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Abstract. Let G be a group which admits the structure of an iterated
product of central extensions and semidirect products of abelian groups
Gi (both finite and infinite). We describe a Mathematica 4.0 notebook
for computing the homology of G, in terms of some homological models
for the factor groups Gi and the products involved. Computational re-
sults provided by our program have allowed the simplification of some
of the formulae involved in the calculation of Hn(G). Consequently the
efficiency of the method has been improved as well. We include some
executions and examples.

1 Introduction

The calculation of the homology of a given group is in general a difficult task.
From a theoretical point of view, spectral sequences and resolutions have been
traditionally used to solve the question. But calculations could not be carried out
in practice, due to the complexity of the processes involved in the computations.

In the past decade, the interest in explicitly compute both the (co)homology
and the correspondent representative (co)cycles of a group, has increased sur-
prisingly, accordingly to their applications to very different fields, such as coding
theory and cryptography.

This situation has motivated that most of Computer Algebra Systems (CAS)
are now concerned about the design of functions for achieving homological
calculations.

For instance, Gap (Group, algorithms, programming [9]) includes a homology
package [7], which is concerned with the calculation of the homology of simplicial
complexes and the Smith’s normal forms of (preferably sparse) integer matri-
ces. Magma [18] includes a routine for computing the homology of p-groups [5].
The Kenzo system [6] provides an environment for achieving calculations in the
framework of effective homology [21]. More recently, Ellis is developing a homo-
logical algebra library for use with the Gap computer algebra system (termed
Hap [11], homological algebra programming), which intends to be a complete tool
to make basic calculations in the cohomology of finite and infinite groups.
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Though the Kenzo system has incorporated some routines for the calculation
of the homology of central extensions (in light of the work in [20]), as far as we
know, none of these packages handles the class of groups that we are concerned
with. We intend to cover this gap with the Mathematica notebook [1] which
is presented here, for computing the homology of iterated products of central
extensions and semidirect products of abelian groups.

The main reason for which we have decided to work on Mathematica in-
stead of other CAS is that all the systems cited above work in terms of reso-
lutions. We prefer to work in terms of “contractions”, that is, at the level of
reduced complexes of resolutions, following the philosophy in [8,21]. In most
cases, both ways turn out to be equivalent [4]. Our preferences come from the
fact that we want to elude the recursive formulae provided by the compari-
son theorem for resolutions. We prefer to work with explicit formulae from the
first moment. For instance, the formulae in [19] for the maps involved in the
Eilenberg-Zilber theorem, will allow us to perform explicit formulae for the maps
describing a homological model for the iterated products that we are concerned
with.

Furthermore, our method may be extended to cover iterated products of
other groups for which homological models are known, such as finitely generated
torsion-free nilpotent groups [17,15], finite p-groups [16,10], finitely generated
two-step nilpotent groups [12] and metacyclic groups [13].

We have programmed the formulae of [3] for constructing a homological model
for a semidirect product of abelian groups, and the formulae implicitly described
in [20] for constructing a homological model for a central extension of abelian
groups.

The term homological model refers to a contraction φ:B̄(ZZ[G])
f
⇀↽
g

hG from the

reduced bar construction of the group G (i.e. the reduced complex associated to
the standard bar resolution) to a differential graded module of finite type hG,
so that

H∗(G) = H∗(B̄(ZZ[G])) = H∗(hG)

and the homology of hG may be effectively computed by means of Veblen’s

algorithm [22] (involving the Smith’s normal forms of the matrices representing
the differential operator).

Here φ:B̄(ZZ[G])
f
⇀↽
g

hG denotes a contraction, a special type of homotopy equiv-

alence, where apart from the usual relations fg = 1, 1 − gf = dφ + φd, the
annihilation properties fφ = 0, φg = 0, φφ = 0 are satisfied.

We must note that a routine in Mathematica which calculates the Smith’s
normal form of a matrix over the integers was provided a decade ago by David
Jabon [14].

