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RECTIFICATIONS OF A�-ALGEBRAS
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In this article, in the setting of connected DG-modules, we prove that, for any
A�-algebra �M� �mi�i≥1�, there is a chain contraction from a DG-algebra AM onto the
DG-module M such that the A�-algebra structure induced by perturbation theory on
M is precisely the original one. In fact, the mentioned DG-algebra can be considered a
rectification of the A�-algebra in the sense of Boardman and Vogt (1973). Appropiate
dual results are given for A�-coalgebras.
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1. INTRODUCTION

One classical result claims that, given a topological operad �, each W�-space
(strongly homotopy �-space) can be “replaced” by a strict �-space of the same
homotopy type. More concretely, for each W�-space, X, there exists a strict
�-space, MX, together with a strong deformation retraction �MX�X� r � MX → X� i �
X → MX� in which i is a homomorphism of W�-spaces (Boardman and Vogt,
1973). Then, MX is called the rectification of X. Taking � = Ass, the associative
operad, the result means that any A�-space is homotopy equivalent to an Ass-space,
the latter being the rectification of the former. Basic ideas of the construction of MX
on A�-spaces are given in Markl et al. (2002).

The aim of this article is to construct a similar rectification in the setting
of DG-operads and DG-algebras over them, rather than topological operads and
algebras over them (which are topological spaces). This way, we assert that, working
in the context of connected DG-modules, for any A�-algebra �M� �mi�i≥1�, there
exists an associative DG-algebra, AM , and a chain contraction from AM to M ,
that allows AM to be regarded as the rectification of M . In the dual case of
A�-coalgebras, our framework is the one of simply connected DG-modules.

However, we must emphasize some significant aspects of our work in order to
make clear the differences with the mentioned topological result: (a) our theorem can
be used for A�-algebras which do not come from topology, that is, which are not
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chain complexes of topological A�-spaces (for example, the A�-algebra cohomology
of a space �H∗�X�� �mi�i≥1�); (b) in our situation, the rectification AM of an A�-
algebra �M� �mi�i≥1� is a free graded algebra, so it provides a free DG-algebra model
AM → �M� �mi�i≥1� of anA�-algebra (cf. Baues and Lemaire, 1977; Huebschmann and
Kadeishvili, 1991, where free models for DG-algebras are considered); (c) it is known
that a chain contraction from AM to the chain complex �M�m1� generates, via the
tensor trick and the Basic Perturbation Lemma (Gugenheim, 1977; Gugenheim and
Stasheff, 1986; Gugenheim et al., 1991), an A�-algebra structure on M . In our case,
such an A�-structure is precisely the initial one.

Our method to construct the rectification AM is specific to algebraic framework
since the main tool used is the Basic Perturbation Lemma. Namely, we construct first,
for a chain complex �M�m1�, an explicit contraction from�Tc�sM�, the reduced cobar
construction of the tensor coalgebra of the suspension of M , to M and then, using
the Basic Perturbation Lemma for the suitable perturbation data defined by the A�-
operations �mi�i>1, we obtain a contraction from �B̃�M� to M , being AM = �B̃�M�

the aimed DG-algebra. We remark that the Munkholm’s (1974) contraction (called
trivialized extension) from �B�A� to a DG-algebra A can be obtained exactly in the
same way, but considering the perturbation data defined by the multiplication of A
instead of the A�-operations.

This article is organized as follows. In the next section we recall the preliminaries
needed and state the notation used throughout the article. The third section is devoted
to our description of a family of morphisms that provide an A�-(co)algebra structure
via the tensor trick and the Basic Perturbation Lemma. In the fourth section, we
establish the main result of the article by which any A�-(co)algebra can be seen as a
chain contraction from a (simply) connected DG-(co)algebra onto a DG-module.

2. NOTATIONS AND PRELIMINARIES

Although relevant notions of homological algebra are recalled here, most of
common concepts are not explicitly given. They might be consulted, for instance, in
Cartan and Eilenberg (1956) and Mac Lane (1995).

Take a commutative ground ring, �, with unit. A differential graded module
or DG-module, �M� d�, is a module M , graded on the non-negative integers,
M = ⊕

n≥0 Mn, endowedwith amorphism of gradedmodules d of degree−1 such that,
d2 = 0.

A DG-module M is called connected if M0 = � and simply connected if it
is connected and M1 = 0. Given a connected DG-module, M , the reduced module
M is such that Mn = Mn for n > 1 and M0 = 0. In this article, we shall always
refer to connected DG-modules in the context of A�-algebras and simply connected
DG-modules when dealing with A�-coalgebras.

