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In the present work, we explore the case of a general PT -symmetric dimer in the context of two both linearly
and nonlinearly coupled cubic oscillators. To obtain an analytical handle on the system, we first explore the
rotating wave approximation converting it into a discrete nonlinear Schrödinger type dimer. In the latter context,
the stationary solutions and their stability are identified numerically but also wherever possible analytically.
Solutions stemming from both symmetric and anti-symmetric special limits are identified. A number of special
cases are explored regarding the ratio of coefficients of nonlinearity between oscillators over the intrinsic one of
each oscillator. Finally, the considerations are extended to the original oscillator model, where periodic orbits
and their stability are obtained. When the solutions are found to be unstable their dynamics is monitored by
means of direct numerical simulations.

I. INTRODUCTION

The notion of parity-time (PT ) symmetry has recently been receiving increasing attention over a wide variety of settings;
see e.g. [1–3]. The original proposal involved a non-Hermitian variant of quantum mechanics which might still produce real
eigenvalues (and hence be associated with measurable quantities). However, it was instead the analogy of this model with
the paraxial approximation in optics which led to the proposal that such mathematical constructs can be realized in optical
settings [4, 5], and which eventually led to their experimental realization [6]. This series of developments, in turn, prompted
researchers towards a more detailed understanding of the stationary states of such PT -systems (and how they differ from
their Hamiltonian analogues), an effort to appreciate their stability properties and finally an attempt to quantify their nonlinear
dynamics. This effort emerged both at the level of few-site configurations [7–15] (which were chiefly experimentally accessible),
as well as at that of infinite-size lattices [16–18].

Although the quantum-mechanical and paraxial-optical focal points of this activity have provided an emphasis on the study
of Schrödinger type settings, a number of recent studies, especially on the experimental side, have led to an increased interest
in oscillator systems (which one can think of as oligomers -few site settings- of the Klein-Gordon type). More specifically,
a mechanical system realizing PT -symmetry has been proposed in [19], while a major thrust of research has focused on the
context of electronic circuits; see e.g. the original realization of [20] and the more recent review of this activity in [21]. As an
aside, we note that additional intriguing realizations of PT -symmetry have also emerged e.g. in the realm of whispering-gallery
microcavities [22]. Mostly, the efforts on this oscillator realm have been limited to the study of linear systems, yet recently
a number of nonlinear variants have been explored both theoretically/numerically and even experimentally. As notable such
examples, we mention the split-ring resonator chain in the context of magnetic metamaterials proposed in the work of [23], as
well as the experimental realization of a PT -symmetric dimer of Van-der-Pol oscillators that arose in the work of [24].

On the theoretical side, some of these studies raised a number of intriguing theoretical questions. For instance, the theoretical
modeling of the linear PT -symmetric analogue of the system [22] led to the realization that such linear oscillator pairs may be
Hamiltonian although one of them has gain and the other has loss [25]. This, in turn, led the authors of [26] to appreciate that this
feature (the Hamiltonian nature of a PT -symmetric oscillator system) can be extended to the nonlinear case, if the nonlinearity
contains both self- and cross- interactions between the oscillators and if these interactions have an appropriate ratio (the ratio
utilized between cross- and self-interactions in that work was 3). Importantly, the latter work also extended consideration of that
model to the Schrödinger variant thereof (through a multiple scales expansion), finding that nonlinearity may, in that context,
“soften” the PT -symmetric phase transition. That is, it may enable the existence of stable periodic and quasi-periodic states at
any value of the gain-loss parameter γ.

Our aim in the present work is to revisit this context of two coupled nonlinear oscillators, one of which bears gain and the
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other loss. We will consider the nonlinear case (almost exclusively, briefly touching upon the linear case as a special limit).
Importantly, we will also explore the ratio of cross- to self-interaction of the oscillators as a free parameter. Interestingly, this
will enable us to identify a series of special cases, including the integrable one recently explored in [26]. For all values of
this nonlinear parameter and as a function of the loss/gain parameter (γ) and of the frequency parameter ωb, we will study
systematically both dimer systems. That is, we will first derive and analyze the discrete nonlinear Schrödinger (DNLS) dimer, to
obtain a simplified understanding of the existence, stability and dynamics properties. Then, in a way reminiscent of our earlier
work (involving no cross interactions) [27] –and complementing the earlier work of [26] who did not focus on the periodic orbit
solutions of the original nonlinear oscillator dimer–, we will return to the oscillator system and explore its own solutions, in
terms of their existence, stability and dynamical properties. When the solutions are identified as unstable, a brief discussion will
also be given of their dynamical evolution.

This paper is organized as follows. In the next section (II) we provide the model equations, discuss their symmetries and po-
tential Hamiltonian structure and indicate where corresponding exact solutions for the generalized coupled nonlinear oscillators
can be obtained. In Sec. III we invoke the rotating wave approximation (RWA) and provide the stability equations and analytical
results as well as perform numerical analysis of both the symmetric and asymmetric solutions for the resulting generalized DNLS
dimer. Section IV contains the corresponding analysis of the Klein-Gordon dimer. A discussion of the dynamics of unstable
solutions is given in Sec. V. Our main results and conclusions are summarized in Sec. VI, where a number of directions for
future study are also highlighted. Details of the numerical analysis are relegated to Appendix A.

II. THE MODEL

As per the above discussion, we consider the system of coupled oscillators given by:

ü = −u+ kv + γu̇+ ϵu3 + δuv2,

v̈ = −v + ku− γv̇ + ϵv3 + δvu2. (1)

This model is an extension of that in [27], which can be obtained by taking δ = 0. Additionally, it is an extension of the
specific case of δ = 3ϵ considered in [26]. In the linear limit, δ = ϵ = 0, there are two branches of solution eigenfrequencies
given by:

ω± =

√
1− γ2/2±

√
k2 − γ2 + γ4/4 (2)

with ω+ (ω−) corresponding to symmetric (anti-symmetric) linear modes at γ = 0. Here, we proceed with the understanding
that ±ω± are of relevance but we will focus our attention on the positive frequencies hereafter. The two pairs of real (for small
γ) eigenfrequencies will collide and give rise to a frequency quartet for γ > γPT,L, where γPT,L satisfies the condition:

γ4
PT,L − 4γ2

PT,L + 4k2 = 0. (3)

Thus, for fixed k, the lowest value of γPT,L corresponds to ω = 4
√
1− k2.

