
Skeletonizing Images by Using
Spiking Neural P Systems

Daniel Dı́az-Pernil1, Francisco Peña-Cantillana2,
Miguel A. Gutiérrez-Naranjo2

1Research Group on Computational Topology and Applied Mathematics
Department of Applied Mathematics
University of Sevilla
sbdani@us.es

2Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
frapencan@gmail.com, magutier@us.es

Summary. Skeletonizing an image is representing a shape with a small amount of infor-
mation by converting the initial image into a more compact representation and keeping
the meaning features. In this paper we use spiking neural P systems to solve this problem.
Based on such devices, a parallel software has been implemented on the GPU architec-
ture. Some real-world applications and open lines for future research are also presented.

1 Introduction

Computer vision [32] is probably one of the challenges for computer scientists
in the next years. This flourishing research area needs contributions from many
other scientific areas as artificial intelligence, pattern recognition, signal process-
ing, neurobiology, psychology or image processing among others. It concerns with
the automated processing of images from the real world to extract and interpret
information on a real time basis. From a computational point of view, a digital
image is a function from a two dimensional surface which maps each point in the
surface to a set of features as bright or color. The different treatments of such
mappings (digital images) provide a big amount of current applications in com-
puter vision as optical character recognition (OCR), biometrics, automotive safety,
surveillance or medical imaging.

In this paper we focus on the problem of skeletonizing an image. Skeletoniza-
tion is one of the approaches for representing a shape with a small amount of
information by converting the initial image into a more compact representation
and keeping the meaning features. The conversion should remove redundant in-
formation, but it should also keep the basic structure. Skeletonization is usually



92 D. Dı́az-Pernil et al.

considered as a pre-process in pattern recognition algorithms, but its study is also
interesting by itself for the analysis of line-based images as texts, line drawings,
human fingerprints or cartography.

Many problems in the processing of digital images have features which make it
suitable for techniques inspired by nature. One of them is that the treatment of the
image can be parallelized and locally solved. Regardless how large is the picture,
the process can be performed in parallel in different local areas of it. Another
interesting feature is that the local information needed for a pixel transformation
can also be easily encoded in the data structures used in Natural Computing. In the
literature, we can find many examples of the use of Natural Computing techniques
for dealing with problems associated to the treatment of digital images. One of the
classic examples is the use of cellular automata [28, 31]. Other efforts are related
to artificial neural networks as in [9, 35]. In this paper, we use spiking neural P
systems.

Spiking neural P systems (SN P systems, for short) were introduced in [16] as
a new class of distributed and parallel computing devices, inspired by the neuro-
physiological behavior of neurons sending electrical impulses (spikes) along axons
to other neurons. SN P systems are the third model of computation in the frame-
work of Membrane Computing1, together with the cell-like model [25] inspired by
the compartmental structure and functioning of a living cell and the tissue-like
model [17], based on intercellular communication and cooperation between cells
in a tissue.

Recently, Membrane Computing techniques have been used for solving prob-
lems from Digital Image. Different P systems models have been used for dealing
with images, as in [3] where cell-like P systems are used for computing the thresh-
olding of 2D images; [4, 5, 23, 24] where tissue-like P systems are used, or even
[10], where the symmetric dynamic programming stereo (SDPS) algorithm [11] for
stereo matching was implemented by using simple P modules with duplex chan-
nels. To the best of our knowledge, this is the first time in which SN P systems
are used for dealing with images.

In a similar way that other applications of P systems, the theoretical advan-
tages of the Membrane Computing techniques for computer vision need a pow-
erful software and hardware for an effective implementation. In this paper, we
also present a parallel software developed by using a device architecture called
CUDATM, (Compute Unified Device Architecture). CUDATM is a general purpose
parallel computing architecture that allows the parallel NVIDIA2 Graphics Pro-
cessors Units (GPUs) to solve many complex computational problems in a more
efficient way than on a CPU. GPUs constitute nowadays a solid alternative for
high performance computing, and the advent of CUDA allows programmers a
friendly model to accelerate a broad range of applications. The way GPUs ex-

1 We refer to [26] for basic information in this area, to [27] for a comprehensive pre-
sentation and the P system web page http://ppage.psystems.eu, for the up-to-date
information.

2 http://www.nvidia.com.



Skeletonizing Images by Using SN P Systems 93

ploit parallelism differs from multi-core CPUs, which raises new challenges to take
advantage of its tremendous computing power. GPU is especially well-suited to
address problems that can be expressed as data-parallel computations.

The paper is organized as follows: Firstly, we present the restricted model of SN
P systems used in the paper and recall the Guo & Hall algorithm for skeletonizing
images. In Section 4, the design of the SN P system for skeletonizing images is
presented. Next, we show illustrative examples of the use of our implementation.
Finally, Section 6 is dedicated to conclusions and future work.

2 Spiking Neural P Systems

SN P systems can be viewed as an evolution in Membrane Computing corre-
sponding to a shift from cell-like to neural-like architectures. In SN P systems the
processing elements are called neurons and are placed in the nodes of a directed
graph, called the synapse graph. The computation is performed by sending electri-
cal impulses among the neurons through the synapses. Such electrical impulses are
encoded via a single object type, namely the spike, which is placed in the neurons.
The number of copies of such object determines the electrical charge of the neuron.
Each neuron may also contain rules which allow to send spikes (possibly with a
delay) to other neurons, or to remove a given number of spikes from it (firing and
forgetting rules).

