
Red-Green P Automata

Bogdan Aman1, Erzsébet Csuhaj-Varjú2, Rudolf Freund3

1 Institute of Computer Science, Romanian Academy
Iaşi, Romania, Email: bogdan.aman@gmail.com

2 Faculty of Informatics, Etvs Loránd University
Budapest, Hungary, Email: csuhaj@inf.elte.hu

3 Faculty of Informatics, Vienna University of Technology
Vienna, Austria, Email: rudi@emcc.at

Summary. In this short note we extend the notion of red-green Turing machines to
specific variants of P automata. Acceptance and recognizability of finite strings by red-
green automata are defined via infinite runs of the automaton on the input string and
the way how to distinguish between red and green states.

1 Introduction

In this short note we introduce the notion of red-green automata in the area of
P systems. Acceptance and recognizability of finite strings by a red-green Turing
machine are defined via infinite runs of the automaton on the input string and the
way how to distinguish between red and green states; via infinite runs which are
allowed to change between red and green states more than once, more than the
recursively enumerable sets of strings can be obtained, i.e.,in that way we can “go
beyond Turing”. Various possibilities how to “go beyond Turing” to be already
found in the literature are discussed in [9]; most of the definitions and results for
red-green Turing machines are taken from this paper. In the area of P systems,
first attempts to do that can be found in [5] and [8]. Computations with infinite
words by P automata have been investigated in [4].

Here we focus on the idea of being able to switch between red and green states
in P automata, where states are specific properties of a configuration, for example,
the occurrence or the non-occurrence of a specific symbol. As for Turing machines,
with one change from red to green states, we can accept all recursively enumerable
languages. A similar result can easily be obtained for many variants of P automata,
especially for the basic model using antiport rules assigned to the skin membrane.

In this note we only focus on the concept of red-green automata for P automata,
without giving formal definitions or proofs, as we assume the reader to know the
underlying notions and concepts from formal language theory (e.g., see ) as well
as from the area of P systems (e.g., see ). A lot of research topics wait for being



74 B. Aman, E. Csuhaj-Varjú, R. Freund

investigated for P automata “going beyond Turing”, but as well for the idea of
having red and green configurations together with models of P automata which
are not computationally complete, as for example dP automata.

2 Red–Green Turing Machines

A Turing machine M is called a red–green Turing machine if its set of internal
states Q is partitioned into two subsets, Qr and Qg, and M operates without
halting. Qr is called the set of red states, Qg the set of green states.

Red–green Turing machines can be seen as a type of ω-Turing machines on
finite inputs with a recognition criterion based on some property of the set(s) of
states visited (in)finitely often, in the tradition of ω-automata (see [4]), i.e., we
call an infinite run of the Turing machine on input w recognizing if and only if

• no red state is visited infinitely often and
• some green states (one or more) are visited infinitely often.

Comment. In the following, “mind change” means changing the color, i.e.,
changing from red to green or vice versa.

To get the reader familiar with the basic idea of red-green automata, we give
a short sketch of the proofs for some well-known results (see [9]):

Theorem 1. A set of strings L is recognized by a red–green TM with one mind
change if and only if L ∈ Σ1, i.e., if L is recursively enumerable.

Proof. Let L be the set of strings recognized by a red–green TM M with one mind
change. Then design a TM that enumerates all possible inputs, simulates and
dovetails the computations of M on these inputs, and outputs string w whenever
M makes its first mind change (if any) during the computation on w.

Conversely, if L ∈ Σ1 and M is the TM that enumerates L, then design a red–
green TM that on input w simulates the computation of M in red but switches to
green when w appears in the enumeration. This machine precisely recognizes L.
⊓⊔

2.1 Red-Green Turing Machines – Going Beyond RE

If more mind changes are allowed, the full power of red–green Turing machines is
revealed. For example, the complement of a recursively enumerable set L need not
be recursively enumerable, too, but it is always red–green recognizable:

Let M ′ be the TM recognizing L. Then construct a red–green TM M that
operates on inputs w as follows: starting in red, the machine immediately switches
to green and starts simulating M ′ on w. If M ′ halts (thus recognizing w), the
machine switches to red and stays in red from then onward. It follows that M
precisely recognizes, in fact accepts, the set L. (Acceptance means that for every



Red-Green P Automata 75

word not recognized by the TM it will never make an infinite number of mind
changes, i.e., it finally will end up in red.)

The following result characterizes the computational power of red–green Turing
machines (see [9]):

Theorem 2. (i) Red–green Turing machines recognize exactly the Σ2 sets of the
Arithmetical Hierarchy.

(ii) Red–green Turing machines accept exactly the ∆2 sets of the Arithmetical
Hierarchy.

3 The basic Model of P Automata

The basic model of P automata as introduced in [2] and in a similar way in [3]
is based on antiport rules, i.e., on rules of the form u/v, i.e., the multiset u goes
out through the membrane and v comes in instead. As it is already folklore, only
one membrane is needed for obtaining computational completeness with only one
membrane; the input string is defined as the sequence of terminal symbols taken
in during a halting computation. Restricting ourselves to P automata with only
one membrane as the basic model, we define a P automaton as follows:

A P automaton is a construct

Π = (O, T,w,R)

where

• O is the alphabet of objects,
• T is the terminal alphabet,
• w is the multiset of objects present in the skin membrane at the beginning of

a computation, and
• R is a finite set of antiport rules.