Using this package and the formulae above, the notebook finally computes
the homology of the input group.

We organize the paper as follows. Section 2 is devoted to describe the for-
mulae concerning the homological models for central extensions and semidirect
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products of abelian groups described in [20] and [3], respectively. The note-
book itself is described in Section 3. In Section 4 we prove some results about
simplifications on the formulae, which had been previously conjectured, attend-
ing to some output data provided by our program. Section 5 is devoted to show
some executions and examples.

2 Describing Homological Models for the Factors

Let G be an iterated product of central extensions and semidirect products of
abelian groups Gi, 1 ≤ i ≤ n. In this section, we describe a homological model
for G in terms of some homological models for each of the factor groups Gi.

2.1 A Homological Model for ZZ

Let E(u) denote the free DGA-algebra endowed with trivial differential and
generators 1 (at degree 0) and u (at degree 1), so that u · u = 0.

The comparison theorem for resolutions provides a homological model for ZZ

(see [4] for details), φZ:B̄(ZZ[ZZ])
fZ
⇀↽
gZ

E(u), which is a subtle modification of that

in [8] (they differ just in the homotopy operator φZ).

Here gZ(u) = [1], fZ([n1| · · · |nq]) =
{

n1 u, if q = 1
0, if q > 1 and

φZ[n1| . . . |nk] =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(−1)k
nk−1∑
i=1

[n1| . . . |nk−1|i|1], if nk > 1

0, if nk = −1, 0, 1

(−1)k
−nk−1∑

i=1

[n1| . . . |nk−1| − i|1], if nk < 1

(1)

2.2 A Homological Model for ZZn

Let Γ (v) denote the free DGA-algebra endowed with trivial differential and
generators γk(v) (at degree 2k, k ≥ 0, γ0(v) = 1), such that

γk(v)γh(v) =
(k + h)!

k!h!
γk+h(v)

In [8] a homological model φZn :B̄(ZZ[ZZn])
fZn⇀↽
gZn

(E(u) ⊗ Γ (v), d) for ZZn is also

described, such that d(u) = 0, d(u ⊗ v) = n · u and gZn(u) = [1],

gZn(γk(v)) =
∑

xi∈Zn

[1|x1| · · · |1|xk], gZn(uγk(v)) =
∑

xi∈Zn

[1|x1| · · · |1|xk|1]
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fZn [x1|y1| · · · |xm|ym] = [
m∏

i=1

δxi,yi ]γm(v),

fZn [x1|y1| · · · |xm|ym|z] = [z
m∏

i=1

δxi,yi ]uγm(v),

for δxi,yi =
{

0, xi + yi < n
1, xi + yi ≥ n

and φZn([x1| · · · |xk]) = −ϕZn([x1| · · · |xk]), for ϕZn [ ] = 0, ϕZn [x] =
x−1∑
i=1

[1|i],

ϕZn [x|y|σ] =
x−1∑
i=1

[1|i|σ] + δx,y

n−1∑
k=1

[1|k|ϕZnσ] (2)

2.3 A Homological Model for a Central Extension

Here A×αG denotes the central extension of A and G by means of the 2-cocycle
α : G × G → A, such that (a, g)(a′, g′) = (a + a′ + α(g, g′), g + g′). In case that
α is a 2-coboundary, then A×αG is isomorphic to the direct product A × G.

A homological model φAG:B̄(ZZ[A×αG])
fAG
⇀↽

gAG

(hAG, dAG) for a central extension

A×fG, for A being an abelian group, is described in [20], in terms of homological

models φA:B̄(ZZ[A])
fA
⇀↽
gA

(hA, dA) and φG:B̄(ZZ[G])
fG
⇀↽
gG

(hG, dG) of the factor groups

A and G. Explicitly,

fAG = (fA ⊗ fG)t∩AWδψϕ
gAG = ϕψEMLδ(gA ⊗ gG)t∩
φAG = ϕ−1ψ−1(SHIδ + EMLδ(1 ⊗ φG + φA ⊗ gGfG)t ∩ AWδ)ψϕ

dAG = dA ⊗ 1 + 1 ⊗ dG + (fA ⊗ fG)t ∩
∑
i≥0

(−1)i[(1 ⊗ φG + φA ⊗ gGfG)t∩]i(gA ⊗ gG)

