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In persistent homology, the persistence barcode encodes pairs of simplices meaning birth and death of
homology classes. Persistence barcodes depend on the ordering of the simplices (called a filter) of the
given simplicial complex. In this paper, we define the notion of “minimal” barcodes in terms of entropy.
Starting from a given filtration of a simplicial complex K, an algorithm for computing a “proper” filter
(a total ordering of the simplices preserving the partial ordering imposed by the filtration as well as
achieving a persistence barcode with small entropy) is detailed, by way of computation, and subsequent
modification, of maximum matchings on subgraphs of the Hasse diagram associated to K. Examples
demonstrating the utility of computing such a proper ordering on the simplices are given.

1. Introduction

In recent years persistent homology has successfully been used
to characterize topological properties of given sets and structures
[10]. Persistence and ZigZag barcodes [3] have helped identify
characteristic properties of the underlying space in data mining,
network coverage and social networks. The theory of persistence
has proven to be robust and invariant under small perturbations of
the original state of the data. The algebraic structure of the set of
persistence barcodes viewed as a module is well understood [27],
and various stability theorems are proven in [4] when the space is
equipped with the Wasserstein distance. In particular, it is proven
that the persistence barcode is stable under “noise” that is, small
changes in the function used to create a filtration to compute
persistent homology imply only small changes in the persistence
barcode.

It is obvious that a persistence barcode depends heavily on the
filter considered for such computation. An “interval” in a persis-
tence barcode representation is a horizontal line segment in a
plane whose length is equal to the lifespan of the corresponding
homology class. A typical persistence barcode contains short-lived
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intervals representing topological holes (homology classes) which
may not represent real features of the space being analyzed. In
such cases one has to set a “threshold” of significance on the
length of the intervals of the persistence barcode, and this is
normally carried out a posteriori (see, for example, [14] where
authors consider a “simplified” barcode). On the other hand, if
someone examines in depth typical cases where persistent homol-
ogy is used, one will be faced with the inherent problem of “noise”
in the persistence barcodes. A similar problem was posed in [6,12]
where various algorithmic results were presented. Those problems
take the form of non-significant topological holes in sensor
networks and inefficiencies of the filtration coming from the
construction of the Rips (or Cech) complex in data sets.

Motivated by practical applications of persistent homology
computation, our starting point is a given simplicial complex
and an initial filtration. Although the total number of intervals in
a persistence barcode remains invariant (as we will see later), the
lengths of its intervals depend on the selected filter. Since non-
significant intervals (i.e., intervals with short length) may not
imply relevant homological information, we are interested in
looking for a filter which preserves the partial ordering imposed
by the given filtration, in order to minimize the number of
significant intervals and maximize their lengths.

From an information-theoretic viewpoint, and if we interpret
the number of significant intervals as the coding length of a
complex, our goal is to select the most “parsimonious” representa-
tion (also by Occam's razor principle). As is also well known, the
coding length is intimately related to the notion of entropy (i.e., a
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topological entropy of the barcodes in our case). While one would
ideally want to balance the minimization with a penalty term of
the number of non-significant intervals [18], further knowledge of
statistical distribution of the long intervals is required and post-
poned to future work.

This paper completes the work proposed in [12] by providing
additional insights, examples, results and proofs. A new definition
of “minimal barcode” is given using the notion of entropy, and an
algorithm for computing persistence barcodes with small entropy
starting from a given filtration is provided.

The remainder of this paper is organized as follows. Section 2
covers the relevant background material. In Section 3, we give the
definition of minimal barcodes based on the notion of entropy. In
Section 4, an algorithm for computing a filter which preserves the
partial ordering imposed by the filtration and whose associated
persistence barcode has small entropy, is computed on the Hasse
diagram of the poset of faces of a given complex. Section 5 is
devoted to relations between minimal barcodes and discrete
Morse theory. Conclusions and future work are presented in
Section 6.

2. Preliminaries

Homology theory uses algebraic groups to encode the topolo-
gical structure of a simplicial complex K. In general, we will always
consider connected, finite simplicial complexes K (i.e.,, with m
simplices, m < oo) unless stated otherwise.

2.1. Homology

The set of i-simplices, ¢’ (superscript denotes dimension), will
be denoted by K'. The number of simplices in a set S is denoted by
|S|. The dimension of the simplicial complex is n> 0 if K" # @ and
K™ =@, vm > n. Finite formal sums of simplices of K’ with coeffi-
cients in a field (called i-chains), define an additive Abelian group
structure on K. In our case, the coefficients for those sums belong
to Z, thus the group of i-chains, C;(K; Z,) is a vector space over 7,
with basis elements the simplices of dimension i.