Firing rules allow a neuron to send information to other neurons in the form
of electrical impulses which are accumulated at the target cell. Forgetting rules
remove from the neuron a predefined number of spikes. The application of every
rule is determined by checking the contents of the neuron against a regular set
associated with the rule. In each time unit, if a neuron can use one of its rules,
then one of such rules must be used. If two or more rules could be applied, then
only one of them is nondeterministically chosen. Thus, the rules are used in the
sequential manner in each neuron, but neurons work in parallel with each other.
A global clock is assumed, marking the time for the whole system, and hence the
functioning of the system is synchronized.

From the seminal paper [16], other biological features have been explored in
the framework of SN P systems. One of such extensions (with mathematical mo-
tivation) was introduced in [2], where a neuron can emit more than one spike, if
the number of emitted ones is not greater than the consumed ones. Other variants
including astrocytes [20], weights, which modify the number of spikes that arrives
to a neuron according to the quality of the link between neurons [14, 21, 34], anti-
spikes [22], or neuron division [33] have also been considered. In this paper, we will
consider SN P systems with weights in the synapses and rules without delay3.

In this way, the restricted model of SN P systems used in this paper can be
formally described as follows. A spiking neural P system of degree m ≥ 1 is a
construct of the form

3 For a more general description, see [16].



94 D. Dı́az-Pernil et al.

Π = (O, σ1, σ2, . . . , σm, syn, in),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the following two forms:

(1) Firing rules E/ac → ad, where E is a regular expression4 over a, and
c ≥ d ≥ 1 are integer numbers; if E = ab (with b an integer number,
b ≥ c), then the rule is usually written in the following simplified form:
ab/ac → ad;

(2) Forgetting rules ab/ac → λ, for b and c integer numbers with b ≥ c ≥ 1.
3. syn ⊆ {1, 2, . . . ,m}×{1, 2, . . . ,m}×W is the set of synapses between neurons,

where the set of weights is W = Q ∩ [0, 1], i.e., the set of rational numbers
between 0 and 1. The synapses also verifies that (i, i, k) ̸∈ syn for 1 ≤ i ≤ m,
k ∈ W.

4. in is the label of the input neuron of Π.

A firing rule E/ac → ad ∈ Ri can be applied in neuron σi if it contains b
spikes, b ≥ c, and ab belongs to the language associated to E. For applying rules
of type ab/ac → ad, the neuron must contain exactly b spikes. The execution of
these rules removes c spikes from σi (thus leaving the remaining spikes in σi),
and sends d spikes to all the neurons σj such that (i, j, k) ∈ syn. The number of
spikes that arrives to the neuron j through the synapse (i, j, k) depends on the
number d of emitted spikes and the quality of the synapse, encoded by the weight
k. In each neuron, the number of spikes after a computation step is the number of
non consumed spikes plus the contribution of other neurons via the corresponding
synapses. Let us consider that d spikes are emitted through a synapse (i, j, k). The
contribution of σi to σj is an increase of ⌊d × k⌋ spikes, where ⌊v⌋ denotes the
largest integer not greater than v. A forgetting rule ab/ac → λ can be applied in
neuron σi if it contains exactly b spikes. The execution of this rule simply removes
all the c spikes from σi (thus leaving b− c spikes).

A configuration of the system is described by the numbers ⟨n1, n2, . . . , nm⟩ of
spikes present in each neuron. At the beginning of the computation, the number
of spikes in each neuron σi is ni, but in the input neuron (with label in): If the
input of the computation is N , then, in the initial configuration, the number of
spikes in the input neuron is nin +N .

Example 1. Let us consider the SN P system Π = ({a}, σ1, σ2, σ3, syn, 1) (see Fig.
1) with σ1 = (7, R1), σ2 = (3, R2), σ3 = (8, R3) and the set of rules and synapses

4 Along this paper, we use regular expressions of type ana∗, with n ∈ N. In this case, the
language associated to ana∗ is the set {an+k | k ∈ N}. For more details about regular
expressions, see, for example [29].



Skeletonizing Images by Using SN P Systems 95

R11 ≡ a5a∗/a5 → a3 R21 ≡ a5/a3 → a2

R31 ≡ a8/a3 → λ

R32 ≡ a7/a2 → a1

a9 a3

a8

1
2

3

w12 = 0.7

w21 = 1

w32 = 0.5

w23 = 0.8w13 = 0.4

Fig. 1. Example. The input neuron 1 has 9 = 7+2 spikes at the starting configuration.

R1 = {R11 ≡ a5a∗/a5 → a3}
R2 = {R21 ≡ a5/a3 → a2}
R3 = {R31 ≡ a8/a3 → λ , R32 ≡ a7/a2 → a1}

syn = {(1, 2, 0.7), (2, 1, 1), (2, 3, 0.8), (3, 2, 0.5), (1, 3, 0.4)}
We will consider the input N = 2, so, in order to start the computation, 9

spikes (7 + 2) are placed in the neuron 1. Notice that R11 will be applied if the
neuron 1 contains at least 5 spikes. R31 is the unique forgetting rule in the SN P
system.

Since the input is N = 2, the initial configuration is C0 = ⟨9, 3, 8⟩. From this
initial configuration, rules R11 and R31 can be applied. The rule R11 consumes 5
spikes from the neuron 1 and sends 3 spikes to the neurons 2 and 3. These 3 sent
spikes are multiplied by the corresponding weights before arriving to the target
neurons. The weight of the synapses between the neurons 1 and 2 is w12 = 0.7,
so the application of the rule R11 produces an increase of ⌊3 × 0.7⌋ = 2 spikes
in the neuron 2. Bearing in mind that w13 = 0.4, the application of the rule R11

increases in ⌊3 × 0.4⌋ = 1 the number of spikes in the neuron 3. The forgetting
rule R31 deletes 3 spikes from neuron 3 and hence, the new obtained configuration
is C1 = ⟨4, 5, 6⟩.

