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Summary. In order to provide efficient software tools to deal with large membrane
systems, high-throughput simulators are required. Parallel computing platforms are good
candidates, since they are capable of partially implementing the inherently parallel nature
of the model. In this concern, today GPUs (Graphics Processing Unit) are considered as
highly parallel processors, and they are being consolidated as accelerators for scientific
applications. In fact, previous attempts to design P systems simulators on GPUs have
shown that a parallel architecture is better suited in performance than traditional single
CPUs.

In 2010, a GPU-based simulator was introduced for a family of P systems with active
membranes solving SAT in linear time. This is the starting point of this paper, which
presents a new GPU simulator for another polynomial-time solution to SAT by means of
tissue P systems with cell division, trading space for time. The aim of this simulator is
to further study which ingredients of different P systems models are well suited to be
managed by the GPU.
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1 Introduction

Membrane Computing [15] is a recent branch of Natural Computing, which defines
massively parallel and non-deterministic computing devices abstracted from living
eukaryotic cells. These devices are called membrane systems, or simply, P systems
(named after its creator, Gheorghe Păun) [12]. Today, researchers have only one
method to work with P systems, which is the usage of simulators running on
conventional electronic computers. However, these simulators are normally unfit
for very large P systems models. The main reason is that they are not throughput-
oriented, so they consume large amounts of time and memory resources on a
computer. Therefore, the necessity of efficient simulators arises [15].



202 M.A. Mart́ınez-del-Amor, J. Pérez-Carrasco, M.J. Pérez-Jiménez

In the last years, the trend has been oriented to implement P systems
parallelism on parallel platforms, such as accelerators (special parallel devices).
In fact, the advent of the accelerators in High Performance Computing offers
fresh avenues for developing new and efficient simulators [2]. One of the most
important accelerators nowadays is the GPU (Graphics Processing Unit). It is the
core of graphics cards and, thanks to the fast growth of video and game market,
typically contains hundreds of slight processors. Their evolution has also led to a
new programming model based on data parallelism. This permits to use GPUs for
general purpose applications (GPGPU or GPU computing) [8].

So far, many GPU-based simulators have been developed for several P systems
models: active membranes [2], PDP systems [9], Spiking Neural P systems [1],
among others. These simulators are flexible for the corresponding P system model,
supporting a wide variety of P systems. However, this feature causes a negative
effect on performance [10]. An alternative line was initiated in 2010 with the
introduction of a specific (ad-hoc) simulator for a P system based efficient solution
to SAT by using GPUs [3, 4]. The solution is based on P systems with active
membranes, and the simulator achieves speedups of up to 90x, compared to the
CPU counterpart. The obtained results lead to a new open question, related with
the efficiency of P system simulators: fixed a problem (e.g. SAT), which is the
fastest P system based solution simulated on the GPU? In order to answer this
question, we first need to analyze which elements of P systems are better suited
to be handled by the GPU. In fact, this can help to define new methods to design
more efficient simulators.

In this paper, we consider another efficient solution to SAT based on tissue P
systems with cell division. A simulator based on GPUs for this solution is presented.
We provide an analysis of performance of the new simulator, together with a
performance comparison between the cell-like and the tissue-like simulators.

The paper is structured as follows: Section 2 introduces the model of tissue P
systems with cell division and the solution to SAT; Section 3 surveys the typical
GPU architecture and the peculiarities of GPU computing; Section 4 depicts the
design of the new simulator; Section 5 provides the performance analysis of the
developed simulator and the mentioned comparisons; and finally, Section 6 ends
the paper with conclusions and open research lines.

2 Tissue-like P systems

In this paper, we work on computational devices inspired by the cell inter–
communication in tissues, and adding the ingredient of cell division rules. Cell
division is an elegant process that enables organisms to grow and reproduce by
means of the production of two daughter cells from a single parent cell.

Tissue P systems with cell division are inspired by the cell-like model of P
systems with active membranes [13]. In these models, the cells are not polarized;
cells obtained by division have the same labels as the original cell, and if a cell is
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divided, its interaction with other cells or with the environment is locked during
the division process.

First, we recall some preliminaries. An alphabet Γ is a non–empty set whose
elements are called symbols. A multiset m over an alphabet Γ is a pair m = (Γ, f)
where f is a mapping from Γ into N. If m = (Γ, f) is a multiset then its
support is defined as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite if its
support is a finite set. If supp(m) = {a1, . . . , ak} then the multiset m will be
denoted as m = a

f(a1)
1 . . . a

f(ak)
k (here the order is irrelevant), and we say that

f(a1) + · · · + f(ak) is the cardinal of m, denoted by |m|. The empty multiset is
denoted by λ.

Let m1 = (Γ, f1) and m2 = (Γ, f2) multisets over Γ . The union of m1 and
m2, denoted by m1 + m2, is the multiset (Γ, g), where g = f1 + f2, that is,
g(x) = f1(x)+f2(x) for each x ∈ Γ . The relative complement of m2 in m1, denoted
by m1 \m2 is the multiset (Γ, g), where g(x) = f1(x)− f2(x) if f1(x) ≥ f2(x) and
g(x) = 0 otherwise.

