a opvB::lac 

fusion. In the presence of a cloned dam gene (pTP166), a single population with 
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intermediate levels of expression was detected and a shift towards the ON state 

remained visible (Figure C3.1C). 

Altogether, the above observations suggested that DNA methylation patterns might be 

formed at the opvAB control region. This region, located upstream of the opvAB 

promoter, contains four GATC sites separated by 46, 19, and 46 nucleotides and 

centered at the -172.5, -122.5, -99.5, and -49.5 positions upstream of the transcription 

start site (Figure C3.2A). From now on, these GATC sites will be referred to as GATC1 

to GATC4, the latter being closest to the -35 module of the opvAB promoter.  

 

 

Figure C3.1. Regulation of opvAB expression and formation of OpvAB subpopulations by Dam 

methylation. A. Visual observation of phase variation on LB + X-gal plates in S. enterica strains carrying 

an opvB::lac fusion in the wild type, a dam mutant, and a strain that overproduced Dam methylase 

(ATCC 14028/pTP166). B. β-galactosidase activity of the same strains. C. GFP fluorescence distribution 

in a strain carrying an opvAB::gfp fusion in the same backgrounds.  
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Roles of individual opvAB GATC sites in the formation of OpvABOFF 

and OpvABON cell lineages 

To study the contribution of each GATC site to opvAB regulation, mutations were 

introduced by site-directed mutagenesis. The mutations were designed to change GATC 

sites so that they would no longer be a substrate for Dam methylation. Because OxyR is 

essential for opvAB expression (Figures C1.5 and C1.6), alteration of consensus 

sequences was avoided inside putative OxyR binding sites. CATC sites were thus 

introduced in place of GATC sites, and every combination of mutated and nonmutated 

GATC sites was produced. 

The effect of GATC mutations on opvAB expression was first analyzed by comparing 

the β-galactosidase activity of an opvB::lac translational fusion in dam+ and dam 

backgrounds (Figure C3.2B). Relevant observations were as follows: 

(i) Mutation of GATC1 and GATC3 had a small effect on regulation by Dam 

methylation, although the absolute values of β-galactosidase activity were higher. 

Mutation of GATC2 resulted in diminished regulation by Dam methylation. When 

GATC4 was mutated, control by Dam methylation showed an inverted pattern 

(expression was higher in a dam+ background).  

(ii) As a general rule, combinations of two or more mutations seemed to have an 

additive effect. A remarkable case was the combination of mutated GATC2 and GATC4 

which exacerbated the inversion of regulation by Dam methylation caused by mutation 

of GATC4 alone. It is noteworthy that mutations in GATC1, GATC2 and GATC3 

together did not abolish Dam-dependent regulation, whereas a single mutation in 

GATC4 inverted the pattern of Dam-dependent regulation.  

The overall conclusion from these experiments was that all four GATC sites are 

necessary for Dam-dependent control of opvAB expression, and that the GATC4 site 

may have an especially prominent role. 
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Figure C3.2. Effect of mutations in the opvAB GATC sites on the expression of opvAB. A. Diagram 

of the opvAB regulatory region, with the GATC sites and the OxyR binding sites outlined. B. β-

galactosidase activity of strains carrying an opvB::lac fusion in a wild type background (black bars) and 

in a dam background (white bars). Mutated GATC sites are indicated by numbers 1 to 4. C. Relative β-

galactosidase activity of the opvB::lac fusion in the same strains (activity in the wild type divided by 

activity in a dam background). 
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Even though disruption of OxyR binding sites had been avoided, GATC mutations 

affected opvAB expression irrespective of the presence or absence of DNA methylation, 

as observed in a dam background (Figure C3.2B). In the absence of Dam methylation, 

mutations in GATC1 and GATC3 increased opvAB expression whereas mutations in 

GATC2 and GATC4 resulted in lower opvAB expression. To separate such effects from 

those of Dam methylation itself, the β-galactosidase activity of opvB::lac in a wild type 

background was relativized to the β-galactosidase activity in a dam background (Figure 

C3.2C). This representation leads to the interesting conclusion that mutations in GATC1 

and GATC3 repress opvAB expression, whereas mutations in GATC2 and GATC4 

activate opvAB expression. Again, methylation of GATC4 was found to be crucial for 

opvAB regulation. Mutations in GATC1 and GATC3 show little effect on their own 

because opvAB expression is low in the wild type, but they repress opvAB expression 

when combined with activating mutations in GATC2 and/or GATC4. Hence, the GATC 

sites in the opvAB regulatory region can be tentatively divided in two pairs: methylation 

of pair GATC1 + GATC3 seems to be associated with the OpvABON state while 

methylation of pair GATC2 + GATC4 seems to be associated with the OpvABOFF state. 

Analysis of fluorescence using an opvAB::gfp transcriptional fusion (Figure C3.3) 

allowed us to distinguish whether the differences in opvAB expression in GATC mutant 

backgrounds reflected differences in gene expression or differences in the sizes of the 

OpvABON and OpvABOFF subpopulations. The main observations were as follows: 

(i) In the wild type, the OpvABON subpopulation comprised approximately 0.18% cells. 

(ii) Mutation of GATC4 caused a drastic increase in the size of the OpvABON 

subpopulation. Mutations in GATC1, GATC2, and GATC3 had a smaller effect, which 

was more clearly seen when they were combined with each other and/or a mutation in 

GATC4. 

