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Summary. In Membrane Computing, the solution of a decision problem X belonging
to the complexity class P via a polynomially uniform family of recognizer P systems
is trivial, since the polynomial encoding of the input can involve the solution of the
problem. The design of such solution has one membrane, two objects, two rules and one
computation step. Stricto sensu, it is a solution in the framework of Membrane Com-
puting, but it does not use Membrane Computing strategies. In this paper, we present
three designs of uniform families of P systems that solve the decision problem STCON
by using Membrane Computing strategies (pure Membrane Computing techniques): P
systems with membrane creation, P systems with active membranes with dissolution and
without polarizations and P systems with active membranes without dissolution and with
polarizations. Since STCON is NL-complete, such designs are constructive proofs of the
belonging of NL to PMCMC, PMCAM0

+d
and PMCAM+

−d
.

1 Introduction

Membrane Computing [13] is a well-established model of computation inspired
by the structure and functioning of cells as living organisms able to process and
generate information. It starts from the assumption that the processes taking place
in the compartmental structures as living cells can be interpreted as computations.
The devices of this model are called P systems.

Among the different research lines in Membrane Computing, one of the most
vivid is the search of frontiers between complexity classes of decision problems, i.e.,
to identify collections of problems that can be solved (or languages that can be
decided) by families of P systems with similar computational resources. In order
to settle the correspondence between complexity classes and P system families,
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recognizer P systems were introduced in [9, 10]. Since then, recognizer P systems
are the natural framework to study and solve decision problems within Membrane
Computing.

In the last years, many papers have been published about the problem of
deciding if a uniform family of recognizer P systems of type F built in polynomial
time is able to solve the decision problemX . This is usually written as the problem
of deciding if X belongs to PMCF or not. It has been studied for many P system
models F and for many decision problems X (see, e.g., [2, 3, 4, 5] and references
therein).

The solution of a decision problem X belonging to the complexity class P
via a polynomially uniform family of recognizer P systems is trivial1, since the
polynomial encoding of the input can involve the solution of the problem. On
the one hand, by definition, X ∈ P if there exists a deterministic algorithm A
working in polynomial time that solves X. On the other hand, the belonging of X
to PMCF requires a polynomial time mapping cod that encodes the instances u
of the problem X as multisets wich will be provided as inputs. Formally, given a
decision problem X and an algorithm A as described above, two different functions
s (size) and cod (encoding) can be defined for each instance u of the decision
problem:

• s(u) = 1, for all u

• cod(u) =

{
yes if A(u) = yes
no if A(u) = no.

The family of P systems which solves X is Π = {Π(n)}n∈N with

Π(n) = ⟨Γ,Σ,H, µ,w,R, i⟩

• Alphabet: Γ = {yes, no}
• Input alphabet: Σ = Γ
• Set of labels: H = {skin}
• Membrane structure: [ ]skin
• Initial multisets: w = ∅
• Input label: i = skin
• Set of rules: [ yes ]skin → yes [ ]skin and [no ]skin → no [ ]skin. Both are send-out

rules.

Trivially, for all instance u of the problem, Π(s(u))+ cod(u) provides the right
solution in one computation step. Stricto sensu, it is a solution in the framework
of Membrane Computing, but it does not use Membrane Computing strategies.
All the work is done in the algorithm A and one can wonder if the computation
itself can be performed by using pure Membrane Computing techniques.

We focus now on the well-known ST-Connectivity problem (known as
STCON). It can be settled as follows: Given a directed graph ⟨V,E⟩ and two

1 See [8, 11].
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vertex s and t in V , the STCON problem consists on deciding if t is reachable
from s, i.e., if there exists a sequence of adjacent vertices (i.e., a path) which starts
with s and ends with t. It is known that it is an NL-complete problem, i.e., it can
be solved by a nondeterministic Turing machine using a logarithmic amount of
memory space and every problem in the class NL is reducible to STCON under
a log-space reduction.

In this paper, we study the STCON in the framework of P systems. As shown
above, since STCON ∈ NL ⊆ P, there exist a trivial family of P systems in
PMCF which solves it, regardless the model F . It suffices that F deals with
send-out rules. In this paper, we present three designs of uniform families of P
systems that solve the decision problem STCON by pure Membrane Comput-
ing techniques, i.e., techniques where the features of the model F are exploited
in the computation: P systems with membrane creation, P systems with active
membranes with dissolution and without polarizations and P systems with active
membranes without dissolution and with polarizations. We provide such designs
and show the differences with previous studies found in the literature.