Now, the unique applicable rule is R21. This rule consumes 3 spikes from neuron
2 and sends 2 spikes to the neurons 1 and 3. According with the corresponding
weights, the number of the spikes in the neuron 1 is increased in ⌊2× 1⌋ = 2 and
the number of the spikes in the neuron 3 is increased in ⌊2×0.8⌋ = 1. By applying
these modifications, the obtained configuration is C2 = ⟨6, 2, 7⟩.



96 D. Dı́az-Pernil et al.

Fig. 2. A hand-written word and its skeletonization

From this configuration, rules R11 and R32 are applicable. The effects of R11

have been described above. The rule R32 removes 2 spikes from the neuron 3 and
sends 1 spike to neuron 2. This spike is multiplied by the corresponding weight,
w32 = 0.5, so it does not produce any increase in the number of spikes in neuron 3,
since ⌊0.5×1⌋ = 0. With these changes, the obtained configuration is C3 = ⟨1, 4, 4⟩.
No more rules can be applied and C3 is the halting configuration.

3 Guo & Hall Algorithm

Skeletonization is a common transformation in Image Analysis. The concept of
skeleton was introduced by Blum in [1], under the name of medial axis transform.
There are many different definitions of the skeleton of a black and white image and
many skeletonizing algorithms5, but in general, the image B is a skeleton of the
image A, if it has fewer black pixels than A, preserves its topological properties
and, in some sense, keeps its meaning. In this paper, we focus on an iterative
procedure of thinning: roughly speaking, the border black pixels are removed as
long as they are not considered significant. The remaining set of black pixels is
called the skeleton (See Fig. 2).

Among the parallel algorithms, special attention deserves the so-called 1-
subcycle parallel algorithms or fully parallel algorithms [12]. Our bio-inspired de-
sign is based on a classical skeletonizing algorithm, the Guo & Hall algorithm
[12, 13]. In this algorithm, the pixels are examined for deletion in an iterative
process.

5 A detailed description is out of the scope of this paper. For a survey in this topic, see
e.g., [30].



Skeletonizing Images by Using SN P Systems 97

P1 P2 P3

P8 P0 P4

P7 P6 P5
? R

-
�6I

�

	
1/26 1/27

1/20

1/211/221/23

1/24

1/25

Fig. 3. (Left) Enumeration of the pixels in a 3 × 3 neighborhood. (Center) 3 × 3
neighborhood with encoding [0, 0, 0, 0, 1, 1, 1, 1, 1], or, shortly, 24+25+26+27+28 = 496.
(Right) Scheme of the weights of the synapses.

First of all, given an n ×m image, it is divided into two sub-sections. One of
the sections is composed by the pixels aij such that i + j is even. Alternatively,
the second sub-section corresponds to the pixels aij such that i + j is odd. The
algorithm consists on two sub-iterations where the removal of redundant pixels
from both sub-sections are alternated, i.e., in each step only the pixels of one of
the subsections are evaluated for its deletion.

The decision is based on a 3× 3 neighborhood. Given a pixel P0, a clockwise
enumeration P1, . . . , P8 of its eight neighbor pixels is considered, (Figure 3 (Left)).
As usual, for each i ∈ {1, . . . , 8}, Pi is considered as a Boolean variable, with the
truth value 1 if Pi is black and 0 if Pi is white.

In order to decide if a pixel P0 is deleted in the corresponding iteration sub-
cycle, two parameters are evaluated:

B(P0) =
∑i=8

i=1 Pi
C(P0) = (¬P2 ∧ (P3 ∨ P4)) + (¬P4 ∧ (P5 ∨ P6))

+(¬P6 ∧ (P7 ∨ P8)) + (¬P8 ∧ (P1 ∨ P2))

B(P0) counts how many pixels in the neighborhood of P0 are black. C(P0)
evaluates the connectivity of the pixel P0. Notice that for isolated black pixels, the
connectivity is 0, and for pixels surrounded by eight black pixels, the connectivity
is 4.

According to the Guo & Hall algorithm, in each iteration, an evaluated black
pixel P0 is deleted (changed to white) if and only if all of the following conditions
are satisfied.

Guo & Hall conditions:

1. B(P0) > 1;
2. C(P0) = 1; This condition is necessary for preserving local connectivity when

P is deleted.
3. (P1∧P3∧P5∧P7)∨(P2∧P4∧P6∧P8) = FALSE; Intuitively, this condition

is satisfied if P0 is not the central pixel of a cross.



98 D. Dı́az-Pernil et al.

For example, let us consider as P0 the central pixel in the image of Fig. 3
(Center). In this case, B(P0) = 3 > 1, C(P0) = 1, and the third condition is also
satisfied. Hence, P0 will be deleted in the corresponding sub-cycle iteration.

4 SN P Systems for Skeletonizing

In this paper we will show how to use SN P systems for skeletonizing images.
In particular, we use SN P systems for implementing the Guo & Hall algorithm.
Without losing generality, we will consider each image as a mapping I : {1, . . . , p}×
{1, . . . , q} → {black, white}, with I(1, k) = I(p, k) = I(j, 1) = I(j, q) = white for
all k ∈ {1, . . . , q} and j ∈ {1, . . . , p}, i.e., the image has n ×m pixels and all the
pixels on the border are white.