(iii) Two subpopulations were still distinguished when three GATC sites were mutated, 

provided that either GATC3 or GATC4 remained unaltered. The relative size of the 

OpvABOFF and OpvABON subpopulations was however different in each case, with a 

predominant OpvABOFF subpopulation when GATC4 remained unaltered, and a 

predominant OpvABON subpopulation when GATC3 remained unaltered. 
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(iv) Mutation of both GATC3 and GATC4 eliminated subpopulation formation 

regardless of the presence of mutations in GATC1 and GATC2, and yielded an 

OpvABON population. 

These observations are consistent with the gene expression analyses reported above, and 

permit to interpret the gene expression results in terms of subpopulation formation. 

Mutation of GATC4 caused the most drastic increase in the proportion of OpvABON 

cells, thereby confirming that methylation of the GATC4 site may have a relevant role in 

the formation of the OpvABOFF subpopulation. Increase of OpvABON subpopulation was 

likewise observed when a mutated GATC4 was combined with other mutated GATC 

sites (FigureC3.3). 

 

 

Figure C3.3. GFP fluorescence distribution in S. enterica strains carrying an opvAB::gfp fusion and 

mutations in the opvAB GATC sites. Mutated GATC sites are indicated by numbers 1 to 4. 
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OxyR binds the opvAB regulatory region 

Four putative OxyR binding half-sites are found in the regulatory region of opvAB 

centered in the -148, -116, -75, and -43 positions, and sharing 10, 8, 10, and 7 

nucleotides respectively with the 10-nucleotide consensus sequence. The OxyR binding 

half-sites upstream of the opvAB promoter will be from now on referred to as OBSA to 

OBSD, the latter being immediately upstream of the opvAB -35 promoter module 

(Figure C3.2A). Assuming a helical periodicity of 10.5 base pairs [347] the OBS are 

predicted to be spaced by one, two and one helical turns, which means that all the OxyR 

binding sites may be on the same face of the DNA helix. The distance between OBSA 

and OBSB, and between OBSC and OBSD as well, is canonical for binding of the 

reduced form of OxyR [90]. GATC2 and GATC4 overlap with OBSB and OBSD, 

respectively (Figure C3.2A). 

To test whether OxyR binds the opvAB regulatory region, an electrophoretic mobility 

shift assay (EMSA) was carried out using purified OxyR protein (Figure C3.4A). To 

avoid uncontrolled oxidation of OxyR, and because it was previously shown that the 

oxidation state of OxyR is not relevant for opvAB regulation  we used a mutant version 

of the OxyR protein, OxyRC199S, which cannot be oxidized but retains the properties of 

the reduced form of OxyR [90,91]. Purified 6xHis-OxyRC199S protein (henceforth 

named OxyR for simplicity) was used. A DNA fragment containing the four regulatory 

GATC sites and the four OxyR binding half-sites was produced using a 6-FAM-labelled 

oligonucleotide and was incubated with increasing concentrations of OxyR. Binding 

was unambiguously detected. A DNA fragment from the regulatory region of an 

unrelated gene (envR) was used as a negative control, and binding was not detected 

(Figure C3.4A). 
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Figure C3.4. Binding of 6xHis-OxyRC199S to the opvAB promoter region. A. Electrophoretic mobility 

shift assay of 6xHis-OxyRC199S binding to a DNA fragment containing the opvAB promoter and the 

upstream regulatory region. The regulatory region of envR was used as a negative control. B. DNase I 

footprinting of 6xHis-OxyRC199S binding to DNA fragments containing the opvAB promoter and 

regulatory region with a 6-FAM label in either the top or the bottom strand. Methylated and 

nonmethylated versions of the fragment were used. 
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OxyR protects the opvAB regulatory region 

To confirm binding of OxyR to the opvAB regulatory region, purified OxyR was used in 

a footprinting assay performed using 6-FAM-labelled DNA fragments and DNase I 

(Figure C3.4B). The same DNA fragment used in the EMSA assays, containing both 

the GATC sites and predicted OxyR binding sites, was labelled at alternate ends and 

used in parallel experiments. Methylated and nonmethylated DNA probes were used, 

and the analysis confirmed the ability of OxyR to bind the opvAB regulatory region in 

vitro. Relevant observations were as follows: 

(i) Protection from DNase I digestion was detected in a 133 base pair DNA span, albeit 

with regional differences. GATC1, GATC2, GATC3 are located in the protected region. 

Overall protection was less efficient when the DNA probe was methylated. 

(ii) The OBSA and OBSC sites were fully protected, while OBSB was partially protected.  

(iii) OBSD, which contains the GATC4 site, was not protected.  

The relevance of these observations may be limited as methylated and nonmethylated 

DNA probes were used, and evidence presented above had suggested that opvAB 

regulation involved both methylated and nonmethylated GATC sites (Figure C3.1). 

With this caveat, footprinting experiments confirmed the ability of OxyR to bind the 

opvAB regulatory region. An additional, interesting observation was that OxyR 

protection extended outside the OxyR binding sites, as previously described for other 

LysR-type factors [348–351] (see below). 