Since STCON is NL-complete, such designs are constructive proofs of the
belonging of NL to PMCMC , PMCAM0

+d
and PMCAM+

−d
.

The paper is structured as follows: First of all, we recall some basic definitions
used along the paper. In Section 3, previous works on NL are revisited. Next, our
designs of solutions are provided and the paper finishes with some conclusions and
presenting research lines for a future work.

2 Preliminaries

Next, some basic concepts used along the paper are recalled. We assume that the
reader is familiar with Membrane Computing techniques (for a detailed descrip-
tion, see [13]).

A decision problem,X, is a pair (IX , θX) such that IX is a language over a finite
alphabet (whose elements are called instances) and θX is a total Boolean function
over IX . A P system with input is a tuple (Π,Σ, iΠ), where Π is a P system, with
working alphabet Γ , with p membranes labelled by 1, . . . , p, and initial multisets
M1, . . . ,Mp associated with them; Σ is an (input) alphabet strictly contained
in Γ ; the initial multisets are over Γ − Σ; and iΠ is the label of a distinguished
(input) membrane. Let (Π,Σ, iΠ) be a P system with input, Γ be the working
alphabet of Π, µ its membrane structure, and M1, . . . ,Mp the initial multisets
of Π. Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with
input m is (µ,M1, . . . ,MiΠ ∪m, . . . ,Mp). We denote by IΠ the set of all inputs
of the P system Π (i.e. IΠ is a collection of multisets over Σ). In the case of P
systems with input and with external output, the above concepts are introduced
in a similar way.

Definition 1. A recognizer P system is a P system with input, (Π,Σ, iΠ), and
with external output such that:
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1. The working alphabet contains two distinguished elements yes, no.
2. All its computations halt.
3. If C is a computation of Π, then either some object yes or some object no (but

not both) must have been released into the environment, and only in the last
step of the computation. We say that C is an accepting computation (respec-
tively, rejecting computation) if the object yes (respectively, no) appears in the
external environment associated to the corresponding halting configuration of
C.

3 Previous Works

The relation between the complexity class NL and Membrane Computing models
has already been explored in the literature. In [6], Murphy and Woods claim that
NL ⊆ PMCAM0

−d,−u
, i.e., every problem in the complexity classNL can be solved

by a non-uniform family of recognizer P systems with active membranes without
polarization and without dissolution.

The proof shows the design of a family of P systems with active membranes
without polarization and without dissolution which solves STCON and considers
the NL-completeness of STCON. Nonetheless, the authors use a non standard
definition of recognizer P systems. According to the usual definition of recognizer P
system (see, e.g., [4]), either one object yes or one object no (but no both) must have
been released into the environment, and only in the last step of the computation.
In the proposed family by Murphy and Woods, it is easy to find a P system which
sends yes to the environment in an intermediate step of the computation and
sends no to the environment in the last step of the computation, so their proof
of NL ⊆ PMCAM0

−d,−u
cannot be considered valid with respect to the standard

definition of recognizer P systems.

Counterexample: Let us consider the instance (s, t, G) of STCON where G
has only two vertices s and t and only one edge (s, t). According to [6], the P system
of the cited model that solves this instance has Γ = {s, t, yes, no, c0, . . . , c4} as al-
phabet, h as unique label and [ ]h as membrane structure. The initial configuration
is [s c4]h and the set of rules consists of the following seven rules:

[s → t]h [t]h → [ ]h yes
[c0]h → [ ]h no [ci → ci−1]h for i ∈ {1, . . . , 4}.