Additionally, to this linear analysis, we observe that the nonlinear dynamical equations (1) possess several symmetries that
leave them invariant:

• u → −u, v → −v ,

• u → −u, k → −k, v → v ,

• u → u, k → −k, v → −v ,

• t → −t, γ → −γ .

• u → αu, v → αv, ϵ → ϵ/α2, δ → δ/α2 .

In the limit γ = 0, (1) is a Hamiltonian system, with H given by

H =
u̇2 + v̇2 + u2 + v2

2
− ϵ

4
(u4 + v4)− kuv − δ

2
u2v2, (4)

and, for the case δ = 3ϵ, dynamical equations (1) are Hamiltonian for any value of γ [26], with a Hamiltonian of the form:
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H2 = pupv +
γ

2
(upu − vpv) + (1− γ2

4
)uv − k

2
(u2 + v2)− ϵ(u3v + v3u) , (5)

In this case, pu = v̇ + γv/2, pv = u̇− γu/2.
The aim of this paper is to identify periodic orbits of frequency ωb of the model (1) (and to compare them also to the results

of the DNLS approximation). Toward achieving this aim, Fourier space techniques have been utilized in order to expand the
solution in time and to obtain its numerically exact form (up to a prescribed numerical tolerance). Finally, Floquet theory has
been used to explore the stability of the pertinent configurations. More details about the numerical methods have been given in
Appendix A.

An important diagnostic quantity for probing the dependence of the solutions on parameters such as the gain/loss strength γ,
or the oscillation frequency ωb, is the energy averaged over a period, defined as:

< H >=
1

Tb

∫ Tb

0

H(t) dt, (6)

with the Hamiltonian (of the case without gain/loss) given by (4) and Tb = 2π/ωb being the oscillation period.
In what follows, we will restrict to the values of δ/ϵ = {1, 3/2, 3}, for which as will be seen below, the solutions and/or

dynamical equations possess special properties. In addition, we restrict to γ ≥ 0, 0 < k < 1 and |ϵ| = 1. Unless stated
otherwise k =

√
15/8 ≈ 0.48 has been fixed; this value implies γPT,L = 0.5.

III. THE ROTATING WAVE APPROXIMATION

A. The DNLS dimer: the model, stability equations and analytical results

The RWA provides a means of connecting with the extensively analyzed PT -symmetric Schrödinger dimer [8, 10, 15, 28–31].
This link follows a path similar to what has been earlier proposed e.g. in [33, 34]. In particular, the following ansatz is used
to approximate the solution of the periodic orbit problem as a roughly monochromatic wavepacket of frequency ωb (for ϕ1,2 in
what follows we will seek stationary states).

u(t) ≈ ϕ1(t) exp(iωbt) + ϕ∗
1(t) exp(−iωbt), v(t) ≈ ϕ2(t) exp(iωbt) + ϕ∗

2(t) exp(−iωbt). (7)

By supposing that ϕ̇n ≪ ωbϕn and ϕ̈n ≪ ωbϕ̇n (i.e., ϕ varies slowly on the scale of the oscillation of the actual exact
time periodic state), discarding the terms multiplying exp(±3iωbt), the dynamical equations (1) transform into a set of coupled
Schrödinger type equations:

2iωbϕ̇1 = [(ω2
b − 1) + 3ϵ|ϕ1|2 + 2δ|ϕ2|2 + iωbγ]ϕ1 + [k + δϕ∗

1ϕ2]ϕ2,

2iωbϕ̇2 = [(ω2
b − 1) + 3ϵ|ϕ2|2 + 2δ|ϕ1|2 − iωbγ]ϕ2 + [k + δϕ∗

2ϕ1]ϕ1, (8)

i.e., forming, under these approximations, a PT -symmetric Schrödinger dimer. The stationary solutions of this dimer can then
be used in order to reconstruct via Eq. (A1) the solutions of the RWA to the original PT -symmetric oscillator dimer. These
stationary solutions for ϕ1(t) ≡ y1 and ϕ2(t) ≡ z1 satisfy the algebraic conditions

Ey1 = (p+ qz1y
∗
1)z1 + (|y1|2 + 2q|z1|2)y1 + iΓy1,

Ez1 = (p+ qy1z
∗
1)y1 + (|z1|2 + 2q|y1|2)z1 − iΓz1, (9)

with

E =
1− ω2

b

3ϵ
, p =

k

3ϵ
, q =

δ

3ϵ
, Γ =

γωb

3ϵ
. (10)

Notice that when q = 1/2, i.e. δ/ϵ = 3/2, coupling in Eq. (8) resembles that in the Manakov model [32].
If we express y1 and z1 in polar form:

y1 = A exp(iθ1), z1 = B exp(iθ2), φ = θ2 − θ1, (11)
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the stationary equations can be rewritten as

EA = pB cos φ+ qAB2 cos 2φ+A(A2 + 2qB2), (12)
EB = pA cos φ+ qBA2 cos 2φ+B(B2 + 2qA2), (13)

−ΓB = A sin φ(p+ 2qAB cos φ), (14)
−ΓA = B sin φ(p+ 2qAB cos φ). (15)

In the case γ = 0, there can be symmetric or anti-symmetric solutions, fulfilling A2 = B2. Contrary to the δ = 0 setting,
where sin φ = 0 only, here we have, apart from this case, the possibility of a phase different than 0 or π, i.e. cos φ =
−p/(2qAB). Consequently, we have two pairs of symmetric / anti-symmetric solutions with A = B at the Hamiltonian limit:

A2 =
E − p

1 + 3q
=

1− ω2
b − k

3(ϵ+ δ)
, φ = 0 S0 solution (16)

A2 =
E + p

1 + 3q
=

1− ω2
b + k

3(ϵ+ δ)
, φ = π A0 solution (17)

A2 =
E

1 + q
=

1− ω2
b

3ϵ+ δ
, φ = cos−1

[
−p(1+q)

2qE

]
= cos−1

[
− k(δ+3ϵ)

2δ(1−ω2
b)

]
Sϕ solution (18)

A2 =
E

1 + q
=

1− ω2
b

3ϵ+ δ
, φ = π + cos−1

[
p(1+q)
2qE

]
= π + cos−1

[
k(δ+3ϵ)
2δ(1−ω2

b)

]
Aϕ solution (19)

Recall that A = B in all the previous cases, i.e. the sign of the anti-symmetric solutions has been introduced into the phase.
Apart from the previous solutions, there is an asymmetric solution (AS) whose properties strongly depend on δ/ϵ. This solution
is given by:

A2 =
(1− ω2

b)±
√
(1− ω2

b)
2 − 4k2

(1−δ/ϵ)2

6ϵ
, B = ± k

3(ϵ− δ)A
, φ = 0 (π) AS solution. (20)

Note that the asymmetric solution exists only if δ ̸= ϵ. When they are equal it is easily checked from RWA equations that
there is no asymmetric solution.