(fA ⊗ fG)t∩ = (fA ⊗ fG)(1 − t ∩
∑
i≥0

(−1)i[(1 ⊗ φG + φA ⊗ gGfG)t∩]i)(1 ⊗ φG + φA ⊗ gGfG)

(gA ⊗ gG)t∩ =
∑
i≥0

(−1)i[(1 ⊗ φG + φA ⊗ gGfG)t∩]i(gA ⊗ gG)

(1 ⊗ φG + φA ⊗ gGfG)t∩ =
∑
i≥0

(−1)i[(1 ⊗ φG + φA ⊗ gGfG)t∩]i(1 ⊗ φG + φA ⊗ gGfG)

t∩ = AWδ
∑
i≥0

(−1)i(SHIδ)iEML

AWδ = AW (1 − δ
∑
i≥0

(−1)i(SHIδ)iSHI)

EMLδ =
∑
i≥0

(−1)i(SHIδ)iEML

SHIδ =
∑
i≥0

(−1)i(SHIδ)iSHI

δ((an−1, . . . , a0), (gn−1, . . . , g0)) = −((an−2, . . . , a0), (gn−2, . . . , g0))+
(−α(gn−2, gn−1) + an−2,−α(gn−3, gn−2 + gn−1) + α(gn−3, gn−2) + an−3, . . . ,

. . . ,−α(g0, g1 + . . . + gn−1) + α(g0, g1 + . . . + gn−2) + a0), (gn−2, . . . , g0))
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ϕ([(a0, g0), . . . , (an, gn)]) =
{

((a0, g0), . . . , (an, gn)), if A×αG is abelian
(−1)�

n
2 	+1((an, gn), . . . , (a0, g0)), otherwise

ψ[(an−1, gn−1), . . . , (a0, g0)] =
([an−1, an−2 + α(gn−2, gn−1), . . . , a0 + α(g0, g1 + . . . gn−2 + gn−1)], [gn−1, . . . , g0])

ψ−1([an−1, . . . , a0], [gn−1, . . . , g0]) = [(an−1, gn−1), (an−2 − α(gn−2, gn−1), gn−2), . . . ,
. . . , (an−i − α(gn−i, gn−i+1 + . . . + gn−2 + gn−1), gn−i),

. . . , (a0 − α(g0, g1 + . . . + gn−2 + gn−1), g0)]

AW ((an−1, . . . , a0), (gn−1, . . . , g0)) =
n∑

i=0

(an−1, . . . , an−i) ⊗ (gn−i−1, . . . , g0)

EML((ap−1, . . . , a0) ⊗ (gq−1, . . . g0)) = (ap−1, . . . , a0) � (gq−1, . . . g0)
SHI((an−1, . . . , a0), (gn−1, . . . , g0)) =

n−1∑
q=0

n−p−q∑
p=0

((an−1, . . . , ap+q+1, 0), (gn−1, . . . , gp+q+1, gp+q + . . . + gq))||

(ap+q, . . . , aq) � (qq−1, . . . , g0)

The symbol � refers to the shuffle product, so that the output of

(ap−1, . . . , a0) � (gq−1, . . . , g0)

consists in the sum of all the different shuffles of the tuples, such that the inner
order in the lists is preserved. The sign correspondent to a particular shuffle
depends on the number of positions that elements ai have got ahead of elements
gj.

2.4 A Homological Model for a Semidirect Product

Here A× αG denotes the semidirect product of A and G by means of the homo-
morphism α : G → Aut(A), such that (a, g) · (a′, g′) = (a + α(g)(a′), g + g′). In
case that α is the zero map, then A× αG consists in the direct product A × G.