It easy to check that this P system sends yes to the environment in the second
step of computation and sends no in the fifth (and last) step, so, according to the
standard definition, it is not a recognizer P system. In [7] Murphy and Woods
revisited the solution of STCON by non-uniform families of recognizer P systems
and considered three different ways of the acceptance in recognizer P systems, one
of them was the standard one (Def. 1).
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4 Three Designs for the STCON Problem

In this section, we provide three uniform families of P systems that solve the
STCON problem in three different P system models. All these models use the
same encoding for an instance of the problem. We do not loss generality if we
consider the n vertices of the graph as {1, . . . , n}. In this case, a concrete instance
I = (s, t, ⟨V,E⟩) of the STCON on a graph ⟨V,E⟩ with vertices {1, . . . , n}, can
be encoded as

cod(I) = {xs, yt} ∪ {aij : (i, j) ∈ E},

i.e., xs stands for the starting vertex, yt for the ending vertex and aij for each edge
(i, j) in the graph. By using this coding, all the instances of the STCON problem
with n variables, can be encoded with the alphabet

Σ = {xi : i ∈ {1, . . . , n}}∪
{yj : j ∈ {1, . . . , n}}∪
{aij : i, j ∈ {1, . . . , n}}

whose cardinality is 2n+ n2.
Next we present three solutions of the STCON problem by P systems. The

first two solutions are based on P systems with active membranes, the last one
uses P systems with membrane creation. The first solution does not use membrane
dissolution but uses the polarizations of the membranes. The second solution does
not use polarizations but uses membrane dissolution instead. Moreover, none of
these solutions use membrane division rules.

All the three solutions, roughly speaking, work in the following way. For a
given directed graph G = (V,E) and vertices s and t, the system creates/activates
certain membranes in the initial configuration corresponding to the edges in E.
Then, these membranes will be used to create those objects that represent the
vertices reachable from s. Meanwhile, it is tested whether or not the vertex t is
created or not. If yes, the system initiates a process which will send yes out to the
environment. If the vertex t is not produced by the system, i.e., t is not reachable
from s in G, then a counter will create the symbol no which is then sent out to
the environment.

4.1 P Systems with Active Membranes, with Polarization and without
Dissolution

As a first approach, we will provide the design of a uniform family Π = {Πn}n∈N
of P systems in PMCAM−d

which solves STCON. Each P system Πn of the
family decides on all the possible instances of the STCON problem on a graph
with n nodes. Such P systems use two polarizations, but they do not use division or
dissolution rules, so not all the types of rules of P systems with active membranes
are necessary to solve STCON. Each Πn will receive as input an instance of the
STCON as described above and will release yes or no into the environment in the
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last step of the computation as the answer of the decision problem. The family
presented here is

Πn = ⟨Γn, Σn,Hn, ECn, µn, w
a
n, w

1
n, . . . , w

n
n, w

11
n , . . . , wnn

n , wskin
n ,Rn, in⟩.

For the sake of simplicity, thereafter we will omit the subindex n.

• Alphabet:
Γ = {xi, yi, ti : i ∈ {1, . . . , n}}∪

{aij , zij : i, j ∈ {1, . . . , n}}∪
{ci : i ∈ {0, . . . , 3n+ 1}}∪
{k, yes, no}.

• Input alphabet:Σ, as described at the beginning of the section. Let us remark
that Σ ⊂ Γ .

• Set of labels: H = {⟨i, j⟩ : i, j ∈ {1, . . . , n}} ∪ {1, . . . , n} ∪ {a, skin}.
• Electrical charges: EC = {0,+}.
• Membrane structure: [ [ ]01 . . . [ ]

0
n [ ]

0
⟨1,1⟩ . . . [ ]

0
⟨n,n⟩ [ ]

0
a ]

0
skin.

• Initial multisets: wa = c0, w
skin = wij = wk = λ for i, j, k ∈ {1, . . . , n}.

• Input label: i = skin.

The set of rules R:

R1. aij [ ]
0
⟨i,j⟩ → [aij ]

+
⟨i,j⟩ for i, j ∈ {1, . . . , n}.

Each input object aij activates the corresponding membrane by changing its po-
larization. Notice that such a symbol aij represents an edge in the input graph.
R2. yj [ ]

0
j → [yj ]

+
j for j ∈ {1, . . . , n}.

The object yj activates the membrane j by changing its polarization. As the in-
put multiset always has exactly one object of the form yj , Πn will have a unique
membrane with label in {1, . . . , n} and polarization +.
R3. [xi → zi1 . . . zinti]

0
skin for i ∈ {1, . . . , n}.

The goal of these rules is to create n+1 copies of an object xi. A copy zij will be
able to produce an object xj if the edge (i, j) belongs to E. The object ti will be
used to witness that vertex i is reachable.
R4. zij [ ]

+
⟨i,j⟩ → [xj ]

0
⟨i,j⟩

tj [ ]
+
j → [k]0j

}
for i, j ∈ {1, . . . , n}.