Definition 1. A tissue P system with cell division of degree q ≥ 1 is a tuple
Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout), where:

1. Γ,Σ and E are finite alphabets such that Σ ( Γ and E ⊆ Γ .
2. Γ has two distinguished objects yes and no, and {yes, no} ∩ E = ∅.
3.M1, . . . ,Mq are finite multisets over Γ \Σ.
4. At least one copy of objects yes and no are present in some initial multisets
M1, . . . , Mq, but none of them are present in E.

5. R is a finite set of rules of the following forms:
(a) Communication rules: (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v finite

multisets over Γ , and |u+ v| 6= 0;
(b) Division rules: [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q}, i 6= iout and

a, b, c ∈ Γ .
6. iin ∈ {1, 2, . . . , q}, and iout ∈ {0, 1, . . . , q}.

A tissue P system with cell division Π = (Γ,Σ, E ,M1, . . . ,Mq,R, iin, iout) of
degree q ≥ 1 can be viewed as a set of q cells, labeled by 1, . . . , q, with an
environment labeled by 0 such that: (a) M1, . . . ,Mq are finite multisets over Γ
representing the objects (elements in Γ ) initially placed in the q cells of the system;
(b) E is the set of objects located initially in the environment of the system, all
of them appearing in an arbitrary number of copies; and (c) iin represents the
input cell, and iout ∈ {0, 1, . . . , q} represents the region (a distinguished cell when
iout ∈ {1, . . . , q}, or the environment when iout = 0) which will encode the output
of the system.

When applying a rule (i, u/v, j), the objects of the multiset u are sent from
region i to region j and, simultaneously, the objects of multiset v are sent from
region j to region i. When applying a division rule [a]i → [b]i[c]i, under the
influence of object a, the cell with label i is divided into two cells with the same
label. In the first copy, object a is replaced by object b, and in the second one,
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object a is replaced by object c; all the other objects are replicated and copies of
them are placed in the two new cells. The output cell iout cannot be divided.

The rules of a tissue P system with cell division are applied in a non-
deterministic maximally parallel manner. At each step, all the cells which can
evolve must evolve in a maximally parallel way (at each step, we apply a multiset of
rules which is maximal, no further rule can be added), with the following important
remark: if a cell divides, only the division rule is applied to that cell at that step;
the objects inside that cell do not evolve by means of communication rules.

A configuration at any instant of Π is described by all multisets of objects over
Γ associated with all the cells present in the system, and the multiset of objects
over Γ \E associated with the environment at that moment. Given a finite multiset
m over Σ, the initial configuration with input m is (M1, . . . ,Miin

+m, . . . ,Mq; ∅).
A configuration is a halting configuration if no rule of the system is applicable to
it.

We say that configuration C1 yields configuration C2 in one transition step if
we can pass from C1 to C2 by applying the rules from R following the previous
remarks. A computation of Π is a sequence of configurations such that: (a) the first
term of the sequence is an initial configuration of the system; (b) each remaining
term of the sequence is obtained from the previous one by applying the rules of the
system in a maximally parallel manner with the restrictions previously mentioned;
and (c) if the sequence is finite (called halting computation), then the last term of
the sequence is a halting configuration.

A tissue P system with cell division is a recognizer system if all computations
halt, and if C is a computation of Π, then either object yes or object no (but
not both) must have been released into the environment, and only at the last
step of the computation. We say that C is an accepting (respectively, rejecting)
computation if object yes (respectively, object no) appears in the environment
associated with the corresponding halting configuration of C.

2.1 An efficient solution to SAT by means of tissue P systems with
cell division

This section presents an efficient solution to the SAT problem by means of family
of recognizer tissue P systems with cell division (see [14] for details).

For each pair of natural numbers m,n ∈ N, we will consider the recognizer
tissue P system with cellular division Π(〈m,n〉) = (Γ,Σ, µ,M1,M2, R, 2) of
degree 2, defined as follows:

• The input alphabet is Σ = {xi,j , xi,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
• The working alphabet is

Γ = Σ ∪ {ai, ti, fi | 1 ≤ i ≤ n} ∪ {ri | 1 ≤ i ≤ m} ∪
∪ {Ti, Fi | 1 ≤ i ≤ n} ∪ {Ti,j , Fi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m+ 1} ∪
∪ {bi | 1 ≤ i ≤ 2n+m+ 1} ∪ {ci | 1 ≤ i ≤ n+ 1} ∪
∪ {di | 1 ≤ i ≤ 2n+ 2m+ nm+ 1}∪
∪ {ei | 1 ≤ i ≤ 2n+ 2m+ nm+ 3} ∪ {f, g, yes, no}
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• The environment alphabet is E = Γ − {yes, no}.
• The set of labels is {1, 2}.
• The initial multisets associated with the cells areM1 = {yes, no, b1, c1, d1, e1}

and M2 = {f, g, a1, a2, . . . , an}.
• The input cell is the one labeled by 2, and the output region is the environment.
• The set R is formed by the following rules:

1. Division rule:

(a) [ ai ]2 → [ Ti ]2[ Fi ]
2
, for i = 1, 2, . . . , n.