It is easy to show that at γ = 0 and ϵ > 0, S0 solutions exist for ωb < ωS =
√
1− k, A0 solutions exist for ωb < ωA =√

1 + k and both Sϕ and Aϕ solutions only exist when ωb ≤ ωϕ+ =
√
1− k(1 + 3ϵ/δ)/2; for ϵ < 0, S0 solutions exist for

ωb > ωS =
√
1− k, A0 solutions for ωb > ωA =

√
1 + k and both Sϕ and Aϕ solutions only exist when ωb ≥ ωϕ− =√

1 + k(1 + 3ϵ/δ)/2. In addition, asymmetric solutions only exist for ωb < ωAS+ =
√
1 + 2k/(1− δ/ϵ) if ωb < 1 and for

ωb > ωAS− =
√

1− 2k/(1− δ/ϵ) if ωb > 1.
Using the identifications ϕ1(t) ≡ y1 and ϕ2(t) ≡ z1 introduced after (8), the averaged energy within the RWA can be written

as:

< H >= (1 + ω2
b)(|y1|2 + |z1|2)− 2kRe(y1z

∗
1)−

3ϵ

2
(|y1|4 + |z1|4)− δ[Re(y21z

∗2
1 ) + 2|y1|2|z1|2] (21)

and, by making use of (11), the average energy for each of the previous solutions at γ = 0 is given by the following expres-
sions:

< H > =
ω4
S + 2ω2

Sω
2
b − 3ω4

b

3(ϵ+ δ)
, S0 solution

< H > =
ω4
A + 2ω2

Aω
2
b − 3ω4

b

3(ϵ+ δ)
, A0 solution

< H > =
1 + 2ω2

b − 3ω4
b

3ϵ+ δ
+

k2

2δ
, Sϕ and Aϕ solutions

< H > =
1 + 2ω2

b − 3ω4
b

6ϵ
+

k2

3(δ − ϵ)
. AS solution (22)
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Notice that the average energy of both Sϕ and Aϕ are the same for every δ and that also coincide with that of the AS solution for
δ = 3ϵ.

When γ ̸= 0 only symmetric and anti-symmetric solutions can exist and Eqs. (12)-(15) can be simplified as a quartic equation
for A2:

4∑
j=0

PjA
2j = 0 (23)

with

P0 = (Γ2 + E2)(Γ2 + E2 − p2),

P1 = 2E[(1 + q)p2 − 2(1 + 2q)(Γ2 + E2)],

P2 = 4(1 + 2q)2E2 + 2(1 + 3q)(1 + q)(Γ2 + E2)− (1 + q)2p2,

P3 = −4E(1 + q)(1 + 2q)(1 + 3q),

P4 = (1 + 3q)2(1 + q)2,

whereas the phase fulfills the equation:

tan φ = − Γ

E − (1 + q)A2
. (24)

Just as one could give an expression for A without involving ϕ, similarly by eliminating A, one finds that ϕ must satisfy the
constraint

Eq sin(2ϕ)± p(1 + q) sin(ϕ) + Γ[1 + q + 2q cos2(ϕ)] = 0 , B = ±A . (25)

Notice that there is a phase degeneracy that must be removed by applying, e.g., Eq. (15) together with the previous one.
We now turn to the linear stability of different solutions within the RWA. The spectral analysis of the symmetric and anti-

symmetric solutions can be obtained by considering small perturbations [of order O(ε), with 0 < ε ≪ 1] of the stationary
solutions. The stability can be determined by substituting the ansatz below into (8) and then solving the ensuing [to O(ε)]
eigenvalue problem:

ϕ1(t) = y1 + ε(a1e
−iθt/Tb + b∗1e

iθ∗t/Tb),

ϕ2(t) = z1 + ε(a2e
−iθt/Tb + b∗2e

iθ∗t/Tb), (26)

with Tb = 2π/ωb being the orbit’s period and θ being the Floquet exponent (FE). The FEs can be expressed as:

θ =
π

ω2
b

iΩ (27)

with Ω being the eigenfrequencies of the stability matrix M , which is defined as Ω(a1, a2, b∗1, b
∗
2)

T = M(a1, a2, b
∗
1, b

∗
2)

T . In the
case of symmetric and anti-symmetric solutions, the matrix can be written as:

M =

 M1 M2 M3 M4

M2 M∗
1 M4 M∗

3

−M∗
3 −M4 −M∗

1 −M2

−M4 −M3 −M2 −M1

 (28)

with the elements being

M1 = (ω2
b − 1) + 2(3ϵ+ δ)A2 + iωbγ, (29)

M2 = 4δA2 cos φ+ k, (30)
M3 = [3ϵ exp(−iφ) + δ exp(iφ)]A2, (31)
M4 = 2δA2. (32)

Thus, the non-zero eigenvalues λ can be expressed in terms of A2 and φ, which must be determined by solving Eqs. (23)-(24):

Ω2/2 = [δ2(1−16 cos2 φ)−6ϵδ(5−2 cos2 φ)−27ϵ2]A4− [8kδ cos φ−4(ω2
b−1)(3ϵ+δ)]A2− [(ω2

b−1)2+k2−γ2ω2
b], (33)
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B. Numerical analysis of symmetric and anti-symmetric solutions

We show below the properties of the A0, S0, Aϕ and Sϕ solutions in the cases δ = ϵ, δ = 3ϵ/2 and δ = 3ϵ for both soft
(ϵ = +1) and hard (ϵ = −1) potentials. A summary of the existence and stability regions is displayed in Fig. 1, where the panels
depict the γ-ωb planes. Notice that although A0, S0, Aϕ and Sϕ solutions are, strictly speaking, defined only at γ = 0, we will
use this notation for solutions at γ ̸= 0 that are obtained by continuation from the Hamiltonian (γ = 0) limit.