Given a pixel (i, j), we can use the enumeration of the pixels used in the
previous section to represent the neighborhood of the pixel P0 in (i, j). Such a
neighborhood will be represented as a list [H0, . . . , H8], where, for r ∈ {0, . . . , 8},
Hr = 1 if Pr is a white pixel and Hr = 0 if Pr is a black one6. This represen-
tation of the neighborhood can be done in a more compact way, by encoding the
neighborhood as a number7 in {0, . . . , 511}.

cod(i, j) =
8∑

r=0

Hr × 2r

For example, in Fig. 3 (Center), the 3 × 3 neighborhood can be encoded as
[0, 0, 0, 0, 1, 1, 1, 1, 1], or, shortly, 24 + 25 + 26 + 27 + 28 = 496.

Since the decision of removing a black pixel (changing to white) depends on
its 3 × 3 neighborhood and there is a bijective correspondence among the sets of
all the possible neighborhoods and the possible encodings {0, . . . , 511}, it is easy
to check that the pixel in (i, j) must be removed if it belongs to the set

DEL =



6 12 14 18 24 26 28 30 36 38 44 46
48 50 56 58 60 62 66 72 74 96 98 104
106 112 114 120 122 124 126 132 134 140 142 144
146 152 154 156 158 164 166 172 174 176 178 184
186 188 190 192 194 200 202 224 226 232 234 240
242 248 250 252 258 262 264 266 270 286 288 290
294 296 298 302 318 384 386 390 392 394 398 414
416 418 422 424 426 430 448 450 454 456 458 462
480 482 486 488 490 496 498 504


The complementary set of encodings will be denoted by DEL, in other words,

6 Notice that we encode black pixels as 0 and white pixels as 1 for an easier implemen-
tation with SN P systems. In the previous section, we keep the opposite encoding in
order to keep continuity with the literature.

7 Similar ideas are also used in [30].



Skeletonizing Images by Using SN P Systems 99

DEL = {s ∈ {0, . . . , 511} | s ̸∈ DEL}

For each image of size p × q, a SN P system will be provided. The input of the
SN P system is a non negative integer which represents the number of iterations
in the skeletonizing process. Formally, given an p× q image, we associate to it the
following SN P system is degree (p× q) + 2:

Π = (O, σ11, σ12, . . . , σpq, σodd, σeven, syn, odd),

i.e., a SN P system with a neuron for each pixel in the image plus two extra
neurons, σodd and σeven. The input neuron is σodd.

• O = {a} is the singleton alphabet;
• σodd = (512, a513a∗/a513 → a512) and σeven = (0, a512/a512 → a512).
• σij = (nij , Rij), i ∈ {1, . . . , p}, j ∈ {1, . . . , q}, where

ni,j =

{
0 if i = 1 ∨ i = p ∨ j = 1 ∨ j = q
cod(i, j) otherwise

R1k = Rpk = Rj1 = Rjq = ∅ for all k ∈ {1, . . . , q} and j ∈ {1, . . . , p}. For the
remaining (i, j),

Rij = {ab/a511 → a256 | b = r + 512 ∧ r ∈ DEL}∪
{ab/a512 → λ | b = r + 512 ∧ r ∈ DEL};

• syn =

p−1∪
i=2

q−1∪
j=2

synij


∪ synodd ∪ syneven ∪ {⟨odd, even, 1⟩, ⟨even, odd, 1⟩}, where

synodd =

{
⟨odd, (i, j), 1⟩ | i ∈ {2, . . . , p− 1}, j ∈ {2, . . . , q − 1},

i+ j odd

}

syneven =

{
⟨even, (i, j), 1⟩ | i ∈ {2, . . . , p− 1}, j ∈ {2, . . . , q − 1},

i+ j even

}
and for all i ∈ {2, . . . , q − 1}, j ∈ {2, . . . , q − 1},

synij =


⟨(i, j), (i+ 1, j), 1/20⟩, ⟨(i, j), (i− 1, j), 1/24⟩,
⟨(i, j), (i+ 1, j + 1), 1/21⟩, ⟨(i, j), (i− 1, j − 1), 1/25⟩,
⟨(i, j), (i, j + 1), 1/22⟩, ⟨(i, j), (i, j − 1), 1/26⟩,
⟨(i, j), (i− 1, j + 1), 1/23⟩, ⟨(i, j), (i+ 1, j − 1), 1/27⟩}


The SN P system has one neuron σij for each pixel of the image plus two extra

neurons σodd and σeven. The neurons corresponding to the border of the image has
zero spikes in the initial configuration, the remaining neurons σij corresponding to
the pixels of the image (called hereafter, the regular neurons) have cod(i, j) spikes
in the initial configuration. The neurons σodd and σeven have 512 and 0 spikes



100 D. Dı́az-Pernil et al.

respectively. We will add to the 512 spikes in σodd as many spikes as indicated as
input for starting the computation.

The neuron σodd has only one rule a513a∗/a513 → a512 which is applied if the
neuron has at least 513 spikes. The neuron σeven has also one rule a512/a512 → a512.
The regular neurons have two types of rules: Firing and forgetting ones, which will
be applied if the number of spikes is exactly b = r+512 with r ∈ DEL or r ∈ DEL,
respectively.

With respect to the synapses, a regular neuron corresponding to a pixel P is
linked to the eight neurons corresponding to the eight neighbor pixels of P , with
the weights 1/2i where i ∈ {0, . . . , 7} follows an anti-clockwise enumeration of the
pixels starting in the east pixel (see Fig. 3 (Right)). The neurons σodd and σeven

are linked each other. The neuron σodd is also linked to all the regular neurons σij

with i+ j odd and, analogously, σeven is linked to all the regular neurons σij with
i+ j even.