We will denote the module M⊗ n· · · ⊗M by M⊗n, with M⊗0 = �; we will use the
notation f⊗n for the morphism

f⊗ n· · · ⊗f � M⊗n → N⊗n	

We will respect the Koszul convention for signs.
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On the other hand, if f � M⊗i → N is a DG-module morphism and n is a non-
negative integer, we will denote by f 
n� � M⊗n → N⊗n−i+1 the morphism

f 
n� =
n−i∑
j=0

1⊗j ⊗ f ⊗ 1⊗n−i−j 	

The morphism f 
 � �
⊕

j≥i M
⊗j →⊕

k≥1 N
⊗k will be the one such that f 
 ��M⊗n = f 
n�.

If �M� dM� is a DG-module, the suspension of M is defined as the DG-module
�sM� dsM�, where �sM�n = Mn−1 and dsM = −dM . The desuspension of M is given by
�s−1M�n = Mn+1 and differential −dM too. We will denote by ↑ and ↓ the suspension
and desuspension morphisms, which shift the degree by +1 and −1, respectively.
A given morphism of graded modules of degree k, f � M → N , induces sf � sM → sN ,
given by sf = �−1�k ↑ f ↓. In fact, dsM = s dM = − ↑ dM ↓.

A DG-algebra, �A� dA� �A�, is a DG-module endowed with an associative
product, �A, compatible with the differential dA and which has a unit 
A � � → A, that
is, �A�
A ⊗ 1� = �A�1⊗ 
A� = 1. Sometimeswewill use the notation ∗A for the product
on A. If there is no confusion, subscripts will be omitted. A DG-coalgebra �C� dC� �C�
is a DG-module provided with a compatible coproduct and counit �C � C → � (so,
��C ⊗ 1��C = �1⊗ �C��C = 1).

Given a DG-module �M� d�, the tensor module of M is denoted by T�M� and is
constructed in the following way:

T�M� =⊕
n≥0

M⊗n	

The tensor graduation of T�M�� � �t, is given by:

�a1 ⊗ · · · ⊗ an�t =
n∑

i=1

�ai�	

The differential structure in T�M� is provided by the tensor differential, dt, which is the
morphism d


 �
M .

A product, �, and a coproduct, �, can be naturally defined on T�M�, as follows:

• ���a1 ⊗ · · · ⊗ an�⊗ �an+1 ⊗ · · · ⊗ an+p�� = a1 ⊗ · · · ⊗ an+p;• ��a1 ⊗ · · · ⊗ an� =
∑n

i=0�a1 ⊗ · · · ⊗ ai�⊗ �ai+1 ⊗ · · · ⊗ an�.

Therefore, T�M� acquires both structures of DG-algebra (denoted by Ta�M�) and
DG-coalgebra (Tc�M�), though they are not compatible to each other (that is,
�T�M�� ���� is not a Hopf algebra).

Every morphism of DG-modules f � M → N induces another one T�f� �
T�M� → T�N�, such that T�f� �M⊗n = f⊗n	

The reduced bar construction of a connected DG-algebra A, B�A�, is a
DG-coalgebra whose module structure is given by

T�sA� =⊕
n≥0

�sA�⊗n	

A typical element of B�A� is denoted by ā = 
a1� · · · �an� and 
 � = 1 ∈ �. The degree of
a is given by the sum of the tensor degree �a1� + · · · + �an� and the simplicial degree n,
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which appeals to the number of components or length of the element (also referred to
as simplicial dimension).

The total differential dB is given by the sum of the tensor differential, dt (which is
the natural one on the tensor product) and the simplicial differential, ds (that depends
on the product on A):

dt = −�↑ dA ↓�
 �� ds = �↑ �A ↓⊗2�
 �	

The coproduct �B � B�A� → B�A�⊗ B�A� is the natural one on the tensor module.
Given a simply connected DG-coalgebra C, the reduced cobar construction,

��C�, is a DG-algebra whose underlying module is

T�s−1C� =⊕
n≥0

�s−1C�⊗n	

A typical element of��C�will be written c̄ = 
c1� · · · �cn�, being 
 � = 1 ∈ �. The total
degree of c̄ is �c̄�� = �c1� + · · · �cn� − n. We will refer to the length of the element, n, as
the cosimplicial degree (or dimension).

The total differential d� is given by the sum of the tensor differential and the
cosimplicial differential dcos = �↓⊗2 �C ↑�
 �	 The product on ��C� is the natural one
on the underlying module.