Prior to starting the analysis for arbitrary γ, we will briefly show the properties of the asymmetric solutions at γ = 0.
As explained above, we will choose k =

√
15/8. Notice that for this parameter value, ω2

AS+ < 0 if δ = 3ϵ/2 > 0 and
consequently, there is no asymmetric solution for this regime. However, there are asymmetric solutions if δ = 3ϵ/2 < 0 and
ωb > ωAS− ≈ 1.7136. In fact, at ωb = ωAS− there is a pitchfork bifurcation, as the S0 solution is unstable for ωb < ωAS− and
becomes stable past the bifurcation point, where a pair of branches corresponding to unstable asymmetric solutions emerge. For
δ = 3ϵ, the situation is similar in the hard case in what regards the existence of solutions (now ωAS− = ωA ≈ 1.2182); for the
soft case, the asymmetric solution exists for ωb ≤ ωAS+ = ωS ≈ 0.7182 and bifurcates from the A0 solution. Notice that the
A0 (for the soft case) and the S0 (for the hard case) are all stable; furthermore, the AS solution appears to be marginally stable
and highly degenerate as all the eigenfrequencies Ω are equal to zero; recall also the special, completely integrable nature of this
special limit.

We analyze now the properties of the soft potential when γ ̸= 0. In the δ = ϵ case, there are two main regions: in region
I, only A0 solutions exist, as S0 solutions bifurcate from the left arm of the γL(ωb) curve (i.e. ω+), which corresponds to the
symmetric linear modes; at the right of region I, no solutions are found because A0 solutions bifurcate from the right arm (i.e.
ω−) of the linear dispersion relation. In this soft case of ϵ > 0, the bifurcations occur to the left of γL(ωb), whereas in the hard
case of ϵ < 0, they arise to the right of γL(ωb). It is easy to show that from (2), γL is given by:

γL(ωb) =

√
(k2 − 1) + 2ω2

b − ω4
b

ωb
. (34)

Consequently, region I is bounded between ωb = ωS ≈ 0.7182, ωb = ωA ≈ 1.2182 and γ = γPT,L = 0.5. In region II, both
A0 and S0 solutions exist, and experience the PT phase transition at the curve designated as γPT(ωb). Notice also that all the
solutions existing in both regions I and II are stable. In addition, Aϕ and Sϕ solutions can only be found for ωb < ωϕ+, but their
existence range is quite small as ωϕ+ ≈ 0.1782 and only exist for γ < 0.1.

For δ = 3ϵ/2, both regions I and II have the same properties as before. In addition, region III is included, which is below the
curve γ1(ωb). In that region, all four solutions exist and are stable except for A0. This solution becomes stable only nearby i.e.
between the curves γ2(ωb) and γ1(ωb). This small stability region can be observed between red and green curves of the inset
of the corresponding panel (notice that this phenomenon was also observed in the δ = ϵ case, but was not showcased due to the
very small range of existence of Sϕ and Aϕ solutions therein). In region II only two solutions exist; for ωb < ωϕ+ ≈ 0.5233, i.e.
above the curve γ1(ωb), S0 and Sϕ solutions coexist and collide/disappear at γPT(ωb), whereas for ωb > ωϕ+, the coexisting
solutions are A0 and S0. As a side comment, the reason for the existence of Sϕ for ωb < ωϕ+ and of A0 for ωb > ωϕ+ within
Region II has to do with the fact that these solutions effectively “morph” from one to the other (smoothly) as this frequency is
crossed.

For δ = 3ϵ, the scenario is similar to the last one, except for two points: first, the γ1 curve finishes at ωb = ωS and encompasses
an accordingly broader region III; and second, the solutions in region III, A0 and Aϕ, are stable for any value of γ and ωb.

We focus now on the hard potential (i.e. ϵ = −1) properties. In all the cases, we can find the region I, with the same properties
as in the soft case (although now it is the S0 solution that exists and the A0 that bifurcates into existence beyond the boundary of
the region). In addition, region II is present in every case, enclosed between curves γPT(ωb) and γ1(ωb); there are two solutions
therein: the A0 solution and the S0 for ωb < ωϕ− and the A0 and Aϕ for ωb > ωϕ−. Under the curve γ1(ωb), whose minimum
value takes place at ωb = ωϕ− (so that ωϕ− = ωA for δ = 3ϵ), the four kinds of solutions coexist, so that S0 and Sϕ collide and
disappear at this line. As in the soft case, there is a “morphing” from the S0 to Aϕ solutions when the frequency ωϕ− is crossed.

Thus, the most significant difference between the three considered regimes lies in the existence of region IV and curve γ2(ωb).
Region III is characterized by the fact that all the solutions exist (as mentioned above) and are stable. However, below the curve
γ2(ωb) (i.e. in region IV), solution S0 becomes unstable. Notice that for δ = ϵ this region exists for every ωb > ωϕ− ≈ 1.4029.
However, if δ = 3ϵ/2, region IV is shrunk to the range ωϕ− ≈ 1.3138 < ωb . 1.71. Finally, region IV has totally vanished at
δ = 3ϵ.

IV. ANALYSIS OF THE OSCILLATOR DIMER

In this section, we complete the description of the system by returning to the original oscillator system and analyzing its exact
periodic orbits (that up to now we had only approximated using the RWA). This is done by numerically solving in the Fourier
space the dynamical equations set (1) [cf. Appendix A]. That is, we express the solution in the form:
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FIG. 1: γ-ωb plane for k =
√
15/8. Details on the meaning of each curve and region can be found in the text. The linear limit of the oscillator

system is denoted by γL, while the upper PT -symmetric threshold of solution existence is denoted by γPT . An additional delimiter of the
existence of further solutions Aϕ and Sϕ is also given by γ1. The existence regions of the different solutions are encompassed by these curves
both in the soft ϵ = 1 case (left panels) and in the hard ϵ = −1 case (right panels).

u(t) =
∑
n

yn exp(inωbt), v(t) =
∑
n

zn exp(inωbt). (35)

We have considered the same cases as in Section III, namely, δ/ϵ equal to 1, 3/2 and 3, with ϵ = ±1.
Prior to showing the results, we want to remark that the Fourier coefficients of S0 and A0 solutions (due to their symmetry)

have the following property:

yn = z∗n (S0), yn = −z∗n (A0). (36)