 

OpvABOFF and OpvABON subpopulations are characterized by inverse 

patterns of Dam methylation 

SMRT sequencing results showed that >97 percent of the total of 38,458 GATC sites 

present in the genome of S. enterica serovar Typhimurium are methylated, and that 

nonmethylated sites are the exception in the S. enterica genome. Within this set, several 

nonmethylated GATC sites were detected upstream of the opvAB operon. In order to 

analyze them in more detail, position-specific base modification analyses were 

performed. Addition of the virulent P22 H5 phage to a culture of S. enterica results in 
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selection of the OpvABON subpopulation (Figure C2.2). Using this procedure, a culture 

was enriched in OpvABON cells, and the methylation state of the opvAB GATC sites 

was analyzed using single-molecule real-time (SMRT) sequencing [352].  An ordinary 

culture (mostly made of OpvABOFF cells) was also subjected to SMRT sequencing. The 

results The results from position-specific basemodification analysis were as follows 

were as follows: 

(i) In an ordinary culture (>99% OpvABOFF), GATC1 and GATC3 were nonmethylated, 

whereas GATC2 and GATC4 were methylated (Table C3.1). 

(ii) In the OpvABON culture, an inverse DNA methylation pattern was found: 

nonmethylation of GATC2 and GATC4, and methylation of GATC1 and GATC3 (Table 

C3.1).  

These observations confirm that establishment of the OFF and ON states of the opvAB 

locus involves the formation of DNA methylation patterns, as in other phase variation 

loci under Dam methylation control [353][216][93]. 

 

Site Genome position OpvABOFF OpvABON 

GATC1 
2,361,489 + unmodified (1.35, 31) m6A (2.76, 59) 

2,361,490 - unmodified (1.22, 31) m6A (3.99, 46) 

GATC2 
2,361,439 + m6A (4.55, 55) unmodified (0.93, 49) 

2,361,440 - m6A (2.85, 54) unmodified (0.85, 37) 

GATC3 
2,361,416 + unmodified (0.78, 55) m6A (2.29, 45) 

2,361,417 - unmodified (0.43, 55) m6A (2.15, 36) 

GATC4 
2,361,366 + m6A (2.79, 45) unmodified (1.02, 52) 

2,361,367 - m6A (3.14, 37) unmodified (0.59, 47) 

 

Table C3.1. DNA modification status according to SMRT View for position specific base-

modification analysis upstream of the opvAB operon.  Inter pulse duration ratios as well as strand-

specific coverage values are given in parentheses.  
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OxyR protects GATC sites from Dam methylation in vivo 

OxyR has been previously described as a DNA methylation-blocking factor, able to 

induce the formation of nonmethylated GATC sites [93,239]. To test whether OxyR has 

a similar DNA methylation-blocking ability in the opvAB operon, the methylation state 

of the GATC sites in the opvAB regulatory region was tested in vivo. For this purpose, a 

Southern blot was performed using genomic DNA extracted from the wild type strain 

and from an oxyR mutant. The methylation state of individual GATC sites was inferred 

from restriction analysis using enzymes that cut GATC sequences depending on their 

methylation state (MboI, DpnI, and Sau3AI). GATC1 and GATC3 were found to be 

nonmethylated while GATC2 and GATC4 were found to be methylated (Figure C3.5). 

In contrast, in an oxyR background, all four GATC sites were found to be methylated 

(Figure C3.5). These observations confirmed that OxyR has DNA methylation-

blocking ability in vivo at the opvAB regulatory region. 

 

 

 

Figure C3.5. Methylation state of GATC sites in the opvAB regulatory region in wild type and oxyR 

backgrounds. A. Southern blot of genomic DNA obtained from wild type and oxyR cultures and digested 

with HaeIII and with AccI (control) and DpnI, MboI or Sau3AI. B. Diagram of the HaeIII-AccI fragment 

and patterns of fragments obtained. 
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Mutations in the OBSB and OBSD OxyR binding sites abolish phase 

variation 

Of the four OxyR binding half-sites in the opvAB regulatory region, OBSA and OBSC 

are an absolute match (10 out of 10 nucleotides) to the consensus sequences defined for 

OxyR binding [90]. In contrast, OBSB and OBSD share only 8 and 7 out of 10 

nucleotides with the consensus sequence, respectively. The fact that opvAB phase 

variation is skewed towards the OFF state led us to hypothesize that the degree of OxyR 

binding site perfection played a role in such bias. To test our hypothesis, one nucleotide 

change was introduced in OBSB and two nucleotide changes in OBSD so that their 

mutated versions would share 9 out of 10 nucleotides with the consensus sequence. 

Construction of a perfect consensus sequence was avoided since it would inevitably 

destroy GATC2 and GATC4.  

The consequences of OBSB and OBSD DNA sequence amelioration were analyzed 

using opvAB::gfp (Figure C3.6A) and opvB::lac fusions (Figure C3.6B). Mutations in 

OBSB and OBSD both abolished opvAB phase variation, yielding a uniform OpvABON 

population. In the case of the mutation in OBSB, a single nucleotide change led also to 

full expression of the operon. The mutation in OBSD caused a smaller increase in 

expression and was epistatic to the mutation in OBSB.  