If the membrane with label ⟨i, j⟩ has polarization +, then the symbol zij produces
a symbol xj inside this membrane. Meanwhile, the polarization of this membrane
changes from + to 0, i.e., the membrane is deactivated. Moreover, if the symbol
tj appears in the skin and the membrane with label j has positive polarization,
then an object k is produced inside this membrane. Such object k will start the
process to send yes out to the environment.
R5. [k]0j → k [ ]0j k [ ]0a → [k]+a .
The object k is a witness of the success of the STCON problem. If it is produced,
it goes into the membrane with label a and changes its polarization to +.
R6. [xj ]

0
⟨i,j⟩ → xj [ ]

0
⟨i,j⟩ for i, j ∈ {1, . . . , n}.
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The produced object xj is sent to the membrane skin in order to go on the com-
putation by rules form R3.
R7. [ci → ci+1]

0
a [c3n+1]

0
a → no [ ]0a

[ci → ci+1]
+
a [c3n+1]

+
a → yes [ ]0a

}
for i ∈ {0, . . . , 3n}.

Object ci evolves to ci+1 regardless of the polarization of the membrane a. If during
the evolution the object k has gone inside such membrane, then the polarization
changes to + and the object c3n+1 will produce yes in the membrane skin. Oth-
erwise, if the object k is not produced, the polarization is not changed and the
object c3n+1 will produce no.
R8. [no]skin → no [ ]skin [yes]skin → yes [ ]skin .
Finally, yes or no is sent out the P system in the last step of computation.

To see in more details how the computation of the presented P system goes, let
us consider an instance I = (s, t, G) of STCON where G is a graph ⟨{1, . . . , n}, E⟩.
The computation ofΠn on cod(I) can be described as follows. During the first step,
using rules in R1, every aij enters to the membrane with label ⟨i, j⟩ and changes
its polarization to +. Thus, after the first step the edges in E are encoded by the
positive polarizations of the membranes with labels of the form ⟨i, j⟩. During the
same step, using the corresponding rule in R2, yt enters to the membrane with
label t and changes its polarization to +. This membrane will be used to recognize
if an object representing that t is reachable from s is introduced by the system.

Now let l ∈ {1, 4, . . . , 3(n − 1) + 1} and consider an object xi in the skin
membrane. During the lth step, using rules in R3, xi creates n+1 copies of itself.
The system will try to use a copy zij (j ∈ {1, . . . , n}) in the next step to create a
new object xj . The copy ti will be used to decide if i = t.

During the (l + 1)th step, using rules in R4, the systems sends zij into the
membrane with label ⟨i, j⟩ if that membrane has a positive polarization. Mean-
while, zij evolves to xj and the polarization of the membrane changes to neutral.
During the same step, if i = t and the membrane with label t has positive polar-
ization, then the system sends ti to this membrane. Meanwhile, ti evolves to k and
the polarization of membrane t changes to neutral.

During the (l + 2)th step, using rules in R6, the object xj is sent out from
the membrane with label ⟨i, j⟩. Moreover, if the membrane with label t contains
k, then this k is sent out from membrane t.

One can see that during the above three steps the system introduces an object
xj if and only if (i, j) is an edge in E. Using this observation we can derive that
during the computation of the system, an object xj appears in the skin if and
only if there is a path in G from s to j. Thus, t is reachable from s in G if and
only if there is a configuration of Πn where the skin contains xt. However, in this
case an object k is introduced in the membrane with label t. It can also be seen
that Πn sends out to the environment yes if and only if k appears in membrane
t. Moreover, if k does not appear in membrane t, then the systems sends out to
the environment no. Thus, Πn sends out to the environment yes or no according
to that t is reachable from s or not. As Πn stops in at most 3n + 2 steps, we
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can conclude that the family Π decides STCON in linear time in the number of
vertices of the input graph.

4.2 P Systems with Active Membranes, with Dissolution and without
Polarization

Based on the solution presented in the previous sub-section, we give here a uniform
family Π = {Πn}n∈N in PMCAM0 which solves STCON. As here we cannot
use the polarizations of the membranes, we use membrane dissolution to select
those membranes of the initial configuration that correspond to the edges of the
input graph. Next we will describe the mentioned family Π. Since we do not use
polarizations, we do not indicate it at the upper-right corner of the membranes.
The family presented here is

Πn = ⟨Γ,Σ,H,EC, µ,W,R, i⟩.