In what follows, we will first show the properties of the solutions at the Hamiltonian limit γ = 0. Afterwards, we will be
focusing in the different cases of δ/ϵ > 0 for γ ̸= 0. In most cases, results will be compared with the previously found results
for the RWA.
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A. Solutions for γ = 0

We start by analyzing the modes that can be expressed analytically at the γ = 0 limit. In fact, these can be expressed in terms
of Jacobi elliptic functions. If ϵ > 0 (soft potential), the solutions are of the form:

u(t) = A sn[β t;m] , v(t) = ±A sn[β t;m] , (37)

with

A = β

√
2m

ϵ+ δ
, β2 =

1∓ k

1 +m
, ωb =

πβ

2K(m)
. (38)

with the upper (lower) sign corresponding to the S0 (A0) solution, K(m) the complete elliptic integral of the first kind with
modulus m [37], and 0 < m < 1. As K(m) > π/2, it is easy to deduce that ωb < ωS =

√
1− k for the S0 solution and

ωb < ωA =
√
1 + k for the A0 solution, as within the RWA.

If ϵ < 0 (hard potential), these modes can be expressed as:

u(t) = A cn[β t;m] , v(t) = ±A cn[β t;m] , (39)

with

A = β

√
− 2m

ϵ+ δ
, β2 =

1∓ k

1− 2m
, ωb =

πβ

2K(m)
, (40)

where 0 < m < 1/2. Similar to the soft case, ωb > ωS for the S0 solution and ωb > ωA for the A0 solution. Notice that for
these solutions to exist δ < −ϵ.

At δ = ϵ and for a hard potential, the Sϕ and Aϕ solutions are given by:

u(t) = Asn(βt;m) +B
√
mcn(βt;m) , v(t) = ±[A

√
msn(βt;m)−B

√
mcn(βt;m)] , (41)

provided

A =

√
(3m− 2)β2 + 2

4ϵ
, B =

√
1− (2m+ 1)β2

2ϵ
, β2 = 2k/m, ωb =

πβ

2K(m)
. (42)

The AS solution can be analytically expressed whenever δ = 3ϵ. If ϵ > 0, it is given by:

u(t) = A+ sn[β+ t;m+] +A− sn[β− t;m−] , v(t) = A+ sn[β+ t;m+]−A− sn[β− t;m−] , (43)

with

A± = β±

√
2m±

ϵ
, β2

± =
1∓ k

1 +m±
, ωb =

πβ+

2K(m+)
=

πβ−

2K(m−)
, (44)

whereas if ϵ < 0, the AS solution is:

u(t) = A+ cn[β+ t;m+] +A− cn[β− t;m−] , v(t) = A+ cn[β+ t;m+]−A− cn[β− t;m−] , (45)

with

A± = β±

√
−2m±

ϵ
, β2

± =
1∓ k

1− 2m±
, ωb =

πβ+

2K(m+)
=

πβ−

2K(m−)
, . (46)

It can be numerically observed that A0, S0 and AS solutions exist for every δ whereas Aϕ and Sϕ do not exist for δ ≤ 3ϵ/2 in
the ϵ = +1 case. On the contrary, a new solution denoted as A3 exists for the soft potential and all of the considered values of δ;
this new solution, which was not found in the δ = 0 case, is characterized by a high increase of the third harmonic in the Fourier
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series, and, consequently, cannot be predicted by the RWA. The existence of this new solution can be caused by the hybridization
of the S0 mode with frequency ωb and the A0 mode with frequency 3ωb; this symmetry breaking effect could happen whenever
ωb < ωA/3 ≈ 0.4061. Notice that the A3 mode bifurcates from the S0 mode at ω3, which exactly coincides with ωA/3 when
δ = 3ϵ, but is smaller than this when δ < 3ϵ (e.g. for δ = 3ϵ/2, ω3 ≈ 0.384 whereas ω3 ≈ 0.365 for δ = ϵ.). There is no
stability change at this bifurcation.

The asymmetric (AS) solution preserves the properties of the RWA. That is, it bifurcates from the A0 solution in soft potentials
and from the S0 solution for hard potentials. The AS solution does not exist for ϵ = δ and for δ = 3ϵ/2 > 0. Besides, all the
Floquet exponents are θ = 0 (or, equivalently, the Floquet multipliers are +1) for δ = 3ϵ. For δ = 3ϵ/2 < 0, the AS solution
is unstable, as in the RWA. In addition, for δ = 3ϵ, the AS, Sϕ and Aϕ solutions bifurcate from the A0 solution at ωb = ωS if
ϵ = +1, with the Sϕ and Aϕ solutions being stable and the A0 stable (unstable) for ωb > ωS (ωb < ωS); if ϵ = −1, the AS,
Sϕ and Aϕ solutions bifurcate from the S0 mode at ωb = ωA, with the S0 solution being stable and the Sϕ unstable, whereas
the Aϕ is marginally stable as are the AS solutions (all the Floquet exponents are zero). In the δ = 3ϵ/2 < 0 case, the Sϕ and
Aϕ solutions, which are stable, bifurcate from the S0 solution at ωb ≈ 1.306 which is close to ωϕ−; the S0 solution is stable
(unstable) for ωb smaller (higher) than the bifurcation point. This latter bifurcation also occurs for δ = ϵ = −1, taking place
in this case at ωb ≈ 1.386. In addition, the AS solution (which is unstable) bifurcates from the S0 solution (which changes its
stability) at ωb ≈ 1.708, a value which is close to (but not exactly at) ωAS−. We must also mention that for the case analyzed in
[27], i.e. δ = 0, the AS solution bifurcates from the S0 (A0) solution in the soft (hard) potential. This situation is reversed in the
present observations for sufficiently large δ ̸= 0, which suggests the existence of a critical point.

Finally, as within the RWA, the energy coincides for the AS, Sϕ and Aϕ solutions when δ = 3ϵ.
All the previous properties are summarized in Fig. 2 where the Hamiltonian energy is depicted versus ωb and compared

with the averaged Hamiltonian for the RWA. This figure is complemented by Figs. 3 and 4 where the time evolution of the
different solutions are displayed. Importantly, we should point out here that it is evident that the approximations involved in the
RWA become demonstrably less accurate especially in the soft nonlinearity case and particularly as the frequency ω decreases
away from the linear limit (and hence nonlinear terms become more significant). Nevertheless, the qualitative agreement of the
features of Fig. 2 is still fairly satisfactory for the regime of parameters considered herein. On the other hand, for the hard
nonlinearity case, the agreement seems to be even quantitatively accurate for the frequency range considered.