If a simplex o is a face of another simplex ¢’, we write ¢ < ¢'.
We say that ¢’ is a coface of ¢. A proper face of o € K', is a face of cof
dimension i— 1. The boundary of o, denoted by d(c) is the formal
sum (with coefficients in Z,) of the proper faces of o. The
boundary operator is extended to all chains of K by linearity.

An i-chain a is an i-cycle if 0;(a)=0 i.e., a € Kerg;; it is an
i-boundary if there is an (i+1)-chain b such that 9, 1(b)=a i.e.,
a e Im(o; ;). Two i-cycles a and a’ are homologous if a+a’ is an
i-boundary. Since 0;0;,1 =0, Im(d;,) < Kero;. The quotient of
i-cycles over i-boundaries is the i-th homology group of K i.e.,
H;(K) = Ker(o;)/Im(0; . 1). The elements of H,(K) are called homology
classes.

Since the considered field of coefficients is Z,, the i-th Betti
number (denoted by /) is the rank of the i-th homology group of K.

Then, the basic topological structure of K is quantified by the
number of independent classes in each homology group. See
[25,15].

Given a simplicial complex K, a nested sequence of simplicial
complexes

p=KocKic--CcKy_1CcKp=K

is called a filtration of K. An ordering of the simplices of a simplicial
complex K = {01, ...,0n} is called a filter if it satisfies the property
that s <t whenever o5 < ;. Then we can create a filtration by
setting:

Ki={01,...,0¢}, forl<t<m.

2.2. Metric filtrations

Many applications of Computational Topology start with a
cloud of points embedded in R". Using a specific radius r one
can then define Alpha-complexes A(r), Cech complexes C(r), and
Rips-complexes R(r). Furthermore, one can obtain a filtration

2=KocKicC-CcKy_1CcKp=K

by gradually increasing r where K; is A(r;), C(r;) or A(r;) depending
on the complex K we are creating (Alpha, Cech or Rips-complex)
and r;<r1; if i<j (see [7, page 70] and [10]). In particular, all
vertices enter at Ko, and K; and K, ; differ by at least one simplex.

2.3. Lower-star filtrations

In lecture 11 of their course' in computational geometry and
topology, Edelsbrunner and Kerber argue that if we choose a
reasonable filtration, we can learn more about a complex than just
analyzing its Betti numbers. They propose the creation of a
filtration given some function on the vertices. Examples of these
are the grayscale value of images, or height information in
geographical data.

Let K be a simplicial complex with distinct real values specified
at their vertices h : K® > R. We can then order the vertices by an
increasing function value as h(v;) < - < h(v,) where m® = |K°|.
Each simplex ¢ has a unique maximum vertex vy, i.€.,

h(Vimax) = max{h(v) : ve K® and v < o}

The lower star filtration of h [7, Section VI.3] is the nested sequence
of complexes @ =Ko c Ky C -+ € K0 =K such that:

K \K;_1 = {0 € K : maximum vertex of o is v}

In particular, K; and K, ; differ by at least one simplex since each
simplex has a unique maximum vertex.

2.4. Persistent homology

Persistent homology [6,27] studies homology classes and their
“lifetimes” (persistence) along a nested sequence of objects
(simplicial complexes in our case).

Given a filter of K, the algorithm for computing persistence
barcodes that appears in [6], marks an i-simplex o; as positive
(birth) if it belongs to an i-cycle in K; = {01, ..., 0t} (i.e., o, creates a
new homology class at time t) and negative (death) otherwise (i.e.,
o, destroys a homology class created at some time s for 0 <s <t).

Given a filter {01, ..., on}, a persistence barcode [3] is a graphical
representation of pairs of birth and death times, as a collection of
horizontal line segments (intervals) in a plane. If a simplex o;
creates a homology class at time s (the index in the filter) which is
destroyed at time t, 0 < s < t < m, then the interval [s, t) is added to
the corresponding persistence barcode. If a simplex o, 0 <s<m
creates a homology class at time s which survives along the
process, then the interval [s,o0) is added to the persistence
barcode. For a fixed i, the i-barcode is the set of intervals of a
given persistence barcode corresponding to the pairs of positive
i-simplices and negative (i+ 1)-simplices of K. See [3]. The follow-
ing lemma holds.

Lemma 1. Independent of the selected filter of a simplicial complex
K, the number of intervals in an i-barcode, 0 <i<n, is

fv ¥ (—DHK - p),

j=i+1

! http://www.pub.ist.ac.at/courses/2012/computationalgeometryandtopology/
Lectures/Lecture-11.pdf
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where |K'| is the number of j-simplices in K and n is the dimension
of K.