• Alphabet:

Γ = {xi, v1i, v2i, v3i, vi, yi, ti : i ∈ {1, . . . , n}}∪
{aij , zij : i, j ∈ {1, . . . , n}}∪
{ci : i ∈ {0, . . . , 3n+ 4}}∪
{k, yes, no}.

• Input alphabet: Σ, as described at the beginning of the section.
• Set of labels: H = {⟨i, j, in⟩, ⟨i, j, out⟩ : i, j ∈ {1, . . . , n}} ∪ {⟨i, in⟩, ⟨i, out⟩ :

i ∈ {1, . . . , n} ∪ {a, skin}.
• Electrical charges: EC = ∅.
• Membrane structure:

[ [[ ]⟨1,in⟩]⟨1,out⟩ . . . [[ ]⟨n,in⟩]⟨n,out⟩ [[ ]⟨1,1,in⟩]⟨1,1,out⟩ . . . [[ ]⟨n,n,in⟩]⟨n,n,out⟩ [ ]a ]skin.

• Initial multisets: W = {wa, w⟨1,in⟩, . . . , w⟨n,in⟩, w⟨1,out⟩, . . . , w⟨n,out⟩,
w⟨1,1,in⟩, . . . , w⟨n,n,in⟩, w⟨1,1,out⟩, . . . , w⟨n,n,out⟩, wskin}, where
wa = c0, wskin = w⟨i,j,out⟩ = w⟨k,out⟩ = λ, w⟨i,j,in⟩ = w⟨k,in⟩ = f0, for
i, j, k ∈ {1, . . . , n}.

• Input label: i = skin.

The set of rules R:

R0. [xi → v1i]skin, [vji → vj+1,i]skin, [v3i → vi]skin for i ∈ {1, . . . , n} and j ∈
{1, 2}.
In this solution we cannot use the objects xi in the same role as we did in the
previous sub-section because of the following reason. The system needs four steps
to select those membranes in the initial membrane configuration that correspond
to the edges in E. Thus, the system introduces in four steps the objects vi which
will act in this solution as the objects xi did in the previous one.
R1. [fm → fm+1]⟨i,j,in⟩

[f3]⟨i,j,in⟩ → f4
[f4]⟨i,j,out⟩ → f4

 for i, j ∈ {1, . . . , n}, m ∈ {0, 1, 2}.
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These rules dissolve the membranes with label ⟨i, j, in⟩ and ⟨i, j, out⟩ if the input
symbol aij is not present in the system. On the other hand, if aij is in the system,
then it prevents the dissolution of the membrane with label ⟨i, j, out⟩ using the
following rules.
R2. aij [ ]⟨i,j,m⟩ → [aij ]⟨i,j,m⟩

[aij ]⟨i,j,in⟩ → aij

}
for i, j ∈ {1, . . . , n}, m ∈ {in, out}.

By these rules the input symbol aij goes into the membrane with label ⟨i, j, in⟩
and dissolves that. This way the second rule in R1 cannot be applied, thus the
membrane with label ⟨i, j, out⟩ cannot be dissolved by the third rule.
R3. [fm → fm+1]⟨j,in⟩

[f3]⟨j,in⟩ → f4
[f4]⟨j,out⟩ → f4

 for j ∈ {1, . . . , n}, m ∈ {0, 1, 2}.

These rules dissolve the membranes with label ⟨j, in⟩ and ⟨j, out⟩ if the input
symbol yj is not present in the system. However, if yj is in the system, then it
prevents the dissolution of the membrane with label ⟨j, out⟩ using the following
rules.
R4. yj [ ]⟨j,m⟩ → [yj ]⟨j,m⟩

[yj ]⟨j,in⟩ → yj

}
for j ∈ {1, . . . , n} and m ∈ {in, out}.

By these rules the input symbol yj goes into the membrane with label ⟨j, in⟩ and
dissolves that. With this it is achieved that the membrane with label ⟨j, out⟩ is
not dissolved by the rules in R3.
R5. [vi → zi1 . . . zinti]skin for i ∈ {1, . . . , n}.
The role of these rules is the same as that of the rules in R3 in Section 4.1.
R6. zij [ ]⟨i,j,out⟩ → [vj ]⟨i,j,out⟩

tj [ ]⟨j,out⟩ → [k]⟨j,out⟩

}
for i, j ∈ {1, . . . , n}.