B. δ = ϵ case: existence of exact solutions

One of the main features of this case is the existence of two exact periodic solutions to (1):

u(t) = A sin(ωb t), v(t) = ±A cos(ωb t) (47)

fulfilling that:

k = ∓γωb, A =

√
1− ω2

b

ϵ
, (48)

with the upper sign corresponding to the symmetric solution and the lower one to the anti-symmetric solution. It is important to
note that for a given k, the frequency is proportional to 1/γ. Thus, the two solutions collide as γ → ∞, when ωb → 0. That is,
contrary to the “standard” model of δ = 0, since for the case considered herein there exist nonlinear solutions for all values of γ
that are not subject to the relevant transition [38]. This solution can actually be cast as yn = zn = 0 ∀|n| > 1 and ϕ = ±π/2. If
we fix the value of ϵ, it is clear from Eq. (48) that the properties of the solutions only depend on two parameters, as k = k(ωb, γ).
That is, contrary to what we have discussed so far, here we do not fix k and vary γ and ωb, but rather than varying γ and ωb, we
fix a value of k associated with them through Eq. (48). Thus, we will consider the effect on the stability of varying parameters
ωb and γ in the case ϵ = 1 (soft potential) and ϵ = −1 (hard potential). Notice also that given the restrictions formulated in (48)
and the symmetry properties of the dynamical equations, the Floquet spectrum for a given set of parameters is the same for both
solutions.

Fig. 5 shows the stability/instability regions for these solutions. Shaded areas correspond to stable solutions. The black line
therein indicates the locus in the γ-ωb plane where k =

√
15/8 (i.e., the value used for other results in the present work). From

this line, it can be deduced that solutions with ϕ = ±π/2 when δ = ϵ are stable in the range ωb ∈ [0.8535, 1] if ϵ = 1 and in
ωb ∈ [1, 1.029] ∪ [1.2206,∞) if ϵ = −1.

The averaged energy is, for both solutions, < H >= 1+2ω2−3ω4

3ϵ which, for ϵ = 1 has a maximum at ωb = 3−1/2 ≈ 0.5774;
for ϵ = −1, this function is monotonically decreasing. It is worth mentioning that for γ = 0, where the averaged energy
coincides with the Hamiltonian, there is a stability change at ω = 3−1/2, the value at which ∂H/∂ω changes its slope. This
correlation between energy maximum and stability changes, which resembles the Vakhitov-Kolokolov criterion for NLS systems,
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FIG. 2: Energy versus ωb at γ = 0. Full blue lines correspond to the Hamiltonian (4) of full Klein-Gordon dimer whereas the dashed red lines
represent the averaged energy within the RWA (22).

is not observed for solutions that do not fulfill condition (48) and, consequently, possess more than one harmonic in their Fourier
series.

The above mentioned exact solutions constitute only a subset of the whole γ − ωb plane, which is depicted in Fig. 6. This
figure shows the existence range of the different solutions that arise for γ ̸= 0 and δ = ϵ. We explain below the different regions
and curves.

In the case of soft potential, we observe, as expected, the curve γL which encloses a region with only A0 solutions, as S0
bifurcates from the left arm of the curve. In addition, above the curve γPT, which indicates the PT transition and is very close
to the value predicted by RWA, there are no periodic orbits. This transition is caused by the collision of A0 and S0 solutions
whenever ωb > ω3 ≈ 0.365. Contrary to the expectation from RWA, there are three more curves in the considered range. At
the right of curve γa, A0 solutions are stable; similarly, below to the right of the curve denoted by γs, S0 solutions are stable.
Consequently, for ωb . 0.8 the PT phase transition takes place between the unstable S0 and A0 solutions. This behavior is
similar to the one observed for the δ = 0 case [27]. Notice the existence of a third curve γ3, which terminates at ωb = ω3.
This curve corresponds to the loci for the occurrence of the saddle-node bifurcation between the S0 and A+

3 solutions. With this
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FIG. 3: Time evolution of all the different solutions considered at δ = 3ϵ for the soft nonlinearity case of ϵ = 1 and ωb = 0.3; here γ = 0.

notation we remark that this solution is a A3 mode whose phase difference φ is in the first quadrant for γ ≈ 0. Remarkably,
there is a different behavior regarding S0 in the regions between the curves γs and γ3; in the former, the phase of the mode is in
the fourth quadrant whereas in the latter, the phase lies in the first quadrant. Additionally, for ωb < ω3, the A0 mode collides
and disappears at γPT with the A−

3 mode; contrary to the A+
3 case, the phase of this mode lies in the fourth quadrant. Notice also

that in the region below curve γ3, the stability description is not trivial; despite this, we can say that for small γ, both A+
3 and

S0 solutions are stable. Finally, for ωb . 0.31, we observe that both A3 solutions coalesce into the A0 solution with frequency
3ωb and the S0 solution transforms into a new solution that collides and disappears with the A0 solution at γPT. A summary of
the bifurcations for ωb > ω3, together with energy, phases, Floquet multipliers and comparisons with RWA are shown in Fig. 7.
Figure 8 shows the bifurcation diagrams and Floquet multipliers for ωb = 0.35 and ωb = 0.3.

The case of hard potential (δ = ϵ = −1) is also illustrated in Fig. 6. The curves and regions are equivalent to the RWA case,
except for one fact: there is a region between curves γ3 and γPT where the S0 solution is unstable, similar to the δ = 0 case
[27]. Since this is the only feature not captured by the RWA, it must be directly connected with the emergence/role of higher
harmonics in the system. Figure 9 shows the averaged energy, relative phase and Floquet exponents for the different solutions
and compares them with the corresponding RWA results for ωb = 1.3 and ωb = 2, identifying accurate semi-quantitative
agreement, as expected from the discussion above.
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FIG. 4: Time evolution of the solutions at δ = 3ϵ for the hard nonlinearity case of ϵ = −1 and ωb = 2. Again here, γ = 0.