Proof. Notice first that, the number of intervals of infinite length
in the i-barcode is independent of the filter since it coincides with
the i-th Betti number of K, f. Furthermore, recall that each
i-simplex ol in the given filter, 0 < t <m, is marked as positive or
negative. No simplex can remain unmarked after the whole
process. Therefore, counting the number of finite intervals in an
i-barcode, is equivalent to counting the number of negative
(i+1)— simplices. Let b’ (resp. d') be the number of positive (resp.
negative) i-simplices. We then have that d®=d"*' =0; and
IK'|=b'+d and # =b'—d'*', for 0 <i<n (see [5]).
Hence d" = |[K"|—b" = |[K"|— " and by induction, we have:

d' = K| —b' = K| - —d'""
=IK|-f— ¥ () - = 3 (— 1T - ). o

j=i+1 J=1

In addition, since dg =0 we have that Z}‘: O(71)’A(|Kj| fﬁ’) =0,
which yields the known expression for the Euler characteristic |5,
page 777]:

2= 3 (1K= ¥ (—1)p.
j=0 j=0

3. Minimal barcodes

Our general aim is to find, under some constraints depending
on the nature of the application, filters that minimize the number
of long-life homological classes which are associated with sig-
nificant intervals in the persistence barcodes. A “minimality” in
the construction of these persistence barcodes is needed since the
ultimate goal is to be able to use them to compare two different
topological spaces, for example simplicial complexes X and Y
coming from grayscale images [19]. If there is no “uniform” way
of constructing a filter, we may end up having similar persistence
barcodes describing completely different spaces.

In this paper our starting point is a given filtration of a
simplicial complex K, and our aim is to find a “proper” filter
preserving the partial ordering imposed by the filtration trying to
answer the following question: If we have a shape in 3D, which
filtration should we choose for persistent homology computation?
The example shown in Fig. 1 of a conical shape with “empty
bottom” demonstrates the importance of choosing the appropriate
filtration. If we choose an ordering of the vertices using the
function F1, and obtain the lower-star filtration, then no holes
appear throughout the process. On the other hand, if we choose an
ordering of the vertices using F2 and the lower-star filtration, then
a hole survives until the last vertex on the top is added, and we
thereby unveil much more information about the 3D shape.

We first rigorously formulate a notion of minimality. Consider
that a simplicial complex K of dimension n with m+1 simplices,
is given.

3.1. Entropy of a persistence barcode

A general idea in the study of topological persistence is that
significant topological attributes must have long life-times, and
topological features with short life-times are considered to be
“noise”.

Following this idea, a notion of k-significant intervals was
introduced in [12]: Fix k>0, an interval [s,t) is k-significant if

F2

\
7

F1

Fig. 1. Two orderings of the vertices for the same 3D shape using the functions F1
(increasing weight) and F2 (increasing height).

k < t—s. Persistence barcodes associated to different filters of
K can be compared by the amount of k-significant intervals they
contain.

Another form of comparison between persistence barcodes can
be given in terms of entropy. To that end, we need a convention
about intervals that persist to “infinity”:

Remark 2. In persistent homology theory, intervals that extend all
the way to the end of the filter are denoted by [a, c0). In our case
we denote them by [a,m+1). This way all intervals have finite
length.

Definition 3. Given a filter F and the corresponding persistence
barcode B={[a;;b;]:je]}, we define the entropy (Shannon
entropy) of F as

E(F)=— Ej p; - log (p)) (1)
Je

where pj:fj/L, f]':bj—aj, and L= Zje]fﬁ

Observe that Formula (1) can also be written as

1
E(F)=log (L) _I.ijfl()g (&.
j €

Remark 4. Since p; < 1, then log (p;) < 0 and the entropy of a filter
(or barcode) is always positive.

Intuitively, entropy measures how different bars of the bar-
codes are in length. A barcode with uniform lengths has small
entropy. For example, consider the barcodes B1, B2 and B3 shown
in Fig. 2 and the filters F1, F2 and F3 associated to them.
We have that E(F1)=2.198816406, E(F2)=1.474560793 and
E(F3) = 1.45962243.

The upper bound of the entropy of a probability mass function
p is given by log |p|, where |p| is the cardinality of the support set
of p. The upper bound is achieved for a uniform distribution. In the
definition of entropy of a barcode, we use the normalized
sequence of lengths of the bars in place of the probability mass
function. In order to meaningfully compare different barcodes
using the entropy function, we need the support sets of the
corresponding probability mass functions to have the same car-
dinality (number of intervals in the barcode). Lemma 1 establishes
this fact.