4.1 How it works

In order to understand how the SN P system works, firstly we observe that at the
initial configuration, the set of regular neurons σij encodes the image which will be
skeletonized. We will show that, at any time, these neurons encode the successive
images obtained in the iterative process of deleting black pixels according to the
Guo & Hall algorithm. Let us remark that if the number of spikes in σij is even,
then the corresponding pixel is black; otherwise, if the number of spikes is odd,
then the corresponding pixel is white. This is easily derived from the definition of
cod(i, j).

Another observation to be considered is that the parity of the number of spikes
in a neuron never changes, since the number of spikes received or removed is
always an even amount, except by the application of the rule ab/a511 → a256. As
we will see below, the application of this rule is interpreted as the deletion of the
corresponding black pixel in the Guo & Hall algorithm and it is applied once at
most in each neuron.

Before explaining the different steps of the process, let us consider a pixel (i, j)
in the image and a black pixel adjacent to (i, j). We identify this black pixel to
v ∈ {P1, . . . , P8} according to the clockwise enumeration described above. Let us
suppose that the black pixel in v belongs to the selected subsection in the current
step of the Guo & Hall algorithm and it satisfies the conditions to be deleted.

Let us consider now the neurons σij and σv corresponding to the pixels in (i, j)
and v. As we will show below, the three conditions for v (it is black, it belongs
to a selected subsection and it satisfies the Guo & Hall conditions to be deleted)
indicates that the number of spikes in σv is b = r + 512 with r ∈ DEL. In this
case the rule ab/a511 → a256 is applied. As pointed out above, the application of
this rule changes the parity of the number of spikes σr (from even, since the pixel
is black, to odd) and this change is interpreted as a deletion of the pixel in v.

We focus on the influence of the deletion of the black pixel in v (or, equivalently,
the application of the rule ab/a511 → a256 in σv) on the neuron σij . Since the



Skeletonizing Images by Using SN P Systems 101

number of spikes in σij at the initial configuration is cod(i, j) =
∑8

i=0 Hi×2i and,
in this configuration, the pixel v is black, according to the encoding, this means
that Hv is zero, or, in other words, 2v does nor appear in the encoding of the
environment as an addition of powers of 2.

The deletion of the pixel in v changes the environment of (i, j) and then, since
the number of spikes in σij represents such environment, the number of spikes
must change. In particular, the change corresponds to turn Hv to 1, or, in other
words, to add 2v to the number of spikes in σij .

In order to check that this happens, it is suffices to seen that the rule ab/a511 →
a256 sends 256 = 28 from neuron σv to σij , but these 28 must be multiplied by
the corresponding weight in {1/20, . . . , 1/27}, so only 2, 22, 23,. . . , 27 or 28 spikes
arrive to σij , depending on the value of v. A simple inspection shows that the
number of spikes that arrives to σij is exactly 2v when the black pixel v is deleted.

Bearing in mind these considerations, we show that for an input N ∈
{1, . . . , 513}, the computation steps of the SN P system correspond to the it-
erative process of the Guo & Hall algorithm where the first selected subsection
corresponds to pixels with i + j odd. In such way we will show the following
statements:

• Statement 1: The set of regular neurons is split into two sub-sections. One of
the sections is composed by the neurons σij such that i+j is even. Alternatively,
the second sub-section corresponds to the neurons σij such that i + j is odd.
Both subsections are alternatively selected, starting with the odd subsection.

• Statement 2: In each computation step, only neurons corresponding to the
selected subsection are evaluated. The evaluation consists on determining if the
neighborhood of the pixel associated to the neuron satisfies the conditions of
the Guo & Hall algorithm to be deleted.

• Statement 3: If an evaluated black pixel satisfies the Guo & Hall conditions
to be deleted (see Section 3), then the number of spikes in the corresponding
neuron changes from even to odd.

• Statement 4: In each configuration, the number of spikes in the regular neu-
rons is the codification of an image, according to the encoding described above.

The first key point of the algorithm is that the image is split into two subsec-
tions which will be explored alternatively. One black pixel will be considered for
its deletion only if it belongs to the subsection selected in the current step. We
consider that a regular neuron σij is selected at the step r if its number of spikes
in the configuration Cr is greater than or equal to 512. Otherwise, if its number
of spikes is lower than 512, then the neuron is not selected.

Next we show that the regular neurons with i+j odd and even are alternatively
selected. The selection of subsections is performed by the neurons σodd and σeven

which send, alternatively, 512 spikes to the regular neurons σij with i+ j odd and
even, respectively.

Lemma 1. Let σij be a regular neuron and N ∈ {1, . . . , 513} the input of the SN
P system. For r ∈ {0, . . . , N − 1}



102 D. Dı́az-Pernil et al.

• If i+ j is odd, then the number of spikes in σij is greater than or equal to 512
in the configuration C2r+1 and it is lower than 512 in the configuration C2r.

• If i + j is even, then the number of spikes in σij is greater than or equal
to belongs to 512 in the configuration C2r+2 and it is lower than 511 in the
configuration C2r+1.

Proof. Let us observe that in the initial configuration, the number of spikes in
a regular neuron σij is cod(i, j) < 512; the number of spikes in σodd is 512 + N
and there is zero spikes in the neuron σeven. From this initial configuration, the
unique applicable rule is a513a∗/a513 → a512 in the neuron σodd (since N ≥ 1).
After applying this rule, in the configuration C1, the number of spikes in σodd is
N − 1; the number of spikes in σeven is 512; and the number of spikes in σij is
cod(i, j) + 512 if i+ j is odd and cod(i, j) if i+ j is even.