An interpretation of these observations is that OBSB and OBSD DNA sequence 

amelioration may "trap" OxyR in the OpvABON configuration. In support of this view, 

amelioration of the OBSB and/or OBSD sites had no effect on opvAB expression in a 

dam background (Figure C3.6). Hence, the preference of OxyR for certain OxyR-

binding sites may be a key factor in regulation of opvAB phase variation, and alternative 

binding of OxyR upstream of the opvAB promoter may generate the OpvABOFF and 

OpvABON subpopulations. 
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Figure C3.6. Effect of mutations in OBSB and OBSD on the expression of opvAB. A. GFP 

fluorescence distribution in S. enterica strains carrying an opvAB::gfp fusion and mutations in OBSB 

(mut.B) and/or OBSD (mut.D) in wild type and dam backgrounds. B. β-galactosidase activity of S. 

enterica strains carrying an opvB::lac fusion with mutations in OBSB (mut.B) and/or OBSD (mut.D) in 

wild type (black bars) and dam (white bars) backgrounds.  

 

SeqA contributes to the small size of the OpvABON subpopulation 

SeqA was considered a potential ancillary candidate for regulation of opvAB since it 

binds GATC sites [354] and is involved in regulation of other phase variation loci 
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[154,155]. Thus we analyzed the effect of a seqA mutation on opvAB expression and its 

influence on the formation of OpvAB subpopulations. A strain carrying a seqA null 

allele and an opvB::lac fusion formed darker (Lac+) colonies on LB + X-gal than the 

wild type, and displayed frequent sectoring. Nonetheless, two groups of differently 

colored colonies (light blue and dark blue) were still distinguishable (Figure C3.7A), 

which allowed calculation of phase transition frequencies. The OFF→ON transition rate 

was found to be 50-fold higher in a seqA background: (3.0 ± 1.0) x 10-3 compared with 

6.1 x 10-5 in the wild type), whereas the ON→OFF transition rates were similar: (3.1 ± 

0.1) x 10-2 compared to 3.7 x 10-2 in the wild type). Not surprisingly, the β-

galactosidase activity of an opvB::lac fusion was ~10 fold higher in a seqA background 

(Figure C3.7B). 

Fluorescence assays showed that mutation of seqA caused an increase in the size of the 

OpvABON subpopulation (Figure C3.8). The effect was stronger in the presence of 

mutations in GATC1 and/or GATC2, and to a lesser extent in GATC3 (Figure C3.8). 

Interestingly, when GATC4 was mutated, a mutation in seqA had an effect opposite to 

that observed in the wild type: the OpvABON subpopulation was reduced (Figure C3.8). 

When both GATC3 and GATC4 were mutated, the seqA mutation did not have a 

significant effect (Figure C3.8). These results seem to indicate that the main role of 

SeqA in the regulation of opvAB is the maintenance of a low OFF→ON transition rate 

(in other words, repression of OpvABON subpopulation formation). 

 

 

Figure C3.7. Role of SeqA on opvAB expression and on the formation of the OpvABOFF and 

OpvABON subpopulations. A. Colonies formed by S. enterica strains carrying an opvAB::lac fusion in a 

wild type background and in a seqA background. B. β-galactosidase activity of S. enterica strains carrying 

an opvAB::lac fusion in a wild type background and in a seqA background.  
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Figure C3.8. GFP fluorescence distribution in S. enterica strains carrying an opvAB::gfp fusion and 

mutations in the opvAB GATC sites in seqA+ and seqA backgrounds. Mutated GATC sites are 

indicated by numbers 1 to 4. 
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HU is essential for the formation of the OpvABON subpopulation 

HU is a nucleoid-associated protein known to regulate a large number of genes in E. 

coli and Salmonella [163,184,355]. The HU protein can exist in three forms: the HU αβ 

heterodimer and the corresponding homodimers. The heterodimer is the predominant 

form in vivo [160]. We deleted hupA and/or hupB, the genes encoding the two proteins 

forming the HU heterodimer, and tested the effect of the mutations on the expression of 

an opvAB::gfp fusion (Figure C3.9A). The OpvABON subpopulation was found to be 

reduced from approximately 0.18% in the wild type to 0.09% in single hupA and hupB 

mutants. Reduction of the  OpvABON subpopulation size was exacerbated in the double 

hupA hupB  mutant: the OpvABON subpopulation was virtually absent (Figure C3.9A).  

When hupA and hupB mutations were introduced into an opvB::lac background, a 

decrease in the β-galactosidase activity of the opvB::lac fusion was likewise found 

(Figure C3.9B). In turn, when formation of Lac+ (OpvABON) colonies was scored on 

LB + X-gal plates, blue (Lac+) colonies were still visible in the hupA and hupB single 

mutants but not in the double mutant hupA hupB background (Figure C3.9C).  

When the effect of the hupA and hupB mutations was tested in OpvABON-locked 

backgrounds, lack of HU did not impair the OpvABON state (Figure C3.9D), although 

opvB::lac expression was slightly lower (Figure C3.9E). Hence, HU seems to be 

necessary for maintenance of the OpvABON state in the wild type but not in mutants 

locked in OpvABON state. 
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Figure C3.9. Role of HU on opvAB expression and on the formation of the OpvABOFF and OpvABON 

subpopulations. A. GFP fluorescence distribution in S. enterica strains carrying an opvAB::gfp fusion in 

a wild type background and in the absence of genes hupA and/or hupB. B. β-galactosidase activity of S. 

enterica strains carrying an opvB::lac fusion in a wild type background and in the absence of genes hupA 

and/or hupB. C. Visual observation of phase variation on LB + X-gal plates in strains carrying an 

opvB::lac fusion a wild type background and in the absence of genes hupA and/or hupB. D. GFP 

fluorescence distribution in S. enterica strains carrying an opvAB::gfp fusion and a hupA hupB mutation 

in OpvABON-locked backgrounds. E. β-galactosidase activity of S. enterica strains carrying an opvB::lac 

fusion in the wild type (black bars) and in a hupA hupB background (white bars). 
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STM2209 (opvA) and STM2208 (opvB), hitherto annotated as putative genes of 

unknown function in the genome of Salmonella enterica serovar Typhimurium, are 

absent in Salmonella bongori and in other species of enteric bacteria (Figure C1.1). 