3.2. Minimal barcodes and filtrations

As stated in [7, page 149], the measurements of the scale or
resolution of topological features using persistent homology make
sense only if the function on the given simplicial complex does.
This is the reason why we begin with a scenario in which a partial



a ce e
be — a1
bc —
ef
b c
f e —————
ef
d B e
ce e ey
b e
€
d f :
a b ¢ d e f ab ac bd cf de ef bc be ce abc bde cef =
cf — ce e
f — cf ————
de ==} f ==
d e de ===
ac e e —
a = d =
ec bc —
e L= ===
c —— b L
b a
b ¢ bc e be ec a ab ac abc d bd de bde f ef cf cef © a b ab ¢ a bc abc d bd e be de bde f ef cf ce cef x

Fig. 2. An example of three different persistence barcodes obtained from the same simplicial complex. Intervals corresponding to O-barcodes are in blue. Intervals corresponding to
1-barcodes are in red. Top-right: barcode B1; down-left: barcode B2; down-right: barcode B3. The filters can be read on the x-axis of each of the diagrams. For BI, it is
F1={a,b,c,d,e.f,ab,ac, bd,cf,de,ef, bc, be, ce,abc, bde, cef}; For B2, F2 = {b,c,bc,e,be, ec,a,ab, ac,abc, d, bd, de, bde.f, ef, cf, cef}; For B3, F3 = {a, b, ab, c,ac, bc,abc,d, bd, e, bd, de,
bde,f, ef , cf, ce, cef}. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

ordering on the simplices of K is given (derived, for example, from
a metric or a lower-star filtration). We then define

Fx = {all filters on K respecting the pre — imposed partial ordering}

Since in general there are many ways to construct a filter out of a
collection of simplices satisfying the pre-imposed partial ordering,
an important question arises as to which of these will result in a
“minimal” barcode, and in what sense this is “minimal”?

A notion of minimality using k-significant intervals is the
following:

Definition 5 (Rocio Gonzalez-Diaz et al. [12]). A persistence bar-
code associated with a filter F e F is k-minimal if the persistence
barcode associated with any other filter in ¢ contains greater or
equal number of k-significant intervals.

Though not unique, such a filter always exists since there are
finitely many filters with a fixed set of original conditions on a
finite simplicial complex. See Fig. 2 for examples of 1-minimal
barcodes. The drawback of this definition is that it depends on
determining the right integer k. So, another question arises, which
integer k should we choose? As before, it will depend on the
nature of the application. However, this drawback may be entirely
avoided by adopting an information theoretic definition as follows.
Define an equivalence relation on F:

Fi ~F; < E(F1) =E(F2) )

or in other words two filters with the same entropy will be
considered equivalent. Consider the set of equivalence classes
Fk. The entropy function induces a partial ordering on this set
as follows:

E(F)<E(F)= F<F.

Definition 6. A filter F,;; € F is E- minimal if for any other filter
F e Fx we have F;, <F according to the entropy ordering.

We note that there is no direct relation between k-minimal and
E-minimal barcodes since k-minimality minimizes the number of
intervals with length greater than k while E-minimality looks for a
barcode with short intervals being as short as possible and long
intervals as long as possible.

4. Algorithm for computing persistence barcodes with
small entropy

Given a simplicial complex K, and a filtration
@=KocK;c- cK,=K,

our goal is to find a filter {oy,...,0m} of K with associated
persistence barcode having small entropy and satisfying the pre-
imposed partial ordering on the simplices of K given by the
filtration.

In order for our algorithm to work, we need the following
result. Suppose that the length of all the intervals in a filter F(¢) of
K is fixed except for one interval [s, t] with variable length #. This
variable # represents the different possibilities of inserting the
simplices o5 and o; in the filter. Therefore, # € [min, max] where
1 < min <# < max < m. Observe that # <m-+1 since there always
exists one interval with maximal length m-+1 (the interval
representing the connected component of K).

Lemma 7. The minimum value for E(F(¢)) can be found in ¢ = min
or £ =max.

Proof. Varying # and fixing the rest of the parameters, the entropy
E(F(¢)) can be written as

c+71og(?)
L+7 ~°

where L and c are positive constants. The solution for the equation
E(F(#)=0 is ¢=e!. Furthermore, E”"(F(e!))<0. Therefore
¢=e" is a maximum. Consequently, the minimum values for
E(F(¢)) are obtained in # = min or #=max. O

E(F(#))=log(L+¢)—

Since lim,_, ; . E(F(¢)) =0, there always exists a positive value
x> e“/L such that E(F(x)) < E(F(min)). Observe that if max < x, this
value is not valid as a length of the interval.

4.1. Hasse diagrams

The Hasse diagram H of K is the graph whose node set is the set
of simplices and whose arcs are the pairs (o, ¢") if 6 is a proper face
of o’. We draw the Hasse diagram in the plane in such a way that,



if 0 < ¢’ then o is in a higher level than that of ¢’. We thus get a
multipartite graph where each level corresponds to the dimension
of the simplices (see [9]).

Given a filtration of a simplicial complex K, consider the
subgraphs {H;}; .j., of the Hasse diagram H generated by the
simplices ¢ € K;\K; _1.

We thus could construct a function T : K — [0, m] satisfying the
following properties:

(1) For 0,0’ in K such that ¢ < ¢/, we have T(o) < T(o").