Let us focus now on σodd and σeven. The unique neuron that sends spikes to σodd

is σeven and, analogously, the unique neuron that sends spikes to σeven is σodd. In
the configuration C1, the spikes in σodd and σeven are N − 1 and 512, respectively.
Since N ≤ 513, the rule in σodd cannot be applied in this configuration, but the
rule in σeven can be applied, so the spikes in σodd and σeven in the configuration C2

are 512+N −1 and 0, which is similar to the situation in the initial configuration,
so we have that for r ∈ {1, . . . , N}, the number of spikes in σodd and σeven and in
the configuration C2r are 512 +N − r and 0.

Notice that at the configuration C2N , the number of spikes in σodd and σeven

are 512 and 0, respectively, and no more rules are applied in these neurons.
According to the number of spikes in σodd and σeven in the odd and even

configurations, and taken into account their synapses, then we have that, for r ∈
{0, . . . , N − 1}, at the configuration C2r+1, the regular neurons with i+ j odd has
at least 512 spikes; and at C2r+2, the regular neurons σij with i + j even has at
least 512 spikes.

In order to complete the proof, it is necessary to prove that for r ∈ {0, . . . , N−
1}, at the configuration C2r+1, the regular neurons with i + j even has at most
511 spikes; and at C2r+2, the regular neurons σij with i+ j odd has at most 511
spikes.

Let us start by considering a regular neuron σij with i + j odd at the con-
figuration C1. As we show above, its number of spikes is b = 512 + r with
r = cod(i, j) ≤ 511. Depending on r ∈ DEL or r ∈ DEL, one of the rules
ab/a511 → a256 or ab/a512 → λ is applied.

• Let us suppose that r ∈ DEL. In particular, this means that the corresponding
pixel is black and the applied rule is ab/a511 → a256. The number of spikes in
the configuration C2 is equal to the spikes in the configuration C1 (512 + r),
minus the consumed ones 511 plus the contribution of other neurons. Since σodd

does not send any spike in this step, the unique contribution to the number
of spikes comes from other regular neurons. Each contribution is the addition
of 2i spikes to the spikes in σij , but, bearing in mind that the pixel is black,
then 20 does not appears in the decomposition of cod(i, j) as sum of powers



Skeletonizing Images by Using SN P Systems 103

of 2, and it cannot be added as a contribution of other neuron, so r plus the
contribution of other neurons is at most 510 and then, the number of spikes in
σij in C2 is lower than 512.

• If r ̸∈ DEL, then the rule ab/a512 → λ is applied. Since 512 spikes are con-
sumed and r plus the contributions of the other regular neurons is at most 511,
then the number of spikes in σij is lower than 512, also in this case.

This reasoning can be also applied to show that the number of spikes of the
neurons σij with i+j even is lower than 512 in the configuration C3 and in general
we have that for r ∈ {0, . . . , N−1}, at the configuration C2r+1, the regular neurons
with i+ j even has at most 511 spikes; and at C2r+2, the regular neurons σij with
i+ j odd has at most 511 spikes. �

The previous lemma shows that the property to have at least 512 spikes changes
alternatively from neurons σij with i+ j odd and even. From this result, it is easy
to check the second statement, since the rules in the regular neurons can only be
applied if the number of spikes is at least 512. That means that only in such cases
the neuron is considered for evaluation.

Evaluating a neuron consists on deciding if the rule ab/a511 → a256 or
ab/a512 → λ is applied, but such decision depends on the set DEL which are the
set of encodings of the neighborhood such that the central pixel must be deleted.

The next key point of the algorithm is the deletion of pixels. By definition
of cod(i, j), a regular neuron σij has an odd number of spikes if and only if it
represents a white pixel. Analogously, a regular neuron σij has an odd number of
spikes if and only if it represents a white pixel. Bearing in mind this coding of
black pixels, deleting a black pixel in a computation step consists on removing an
odd amount of spikes from a neuron with an even amount of spikes.

Lemma 2. Let us consider a black pixel and a step of the Guo & Hall algorithm,
such that the pixel belongs to the selected subsection and it satisfies the conditions
of the algorithm to be deleted. Then, in the corresponding step of the SN P system
computation, the corresponding regular neuron σij will pass from an odd amount
of spikes to an even amount.

Proof. According to the previous construction, a black pixel which belongs to the
selected subsection in the Guo & Hall algorithm and verifies the conditions to
be deleted has associated a regular neuron with 512 + r spikes, r ∈ DEL. In
this case, the rule ab/a511 → a256 is applied. Bearing in mind that r is even, the
contributions of other neurons is even and an odd number of spikes is consumed,
in the next configuration, the number spikes in the neuron is odd. �

Since all the r ∈ DEL are even and the contribution of other neurons is always
even, then the rule ab/a511 → a256 with b = 512 + r is applied at most once in
each neuron. This means that if a pixel is deleted (changed from black to white)
it never becomes black to white, and the iterative process of thinning the image is
also carried out in the SN P system.

Finally, to sum up these statements. We claim the following result.



104 D. Dı́az-Pernil et al.

Theorem. The set of regular neurons of the SN P system encodes in each config-
uration the successive images obtained in the iterative process of thinning of the
Guo & Hall algorithm, by taking as black the pixels with an even amount of spikes
and white the neurons with an odd amount of spikes.

5 Experimental Simulation

Simulation of different variants of P systems have been widely studied in the last
years. Since there do not exist implementations of P systems in vivo nor in vitro,
the natural way to explore the behavior of designed P systems is to simulate it
in conventional computers. A short description of some of these simulators can be
found in [7, 15]. Currently, a big effort is being developed in the P-lingua project [8],
by combining an efficient simulation engine with an ad-hoc programming language.

In this paper, a software tools based on the design of the SN P system has
been implemented by using CUDATM, (Compute Unified Device Architecture)
[18, 19]. CUDATM is a general purpose parallel computing architecture that allows
the parallel NVIDIA Graphics Processors Units (GPUs) to solve many complex
computational problems in a more efficient way than on a CPU.