This assortment, combined with G+C content lower than the core Salmonella genome 

(38% vs 52%, approximately), suggests acquisition by horizontal transfer.  

opvA and opvB are part of a single transcriptional unit, and are transcribed from a 

promoter upstream opvA (Figure C1.4). The opvA gene product is a small hydrophobic 

peptide (putatively, 34 amino acids) while opvB encodes a larger protein (putatively, 

221 amino acids). Both OpvA and OpvB have predicted transmembrane domains 

(Figure C1.2). They are indeed inner membrane proteins (Figure C1.8) that form 

intertwining ribbons (Figure C1.9) reminiscent of those formed in the outer membrane 

by the LPS [356]. Synthesis of OpvA and OpvB alters the synthesis of the LPS O-

antigen and confers a main modal length of 3-8 O-antigen repeat units (Figure 1.12). 

Genetic evidence presented in Figure 1.13 suggests that OpvA may prevent the 

formation of normal O-antigen, allowing OpvB to compete with the WzzST modal 

length regulator. A similar phenomenon occurs in Pseudomonas aeruginosa, where the 

Iap transmembrane peptide encoded by bacteriophage D3 disrupts endogenous O-

antigen biosynthesis allowing a phage-encoded O-antigen polymerase to produce a 

different O-antigen [357].  

Certain structural features of OpvA and OpvB are reminiscent of those found in 

interacting peptide-protein pairs located in the bacterial cytoplasmic membrane [334]. 

For instance, the putative transmembrane domain of OpvA and the putative N-terminus-

proximal transmembrane domain of OpvB are rich in phenylalanine and share 

additional amino acid sequence features. OpvA and OpvB, however, lack common 

packing motifs described elsewhere for transmembrane-helix interactions, such as 

GxxxG, Ala-coil or motifs of serine and threonine [358–360]. Small regulatory peptides 

often interact with larger proteins encoded in the same transcriptional unit, modulating 

their activity or stability [334]. This study presents evidence that OpvA and OpvB 

interact indeed (Figure C1.10). The functional significance of OpvA-OpvB interaction 

remains unknown. 

OpvB displays features typical of Gram-negative O-antigen chain length regulators such 

as WzzST and WzzfepE: a common protein structure consisting of two transmembrane 
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domains and a hydrophilic periplasmic domain, relative richness in proline residues in 

the second transmembrane segment [54], and a particular set of conserved amino acid 

residues near the N-terminal end [55]. OpvB lacks, however, a predicted coiled-coil 

periplasmic domain typical of many O-antigen chain length regulators [54]. However, 

other O-antigen chain length regulators show little or no potential for coiled-coil 

formation. Furthermore, there is a correlation between coiled-coil potential of the 

periplasmic domain and the modal length conferred on the LPS O-antigen chains [54]. 

Because constitutive expression of opvAB leads to short modal length of the O-antigen 

(Figure C1.12), lack of coiled-coil potential is not surprising. 

Expression of the opvAB locus is subject to phase variation (Figure C1.6), and the 

OFF→ON switching frequency in LB medium is 3 orders of magnitude lower than 

ON→OFF switching (6.1 x 10-5 vs 3.7 x 10-2 per cell and generation). Skewed 

frequencies of switching are also found in other phase variation loci: for instance, in the 

E. coli pap operon, the OFF→ON switching frequency is 5.5 x 10-4 per cell and 

generation, while the ON→OFF switching frequency is 2.3 x 10-2 per cell and 

generation [361]. Hence, like in pap, the subpopulation of cells that express opvAB in 

LB is smaller than the population of cells that do not express opvAB. However, the 

switching frequencies detected under laboratory conditions can be different from those 

occurring in natural environments [130,362]. In the pap operon, for instance, the 

switching frequencies are skewed by environmental inputs involving global regulators 

like Crp and H-NS and the stress-responsive system CpxRA [363–365]. 

Lack of Dam methylation locks opvAB in the ON state (Figures C1.3 and C1.6), thus 

explaining why opvAB was initially considered a locus repressed by Dam methylation 

[300]. Dam methylation has been previously shown to control phase variation systems 

along with a variety of transcriptional regulators [130]. However, Dam methylation can 

also regulate gene expression indirectly, either as a consequence of lack of DNA 

mismatch repair or by controlling expression of postranscriptional regulators [122,124]. 

In the case of opvAB, the observation that site-directed mutagenesis of GATC sites 

located upstream the opvAB promoter locks expression in the ON state (Figure C1.7) 

provides preliminary evidence that Dam methylation may regulate opvAB transcription. 