(2) For any i, the entry times of simplices in H; will surjectively lie
in a single closed interval in N .

(3) Given two simplices ¢, 6’ € K such that ¢ € Kj and ¢’ € K;\K; for
some j < i, we have T(o) < T(c").

For each o € K, T(0) denotes the entry time of o.

An order on the simplices of K, {o1,...,0,} can be given by
T(o;) =t. The first property on T ensures that {o1,...,on} is a valid
filter of K, and the second property resembles that of consecutive
labeling. The third property states that the order prescribed by the
given filtration is preserved in the filter.

4.2. Algorithm

Now, starting from a given filtration of a simplicial complex K,
an algorithm for computing a “proper” filter (preserving the partial
ordering imposed by the filtration as well as achieving a persis-
tence barcode with small entropy) is detailed, using an adaptation
of a maximum matching on the subgraphs H; associated to K.

Fix i, let e; be the maximum level of the subgraph H; and let h;
be the number of nodes of H;. Given a matching in H; between
levels j and j+1, let the completion number of a matched (j+1)-
simplex o, denoted by c(c), be the number of its proper faces each
of which is matched to a (j+1)-simplex. If ¢ is matched to a
j-simplex, then c(o) is at least 1.

Algorithm 8. Assigning a time value to the simplices on each
subgraph H;.

1: for each subgraph H;, 1 <i<p do

2 set j=0, t=1

3 while j <e; do

4: if there are no j-simplices in H;, then

5: increment j by one

6 else

7 compute a maximum matching between levels j and
]+l in H,’.

8: for each unmatched j-simplex o € H; do

9: remove o from the subgraph H;

10: assign t(o) =t

11: increment t by one.

12: end for

13:

14: while there are matched j-simplices in H; do

15: for each matched (j+ 1)-simplices & in H; do

16: compute c(o)

17: end for

18: if there is no matched (j+1)-simplex ¢ with
c(o)=1 then

19: find a (j+1)-simplex p with c(x) maximum

20: for the j-simplex o matched with y, assign
to)=t

21: unmatch u

22: increment ¢t by one

23: else

24: for each (j+1)-simplex ¢ with c(u)=1 do
25: take the j-simplex ¢ e H; matched to y
26: remove ¢ and u from the subgraph H;
27: assign t(o)=t and t(u)=t+1

28: increment t by 2.

29: end for

30: end if

31: end while

32: end if

33: Increment j by one

34: end while
35! for each unmatched e;—simplex ¢ of H; do

36: assign t(o) =t

37: increment t by one
38: end for

39: end for

Algorithm 8 has been implemented and can be downloaded
from here.” At the termination of Algorithm 8, all simplices of H;,
where 1 <i < p, will have been assigned a time value. Fig. 3

Now, to obtain an entry time function T for the whole K we
proceed as follows:

for each 6 e K do
find the index i, 1 <i<p, such that 6 € H;\H; _1;
T(o) =t(o)+ X\ h.

end for

AW N =

Notice that the length of some intervals produced by the output
filter is constrained by the order induced by the starting filtration.
That is the case of the interval of length 8 in the example of Fig. 5,
since the simplices b (birth of the corresponding homology class)
and be (death of the homology class) belong to different subgraphs
H; and H, and remain, respectively, unmatched.

4.3. Discussion of the algorithm

This subsection presents the justification/correctness of Algorithm
8 described in Section 4.2.

The output of the algorithm is a filter built on any given
filtration of K. In order to obtain a persistence barcode with small
entropy, the idea is to try to “kill” any homology class as soon as
possible, while still respecting the partial ordering prescribed on
the simplices by the given filtration. Such a process will reduce the
topological noise by keeping “unwanted” intervals as short as
possible. In light of the result given in Lemma 7, the minimum
entropy can be found when intervals have length as minimum as
possible or as maximum as possible. Since our starting point is a
preordering of the simplices given by the input filtration, we
cannot ensure to achieve intervals with maximum lengths. This is
why we look for intervals with minimum length.

An easy way to obtain a filter from a given filtration of K is by
adding the simplices of K;\K;_ in order of their dimension. There
is no prescribed order for simplices of equal dimension, and are
considered to be added simultaneously. In this work, we show that
choosing the right order for simplices in K;\K;_1 is very useful in
significantly improving the quality of the persistence barcode.
Successive placements of simplices of each matching in the
ordering serve to limit the length of the corresponding interval
to one. This way, every interval of length 1 in the barcode will

2 http://www4.ncsu.edu/ ~ hkchinta/code.html
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Fig. 3. (a) (resp. (b), (c)) The histogram of the lengths of the barcode B1 (resp. B2, B3) shown in Fig. 2.
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correspond to a matching between two simplices of K;\K;_1, for
some i and every interval of length greater than 1 will be
associated to non-matched simplices.