2. Communication rules:

(b) (1, bi/b2i+1, 0), for i = 1, . . . , n.
(c) (1, ci/c2i+1, 0), for i = 1, . . . , n.
(d) (1, di/d

2
i+1, 0), for i = 1, . . . , n.

(e) (1, ei/ei+1, 0), for i = 1, . . . , 2n+ 2m+ nm+ 2.
(f) (1, bn+1cn+1/f, 2).
(g) (1, dn+1/g, 2).
(h∗) (1, f2/f, 0).
(h) (2, cn+1Ti/cn+1 Ti,1, 0), for i = 1, . . . , n.
(i) (2, cn+1Fi/cn+1 Fi,1, 0), for i = 1, . . . , n.
(j) (2, Ti,j/ti Ti,j+1, 0), for i = 1, . . . , n and j = 1, . . . ,m.
(k) (2, Fi,j/fi Fi,j+1, 0), for i = 1, . . . , n and j = 1, . . . ,m.
(l) (2, bi/bi+1, 0).
(m) (2, di/di+1, 0), for i = n+ 1, . . . , 2n+m.
(n) (2, b2n+m+1 ti xi,j/b2n+m+1 rj , 0).
(o) (2, b2n+m+1 fi xi,j/b2n+m+1 rj , 0), for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
(p) (2, di/di+1, 0), for i = 2n+m+ 1, . . . , 2n+m+ nm.
(q) (2, d2n+m+nm+j rj/d2n+m+nm+j+1, 0), for j = 1, . . . ,m.
(r) (2, d2n+2m+nm+1/f yes, 1).
(s) (2, yes/λ, 0).
(t) (1, e2n+2m+nm+3 f no/λ, 0).

Let ϕ = C1 ∧ · · · ∧ Cm be a propositional formula in CNF1 such that the set
of variables of the formula is V ar(ϕ) = {x1, . . . , xn}, and consists of m clauses
Cj = yj,1∨· · ·∨yj,kj

, 1 ≤ i ≤ m, where yj,j′ ∈ {xi,¬xi : 1 ≤ i ≤ n} are the literals
of ϕ. Without loss of generality, we can assume that the formula is in simplified
expression.

Next, we consider a polynomial encoding (cod, s) of the SAT problem in the
family Π = {Π(t) | t ∈ IN}. The function cod associates to the previously described
propositional formula ϕ, that is an instance of SAT with parameters n (number of
variables) and m (number of clauses), the following multiset of objects

1 Conjunctive Normal Form
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cod(ϕ) =
m⋃

i=1

{xi,j : xi ∈ Cj} ∪ {xi,j : ¬xi ∈ Cj}

In this case, object xi,j represents that variable xi belongs to clause Cj .
The size function, s, is defined as follows s(ϕ) = 〈m,n〉 = (m+n)·(m+n+1)

2 +m.
The system of the family Π to process the instance ϕ will be the tissue P system
Π(s(ϕ)) with input multiset cod(ϕ).

The execution of the system Π(s(ϕ)) with input cod(ϕ) is structured in six
phases:

• Valuations generation phase: in this phase all the possible relevant truth
valuations are generated for the set of variables of the formula {x1, . . . , xn}. It
is implemented by using division rules (a), whereby each object xi produces
two new cells, one having the object Ti, that codifies the true value of the
variable xi, y and the other having the object Ti, that codifies the false value
of the variable xi. Thus, 2n cells are obtained in n computation steps. These
cells are labeled by 2, and each one codifies each possible truth valuation of
the set of variables {x1, . . . , xn}. Meanwhile, the objects f, g are replicated in
each created cell. This phase spends n computation steps.

• Counters generation phase: simultaneously, and using the rules (b), (c),
(d) and (e), the counters bi, ci, di, ei of the cell labeled by 1, are evolving such
that in each computation step the number of objects in each one are doubling.
Thereby, through this process and after n steps, we get 2n copies of the objects
bn+1, cn+1, and dn+1. Objects b′s will be used to check which clauses are
satisfied for each truth valuation. Objects c′s are used to obtain a sufficient
number of copies of ti, fi (namely, m). Objects d′s will be used to check if there
is at least one valuation satisfying all clauses. Finally, objects e′s will be used
to produced, in its case, the object no at the end of the computation.

• Checking preparation phase: this phase aims at preparing the system for
checking clauses. For this, at step n + 1 of the computation, and by the
application of the rules (f) and (g), the counters bn+1, cn+1, dn+1 of the
cell 1 is exchanged for the objects f and g of the 2n cells 2. Thus, after this
step, each cell labeled by two has a copy of the objects bn+1, cn+1, dn+1, while
the cell 1 has 2 copies of the objects f and g.
Subsequently, the presence of an object cn+1 in each one of the 2n cells labeled
by 2 allows to generate the objects Ti,1 and Fi,1. By the application of rules (j)
and (k), these objects allows the emergence of m copies of ti and m copies of
fi, according to the values of truth or falsity that a cell 2 assigns to a variable
xi. This process spends n+m steps since there is only one object cn+1 in each
cell 2 and, moreover, for each i = 1, . . . , n, the rules (j) and (k) are applied
exactly m consecutively times. Simultaneously, in the first steps of this process,
the application of the rule (h∗) makes the cell labeled by 1 to appear only one
copy of the object yes.
Simultaneously in this phase, the counters bi, di and ei are evolving by the
applications of the corresponding rules.
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• Checking clauses phase: in this phase, the clauses that are true for every truth
valuation are determined, and encoded by a cell labeled by 2. This phase starts
at the computation step (n+ 1) + (n+m) + 1 = 2n+m+ 2. Using the rules
(n) and (o), the true clauses are checked for each valuation encoded by a cell.,
so that the appearance of an object rj in a cell 2 means that the corresponding
valuation makes true the clause Cj . Bearing in mind that a single copy of the
object b2n+m+1 is in each cell, the phase takes nm computation steps.
Thus, the configuration C2n+m+nm+1 is characterized by the following:
– It contains exactly 2n cells labeled by 2. Each one contains the object