Evidence that opvAB is a new locus under the control of a Dam-sensitive transcriptional 

regulator is further supported by the identification of the LysR-like factor OxyR as a 
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positive regulator of opvAB expression (Figure C1.5). OxyR is a well known LysR-

type transcriptional regulator [84], and has been previously shown to control phase 

variation of other Dam methylation-sensitive loci: the E. coli agn43 gene [238,240] and 

the P22 gtr operon [93]. Unlike agn43, which is repressed by OxyR [238], and gtr, 

which is both activated and repressed by OxyR [93], opvAB is under positive control by 

OxyR (Figure C1.5). Like in agn43 and in gtr, however, the oxidation state of OxyR is 

irrelevant for control of opvAB expression.  

When opvAB expression is locked in the ON state, Salmonella cells become resistant to 

adsorption of phage P22 (Figure C1.11), presumably by alteration of O-antigen chain 

length in the lipopolysaccharide (Figures C1.12 and D1). Hence, phase variation of 

opvAB expression in wild type populations of Salmonella is expected to generate a 

subpopulation of P22-resistant cells. Phase variation in mechanisms of defense against 

bacteriophage infection has been previously described [222]. The gtr operon that 

controls Salmonella lipopolysaccharide modification is also subject to phase variation 

[93]. However, to our knowledge, opvAB may be the first example of a phase variation 

system that confers phage resistance through alteration of O-antigen chain length.  

 

 

Figure D1. Diagrams of lipopolysaccharide structure in the OpvABOFF and OpvABON 

subpopulations. Lipid A is represented in blue and core oligosaccharide in green. Every red circle 

represents five O-antigen repeat units. Modal lengths conferred by WzzST, WzzfepE and OpvAB are 

indicated. 
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The dramatic change in LPS structure caused by opvAB expression (Figures C1.12 and 

D1), renders S. enterica resistant to bacteriophages 9NA, Det7, and P22 (Figures C2.1 

and C2.2), an observation consistent with the fact that the O-antigen is the bacterial 

surface receptor used by these bacteriophages [31,47,288,366].  

As already stated, expression of opvAB undergoes phase variation under the control of 

DNA adenine methylation and the transcriptional regulator OxyR (Figure C1.6). 

Because opvAB phase variation is skewed towards the OFF state, S. enterica 

populations contain a major subpopulation of OpvABOFF (phage-sensitive) cells and a 

minor subpopulation of OpvABON (phage-resistant) cells. In the presence of a 

bacteriophage, the OpvABOFF subpopulation is killed and the OpvABON subpopulation 

is selected (Figures C2.1, C2.2, and D2). Hence, the existence of a small subpopulation 

of phage-resistant cells preadapts S. enterica to survive phage challenge. In OpvAB– S. 

enterica, acquisition of phage resistance is mutational only, and a frequent mechanism 

is alteration of LPS structure (Figure C2.4). Because the LPS plays major roles in 

bacterial physiology including resistance to environmental injuries and host-pathogen 

interaction [367], opvAB phase variation may have selective value by providing S. 

enterica with a non-mutational, reversible mechanism of phage resistance. This 

mechanism offers the additional advantage of protecting Salmonella from multiple 

phages, perhaps from all phages that bind the O-antigen (note that the phages used in 

this study belong to three different families: Podoviridae, Siphoviridae, and 

Myoviridae). 

However, acquisition of phage resistance in OpvABON cells requires a payoff: reduced 

virulence in the mouse model (Table C2.2). In a phage-free environment, this payoff 

may not be relevant because the avirulent subpopulation is minor as a consequence of 

skewed switching of opvAB toward the OFF state: 3.7 x 10-2 for ON→OFF switching vs 

6.1 x 10-5 for OFF→ON switching. In other words, only 1/1,000 S. enterica cells can be 

expected to be avirulent in a phage-free environment. The virulence payoff is therefore 

enforced in the presence of phage only, and its adaptive value may be obvious as it 

permits survival. On the other hand, the fitness cost of OpvAB-mediated phage 

resistance can be expected to be temporary only because phase variation permits 

resuscitation of the virulent OpvABOFF subpopulation as soon as phage challenge ceases 

(Figure C2.3). Resuscitation may actually be rapid as a consequence of skewed 

switching towards the OpvABOFF state. 
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Figure D2. opvAB as a reversible bacteriophage resistance mechanism. Diagram for the selection of 

the OpvABON subpopulation in presence of a bacteriophage that uses the O-antigen as receptor. 

OpvABOFF cells are represented in white, OpvABON cells in blue. 

 

O-antigen alteration may be also the cause of two infection-related traits associated to 

opvAB expression. One is increased sensitivity to serum (Figure C2.5), which may be 

explained by the involvement of O-antigen chain length in serum resistance 

[45,52,342,344]. Reduced capacity to proliferate in macrophages (Figure C2.6) could 

also be attributed to modification of the structure of LPS [368,369], although the 

relevance of O-antigen chain length in the Salmonella-macrophage interaction has been 

questioned [41,43]. On the other hand, LPS-containing outer membrane vesicles have 

been shown to mediate delivery of Salmonella virulence effectors to macrophages 

[370], suggesting that constitutive synthesis of OpvA and OpvB might impair the 

secretion process. Current evidence suggests that diversity in the structure and 

distribution of O-antigen length permits a balance between resistance to antimicrobial 

compounds and the ability to interact with different cell types [43]. 