A homological model φAG:B̄(ZZ[A× αG])
fAG
⇀↽

gAG

(hAG, dAG) for a semidirect prod-

uct A× αG, for G being an abelian group, is described in [3], in terms of homo-

logical models φA:B̄(ZZ[A])
fA
⇀↽
gA

(hA, dA) and φG:B̄(ZZ[G])
fG
⇀↽
gG

(hG, dG) of the factor

groups A and G.
The formulae for central extensions given before also apply for a semidirect

product, with the following exceptions,

δ((an−1, . . . , a0), (gn−1, . . . , g0)) = −((an−2, . . . , a0), (gn−2, . . . , g0))+
+((α(gn−1)(an−2), . . . , α(gn−1)(a0)), (gn−2, . . . , g0))

ψ[(an−1, gn−1), . . . , (a0, g0)] =
((α(g−1

n−1)(an−1), . . . , α(g−1
n−1 + . . . + g−1

0 )(a0)), (gn−1, . . . , g0))
ψ−1((an−1, . . . , a0), (gn−1, . . . , g0)) =

((α(gn−1)(an−1), gn−1), . . . , (α(g0 + . . . gn−1)(a0), g0))
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2.5 A Homological Model for an Iterated Product

Let G be an iterated product of central extensions and semidirect products of
abelian groups, which admits the form A×

α
G, for A and G also being possibly

iterated products. Here A×
α

G denotes a single central extension or a single

semidirec product, as it is the case. This way, a homological model for G has
been already described in the subsections above, provided some homological
models for A and G are known. In fact, we do know these homological models
for A and G. It suffices to iterate this scheme, until we arrive to homological
models for ZZ or ZZn.

3 The Notebook

3.1 Codifying the Group

An iterated product G of central extensions and semidirect products of abelian
groups Gi, 1 ≤ i ≤ n, is codified as a rooted binary tree, such that every inner
vertex represents a product, their sons being the correspondent factor groups.
As usual, a inner vertex contributes two sons in the level immediately below.
This way, the number of leaf vertices coincides with the number of factor groups
Gi. In order to obtain the group G, the inner vertices (i.e. single products) of
the tree must be chosen from bottom to the top level (root vertex), from left to
the right while staying at the same level.

For instance, the binary tree of Figure 1 represents an iterated product.

G3

G4

G1

2

3

1

G2

Fig. 1. A binary tree representing the product (G1 × (G2 × G3)) × G4

We use a list for representing this binary tree, which we term tree-list. In
fact, Mathematica is one of the most appropriate systems for handling with lists.
Proceeding level by level, from top to the bottom, from left to the right, every
vertex (but those placed on the last level) will be codified as an integer, attending
to the correspondences in the table below.
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Label Meaning
0 leaf vertex
1 direct product
2 semidirect product A× αG
3 semidirect product Gα×A
4 central extension A×αG
5 central extension Gα× A

Example 1. Consider the dihedral group D4t =ZZ2t× αZZ2, for α : ZZ2 →Aut(ZZ2t)
such that α(0)(x) = x and α(1)(x) = −x. The list codifying this group consists
in {{2}}. There is no need to add the list {0, 0} corresponding to the last level.

Example 2. Consider the central extension ZZ2t×αZZ2, for α : ZZ2 × ZZ2 → ZZ2t

being the 2-cocycle

α(gi, gj) =
{

� t
2� + 1 if gi = gj = 1

0 otherwise

The list codifying this group consists in {{4}}. Once again, we do not take into
account the list {0, 0} corresponding to the last level.

Example 3. Consider the iterated product (ZZt×α2ZZ2)× α1ZZ2, for α2 being the
2-cocycle α2 : ZZ2 × ZZ2 → ZZt defined as

α2(gi, gj) =
{

� t
2� + 1 if gi = gj = 1

0 otherwise

and α1 being the dihedral action

α1(a, b) =
{

−b if a = 1
b if a = 0

The list codifying this group consists in {{2}, {4, 0}}.