By construction, the output of the algorithm is an ordering on
the simplices that is in fact a filter of K since properties (1), (2) and
(3) enumerated in the introduction of this section are satisfied.

By convention, we have the vertices of K in the top row of the
Hasse diagram H. Fix i, let H; be the directed graph obtained from H;
by pointing the matched edges down, and all other edges up. Update
Hj at the same time as H' when running the algorithm. For a fixed j in
the algorithm, let (o, 6’) be a matched pair of a j-simplex and a (j+1)-
simplex. The pair (o, 6”) can be “safely” added to the filter (preserving
the simplicial structure) only when the completion number of ¢’ is
equal to 1 due to the following results:

Lemma 9. If there exists a directed cycle in H;, then the ordering
induced on the simplices by this matching is not a valid filter.

Proof. Suppose there exists a directed cycle between levels j and
j+1.Let 61,03, ...,0n be the nodes of the directed cycle. Suppose
that o4 is a j-simplex and o; is matched to o5, ¢ for s being odd.
Observe that n must be even, o,_; matched to ¢, and o1 < &5
Then, 0,1 must precede o, in the filter. Since &, is matched to o>,
then o, must precede o5 in the filter. If we iterate this procedure,
we obtain that ¢, must precede o; and o, but o1 <oy, S0 o,
cannot precede to ;. ©

The following theorem derives the condition (used in the
algorithm) to identify the existence of such a directed cycle.

Theorem 10. For fixed i and j, all the matched (j+ 1)-simplices have
completion number >1 in H; if and only if there exists a directed
cycle between levels j and j+1 in H;.

Proof. First, take any (j+1)-simplex o, matched to a j-simplex o,
such that c(o3) > 1. Suppose that o, is matched with a j-simplex ;.
Since c(o3) > 1, there exists a j-simplex o3 connected to &, and
matched to a (j+ 1)-simplex o4. If we iterate this procedure, for some
odd number s, a j-simplex o is matched to a (j+1)-simplex o5 1
which is connected to the j-simplex o, creating the directed cycle.
Finally, if there exists a directed cycle between levels j and j+1 in H;
then the completion number of the (j+ 1)-simplices of the cycle is at
least 2. o

Theorem 11. Given a filtration of a simplicial complex K, the entry
time function T provides a filter of K respecting the partial ordering on
the simplices of K given by the filtration.

Proof. First, let ¢ be a j-simplex and o < ¢’ then T(0) < T(¢") (i.e.,
the ordering of the simplices of K is a filter). The following cases
can occur:

1. If ¢ is matched to ¢/, then T(¢’) = T(6)+1 by construction.
2. If o is not matched to ¢’ and o, ¢’ € K;\K;_ 1, then o, ¢’ are nodes
of H;, so:
2.1. If c(6’) =0, then t(u) < t(o’) for any j-simplex y of H;, so in
particular t(o) < t(o’) and therefore T(c) < T(c").
2.2. If c(6’)=1, then ¢’ is not matched to any other (j+1)-
simplex, so t(o)<t(u) for any (j+1)-simplex ueH;.
In particular, t(o) < t(c¢’) and therefore T(c) < T(c").
3. If 6 €K; and ¢’ € K;\K;, for some i < j, then

-1 i
T6)=t@)+ ¥ hy> ¥ hy=>T(0).
s=1 s=1

Second, the ordering of the simplices in the filter satisfies the
partial ordering imposed by the given filtration by the same
arguments as in point 3 above. ©

Complexity of Algorithm 8 depends on the complexity of the
algorithm selected to compute a maximum matching between con-
secutive levels in each Hasse diagram (see line 7 of Algorithm 8). The
Hasse diagram is a bipartite graph, and in this case, the worst-case
complexity of the classical algorithm for finding a maximum match-
ing (Hopcroft-Karp algorithm) is O(\/|V||E|), where |V| is the
number of vertices between two consecutive levels, and E is the
number of edges. Apart from this, the rest of the algorithm runs in
0(1V|?) due to the two for instructions inside the while loop.

4.4. Persistence barcodes with small entropy from lower-star
filtrations

In this subsection we will show using examples that given a
lower-star filtration, the persistence barcode obtained using our
algorithm has small entropy, and improves the barcode in the sense
of “making short intervals very short and long intervals long”.

Given a simplicial complex K, start with distinct real values
specified at the vertices h : K° - R, which can be thought of as a set
of “heights”. Construct the lower-star filtration, @ =Ko c K; C -+
C Ko, of K (where m® =|K°|) as explained in Section 2.3. Order
the vertices by increasing function value as h(vy) < - < h(Vy)
where m% = |K°|. Construct the lower-star filtration,

d=KoC Ky C-CKppo,

of K (where m® = |K°]) as explained in Section 2.3.