C. δ = 3ϵ/2 case: Manakov-like coupling

The interest of this case lies in the fact that, in the RWA, the coupling between fields, is similar to the Manakov equation i.e.,
bearing equal self- and cross- interaction among the complex nonlinear variables ϕ1,2. Figure 10 shows the different regions for
the soft and hard case. In the soft case, the behavior is similar to that of δ = ϵ, even though the RWA predicted the existence
of Aϕ and Sϕ solutions for this case. For ωb . 0.29, the bifurcation diagram becomes very complex, similar to the δ = ϵ case.
For the hard case, the phenomenology is similar to the δ = ϵ case; i.e. there is a good agreement with the RWA except for an
additional region for which the S0 solution is unstable. Because of the greater similarity with the δ = ϵ case, no bifurcation
diagrams are included for the present case.

D. δ = 3ϵ case: Integrability

This case is arguably more interesting than the previous one, not only because of the existence of more solution families and
also nontrivial discrepancies with the RWA regimes, but also because of the integrability of the dynamical equations, as they
form the Hamiltonian H2 [cf. Eq. (5)]
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FIG. 5: Stability (shaded) and instability (blank) regions for the exact solutions (i.e. those with ϕ = ±π/2) in the Klein–Gordon dimer arising
for δ = ϵ. The black line corresponds to k =

√
15/8 according to Eq. (48), i.e., the value generally considered throughout the paper.
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√
15/8 (see text). Dashed lines

correspond to the RWA predictions and the dotted line γπ/2 corresponds to the exact solutions with phase π/2 described in Fig. 5. Notice
that the colors of the dashed lines are inverted with respect to that of the numerical results for a better visualization. This inversion pattern is
followed also in all figures comparing theory and numerical computations from here on.

Figure 11 illustrates the different regions in this case. For the soft case, the Aϕ and Sϕ modes do exist, as in the RWA. Contrary
to the RWA predictions, however, the modes bifurcating at γPT are the S0 and Aϕ ones for ωb > ω3 = ωA/3 and the A−

3 and
Aϕ otherwise, whereas the modes A0 and Sϕ bifurcate at γ1. The curves γs and γ3 have a similar meaning as before, whereas at
the right of curve γa it is the Aϕ mode which is unstable. While the RWA predicted stability for modes below curve γ1, here the
A0 and Sϕ modes are stable for small γ and unstable close to γ1 (the change of stability curve is not shown in the figure in order
not to make it even more complex).

The hard case is similar to the previous ones except for two facts: (i) the curve γ3, above which the S0 mode is unstable,
extends now for every value of ωb, tending asymptotically to γ = 0 for high ωb (and, consequently, for ωb > ωA the Aϕ

solution is unstable above the curve); (ii) below curve γ2 (which does not exist within the RWA), the Sϕ solution is unstable,
contrary to the previous values of δ for which it was the S0 mode that was unstable below the curve.

Figure 12 illustrates the bifurcations mentioned above by means of the dependence of H2 on γ [39]. From the figure, it is
evident that depending on the particular value of the frequency, it is possible that S0 and Aϕ, as well as Sϕ and A0 will collide
and disappear in pairwise saddle-center bifurcations (left); or, A+

3 and S0, as well as A−
3 and Aϕ may feature such collisions

(middle); or S0 and Sϕ, and A0 and Aϕ may collide and disappear hand-in-hand (right panel).

V. DYNAMICS OF UNSTABLE SOLUTIONS

Finally, in this section, we briefly touch upon some examples of the dynamical evolution of unstable modes. We are not aiming
to be exhaustive; it should be evident at this point that based on the bifurcation scenarios alone, such a detailed study would
warrant a separate paper. Instead, we aim to present a few typical examples of dynamical outcomes observed when evolving
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unstable configurations in this system.
In the soft potential, unstable solutions are mostly prone to blow-up, even in the δ = 3ϵ case where H2 is conserved. This

blow-up could consist of both sites tending to ∞ or −∞ at the same time (specially in S0 and A0 solutions), or one site going to
∞ and the other one to −∞ mostly in Aϕ and Sϕ solutions. A0 solutions can exhibit both behaviors. For small values of γ, the
instabilities can lead to quasi-periodic oscillations, whenever the solution at γ = 0 is stable (if the solution is unstable at γ = 0,
it is prone to blow-up). Figure 13 shows several examples of the dynamics of soft potentials.

In the hard potential case, there are some differences between the dominant behavior when δ = ϵ with respect to δ = 3ϵ,
as shown in Fig. 14. In the former case, where the instabilities arise from the S0 solutions, we have observed quasi-periodic
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FIG. 10: Planes with curves separating regions of solutions that share the same properties when δ = 3ϵ/2 and s =
√
15/8 (see text).

oscillations with amplitude peaks when ωb > ωϕ− and without these peaks if ωb < ωϕ−. In the latter case, although quasi-
periodic oscillations are present (mainly for small growth rates), the dominant behavior is an apparent (modulated) exponential
growth on the anti-damped site, associated with a decay on the damped site. This decay is very much slower when the instability
arises from the Aϕ solution.

VI. CONCLUSION

In the present work, we have studied various exact solutions and their stability for a generalized PT -symmetric coupled
nonlinear oscillator system. Complementing earlier works both at the linear level [25] (describing a recent experiment [22]) and
at the nonlinear level [26, 27], we have examined a variety of cases regarding the relative strength of the self- and cross-interaction
between our nonlinear oscillators. In our earlier work [27], only self-interactions were considered, while in the important recent
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δ = 3ϵ, ϵ = 1, ωb = 0.6 δ = 3ϵ, ϵ = 1, ωb = 0.3 δ = 3ϵ, ϵ = −1, ωb = 2
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FIG. 12: Dependence of H2 on γ for each mode at different frequencies and ϵ for the case δ = 3ϵ.

work of [26], only a specific value of the cross interaction was considered (δ = 3ϵ), revealing remarkably the Hamiltonian
nature of the model, and then restricting consideration to its DNLS analogue. Here, we have extended considerations to three
relevant cases, namely δ = ϵ, δ = 3ϵ/2 and δ = 3ϵ, exploring how the existence, nonlinear bifurcation and even dynamical
trends develop as we move from weaker to stronger cross-interaction between the nonlinear oscillators. Importantly, the relevant
pictures were developed not only for the rotating wave approximation model of the DNLS form, but also for the full model
of the coupled oscillators. Generally, the two cases, namely the monochromatic approximation and the full system were very
similar, except for the highly nonlinear regime, especially in the soft nonlinearity case. Numerous important features were
identified along the way including, e.g., new families of solutions at relative phase angles other than 0 and π (introduced by the
cross-interaction between oscillators), as well as solutions tractable solely in a numerical form from the four principal families
explored. Yet another feature was the existence in the oscillator system of families of solutions not only in the γ = 0 but even in
the γ ̸= 0 case in explicit form; one such pair of families appears to “defy” the PT phase transition (in the δ = ϵ case), existing
for all values of the gain/loss parameter γ. Finally, the instabilities identified in the analysis were monitored in the full dynamics
of the system, revealing the possibility of either indefinite growth or that of bounded quasi-periodic oscillations, as the pertinent
dynamical outcome.