The fact that OpvAB confers bacteriophage resistance at the expense of reducing 

virulence is an example of a bet-hedging strategy, which is based on a tradeoff. A 
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tradeoff is established whenever the adaptive capacity of an organism is increased at the 

expense of lowering the fitness conferred by specific phenotypic traits [371]. Tradeoffs 

have been mainly studied in sexually reproducing organisms but they occur also in 

microbes [372–375]. In pathogens, for instance, acquisition of mutational resistance to 

antimicrobial compounds often affects fitness [376,377], and may require loss of 

virulence as a payoff [378]. Bacteriophage resistance has been also shown to impair 

virulence in a variety of bacterial pathogens [379]. Expression of opvAB constitutes an 

unusual case of a tradeoff because phage resistance is not mutational but epigenetic, and 

because the phage-resistant, avirulent phenotype is reversible. 

Phase variation systems that contribute to bacteriophage resistance have been described 

previously. For instance, certain restriction-modification systems show phase-variable 

expression [222]. However, protection by restriction-modification systems can be 

expected to be incomplete as only a fraction of infecting phage genomes are modified 

[380]. Phase variation can also confer phage resistance by preventing infection, and an 

interesting example is the gtr cluster which protects S. enterica against the T5-like 

phage SPC35 [219]. Although the receptor of SPC35 is the BtuB vitamin transporter, 

Gtr-mediated glycosylation of the LPS O-antigen may reduce SPC35 adsorption by an 

indirect mechanism [219]. In Haemophilus influenzae, phase-variable resistance to 

bacteriophage HP1c1 may involve changes in LPS [220]. Because these studies did not 

investigate the impact of phase variation on bacterial fitness, it remains unknown 

whether the tradeoff associated with opvAB phase variation is unusual or commonplace. 

However, if one considers that envelope structures play multiple roles in bacterial 

physiology aside from serving as phage receptors, it is tempting to predict that phase-

variable bacteriophage resistance may frequently involve fitness costs. Whatever the 

payoff, however, phase-variable resistance may have a crucial advantage over mutation 

by creating phenotypic heterogeneity in a reversible manner. 

Phase variation of opvAB depends on a regulatory region upstream of the opvAB 

promoter, depicted in Figures C1.7, C3.2, and D2. This region contains 4 half-sites for 

binding of OxyR (OBSA-D), and 4 methylatable GATC motifs (GATC1-4). As already 

stated, OxyR is a LysR-type transcriptional regulator that also acts as a sensor of 

oxidative stress, but its function in opvAB regulation is unrelated to oxidative damage 

and independent of its own oxidation state. The same is true for other OxyR-dependent 
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phase variation systems such as agn43 [96] and gtr [93]. OxyR binds DNA as a 

tetramer [90]. 

SMRT sequencing data show that S. enterica OpvABOFF and OpvABON bacterial 

subpopulations differ in their pattern of Dam methylation at the opvAB regulatory 

region (Table C3.1). The patterns found are actually opposite: in the OpvABOFF state, 

GATC1 and GATC3 are nonmethylated, whereas GATC2 and GATC4 are methylated; in 

the OpvABON state, GATC2 and GATC4 are nonmethylated, whereas GATC1 and 

GATC3 are methylated. We provide evidence that DNA methylation patterns at the 

opvAB control region are generated by OxyR binding (Figure C3.5). Combinations of 

methylated and nonmethylated GATC sites have been previously described in other 

phase variation loci including pap and gtr [93,353]. In these loci, GATC 

nonmethylation is the consequence of DNA methylation hindrance upon protein 

binding. The methylation blocking factor active in the pap operon is Lrp [216,353], 

while in gtr it is, like in this study, OxyR [93].  

The higher stability of the OpvABOFF lineage is in agreement with the fact that the 

protected OxyR binding sites (OBSA and OBSC) are identical to the consensus sequence 

for OxyR binding. In contrast, OBSB and OBSD share 8/10 and 7/10 nucleotides with 

the consensus, respectively. The relevance of the nucleotide sequence of OxyR binding 

sites for opvAB regulation is illustrated by the observation that a single nucleotide 

change in OBSB locks the system in the ON state (Figure C3.6). A mutation in OBSD 

also yields an OpvABON lineage even though increase in expression is lower (Figure 

C3.6). It has been suggested that RNA polymerase may contact OxyR and other LysR-

type transcription factors within the DNA region occupied by the regulator [381]. 

Because OBSD is located immediately upstream of the -35 module, mutation of OBSD 

might impair the interaction between OxyR and the RNA polymerase. In support of this 

view, the mutation in OBSD is epistatic over the mutation in OBSB (Figure C3.6). In 

gtr, another phase variation system controlled by OxyR and Dam methylation, the sites 

bound by OxyR in the OFF and ON lineages have identical number of nucleotides in 

common with the consensus sequence [93], which may explain why the gtr locus has 

similar ON→OFF and OFF→ON transition rates.  

Preferential methylation of GATC4 might be an additional factor contributing to the 

stability of the OpvABOFF lineage. The DNA sequences that flank GATC1, GATC2 and 
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GATC3 are predicted to be relatively poor Dam methylation substrates compared with 

the flanking sequences of GATC4 [111]. Rapid methylation of GATC4 might thus 

contribute to perpetuation of the OpvABOFF state. 