For each simplex o € K, assign a height to ¢ which is equal to
the maximum height on its faces. This way, a set of subgraphs
{H;}1 i < mo Of H associated with the lower-star filtration of K, can
be constructed, where the nodes of H; are the simplices of K with
height equal to h(v;) for each i. After applying the procedure
explained in Section 4.2, an entry time function T:K—-N is
obtained satisfying the pre-imposed partial ordering on the
simplices of K given by the lower-star filtration.

Consider the example shown in Fig. 6. The barcodes for filters
obtained using random ordering on the simplices in a lower-star
filtration and using the algorithm presented here are shown in
Figs. 7 and 8 respectively. The intervals corresponding to the
0-homology are shown in blue and the intervals corresponding
to 1-homology are shown in red. Even though the homology of the
complex is trivial, the ordering on the vertices causes at least one
long interval for the first homology as seen in both cases. However,
if the ordering on the other simplices is not chosen properly, the
resulting barcode may have several other long bars as seen in
Fig. 7.

As another example, consider the simplicial complex shown in
Fig. 9. Using the embedding in the plane, we consider the
y-coordinate as the function on the vertices. Again, preserving
the ordering on the vertices induced by this function, we obtain
two filters, (1) using the algorithm presented here, and (2) using
random ordering on the simplices. The resulting barcodes for the

Fig. 6. The function value on a vertex v; is equal to i. The indices of other simplices
are in the lexicographic order.
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Fig. 7. Barcode obtained using lower-star filtration with arbitrary ordering on the simplices at any stage.
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Fig. 8. Barcode obtained using the algorithm presented in this paper.
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Fig. 9. (a) The simplicial complex being considered, (b) barcode obtained from our algorithm, and (c) barcode obtained using random ordering. The y-axis represents the

index of the simplices in the given filter.

first homology are shown in Fig. 9. The following observations are
in order.

(1) Both barcodes look similar, since we use same function on the
vertices.

(2) The lengths of the intervals in the barcode obtained using our
algorithm are smaller than that obtained using random order-
ing on simplices with equal height. This is because we are
optimizing the ordering.

For this example, the entropy for the barcode obtained using
our algorithm is 3.42 and that obtained using random ordering on
simplices with equal height is 4.47. The two barcodes in the figure
look very similar to each other due to scale. The difference is much
clearer in Fig. 10(a), which compares the histograms of the lengths

of the intervals for the two barcodes. We can make the following
observations from Fig. 10(a):

(1) For small values of k and k> 1, the number of k-significant
intervals is larger for the barcode obtained using random
ordering on simplices with equal height.

(2) For large values of k, the number k-significant intervals is
larger for the barcode obtained using our algorithm.

(3) The above two points provide evidence for the fact that the
barcode obtained using our algorithm minimizes the length of
small intervals and maximizes the length of large intervals.

Fig. 10(b) shows simulation results which further corroborates
the effectiveness of the algorithm to produce barcodes with small
entropies. The simplicial complexes considered in the experiments
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Fig. 10. (a) Comparison of the histograms of the lengths of the intervals in barcodes
obtained from our algorithm to that obtained using random ordering on simplices
with equal height. The y-axis (“number of bars”) represents the probability of the
length of the bars in the corresponding barcode and (b) figures show a comparison
of entropies of the barcodes obtained from the lower star filtration (E;;) with that
obtained using the algorithm presented here (E,;). All the points lie below the
Em = Ejs line demonstrating the algorithm produces barcodes with small entropies.

are random geometric complexes obtained from points on a
plain. We generated 50 samples for each case of 100 points
and 150 points, and created Rips complexes so that the underlying
1-skeleton has an average degree of 10 (these choices are arbi-
trary). The entropy for each sample complex was then computed,
using the height function as a pre-ordering on the vertices, for the
lower-star filtration and the filter obtained using the algorithm
presented here. Since the upper bound for the entropy varies with
the number of intervals M as log(M), we normalize the entropies
by log(M). In Fig. 10(b), the points in black are the entropies
obtained for 100 points and those in red are entropies obtained for
150 points. The x-axis corresponds to entropy of lower star
filtration (E;s) and the y-axis to the entropy of the barcodes using
our algorithm (E;;), which as seen, is lower.

5. In relation to discrete morse theory

It is clear that our work in this paper resembles that of the
computation of optimal discrete Morse functions. We clarify here
the differences between both problems.

Discrete Morse theory was developed by Forman in [8,9] as a
combinatorial approach, on cell complexes, to Morse theory. Once
a Morse function has been defined on a cell complex, then
information about its topology can be deduced from its critical
elements.