d2n+m+nm+1, and copies of objects rj for each clause Cj made true by the
encoded valuation in the cell.

– It contains a unique cell labeled by 1, containing a copy of objects
yes, no, f, g and the counter e2n+m+nm+2.

This phase consumes m computation steps.
• Formula checking phase: in this phase it is determined if there exists any

valuation making true the m clauses of the formula. For this, the rules of
type (q) are used, analyzing in an ordered way (first the clause C1, after that
clause C2, and so on) if the clauses of the formula are being satisfied by the
represented valuation in the corresponding cell labeled by 2. For example, from
counter d2n+m+nm+1 appearing in every cell 2, the appearance of the object r1
(the valuation makes true clause C1) permits to generate in that cell the object
d2n+m+nm+2. This object, in turn, permits to evolve object d2n+m+nm+3 if in
that cell appears the object r2. In this manner, a valuation represented by a cell
labeled by 2 makes true the formula ϕ if and only if the object d2n+m+nm+m+1

appears in the content of that cell in the configuration C2n+m+nm+m+1.
• Output phase: in this phase the system will provide the corresponding output,

depending on the analysis in the formula checking phase.
If the formula ϕ is satisfiable, then there is some cell in the configuration
C2n+m+nm+m+1 that contains an object d2n+m+nm+m+1. In this case, the
application of rule (r) sends an object f and the object yes to the cell 1.
The object yes therefore disappears from cell 1, and consequently, rule (t) can
not be applied. In the next computation step, the application of the rule (s)
produces an object yes in the environment (for the first time during the whole
computation) and the process ends.
If the formula ϕ is not satisfiable, then there no exist any cell in the
configuration C2n+m+nm+m+1 containing an object d2n+m+nm+m+1. In this
case, the rule (r) is not applicable, and in the next computation step, the
counter ei evolves, providing an object e2n+m+nm+m+3 in the cell 1. This object
permits the application of rule (t), since the objects no and f remains in the
cell 1. In this way, the object no is sent in the next computation step, and the
computation finalizes.

It can be easily proved that the family Π = {Π(〈m,n〉) : n,m ∈ N}, defined
above, is polynomially uniform by deterministic Turing machines. For this, it is
enough to keep in mind that the systems of the family have benn defined through
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recursive expressions, and the amount of resources needed to describe the system
Π(〈m,n〉) is quadratic in max{m,n}. Indeed:

1. Size of the alphabet: 6nm+ 12n+ 7m+ 12 ∈ Θ(nm).
2. Number of initial cells: 2 ∈ Θ(1).
3. Number of initial objects: n+ 8 ∈ Θ(n).
4. Number of rules: 4nm+ 10n+ 3m+ 16 ∈ Θ(nm).
5. Upper limit of rule length: 5 ∈ Θ(1)

3 GPU computing

The GPU (Graphics Processor Unit) is a specialized chip designed to manipulate
computer graphics efficiently. In fact, it is an essential part of most current
computers. Their highly parallel structure is based on hundreds of simple
computing cores, making them more effective than common CPUs for processing
large blocks of data in parallel [8]. Thus, the GPU is being consolidated as a
device suitable for High Performance Computing, as it was foreseen by Elster [5]
and other authors [8].

3.1 CUDA programming model

In 2007, NVIDIA announced CUDA (Compute Unified Device Architecture) [17],
a programming model totally abstracted from the hardware of the GPU. Based on
C, the programmer only has to think on threads and arrays, together with some
performance aspects. This easy way to build large applications has led to a rapidly
evolution of GPU computing [11]. As a result, CUDA has been successfully utilized
for developing P systems simulators [1, 2, 3, 4, 9].

CUDA provides an heterogeneous computing system, consisting of a host (the
CPU) and several devices (GPUs) [7]. The idea is to execute on device program
sections with large amount of data parallelism. These sections are written in
separated C functions called kernel. Each kernel is executed on the GPU by a
grid of threads. As shown in Figure 1, threads are grouped in blocks. Threads
belonging to the same block are easily synchronized by barrier operations (when
a thread reaches the barrier, wait for the rest to continue).

The memory model is also an aspect to consider in the CUDA programming
model. This memory hierarchy is explicitly and manually managed. The global
memory is the largest (but slowest) in the GPU. It is accessed by the host, and
also by any thread, as it is the communication channel between the host and the
device. The smallest (but fastest) memory is the shared memory. It is local to each
block, but the content is volatile through kernels calls, and the CPU cannot read
it. Finally, there is a variety of atomic operations to update single data elements
in any memory in a concurrently and synchronously way.

