Some Properties of Complex Filiform Lie Algebras

F.J. ECHARTE REULA ¹, J.R. GÓMEZ MARTÍN ² AND J. NÚÑEZ VALDÉS ¹

Dpto. de Algebra, Computación, Geometría y Topología, Fac. Matemáticas,
C / Tarfia, s/n, Univ. de Sevilla, 41012 Sevilla
Dpto. de Matemática Aplicada, Fac. Informática y Estadística,
C / Tarfia, s/n, Univ. de Sevilla, 41012 Sevilla

AMS Subject Class. (1980): 17B30

Received February 3, 1992

1. Introduction and Notations

The purpose of this paper is to study some properties of Filiform Lie Algebras (FLA) and to prove the following theorem: A FLA, of dimension n, is either derived from a Solvable Lie Algebra (SLA) of dimension n+1 or not derived from any LA.

From now on, we write (A,B,C)=0 to represent the Jacobi identity [[A,B],C]+[[B,C],A]+[[C,A],B]=0 and we denote by $\mathfrak M$ a complex FLA of dimension n [4], that is, a complex nilpotent LA admitting a base (1) $\{X_1,\ldots,X_n\}$ such that

$$[X_1, X_2] = 0$$
, $[X_1, X_j] = X_{j-1}$, $3 \le j \le n$.

 $\mathcal L$ will denote a complex SLA of dimension n+p such that (2) $\{X_1,...,X_n,U_1,...,U_p\}$ is a basis, where $\{X_1,...,X_n\}$ is the basis (1) above mentioned, and U_h (h=1,...,p) are derivations of $\mathfrak M$ such that $(X_j,X_h,U_q)=0$, $1\leqslant j,h\leqslant n$, $1\leqslant q\leqslant p$.

First, we deduce some properties of FLA. Secondly, we study the conditions for the FLA \mathfrak{M} to be derived from the SLA \mathfrak{L} , that is, for $[\mathfrak{L},\mathfrak{L}] = \mathfrak{M}$. We will use the following notation [3]:

$$[X_i, U_j] = \sum_{h=1}^n a_{ij}^h X_h; \ [U_j, U_h] = \sum_{k=1}^n b_{jh}^k X_k; \ [X_i, X_j] = \sum_{l=1}^n c_{ij}^l X_l$$

Finally, i will denote the smallest natural number greater than 1 such that $[X_i, X_n] \neq 0$.

2. Some Properties of FLA

We distinguish two cases, depending on i:

CASE 1: Suppose that i does not exist, that is, $[X_j, X_n] = 0$, $\forall j > 1$.

In this case, we prove [3] then following:

THEOREM 2.1. $[X_j, X_h] = 0$ for all j, h > 1.

As a consequence, the only possible non-zero brackets are $[X_1,X_j] = -[X_j,X_1] = X_{j-1}$ (j=3,...,n). Therefore, there exists only one FLA of this kind for each dimension.

CASE 2: Suppose that i exists and $[X_i, X_n] = c_{in}^{i-h} X_{i-h} + ... + c_{in}^2 X_2$. In this case we prove the following:

LEMMA 2.2. $[X_j, X_h] = 0$ for all h > 1; 1 < j < i.

THEOREM 2.3. i is independent of the basis (1).

As a consequence, the number h in the coefficient c_{in}^{i-h} is also independent of the basis (1).

THEOREM 2.4. If
$$[X_i, X_n] = c_{in}^{i-h} X_{i-h} + ... + c_{in}^2 X_2$$
, then
$$[X_i, X_{n-1}] = c_{in}^{i-h} X_{i-h-1} + ... + c_{in}^3 X_2.$$

$$[X_i, X_{n-2}] = c_{in}^{i-h} X_{i-h-2} + ... + c_{in}^4 X_2.$$

$$[X_i, X_{n-i+h+2}] = c_{in}^{i-h} X_2.$$

THEOREM 2.5. $c_{in}^{i-1} = ... = c_{in}^{j-1} = ... = c_{n-1,n}^{n-2}$.

THEOREM 2.6. If $c_{in}^{i-1} \neq 0$, then i = 4.

THEOREM 2.7. If the coefficient $c_{4n}^3 \neq 0$, then n is even.

3. Conditions for a FLA to be Derived from another SLA

THEOREM 3.1. A necessary condition for a FLA $\mathfrak M$ to be derived from the SLA $\mathfrak L$ is $a_{1j}^1 \neq 0$ for some j (j=1,2,...,p).