A function, f: K—R is a discrete Morse function if for every
o eK, f takes a value less than or equal to f(6) on at most one
coface of o, or takes a value greater than or equal to f(o) on at most
one face of o. A cell ¢ is critical if all of its cofaces take strictly
greater values and all its faces are strictly lower. A cell which is not
critical is called regular. A discrete vector field V is a collection of
pairs (6! < 6'*t1) of cells in K such that each cell is in at most one
pair of V. A discrete Morse function defines a discrete vector field
by pairing 6! < 6'*1 whenever f(¢') > f(ci*1). The critical cells are
precisely those which do not appear in any pair. Discrete vector
fields which arise from Morse functions are called gradient vector
fields. A V-path is a sequence of cells (of dimensions j and j+1):
ohoh ool ol .0l o
where (o),0, ) eV, o), <o} and o, # o} ;. A V-path is a non-
trivial closed V-path if o} = o)) for r> 1.

Forman showed that a discrete vector field is the gradient vector
field of a discrete Morse function if and only if there are no non-
trivial closed V-paths, so a discrete Morse function can be computed
from a partial matching in the Hasse diagram with no directed cycles.

From this point of view, consider the final set of matchings
computed in all the subgraphs H; through Algorithm 8 (removing
the corresponding matching, as it is stated in the algorithm, when
there is no matched (j+1)-simplex ¢ with c(6)=1). Then this
matching provides a way to construct a discrete Morse function for
a cell complex of arbitrary finite dimension. The nonexistence of
directed cycles in the subgraphs H; implies that there cannot be
any directed cycle in the Hasse diagram of the whole complex. This
is due to the fact that all the faces of a given cell ¢ € H; for some i
belong to |J,-1. iH, (because every K; in the filtration is a cell
complex itself). So a cycle in H cannot be decomposed in paths in
different subgraphs H;.

There have been several works in the literature addressing
the problem of obtaining optimal discrete Morse functions, with
the minimum possible number of critical cells in each dimension
(see for example [20,22,16,21]) and perfect Morse functions, for
which the number of critical i-cells coincides with the i-th Betti
number of the complex [1].

An optimal Morse function can be interpreted in terms of a
maximum matching in the corresponding Hasse diagram with no
directed cycles. We cannot guarantee optimality in the global
Morse matching provided by our algorithm since (1) the partial
order imposed by the filtration may constrain the possible match-
ings, forcing some simplices to be left unmatched (that is the case
of simplices e and be in example of Fig. 4); (2) when a directed
cycle is detected in our algorithm, we eliminate a matching, but
perhaps an alternative maximum matching with no cycles could
be found. Since maximal matching at each H; cannot generally
guarantee optimality in entropy, this heuristic is acceptable. This is
particularly reasonable, in light of the fact that determining an
optimal Morse function is computationally expensive [20,16,2].

In general, optimal discrete Morse functions cannot yield minimal
barcodes (in fact not even valid filters) as resulting matchings between
different subgraphs H;, could violate the pre-imposed ordering of the
vertices. Conversely, a set of matchings provided by a minimal barcode
respecting a given filtration may not lead to an optimal discrete Morse
function, since the matching may not even be maximal.

Numerous papers addressed the computation of discrete Morse
functions in different contexts, also trying to respect some filtra-
tion on the set of vertices. In [17], an algorithm is proposed to



compute an optimal discrete Morse function on a simplicial
complex K to mirror the large-scale behavior of an injective map
on the vertices of K, h : K> R. The output of this algorithm also
yields a valid filter of K which preserves the partial ordering given
by the lower-star filtration. This algorithm is valid for simplicial
complexes, and may likely be extended to cubical complexes. Our
algorithm computes filters which preserve the partial ordering
given by an arbitrary filtration (not only lower-star filtration), and
may be applied to any finite cell complex (since the computation is
carried out on a Hasse diagram representation of the complex). In
[26,13], the authors present algorithms related to three dimen-
sional grayscale digital images utilizing the machinery of discrete
Morse theory. The filtration is, then, given by the gray levels of
the image. It is also worth to mention paper [24], which addresses
the problem of reducing the subcomplexes in a given filtration,
extending combinatorial Morse theory from complexes to filtra-
tions. This way, an alternate filtration with smaller complexes is
constructed from the original with the same persistent homology.
Therefore, no filter of K is provided. Finally, Lewiner studies the
relation between Forman's and piecewise linear approaches to
discrete Morse theory in [23], constructing a discrete vector field
from a scalar function sampled on the vertices of a triangulated
surface. The goal is to relate the critical sets of both approaches.

6. Conclusions and comments

We proposed a new filtering algorithm on a simplicial complex
by optimizing the partial ordering preservation and achieving a
desirable information measure defined on the barcode. Exploiting
the Hasse Diagram of the poset of faces of a complex, such a filter
indeed achieves a small entropy measure of the resulting barcode.
Future work includes the minimization of such a measure which is
to be balanced by the error incurred relative to the ideal repre-
sentation as would be given by an oracle.
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