There are numerous questions that naturally emerge as a result of the present work. Among the most immediate ones, it
is worthwhile to extend considerations to the case of, e.g., three oscillators and perhaps even to that of four such, forming
effectively a two-dimensional plaquette and a building block for the consideration of higher dimensional systems, in the spirit
also of [9]. Furthermore, here only the case of cubic nonlinearities has been explored, but it might be also of interest, as another
prototypical nonlinear system to examine the case of quadratic nonlinearities and how their nonlinear states are “deformed” in
the presence of gain and loss. At a perhaps deeper level, however, there are also some intriguing questions that we feel are raised.
For one, an apparently PT -symmetric and viewed as a gain-loss bearing system at δ = 3ϵ is found to be Hamiltonian. This
raises the natural yet difficult question: can we discern such a potential Hamiltonian nature and classify a system as Hamiltonian
(and not PT ) possibly through an appropriate (to be identified) transformation? If so, what is the relevant criterion and how can
we exclude the presence of a yet-unknown transform that may convert a system classified as PT into one which is genuinely
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FIG. 13: Evolution of unstable solutions for the soft potential. Three examples provide the different combination examples where the oscillator
amplitudes may grow indefinitely, while the fourth example presents a bounded apparently quasi-periodic scenario.

Hamiltonian in a different set of variables ? Potential progress along these veins will be reported in future work.
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APPENDIX A: NUMERICAL ANALYSIS OF PERIODIC ORBITS

In order to calculate periodic orbits, we make use of a Fourier space implementation of the dynamical equations and continua-
tions in frequency or gain/loss parameter are performed via a path-following (Newton-Raphson) method. Fourier space methods
are based on the fact that the solutions are Tb-periodic; for a detailed explanation of these methods, the reader is referred to
Refs. [35, 36]. The method has the advantage, among others, of providing an explicit, analytical form of the Jacobian. Thus, the
solution for the two nodes can be expressed in terms of a truncated Fourier series expansion:

u(t) =

nm∑
n=−nm

yn exp(inωbt), v(t) =

nm∑
n=−nm

zn exp(inωbt), (A1)

with nm being the maximum of the absolute value of the running index k in our Galerkin truncation of the full Fourier series
solution. In the numerics, nm has been chosen as 21. After the introduction of (A1), the dynamical equations (1) yield a set of
2× (2nm + 1) nonlinear, coupled algebraic equations:
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FIG. 14: Evolution of unstable solutions for the hard potential. The top panels feature examples of quasi-periodic oscillations, while the
bottom panels illustrate indefinite growth of one of the oscillators coupled with a decaying oscillation of the other (possibly very slowly, as in
the case of the bottom left panel).

Fn,1 ≡ −ω2
bn

2yn − iγωbnyn + Fn[V
′(u, v)]− kzn = 0, (A2)

Fn,2 ≡ −ω2
bn

2zn + iγωbnzn + Fn[V
′(v, u)]− kyn = 0, (A3)

with V ′(u1, u2) = u1 − ϵu3
1 − δu1u

2
2. Here, Fn denotes the Discrete Fourier Transform:

Fn[V
′(u)] =

1

N

nm∑
q=−nm

V ′

(
nm∑

p=−nm

yp exp

[
i
2πpq

N

])
exp

[
−i

2πnq

N

]
, (A4)

with N = 2nm + 1. The procedure for Fn(v) is similar to the previous case. As u(t) and v(t) must be real functions, it implies
that y−n = y∗n, z−n = z∗n.

In order to study the spectral stability of periodic orbits, we introduce a small perturbation {ξ1, ξ2} to a given solution {u0, v0}
of Eqs. (1) according to u = u0 + ξ1, v = v0 + ξ2. Then, the equations satisfied to first order in ξn read:

ξ̈1 = (3ϵu2
0 + δv20 − 1)ξ1 + γξ̇1 + (k + 2δu0v0)ξ2,

ξ̈2 = (3ϵv20 + δu2
0 − 1)ξ2 − γξ̇2 + (k + 2δu0v0)ξ1, (A5)

or, in a more compact form: N ({u(t), v(t)})ξ = 0 , where N ({u(t), v(t)}) is the relevant linearization operator. In order to
study the spectral (linear) stability analysis of the relevant solution, a Floquet analysis can be performed if there exists Tb ∈ R so
that the map {u(0), v(0)} → {u(Tb), v(Tb)} has a fixed point (which constitutes a periodic orbit of the original system). Then,
the stability properties are given by the spectrum of the Floquet operator M (whose matrix representation is the monodromy)
defined as: (

{ξn(Tb)}
{ξ̇n(Tb)}

)
= M

(
{ξn(0)}
{ξ̇n(0)}

)
. (A6)
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The 4 × 4 monodromy eigenvalues Λ = exp(iθ) are dubbed the Floquet multipliers and θ are denoted as Floquet exponents
(FEs). This operator is real, which implies that there is always a pair of multipliers at 1 (corresponding to the so-called phase and
growth modes) and that the eigenvalues come in pairs {Λ,Λ∗}. As a consequence, due to the “simplicity” of the FE structure
(one pair always at 1 and one additional pair) there cannot exist Hopf bifurcations in the dimer, as such bifurcations would imply
the collision of two pairs of multipliers and the consequent formation of a quadruplet of eigenvalues which is impossible here.
Nevertheless, in the present problem, the motion of the pair of multipliers can lead to an instability through exiting (through 1
or −1) on the real line leading to one multiplier (in absolute value) larger than 1 and one smaller than 1.
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