An efficient way to structure an algorithm in CUDA is by maximizing the usage
of the memory hierarchy, as follows:
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Fig. 1: Overview of CUDA programming model.

1. The threads of each block read its corresponding data portion from global
memory to shared memory (which is inevitable because the host only can put
the data in global memory).

2. Threads work with the data directly on shared memory.
3. Threads copy these data back to global memory (so the host can retrieve the

result).

3.2 A modern GPU architecture

The GPU used in our work is the NVIDIA Tesla C1060. We use this model since
it was used in our previous work, and the aim is to compare results. The Tesla
C1060 is based on a scalable processor array which has 240 SPs (streaming-
processor) cores organized as 30 SMs (streaming multiprocessor) and 4 GB of
off-chip GDDR3 memory called device memory. The applications start at the host
side which communicates with the device side through a bus, which is a PCI
Express x16 bus standard.

The SM is the processing unit and an unified graphics and computing
multiprocessor. Every SM contains the following units: eight SPs arithmetic cores,
one double precision unit, an instruction cache, a read only constant cache, 16-
Kbyte on-chip read/write shared memory, a set of 16384 32-bit registers, and access
to the off-chip memory (device/local memory). The SM also has two SFUs that
execute more complex floating point operations such as reciprocal square root,
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sine or cosine with low latency. The arithmetic units are capable to execute three
instructions per clock cycle, and they are fully pipelined, running at 1,296 GHz,
yielding a peak theoretical 933 GFLOPS2 (240 SP * 3 instructions * 1,296 GHz).

The local and global (device) memory spaces are not cached, which means
that every memory access to global memory (or local memory) generates an
explicit memory access. A multiprocessor takes 4 clock cycles to issue one memory
instruction. Accessing local or global memory incurs an additional 400 to 600 clock
cycles of memory latency [7], that is more expensive than accessing share memory
and registers (only the mentioned 4 cycles).

A SM is a hardware device specifically designed with multithreaded capabilities.
Each SM manages and executes up to 1024 threads in hardware with zero
scheduling overhead. Each thread has its own thread execution state and can
execute an independent code path. The SMs execute threads in a SIMT (Single-
Instruction Multiple-Thread) fashion [7]. Basically, in the SIMT model all the
threads execute the same instruction on different piece of data. SMs create,
manage, schedule and execute threads in groups of 32 threads (which is the
branching granularity of NVIDIA GPUs). This set of 32 threads is called warp.
Each SM can handle up to 32 warps. Individual threads of the same warp must
be of the same type and start together at the same program address, but they are
free to branch and execute independently at cost of performance.

4 Parallel simulator on the GPU

In this section we describe the developed CUDA simulator. We first explain the
data structures and the phases that compound the simulation algorithm. Secondly,
the parallel simulator based on CUDA is depicted.

This simulation framework is named TSPCUDASAT and published under
GNU GPLv3 license. It is enclosed to the software project PMCGPU (Parallel
simulators for Membrane Computing on the GPU) [18], where the source code of
the simulators is available for download.

4.1 Sequential simulation and data structures

For an easier implementation, the simulation algorithm has been divided into five
(simulation) phases. Note that they are different in number than the denoted
phases of the theoretical model (Section 4 and [14]). This is done to unify phases
in the software design. Each of these simulation phases are implemented in code
as separated functions whenever is possible. They correspond to the application
of certain rules, as explained below:

• Generation phase: it performs the application of rules from (a) to (e) of
the systems (Section 2.1). Therefore, it comprises the two first phases of the
theoretical model: valuations generation phase and counters generation phase.

2 FLOPS stands for FLoating-point Operations Per Second. GFLOPS are giga FLOPS.
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• Exchange phase: it simulates the application of rules (f) and (g). It comprises
the first part of the checking preparation phase.

• Synchronization phase: it applies the rules from (h) to (m), so comprising the
second part of the checking preparation phase.

• Checking phase: it performs the application of rules from (n) to (p). Thus, it
is the checking clauses phase we identified in the theoretical model.

• Output phase: it applies rules from (q) to (t). It then performs both the formula
checking phase and the output phase identified in the theoretical model.

The sequential simulator implements these five simulation phases directly in
source code, which is in C++. Each one works directly with the data structures
depicted below. The input of the simulator is the same than the one used in the
simulator for the cell-like solution [3, 4]. A DIMACS CNF file3 is provided, and the
simulator outputs the response of the computation. Therefore, it acts merely as a
SAT solver, but the implementation follows the computation of the systems from
the family of tissue P systems. Recall that the aim is not to provide a SAT solver,
but to study P system simulations on the GPU by comparing different solutions
to the same problem.

Furthermore, we have adopted a set of enhancements to improve the
performance of the sequential simulator. After several tests, we have shown that
the best optimizations are:

• As the Exchange phase is very simple, it is then implemented after the
Generation phase loop, within the same function.

• We apply the full Synchronization phase to one cell before going to the next
one. This allows us to exploit data locality in cache memories.