3.2 Codifying the Homological Models

The homological models described in the precedent section involve several struc-
tures, such as:

– Linear combinations.
– Products of exterior and divided power algebras.
– Elements in a cartesian simplicial product X × Y , linear combinations of

tuples ((x1, y1), . . . , (xn, yn)).
– Elements in a tensor product X⊗Y , linear combinations of tuples (x1,. . ., xp)

⊗ (y1,. . ., yq).
– Formal series.
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We now describe the way in which these structures are codified.

– The elimination of the attribute Listable on the addition and product func-
tions provided by Mathematica supplies at once the possibility of making
linear combinations with lists.

– Each of the groups Gi = ZZni gives rise to a product Pi = E(ui) ⊗ Γ (wi),
whereas each group Gj = ZZ gives rise to a single Pj = E(uj). The elements

in hG =
n∏

i=1

Pi are codified as linear combinations of tuples of length n, such

that if m is the jth entry of a tuple, it refers to the generator um (mod 2) ⊗
γ
m

2 �(w) (notice that only 0 and 1 entries are permitted in case of Pj = E(uj)
factors coming from Gj = ZZ). These tuples are ordered as numbers of n
digits. For instance, if G = ZZ2 × ZZ× ZZ2, a basis for hG on degree 3 is given
by {(0, 0, 3), (0, 1, 2), (1, 0, 2), (1, 1, 1), (2, 0, 1), (2, 1, 0), (3, 0, 0)}.

– Tuples are codified as lists, in a natural way.
– Formal series, which are always finite when applied on a concrete element,

are codified in terms of the command NestList.

3.3 Calculating the Homology

As Veblen’s algorithm indicates [22], in order to compute the homology Hi(G) it
is necessary to calculate the Smith’s normal forms of the matrices Mi and Mi+1
representing the differential operators di and di+1.

Our program firstly computes the matrices Mi and Mi+1. Afterwards, we use
the SmithNormalForm.na package [14] and finally compute Hi(G). Though the
actual version of the notebook does not provide representative i-cycles, it could
be straightforwardly adapted to this end. In fact, such an option was available
in an earlier (not published) version of the notebook, which ran only over finite
groups.

3.4 Input and Output Data

In these circumstances, we may now determine exactly what the input and out-
put data are.

Input Data:

– The correspondent tree-list for the group G.
– The cardinalities of each elementary factor group ZZ or ZZn. The notation is

0 for ZZ and n > 1 for ZZn. Notice that k factor groups correspond to k − 1
products, and vice versa.

– The maps αi involved in the ith product, Ji ×
αi

Ki. The user should attend to

the tree-list for the group G, in order to identify the index i corresponding
to each product, as well as the syntax to use for codifying the elements in
Ji and Ki, since they could be in turn iterated groups themselves.

– Finally, the desired degree k, in order to compute Hk.
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Output data:

– The homology Hk(G).

As soon as the computation has finished, the user is asked for going on com-
puting Hk+1, since half of the computations (those corresponding to dk+1) may
be reused.

4 Simplifications on the Formulae

Calculations achieved with our program have provided some evidences of annihi-
lation properties on some summands on the maps characterizing the homological
models of the precedent sections. We include here the results that we have finally
proved.

Proposition 1. In the case of a homological model for a semidirect product, the
morphism SHIδ reduces to SHI, as well as EMLδ reduces to EML, and AWδ

reduces to AW − AWδSHI.

Proposition 2. In the case of a homological model for a semidirect product, the
morphism t∩ reduces to t ∩ ([am−1, . . . , a0] ⊗ [gn−1, . . . , g0]) =
(−1)m([α(gn−1)(am−1), . . . , α(gn−1)(a0)] − [am−1, . . . , a0]) ⊗ [gn−2, . . . , g0]

5 Executions and Examples

We compute here the matrices M2 and M3 corresponding to d2 and d3, as well as
the homology groups H1 and H2 of some finite groups. These and other examples
have provided essential information in order to calculate the total number of
cocyclic Hadamard matrices on the correspondent groups, some of which seems
to be new [2].