The experiments have been performed on a computer with a CPU AMD Athlon
II x4 645, which allows to work with four cores of 64 bits to 3.1 GHz. The computer
has four blocks of 512KB of L2 cache memory and 4 GB DDR3 to 1600 MHz of
main memory.

The used graphical card (GPU) is an NVIDIA Geforce GT240 composed by 12
Stream Processors with a total of 96 cores to 1340 MHz. It has 1 GB DDR3 main
memory in a 128 bits bus to 700 MHz. So, the transfer rate obtained is by 54.4

Fig. 4. Scheme of the threads



Skeletonizing Images by Using SN P Systems 105

Fig. 5. Example of image with traffic signals

Gbps. The used Constant Memory is 64 KB and the Shared Memory is 16 KB. Its
Compute Capability level is 1.2 (from 1.0 to 2.1). The implementation deals with
N blocks of threads for the complete image in our GPU of 96 cores, as we can see
in Fig. 4. We need more threads than pixels if the height and width of the image
are not multiples of 16; i.e., we can have useless threads (see Figure 4).

5.1 Examples

A first example is shown in Fig 2. Skeletonizing hand-written texts is one of the
challenges of skeletonizing, since the skeleton keeps the topological structure and
meaning of the original and the text can be easily stored.

Next, we provide several examples of a realistic recognizing problem with ap-
plications in the automotive industry. In Fig. 5, we can see a photograph taken in
a road. It has been binarized by using a threshold method by using a threshold
100 on a gray scale 0, . . . , 255. We can see that the skeletonized images keep the
information of the traffic signals and they can be used in a further pattern recog-
nition problem (see Fig. 6). In Fig. 7, two more examples of skeletionizing real
images are shown.

We finish this section by showing the results of some experiments performed
with our implementation. We have taken 36 totally black images of n× n pixels8,
from n = 125 to n = 4500 with a regular increment of 125 pixels of side. Figure 8
(top) shows the time in milliseconds of our software tool inspired in the designed
SN P system for implementing the Guo & Hall algorithm for 1, 30, 60 and 90
steps in the skeletonizing process. Figure 8 (bottom) shows the same study for a
sequential implementation of the algorithm.

8 Theoretically, this is the worst case, since the time inverted by the algorithm depends
on the size of the biggest black connected component of the original image.



106 D. Dı́az-Pernil et al.

Fig. 6. (Top left) The binarization of the image from Figure 5 (Top right) Inverse bina-
rization of the image. (Bottom left) Its skeletonizing. (Bottom right) The skeletonizing
of the inverse thresholding.

6 Conclusions

The development of new bioinspired parallel techniques provides a chance for re-
visiting classical sequential algorithms. In this paper, we have consider a classical
algorithm for skeletonizing images, but many other algorithms can be considered.
In particular, the bio-inspired computing techniques have features as the encapsu-
lation of the information, a simple representation of the knowledge and parallelism,
which are appropriate with dealing with digital images.

Nonetheless, the use of new computational paradigms for developing the bio-
inspired ideas needs, on the one hand, the contribution of theoretical research
that allows us to design new bio-inspired efficient algorithms, and, on the other
hand, the use of the most recent parallel computer architectures for a real parallel
implementation of the algorithms.

In this paper we provide a new step in both directions, since we study the
skeletonization of images by using Spiking Neural P systems and show the results
of a new software based on the SN P system by using the GPU architecture. This
research line can be followed by considering more classical problems and studying
the possible improvements from a bio-inspired perspective, or, by studying the
same skeletonization problem in other P system models.



Skeletonizing Images by Using SN P Systems 107

Fig. 7. Original images and their skeletons

Acknowledgements

DDP and MAGN acknowledge the support of the projects TIN2008-04487-E and
TIN-2009-13192 of the Ministerio de Ciencia e Innovación of Spain and the support
of the Project of Excellence with Investigador de Reconocida Vaĺıa of the Junta
de Andalućıa, grant P08-TIC-04200.

References

1. Blum, H.: An associative machine for dealing with the visual field and some of its
biological implications. In: Bernard, E.E., Kare, M.R. (eds.) Biological Prototypes
and Synthetic Systems. vol. 1, pp. 244–260. Plenum Press, New York (1962)

2. Chen, H., Ionescu, M., Ishdorj, T.O., Păun, A., Păun, Gh., Péz-Jiméz, M.: Spiking
neural P systems with extended rules: universality and languages. Natural Comput-
ing 7, 147–166 (2008)

3. Christinal, H.A., Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.:
Thresholding of 2D images with cell-like P systems. Romanian Journal of Infor-
mation Science and Technology 13(2), 131–140 (2010)

4. Christinal, H.A., Dı́az-Pernil, D., Real, P.: Segmentation in 2D and 3D image using
tissue-like P system. In: Bayro-Corrochano, E., Eklundh, J.O. (eds.) Progress in
Pattern Recognition, Image Analysis, Computer Vision, and Applications, CIARP
2009. Lecture Notes in Computer Science, vol. 5856, pp. 169–176. Springer (2009)

5. Christinal, H.A., Dı́az-Pernil, D., Real, P.: Region-based segmentation of 2D and 3D
images with tissue-like P systems. Pattern Recognition Letters 32(16), 2206 – 2212
(2011)



108 D. Dı́az-Pernil et al.

Fig. 8. Experimental time obtained for the Guo & Hall algorithm 36 totally black images
of n× n pixels, from n = 125 to n = 4500 with a regular increment of 125 pixels of side.
Top image shows the time of our parallel implementation in SN P Systems. Bottom image
shows the time for a sequential implementation.