• In the Checking phase, we orderly insert the objects rj , for 1 ≤ j ≤ m, in
the corresponding array whenever they are created. Thus, the Output phase
can be easily performed, in such a way that it is not necessary to loop all the
objects coming from the input multiset (literals). Now it is enough to check if
there exists the m objects rj .

4.2 Data structures

For this solution, the representation of a tissue P system Π(〈m,n〉) is twofold. As
the model differentiates between cells labeled by 1 and 2, the design decision was
to also have a different data structure representing each cell type in the system.
The elements of the cells are encoded within 32-bit integers.

First, cell 1 is represented as an array having a constant dimension of 5
elements. That is, the multiset for cell 1 has the maximum amount of 5 objects:
the three counters, b, c and d (which are initially in this cell), and the two objects
yes and no (the final answer to the problem).

Second, the cells labeled by 2 are also represented by a one-dimensional array.
All of them are stored inside this large array, since it is initially allocated to store
3 One of the most adopted input formats by SAT solvers.
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the maximum amount of cells (2n). By studying the computation, we conclude
that the maximum number of objects appearing in a cell 2 is (2n) + 4 + |cod(ϕ)|,
where:

• |cod(ϕ)| elements for the initial multiset,
• n elements for objects Ti,j and Fi,j , for 1 ≤ i ≤ n and 1 ≤ j ≤ m.
• n elements for objects ti and fi, for 1 ≤ i ≤ n.
• 4 elements for counter objects a, b, c and d. They will be replaced for counter

objects f and g.

The objects are represented similarly to the previous simulator for the cell-
like based solution [3]. They are encoded at bit-level within integers of 32 bits,
that store the following (8 bits for each field): the name of the object (x or x),
multiplicity of the object (as the multiplicity can exceed 28, this field can eventually
be joined to the next one), variable (index i) and clause (index j).

1. The name of the object (x or x)
2. Multiplicity of the object. As there are objects whose multiplicity can exceed

28, this field can eventually be joined to the next one (variable).
3. Variable (index i).
4. Clause (index j).

4.3 Design of the parallel simulator

The parallel simulator is designed to also fully reproduce a computation of the
systems from the family of tissue P systems. That is, there is no a hybrid4 solution
providing simulation shortcuts to the computation as in [3]. The design of this
parallel simulator is driven by the structure of phases explained above, using
separate CUDA kernels to speedup the execution of each one.

A similar CUDA work distribution used in other simulators for cell-like
solutions [2, 3] is applied. This general assignment is summarized in Figure 2.
Each thread block corresponds to each cell labeled by 2 created in the system (up
to 2n cells). However, unlike the previous simulator for the cell-like solution, we
do not assign a thread per literal. The assignment of each thread, this time, is
different for each simulation phase. The work mapping per phase is therefore as
follows:

• Generation phase: the number of thread blocks is iteratively increased together
with the amount of cells created in each computation step. We distribute cells
along the two-dimensional grid through successive kernel calls. Each thread
block contains (2n) + 4 + |cod(ϕ)| threads. That is, the amount of elements
assigned to each cell in the global array storing multisets. Threads are then
used to copy each individual elements of the corresponding cell when it is
divided.

4 A hybrid simulator does not perform exactly the same computational steps as the
theoretical P system, but achieves the same answer.
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Fig. 2: General design of the parallel simulator.

• Exchange phase: it is executed at the kernel for Generation phase, using the
same amount of thread blocks, but only the corresponding threads perform the
exchange.

• Synchronization phase: the thread blocks are assigned to the cells labeled by
2, and the number of threads is n (number of variables). If we use the same
amount of threads than in Generation phase, most of them will be idle: it
is preferred to launch less threads, but performing effective work. We have
experimentally corroborated this fact.

• Checking phase: the number of thread blocks is again assigned to be the number
of cells labeled by 2. However, for this phase we use a block size of |cod(ϕ)|.
That is, each thread is used to execute, in parallel, rules of type (n) and
(o). The result at the SAT problem resolution level, each thread checks if the
corresponding literal makes true its clause, depending on the truth assignment
encoded by the cell assigned to the thread block.

• Output phase: rules of type (q) are sequentially executed in a separate kernel,
again using |cod(ϕ)| threads per block, and 2n thread blocks.

For this solution, we have applied a small set of improvements, focused on
the GPU implementation, to improve the performance of the parallel simulator.
We have identified that the simulator runs twice faster than the non-enhanced
simulator. We will use the enhanced version of the parallel simulator to perform
the comparisons. These improvements are oriented to two performance aspects of
GPU computing [11]:
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1. The first enhancement type is to emphasize the parallelism, which aims to
increase the number of threads per block (to the recommended amount from
64 to 1024).

2. The second enhancement type is to exploit streaming bandwidth. To do this,
the data is first loaded into shared memory and operated there, avoiding global
memory (expensive) accesses.

Next, we show the specific enhancement we have carried out for each phase:

• Generation phase: no enhancement were implemented here, since the imple-
mentation already satisfies the first optimization type. The second type will
require a more sophisticated implementation, like the one presented in [4].

• Exchange phase: this phase is joined with the generation phase, but has no
further enhancements.