The strings accepted by Π consist of the sequences of terminal symbols taken
in during a halting computation.

Let us cite from [8]:

“... a super-Turing potential is naturally and inherently present in evo-
lution of living organisms.”

In that sense, we now seek for this potential in P automata.



76 B. Aman, E. Csuhaj-Varjú, R. Freund

4 Red-Green P Automata

The main challenge is how to define “red” and “green” states in P automata. In
fact, states sometimes are considered to simply be the configurations a P automa-
ton may reach during a computation, or some specific elements occurring in a
configuration define its state.

Another variant is to consider the multiset applicable to a configuration as its
state, which especially makes sense in the case of deterministic systems. Yet then
these multisets have to be divided into “red” and “green” ones.

The easiest way to do this is to specify a subset of the rules as green rules, and
all multisets consisting of such green rules only constitute the set of all “green”
multisets, whereas all the other ones are “red” multisets.

A stronger condition is to divide the set of rules into “red” and “green” and to
define the set of “red” and “green” multisets as those which only consist of “red”
and “green” rules, respectively. But then the problem arises how to deal with the
multisets of rules consisting of rules of both colors.

5 First Results

As is well known, even with the basic model of P automata as defined above we
obtain computational completeness by easy simulations of register machines (which
themselves are known, even with only two registers, to be able to simulate the
actions of a Turing machine). Hence, the following results are direct consequences
of the results known for Turing machines:

Theorem 3. A set of strings L is recognized by a red–green P automaton with one
mind change if and only if L ∈ Σ1, i.e., if L is recursively enumerable.

Theorem 4. (i) Red–green P automata recognize exactly the Σ2 sets of the Arith-
metical Hierarchy.

(ii) Red–green P automata accept exactly the ∆2 sets of the Arithmetical Hier-
archy.

Proof. (Sketch) Let TM be a Turing machine and RM be a register machine
simulating TM having its set of internal states Q partitioned into two subsets,
Qr and Qg; TM operates without halting; Qr is the set of red states, Qg the set
of green states. The register machine can alos colour its states in red and green,
but when simulating the actions of TM eventually needs a green and red variant
of its states and actions in order to totally stay within the same color as TM
when simulating the actions of one computation step of TM . The P automaton
Π = (O, T,w,R) can simulate the actions of RM very easily, e.g., see Chapter V
in [6], without introducing trap symbols, and even in a deterministic way provided



Red-Green P Automata 77

RM is deterministic. The rules in R are of the form qu/pv where q, p are states of
RM and u, v are multisets not containing a state symbol. Hence, a configuration
can be defined to exactly have the color of the state symbol from RM currently
occurring in the skin region. ⊓⊔

One of the main reasons that the proof of the preceding theorems is that easy
is based on the fact that the simulation does not need the trick to trap non-wanted
evolutions of the system, which is a trick used very often in the area of P systems.
Yet this exactly would contradict the basic feature of the red–green automata way
of acceptance by looking at infinite computations. Fortunately, the basic model of
P automata comes along with this nice feature of not needing trap rules for being
able to simulate register machines. Only few models of P automata have this nice
feature; another variant are P automata with anti-matter, just recentlyintroduced
and investigated, see [1].

6 Future Research

Besides investigating the variants of defining “red”/“green”, there are various other
models of P automata which deserve to be taken into consideration, e.g., dP au-
tomata and anti-matter automata.

There are already a lot of strategies and models to be found in the litera-
ture how to “go beyond Turing”; some of them should also be of interest to be
considered in the P systems area. Thus, a wide range of possible variants to be
investigated remains for future research.

References

1. A. Alhazov, B. Aman, R. Freund, Gh. Păun: Matter and anti-matter in membrane
systems. Brainstorming Week in Membrane Computing, Sevilla, February 2014.

2. E. Csuhaj-Varjú, Gy. Vaszil: P automata or purely communicating accepting P sys-
tems, in: Membrane Computing, International Workshop, WMC-CdeA 2002, Curtea
de Argeş, Romania, August 19-23, 2002, Revised Papers (Gh. Păun, G. Rozenberg,
A. Salomaa, C. Zandron, Eds.), Lecture Notes in Computer Science 2597, Springer,
2003, 219–233.

3. R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of the EATCS
78, 2002, 231–236.

4. R. Freund, M. Oswald, L. Staiger: ω-P Automata with Communication Rules. Work-
shop on Membrane Computing, 2003, 203–217, http://dx.doi.org/10.1007/978-3-540-
24619-0 15.

5. C.S. Calude, Gh. Păun: Bio-steps beyond Turing. Biosystems 77 (2004), 175–194.
6. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.
7. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.

Springer, 1997.



78 B. Aman, E. Csuhaj-Varjú, R. Freund

8. P. Sośık, O. Vaĺık: On Evolutionary Lineages of Membrane Systems, in: R. Freund et
al. (Eds.): WMC 2005, Lecture Notes in Computer Science 3850 (2006), 67–78.

9. J. van Leeuwen, J. Wiedermann: Computation as an unbounded process. Theoretical
Computer Science 429 (2012), 202–212.