Our tentative model is based on a combination of experimental data and information 

from the literature (and including some speculation as well), and proposes that the 

predominant OFF state involves binding of an OxyR tetramer to the OBSAC binding 

site, which protects GATC1 and GATC3 from methylation (Table C3.1 and Figure 

C3.5). In this configuration, GATC2 and GATC4 are unprotected and therefore are 

methylated by Dam. In the ON state, two OxyR tetramers are bound to two adjacent 

pairs of OxyR binding half-sites, one to OBSAB and the other to OBSCD. In this way, 

GATC2 and GATC4 are protected from methylation and remain nonmethylated, whereas 

GATC1 and GATC3 are unprotected and are methylated (Table C3.1). In the latter 

configuration, RNA polymerase is successfully recruited to the opvAB promoter and 

transcription of opvAB takes place. OxyR has been shown to recruit RNA polymerase 

by direct contact with the C-terminal domain of the α subunit [73,382], and the inverse 

is also true: RNA polymerase can recruit OxyR [73], which might contribute to 

maintenance of the OpvABON state. OxyR has been shown to bind alternative pairs of 

half-sites in gtr [93], and opvAB may constitute another example of the same 

phenomenon albeit with a different genomic architecture.  

DNA bending, which is commonly induced by OxyR [90], specifically by the reduced 

tetramer structure [72], and by other LysR-type regulators [80,383–385] may further 

contribute to interaction between the OxyR tetramers and the RNA polymerase. A DNA 

bend is induced by OxyR in agn43 [96,386], another phase variation locus regulated by 

Dam methylation and OxyR. The occurrence of bending might help to understand why 

GATC1 and GATC3 are protected from methylation in the OpvABOFF configuration 

(Table C3.1 and Figure C3.5) despite their location outside OBSA and OBSc (Figure 

D3). 
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Figure D3. Model of opvAB phase variation. The diagram shows the Dam methylation states found in 

OpvABOFF and OpvABON cell lineages and the hypothetical patterns of OxyR binding to cognate sites. 

Black and white squares represent methylated and nonmethylated GATC sites, respectively. 

 

Another factor that might contribute to methylation hindrance in GATC1 and GATC3 

might be DNA wrapping, which has been proposed for other transcriptional regulators 

whose footprints extend outside the binding sites. Examples include the NtrC [348], 

RcnR [349] and NorR [350,351] transcription factors from Escherichia coli. CarP, also 

called PepA, an E. coli transcription factor, specifically prevents methylation of a 

GATC site which is not included in the binding footprint [387]. GATC1 and GATC3, 

which lie in the extended OxyR-bound region, may be protected from Dam methylation 

in an analogous fashion. 

Additional factors involved in the formation of OpvAB cell lineages are the GATC-

binding protein SeqA and the nucleoid protein HU. SeqA contributes to the stability of 

the OpvABOFF lineage, acting as a repressor of the OFF→ON transition (Figure C3.7). 

SeqA action seems to be exerted mostly on GATC3 and GATC4 (Figure C3.8). Because 

SeqA binds hemimethylated GATC sites [140], a tentative speculation is that it might 

favor DNA methylation over OxyR binding during DNA replication, as previously 

suggested for agn43 [154]. In turn, HU contributes to formation of the OpvABON 

lineage (Figure C3.9). Tentative interpretations may be that HU contributes to the 

establishment of the OpvABON state either by inducing DNA bending or by stabilizing 

OxyR-mediated bending. The latter possibility may be more likely as HU often 

stabilizes bent DNA rather than bend DNA itself [183], and HU is not essential in 
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OpvABON-locked backgrounds (Figure C3.9). On the other hand, AT-rich DNA, such 

as that found in the opvAB regulatory region (which is 23% G+C only) is intrinsically 

prone to DNA bending [388,389]. 

If our model is correct, two OxyR tetramers may be required to maintain the ON state 

but only one tetramer may be necessary to maintain the OFF state. This difference may 

contribute to explain the high ON→OFF transition rate. Upon passage of the DNA 

replication fork, the local concentration of OxyR will be halved, therefore facilitating 

the transition from ON (depending on two OxyR tetramers) to OFF (depending on one 

tetramer only). 

A caveat of our model is that, to our knowledge, OxyR has not been described to bind 

non-consecutive half-sites. However, such binding pattern is consistent with the 

evidence that only OBSA and OBSC are fully protected in the footprinting assay (Figure 

4B) and with the fact that OxyR has been always described to bind DNA as a tetramer 

[73,90]. An alternative hypothesis is that OxyR dimers may bind independently to 

OBSA and OBSC. 
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Conclusions 
 

1. Expression of opvAB is subject to phase variation: Salmonella enterica 

populations are composed of a major OpvABOFF subpopulation and a minor 

OpvABON subpopulation. 

 

2. OpvABOFF and OpvABON subpopulations show opposite DNA methylation 

patterns in the opvAB regulatory region. Such patterns are formed upon OxyR 

binding and Dam methylase hindrance. 

 

3. OpvAB activity modifies the lipopolysaccharide O-antigen, conferring a 

preferred modal length of 3-8 O-antigen repeat units. 

 

4. OpvAB-mediated modification of the LPS confers resistance to bacteriophages 

that use the O-antigen as receptor. 

 
5. Because OpvAB-mediated modification of the LPS decreases the virulence of 

Salmonella, opvAB phase variation may be considered an evolutionary tradeoff 

between bacteriophage resistance and virulence. 
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