• Synchronization phase: the two enhancement types are implemented here. The
second enhancement type is carried out by using shared memory to avoid
global memory accesses. The first type is performed by increasing the number
of threads per block. For our simulator, we can assume that n (number of
variables, and the number of threads per block) is a small number, since the
number of cells grows exponentially with respect to it. For example, let be
n = 32. Then, 232 cells will be created, what require 232(68 + |cod(ϕ)|) bytes
(in gigabytes: 272 + 4|cod(ϕ)|). This number obviously exceeds the amount of
available device memory. We therefore need to increase the number of threads
per block, since n < 32 means to not fulfilling a CUDA warp. A solution here
is to assign more than one cell to each thread block. This amount is 256

n , being
256 the optimum number of threads per block. It allows us to reach a number
of threads close to the optimum one. However, we have to take care also of
having enough shared memory to load the data of every assigned cell.

• Checking phase: since |cod(ϕ)| can be greater than 32, we then keep this number
as the number of threads per block. However, we use shared memory to speedup
the accesses to the elements of the array.

• Output phase: as in the previous phase, we also use shared memory, and the
number of threads per block is kept to |cod(ϕ)|.

5 Performance analysis

In this section we show the performance tests carried out for the introduced
simulator and for the cell-like based simulator [3]. All experiments are run on
a Linux 64-bit server, with a 4-core (2 GHz) dual socket Intel i5 Xeon Nehalem
processor, 12 GBytes of RAM, and two NVIDIA Tesla C1060 (240 cores at 1.30
GHz, 4 GBytes of memory).

We have developed two benchmarks (called test 1 and test 2, respectively) to
analyze the performance behavior of our simulators in two ways: increasing the
number of threads per thread block, and increasing the number of thread blocks
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per grid. They are the same than the two used for the cell-like simulators [3].
Both benchmarks have been generated by WinSAT program [16]. WinSAT is able
to generate random SAT instances in DIMACS CNF format file by configuring
several parameters: the number of variables (n), the number of clauses (m) and
the number of literals per clause (we fix k for our experiments).

5.1 Tissue-like simulator

In this subsection, we will see the comparisons of performance between the two
simulators developed for the family of tissue-like P systems under study: the
sequential simulator (from now on, tsp-sat-seq), and the parallel simulator on the
GPU (tsp-sat-gpu). For this analysis we will use one of the two tests mentioned
above: the first one increasing the number of objects (fixing membranes to 2048),
and the second increasing the number of variables (and so number of cells) and
fixing the number of literals (and so input objects) to 256.

In the first case we can see that, even for small number of objects per membrane,
tsp-sat-gpu runs faster than tsp-sat-seq. A different number of objects does not
produce a great impact into the performance of the parallel simulator.

In the second case, we can observe that the kernels of tsp-sat-gpu runs faster
than tsp-sat-seq. However, the performance gain is increased with the amount of
cells 2 created by the system. For 64 membranes, the speedup is of 2x, but for 2
M cells it is of 8.3x.

Figure 3 shows the performance behavior of the tissue-like simulators for test
1. Only the time employed by kernels are considered for tsp-sat-gpu. We can see
that, even for small number of objects per membrane, tsp-sat-gpu runs faster than
tsp-sat-seq. A different number of objects does not produce a great impact into the
performance of the parallel simulator. Note that in Section 4, we have introduced
a different CUDA design for each phase. In this sense, the synchronization phase
has been optimized to assign more cells to a thread block in order to increase the
number of threads. However, the speedup is increased together with the number
of objects per membrane. This means that the resources of the GPU are better
utilized (e.g. 4 objects/threads does not fulfill a warp). We report the maximum
speedup for 32 objects (a warp), which is of 11.6x. For 2 objects is 4x, and for 256,
6.1x.

Figure 4 shows the results for test 2, considering only kernel runtime for tsp-sat-
gpu. For this case, we can observe that again, the kernels of tsp-sat-gpu runs faster
than tsp-sat-seq. However, the performance gain is increased with the amount of
cells 2 created by the system. For 64 membranes, the speedup is of 2x, but for 2
M cells it is of 8.3x.

Finally, Figure 5 shows the speedup achieved by the simulator tsp-sat-gpu,
taking into account also the amount of time consumed by the data management
(allocation and transfer). It is observed that, since the data management time
is fixed for all the sizes, the speedup exceeds 1 only after 128 K cells. Systems
with smaller number of cells are executed slower in the GPU because of the data
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Fig. 3: Simulation performance for tsp-sat-seq and tsp-sat-gpu: Test 1 (2048
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Fig. 4: Simulation performance for tsp-sat-seq and tsp-sat-gpu: Test 2 (256
Objects/Membrane)

management. However, for very large systems, the speedup is as large as only
considering kernels. The maximum speedup is given for 4 M cells, up to 10x.

5.2 Cell-like vs tissue-like

Next, we compare the two simulators developed for the two solutions to SAT using
P systems with active membranes (let call it am-sat-gpu) and tissue P systems
with cell division (tsp-sat-gpu). Here we study which model is better suited to be
simulated on the GPU.
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Fig. 5: Speedup achieved running test (256 Objects/Cell) for tsp-sat-gpu and tsp-
sat-seq. GPU data management is also considered.