The role of these rules is similar to that of the rules in R4 in Section 4.1: If the
membrane with label ⟨i, j, out⟩ has not been dissolved, then the object zij produces
a symbol vj inside this membrane. Analogously, if the symbol tj appears in the
skin and the membrane with label ⟨j, out⟩ is not dissolved, then an object k is
produced inside this membrane. Such object k will start the process to send yes
out to the environment.
R7. [k]⟨j,out⟩ → k [ ]⟨j,out⟩ k [ ]a → [k]a [k]a → k.
The object k is a witness of the success of the STCON problem. If it is produced,
it goes into the membrane with label a and dissolves it.
R8. [vj ]⟨i,j⟩ → vj for i, j ∈ {1, . . . , n}.
The produced object vj dissolves the membrane with label ⟨i, j⟩ as the computation
does not need any more this membranes. This way the object vj gets to the skin
and the computation can go on using the rules in R5.
R9. [ci → ci+1]a [c3n+4]a → no [ ]a

[ci+1]skin → [yes]skin

}
for i ∈ {0, . . . , 3n+ 3}.

Object ci evolves to ci+1 in membrane with label a. If during the evolution the
object k has gone inside this membrane, then it dissolves it and the object ci+1

gets to the membrane s where it produces yes. Otherwise, if the object k is not
produced, c3n+4 remains in membrane with label a and produces no.
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R10. [no]skin → no [ ]skin [yes]skin → yes [ ]skin .
Finally, yes or no is sent out the P system in the last step of computation.

One can observe that during the first four steps of Πn a membrane with label
⟨i, j, out⟩ is not dissolved if and only if aij is in the input. Thus, Πn has a mem-
brane with label ⟨i, j, out⟩ after the first four steps if and only if Πn defined in
Section 4.1 has a membrane ⟨i, j⟩ with positive polarization after the first step.
Similar observations apply in the case of membranes with label ⟨j, out⟩. Thus, the
correctness of Πn defined in this section follows from the correctness of Πn defined
in Section 4.1. One can also observe that Πn stops after at most 3n+5 steps, which
means that the family Π defined in this section decides STCON in linear time.

4.3 P Systems with Membrane Creation

Here we provide the design of a uniform family of P systems in the framework
of P systems with Membrane Creation which solves the problem STCON. Since
STCON is NL-complete, we have a direct proof of NL ⊆ PMCMC . This result
is well-know, since NL ⊂ NP and NP ⊆ PMCMC (see [4]). Nonetheless, to the
best of our knowledge, this is the first design of a P system family which solves
STCON in PMCMC .

Next we will describe the family Π = {Πn}n∈N of P systems in PMCMC . Each
Πn will receive as input an instance of the STCON as described at the beginning
of the section and will release yes or no into the environment in the last step of
the computation as the answer of the decision problem.

The family presented here is

Πn = ⟨Γ,Σ,H, µ,wa, wb, wc,R, i⟩.

• Alphabet:
Γ = {xi, yi, ti : i ∈ {1, . . . , n}}∪

{aij , zij : i, j ∈ {1, . . . , n}}∪
{noi : i ∈ {0, . . . , 3n+ 3}}∪
{yesi : i ∈ {1, . . . , 4}}∪
{yes, no}.

• Input alphabet: Σ, as it is described at beginning of the section.
• Set of labels: H = {⟨i, j⟩ : i, j ∈ {1, . . . , n}} ∪ {1, . . . , n} ∪ {a, b, c}.
• Membrane structure: [ [ ]a [ ]b ]c.
• Initial multisets: wa = no0, w

b = wc = λ.
• Input label: i = b.

The set of rules R:

R1. [[aij → [λ ]⟨i,j⟩ ]b for i, j ∈ {1, . . . , n}.
Each input symbol aij creates a new membrane with label ⟨i, j⟩. Recall that such
a symbol aij represents an edge in the directed graph.
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R2. [yj → [λ ]j ]b for j ∈ {1, . . . , n}.
By these rules an input symbol yj creates a new membrane with label j.
R3. [xi → zi1 . . . zinti]b for i ∈ {1, . . . , n}.
The role of these rules is the same as those of the rules in R3 in Section 4.1.
R4. zij [ ]⟨i,j⟩ → [xj ]⟨i,j⟩

tj [ ]j → [yes0]j

}
for i, j ∈ {1, . . . , n}.