To prove this theorem, we previously use the following: [3]

LEMMA 3.2. $a_{nh}^1 = 0, \forall h \ge 2.$

LEMMA 3.3. $a_{3h}^3 = a_{2h}^2 - a_{1h}^1, \forall h \ge 2.$

LEMMA 3.4. If $a_{1h}^1 = 0$, $\forall h = 1,...,p$, then $b_{1h}^1 = 0$, $\forall 1 \le j,h \le p$.

To study now if sufficiency also holds, we consider the following three cases:

CASE 1. Suppose that i does not exists, that is, $[X_j, X_h] = 0$, $\forall j > 1$. In this case, according to theorem 2.1, there only exists one FLA of this kind for each dimension n. This single algebra is always derived from a SLA of dimension n+1, one of it basis is $\{X_1, ..., X_n, U\}$, with $[X_j, U] = \lambda_j X_j$, $\forall j$, and $\lambda_j = \lambda_2 - (j-2)\lambda_1$, $3 \le j \le n$ with $\lambda_1, \lambda_2 \ne 0$.

CASE 2. Suppose that i exists and $c_{in}^{i-1} = 0$, that is,

$$[X_i, X_n] = c_{in}^{i-q} X_{i-q} + \dots + c_{in}^3 X_3 + c_{in}^2 X_2 \quad (1 < q < i-2).$$

In this case, we prove the following

LEMMA 3.5. $a_{j-1,h}^{j-1} - a_{j,h}^{j} = a_{1,h}^{1} - a_{1,h}^{n} c_{jn}^{j-1} \ (j \ge 3).$

LEMMA 3.6.
$$a_{n,h}^n = q a_{1,h}^1 (q = 1,2,...,i-2).$$

Consequently, if $a_{1,h}^1 \neq 0$ for some h, then also $a_{n,h}^n \neq 0$. So, the $FLA \mathfrak{M}$, of dimension n, will be derived from an $SLA \mathfrak{L}$, of dimension n+1 having a basis $\{X_1,...,X_n,U_h\}$, where $\{X_1,...,X_n\}$ is the basis (1) of \mathfrak{M} .

CASE 3. Suppose that i exists and $c_{in}^{i-1} \neq 0$. In this case, i=4 (th. 2.6) and $c_{4n}^3 = c_{jn}^{j-1}$ (th. 2.5). Taking lemma 3.5 into account we prove the following

LEMMA 3.7.
$$a_{n,h}^n = a_{1,h}^1 - a_{1,h}^n c_{4n}^3$$
.

Then we distinguish:

CASE 3.1. If $a_{1,h}^1 \neq 0$ and $a_{1,h}^n = 0$ for some h, then $a_{1,h}^1 = a_{n,h}^n \neq 0$. So \mathfrak{M} will be derived from the SLA \mathfrak{L}_h , with $\{X_1, ..., X_n, U_h\}$ as a basis. So sufficiency is also verified in this subcase.

CASE 3.2. If $a_{1,h}^1 \neq 0$ and $a_{1,h}^n \neq 0$, then $a_{1,h}^1 = a_{n,h}^n$. Therefore if $a_{n,h}^n \neq 0$ we obtain the same conclusion as in the case 3.1, but if $a_{n,h}^n = 0$ then \mathfrak{M} will not be derived from any LA, due to $X_n \notin \mathfrak{M}$ in this subcase, as we proved in [3].

So, sufficiency is not verified in this subcase of the case 3.2. only.

An immediate consequence of this th. 3.1 is the following

MAIN THEOREM 3.8. A filiform Lie Algebra, of dimension n, is either derived from a SLA of dimension n+1 or not derived from any LA.

REFERENCES

- ANCOCHEA, J.M. AND GOZE, M., Classification des algèbres de Lie filiformes de dimension 8, Arch. Math. 50 (1988), 511-525.
- 2. ECHARTE, F.J., GÓMEZ, J.R. AND NÚÑEZ, J., Les algèbres de Lie filiformes complexes derivées ou non d'autres algèbres de Lie, to appear.
- NÚÑEZ, J., Las álgebras de Lie filiformes complejas según sean o no derivadas de otras, Tesis, Univ. de Sevilla, 1991.
- 4. VERGNE, M., Sur la varieté des lois nilpotentes, These 3è cycle, Univ. Paris, 1966.