Example 4. Consider the family of groups ZZ2t×αZZ2, for t ∈ IN and α being the

2-cocycle f(1, 1) = � t

2
� + 1.

t 1 2 3 4 5

M2

⎛
⎝2 0

0 0
0 2

⎞
⎠

⎛
⎝2 2

0 0
0 4

⎞
⎠

⎛
⎝2 3

0 0
0 6

⎞
⎠

⎛
⎝2 5

0 0
0 8

⎞
⎠

⎛
⎝2 6

0 0
0 10

⎞
⎠

M3

⎛
⎜⎜⎝

0 0 0
0 −2 0
0 2 0
0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 2 0
0 −2 0
0 4 0
0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 3 0
0 −2 0
0 6 0
0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 5 0
0 −2 0
0 8 0
0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 6 0
0 −2 0
0 10 0
0 0 0

⎞
⎟⎟⎠

H1 ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ4 ZZ12 ZZ16 ZZ2 ⊕ ZZ10
H2 ZZ2 ZZ2 0 0 ZZ2
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Example 5. Consider the dihedral groups D4t = ZZ2t× χZZ2, for 1 ≤ t ≤ 5.

t 1 2 3 4 5

M2

⎛
⎝2 0

0 0
0 2

⎞
⎠

⎛
⎝2 0

0 −2
0 4

⎞
⎠

⎛
⎝2 0

0 −4
0 6

⎞
⎠

⎛
⎝2 0

0 −6
0 8

⎞
⎠

⎛
⎝2 0

0 −8
0 10

⎞
⎠

M3

⎛
⎜⎜⎝

0 0 0
0 −2 0
0 2 0
0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0
0 −4 −2
0 4 2
0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0
0 −6 −4
0 6 4
0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0
0 −8 −6
0 8 6
0 0 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

0 0 0
0 −10 −8
0 10 8
0 0 0

⎞
⎟⎟⎠

H1 ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ2
H2 ZZ2 ZZ2 ZZ2 ZZ2 ZZ2

Example 6. Consider the family of iterated products (ZZt×fZZ2)× χZZ2, for 2 ≤
t ≤ 5, f being the 2-cocycle f(1, 1) = � t

2
� + 1 and χ being the dihedral action

χ(1, b) = −b.

t 2 3 4 5

M2

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0
0 0 0
0 2 0
0 0 0
0 0 0
0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0
0 0 0
0 2 0
0 0 −1
0 0 0
0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0
0 0 −1
0 2 1
0 0 −2
0 0 0
0 0 4

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

2 0 0
0 0 −1
0 2 1
0 0 −3
0 0 0
0 0 5

⎞
⎟⎟⎟⎟⎟⎟⎠

M3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 −2 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 0 −2 0 0
0 0 0 0 0 0
0 0 0 0 −2 0
0 0 0 0 0 0
0 0 0 0 2 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 −2 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 0 −3 0 −1
0 0 0 0 1 0
0 0 0 0 −2 0
0 0 0 3 0 1
0 0 0 0 3 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 −2 0 −1 0 −1
0 2 0 1 1 1
0 0 0 0 1 0
0 0 0 −4 0 −2
0 0 0 0 2 0
0 0 0 0 −2 0
0 0 0 4 0 2
0 0 0 0 4 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 −2 0 −1 0 −1
0 2 0 1 1 1
0 0 0 0 1 0
0 0 0 −5 0 −3
0 0 0 0 3 0
0 0 0 0 −2 0
0 0 0 5 0 3
0 0 0 0 5 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

H1 ZZ2 ⊕ ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ2 ZZ2 ⊕ ZZ2
H2 ZZ2 ⊕ ZZ2 ⊕ ZZ2 ZZ2 ZZ2 ZZ2

References
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