First of all, we should analyze the differences between them to better
understand the different behaviors. We highlight the following:

• Computational steps: given m,n ∈ N, representing the number of clauses and
variables respectively, the cell-like P systems take 5n+ 2m+ 3 steps, and the
tissue P systems require 2n + 2m + nm + 1. Thus, the computation of the
tissue-like solution is longer (in number of steps), if m > 3 + 2

n ' 3.
• Phases: am-sat-gpu is based on 4 phases (implemented in 3 kernels), whereas

tsp-sat-gpu uses 5 phases (implemented in 4 kernels).
• Memory requirements: each membrane in am-sat-gpu is represented by a

number of 32-bit integers equals to |cod(ϕ)|, but the tissue-like simulators use
for them 2n + 4 + |cod(ϕ)|. Thus, tsp-sat-gpu uses, in total, (2n + 4)2n bytes
more.

Figure 6 compares both solutions using Test 2. It can be observed that the
kernels of am-sat-gpu outperforms tsp-sat-gpu, even using optimizations for the last
one. This improvement implies a speedup of 2.9x. However, if we take into account
the data management in the GPU, we can see that the behavior of them is almost
similar. The simulator am-sat-gpu runs just a bit faster, but for 2 M membranes,
the speedup is almost 2x. This makes us to think that the data implementation of
am-sat-gpu can be improved, since it requires an inferior amount of data. Recall
that am-sat-gpu has not any GPU oriented enhancements, as in tsp-sat-gpu.

We finish this comparison by reporting their corresponding maximum speed-
up with their sequential counterparts, which is of 63x and 10x for the cell-like
and tissue-like simulators, respectively. Therefore, using the GPU for the cell-like
solutions allows to get better performance gain.
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Fig. 6: Achieved speedup for both tsp-sat-gpu and am-sat-gpu simulators,
considering (w/ data) or not considering (w/o data) the time for data management.

5.3 Characterizing the simulation on the GPU

Next, we characterize the simulations carried out in this work. From the
comparison of the simulators for the cell-like and the tissue-like solutions, we have
observed that the cell-like simulations are better carried out by the GPU. Thus,
we have identified two properties that have helped to improve the performance of
these GPU simulators:

• Charges: the model of P systems with active membranes associates charges to
the membranes. They can be used to store information over the computation
as well. If they are considered (and effectively used) for a given solution (e.g. to
encode the truth assignment for SAT), less memory would be required (remind
that the tissue-like simulator requires 2n(2n + 4) bytes more). In fact, the
information encoded by charges can save objects that may or not may appear
simultaneously in membranes, what saves also memory, and so, the number of
threads to launch, working with much less objects.

• Rules with no cooperation: the model of P systems with active membranes
defines rules with no cooperation, that is, the number of objects appearing in
their left-hand sides is always 1. This property helps threads to be assigned
to each rule, what also means to work with each object in parallel. Rules
permitting cooperation (as in tissue P systems) require to take care of which
objects are accessed by rules (and threads). It would be also interesting to study
each type of rule (i.e., division, communication for tissue-like, and division,
dissolution, send-in, send-out and evolution for cell-like) separately. Recall that
a more flexible and general simulator for active membranes [2], the constraints
of send-in, send-out, division and dissolution rules have to be considered for
each membrane, what degrades parallelism on the GPU (it implies using local
locks). However, in the model of tissue P systems these restrictions are not
presented. A flexible simulator for tissue models can be implemented in a future
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to study what is better: usage of charges but restricting types of rules, or not
using charges (i.e. more objects per membrane) and more (but less restrictive)
parallel rules.

6 Conclusions

In this paper we have presented a recent result on the parallel simulation with
GPUs of an efficient solution to SAT by tissue P systems with cell division. The
CUDA simulator design is similar to the one used in the previous simulator for a
solution based on P systems with active membranes. Each thread block is assigned
to each cell labeled by 2. However, the number of objects to be placed inside each
cell in the memory representation is increased.

Experiments show that the CUDA simulator outperforms the sequential one
by 10x. It can be seen that solving the same problem (SAT) under different P
system variants leads to different speedups on the GPU (up to 2.9x for the cell-
like simulator against the tissue-like). Indeed, we show that the usage of charges
can help to save space devoted to objects, and rules without cooperation to increase
thread parallelism.

Future work will be focused on developing new GPU-based simulators for other
P systems models, and on improving the existing ones. In addition, further research
can be carried out concerning the parallel simulation of particular P systems
features, identifying which of them can be easily combined and efficiently simulated
by the GPU. In this way, novel approximations for parallel simulators development
can be performed also at the P systems area. An approach is to define a P system
model combining all the good features for GPU simulators (let call it GP systems,
or GPU oriented P systems). Then, the creation of a GPU based simulator for GP
systems would be straightforward, considering the corresponding GPU oriented
optimizations. However, it would be important to define a translation protocol
from other P systems models to GP systems.
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3. J.M. Cecilia, J.M. Garćıa, G.D. Guerrero, M.A. Mart́ınez-del-Amor, I. Pérez-
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