The role of these rules is similar to that of the rules in R4 in Section 4.1 except
that here an object tj introduces an object yes0 in the membrane with label j.
This new object yes0 will evolve with the rules in R6 and R7 until the final object
yes is produced in the environment.
R5. [xj ]⟨i,j⟩ → xj for i, j ∈ {1, . . . , n}.
The object xj dissolves the membrane with label ⟨i, j⟩. The useful information is
that xj is reachable. We keep this information, but the membrane can be dissolved.
This way xj gets to the membrane b and the computation can go on using the
rules in R3.
R6. [yes0]j → yes1 for j ∈ {1, . . . , n}.
For each possible value of j, if yes0 is produced, the corresponding membrane is
dissolved and yes1 appears in the membrane with label b.
R7. [yes1]b → yes2, yes2 [ ]a → [yes3]a,

[yes3]a → yes4, [yes4]c → yes [ ]c .
The evolution of the objects yesi firstly produces the dissolution of the membrane
b. If this membrane is dissolved, the rules from R3 will be no longer applied. In a
similar way, object yes3 also dissolves membrane a and this stops the evolution of
the objects inside such membrane.
R8. [noi → noi+1]a for i ∈ {1, . . . , 3n+ 2}.
The object noi evolves inside the membrane a. If this evolution is not halted by
the dissolution of the membrane a, these objects will produce the object no in the
environment.
R9. [no3n+3]a → no [no]c → no [ ]c .
If the evolution of noi is not stopped, the object no3n+3 dissolves the membrane
a and creates a new object no. This object will be sent to the environment in the
next step of the computation.

It is not difficult to see using the comments given after the rules that this
solution works essentially in the same way as our first solution. The main difference
is that while in Section 4.1 an input symbol aij is used to change the polarization
of a membrane ⟨i, j⟩, here this symbol is used to create such a membrane. Thus,
the correctness of the solution presented here can be seen using the correctness of
the solution given in Section 4.1. It is also clear that the P systems presented here
work in linear time in the number of vertices in the input graph.

As we have mentioned, in solutions of problems in P via uniform families of
P systems it is important to use such input encoding and P system constructing
devices that are not capable to compute the correct answer. It is easy to see that
the decision processes in the solutions of STCON presented in this paper are
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entirely done by the P systems themselves. Thus our solutions could be easily
modified so that the construction of the used families and the computation of the
input encoding can be carried out by reasonable weak computational devices, for
example, by logarithmic-space deterministic Turing machines.

5 Conclusions

The design of a uniform family of recognizer P systems working in polynomial time
which solves a decision problem with pure Membrane Computing techniques is a
hard task, regardless the complexity class of the problem. The difficulty comes from
the hard restrictions imposed to such family. Firstly, the use of input P systems
implies that each instance of the problem must be encoded as a multiset and such
multiset must be introduced at the starting configuration in one input membrane.
The multiset encoding the instance cannot be distributed in several membranes
in the starting configuration. Secondly, in uniform families, each P system must
solve all the instances of the problem of the same size (regardless of whether the
answer is positive or not). This means that the set of rules which leads to send yes
to the environment and the set of rules which leads to send no must be present
in the design of the P system; and thirdly, the standard definition of recognizer P
systems claims that an object yes or no (but no both) is sent to the environment
in the last step of computation.

A deep study of these constraints shows that it is not sufficient to implement
a design of P system with the control scheme “if the restrictions of the decision
problem are satisfied, then an object yesmust be sent to the environment”. Instead
of such scheme, the design must consider the following structure: “if the restrictions
are satisfied, then an object yes must be sent to the environment, else an object
no must be sent”. This scheme if-then-else must be controlled with the ingredients
of the P system model. In the three presented designs, this if-then-else scheme is
implemented via dissolution, polarization, or membrane creation.

These ideas lead us to consider the necessity of revisiting the complexity classes
under P and adapt the definition of recognizer P systems for these classes. Some
papers in this new research line can be found in the literature (see, e.g., [12]), but
further research is needed.
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