6. Corne, D.W., Frisco, P., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): Membrane
Computing - 9th International Workshop, WMC 2008, Edinburgh, UK, July 28-31,
2008, Revised Selected and Invited Papers, Lecture Notes in Computer Science, vol.
5391. Springer (2009)

7. Dı́az-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Pérez-Hurtado, I., Pérez-
Jiménez, M.J.: Software for P systems. In: Păun et al. [27], pp. 437–454

8. Dı́az-Pernil, D., Pérez-Hurtado, I., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A P-
lingua programming environment for membrane computing. In: Corne et al. [6], pp.
187–203

9. Egmont-Petersen, M., de Ridder, D., Handels, H.: Image processing with neural
networks - a review. Pattern Recognition 35(10), 2279–2301 (2002)

10. Gimel’farb, G., Nicolescu, R., Ragavan, S.: P systems in stereo matching. In: Real,
P., Dı́az-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W. (eds.) Computer
Analysis of Images and Patterns, Lecture Notes in Computer Science, vol. 6855, pp.
285–292. Springer Berlin / Heidelberg (2011)

11. Gimel’farb, G.L.: Probabilistic regularisation and symmetry in binocular dynamic
programming stereo. Pattern Recognition Letters 23(4), 431–442 (2002)

12. Guo, Z., Hall, R.W.: Parallel thinning with two-subiteration algorithms. Communi-
cations of the ACM 32, 359–373 (1989)



Skeletonizing Images by Using SN P Systems 109

13. Guo, Z., Hall, R.W.: Fast fully parallel thinning algorithms. CVGIP: Image Under-
standing. 55, 317–328 (1992)

14. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Hebbian learning from spiking neural
P systems view. In: Corne et al. [6], pp. 217–230

15. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Available mem-
brane computing software. In: Ciobanu, G., Pérez-Jiménez, M.J., Păun, Gh. (eds.)
Applications of Membrane Computing, pp. 411–436. Natural Computing Series,
Springer (2006)

16. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking neural P systems. Fundamenta Infor-
maticae 71(2-3), 279–308 (2006)

17. Mart́ın-Vide, C., Păun, Gh., Pazos, J., Rodŕıguez-Patón, A.: Tissue P systems. The-
oretical Computer Science 296(2), 295–326 (2003)

18. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with
CUDA. Queue 6, 40–53 (2008)

19. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU
Computing. Proceedings of the IEEE 96(5), 879–899 (2008)

20. Pan, L., Wang, J., Hoogeboom, H.: Spiking neural P systems with astrocytes. 24(3),
805–825 (2012)

21. Pan, L., Zeng, X., Zhang, X., Jiang, Y.: Spiking neural P systems with weighted
synapses. Neural Processing Letters 35(1), 13–27 (2012)

22. Pan, L., Păun, Gh.: Spiking neural P systems with anti-spikes. International Journal
of Computers, Communications & Control IV(3), 273–282 (September 2009)

23. Peña-Cantillana, F., Dı́az-Pernil, D., Berciano, A., Gutiérrez-Naranjo, M.A.: A par-
allel implementation of the thresholding problem by using tissue-like P systems. In:
Real, P., Dı́az-Pernil, D., Molina-Abril, H., Berciano, A., Kropatsch, W.G. (eds.)
CAIP (2). Lecture Notes in Computer Science, vol. 6855, pp. 277–284. Springer
(2011)

24. Peña-Cantillana, F., Dı́az-Pernil, D., Christinal, H.A., Gutiérrez-Naranjo, M.A.: Im-
plementation on CUDA of the smoothing problem with tissue-like P systems. Inter-
national Journal of Natural Computing Research 2(3), 25–34 (2011)

25. Păun, Gh.: Computing with membranes. Tech. Rep. 208, Turku Centre for Computer
Science, Turku, Finland (November 1998)

26. Păun, Gh.: Membrane Computing. An Introduction. Springer-Verlag, Berlin, Ger-
many (2002)

27. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press, Oxford, England (2010)

28. Rosin, P.L.: Training cellular automata for image processing. IEEE Transactions on
Image Processing 15(7), 2076–2087 (2006)

29. Rozenberg, G., Salomaa, A.: Handbook of Formal Languages: Word, language, gram-
mar. Handbook of Formal Languages, Springer (1997)

30. Saeed, K., Tabedzki, M., Rybnik, M., Adamski, M.: K3M: A universal algorithm for
image skeletonization and a review of thinning techniques. Applied Mathematics and
Computer Science 20(2), 317–335 (2010)

31. Selvapeter, P.J., Hordijk, W.: Cellular automata for image noise filtering. In: World
Congress on Nature & Biologically Inspired Computing, 2009. NaBIC 2009. pp. 193–
197. IEEE (2009)

32. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall PTR, Upper Saddle
River, NJ, USA (2001)



110 D. Dı́az-Pernil et al.

33. Wang, J., Hoogeboom, H.J., Pan, L.: Spiking neural P systems with neuron division.
In: Gheorghe, M., Hinze, T., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Int.
Conf. on Membrane Computing. Lecture Notes in Computer Science, vol. 6501, pp.
361–376. Springer, Berlin Heidelberg (2010)

34. Wang, J., Hoogeboom, H.J., Pan, L., Păun, Gh., Pérez-Jiménez, M.J.: Spiking neural
P systems with weights. Neural Computation 22(10), 2615–46 (2010)

35. Zhou, Y., Chellappa, R.: Artificial neural networks for computer vision. Research
notes in neural computing, Springer-Verlag (1992)