In the context of homological perturbation theory, the main input data are
chain contractions (or simply, contractions) (see Eilenberg and Mac Lane, 1953;
Huebschmann and Kadeishvili, 1991): a contraction c � �N�M� f� g� �� from a DG-
module N to a DG-module M , consists of a particular homotopy equivalence
determined by three morphisms f� g, and �; being f � N� → M� (projection) and g �
M� → N� (inclusion) two DG-module morphisms and � � N� → N�+1 a homotopy
operator, that is, fg = 1M� and �dN + dN�+ gf = 1N . Moreover, these data are also
required to satisfy

f� = 0� �g = 0� �� = 0	

Notice that the homology of both DG-modules are isomorphic. We will also use the
notation �f� g� �� � N ⇒ M or simply N

c⇒ M when confusion cannot arise.
Given a DG-module contraction,

c � �N� M� f� g� ��

we can establish the following ones (Gugenheim and Lambe, 1989; Gugenheim et al.,
1991):

(i) The suspension contraction of c, s c, which consists of the suspended DG-modules
and the induced morphisms.

sc � �sN� sM� sf� sg� s���

being s f =↑ f ↓, s g =↑ g ↓ and s� = − ↑ � ↓, which are briefly expressed by f ,
g and −�.
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(ii) The tensor module contraction, T�c�, between the tensor modules of N andM .

T�c� � �T�N�� T�M�� T�f�� T�g�� T�����

where

T����N⊗n = �
⊗n� =
n−1∑
i=0

1⊗i ⊗ �⊗ �gf�⊗n−i−1	

Now, we recall the concept of perturbation datum. Let N be a graded module and
let f � N → N be a morphism of graded modules. The morphism f is defined to be
pointwise nilpotent whenever for all x ∈ N , x 
= 0, there exists a positive integer n such
that fn�x� = 0. A perturbation of a DG-module N consists in a morphism of graded
modules � � N → N of degree−1, such that �dN + ��2 = 0. A perturbation datum of the
contraction c � �N�M� f� g� �� is a perturbation � of the DG-module N satisfying that
the composition �� is pointwise nilpotent.

The main tool when dealing with contractions is the Basic Perturbation Lemma
(Brown, 1967; Gugenheim, 1972; Gugenheim and Stasheff, 1986; Lambe and Stasheff,
1987; Gugenheim and Lambe, 1989; Huebschmann andKadeishvili, 1991; Real, 2000;
Shih, 1962), which is an algorithm whose input is a contraction of DG-modules c �
�N�M� f� g� �� and a perturbation datum � of c and whose output is a new contraction
c� � ��N� dN + ��� �M� dM +d��� f�� g�� ��� defined by the formulas

d� = f���
cg� f� = f�1− ���

c��� g� = ��
cg� �� = ��

c��

where ��
c =

∑
i≥0�−1�i����i	

The pointwise nilpotency of the composition �� guarantees that the sums are
finite for each particular element.

3. FROM CONTRACTIONS TO A�-STRUCTURES

We find the origin of A�-(co)algebras in Stasheff (1963), where Stasheff set the
concept of strongly homotopy associativity in the search of a homotopy invariant that
plays the role of associativity.

We recall here the definition of A�-algebra (respectively, A�-coalgebra)
(Kadeishvili, 1980; Prouté, 1984). An A�-algebra (respectively, A�-coalgebra), is a
DG-module �M�m1� (respectively, �M��1�) endowed with a family of morphisms of
graded modules

mi � M
⊗i → M (respectively, �i � M → M⊗i�

of degree i− 2 such that, for i ≥ 1,

i∑
n=1

i−n∑
k=0

�−1�n+k+nkmi−n+1�1
⊗k ⊗mn ⊗ 1⊗i−n−k� = 0� (1)(

respectively,
i∑

n=1

i−n∑
k=0

�−1�n+k+nk�1⊗i−n−k ⊗ �n ⊗ 1⊗k��i−n+1 = 0

)
	 (2)
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Starting from a contraction between a connected DG-algebra A and a
DG-moduleM , the application of the tensor trick (Gugenheim, 1977; Gugenheim and
Stasheff, 1986; Gugenheim et al., 1991) and the Basic Perturbation Lemma provide
a way of constructing a family of morphisms that makes the module inherit an
A�-algebra structure. In fact, the first transference of an A�-algebra structure, in this
sense, was made by Kadeishvili (1980) for the caseM = H�A�. Using this technique, in
the following theorem we will express these morphisms with regard to the component
morphisms of the initial contraction. We draft a proof of the theorem with the only
purpose of showing the tools used in the context of homological perturbation theory.

Theorem 3.1 (Gugenheim et al., 1991; Kadeishvili, 1980). Let �A� dA� �� and �M� dM�

be a connected DG-algebra and a DG-module, respectively, and c � �A�M� f� g� �� a
contraction between them. Then the DG-module M is endowed with an A�-algebra
structure by the morphisms

m1 = −dM

mn = �−1�n+1f��1��
⊗2���2� · · ·�
⊗n−1���n−1�g⊗n� n ≥ 2

where

��k� =
k−1∑
i=0

�−1�i+11⊗i ⊗ �A ⊗ 1⊗k−i−1	

Proof. Starting from c � �A�M� f� g� ��, we can construct the contraction

T�sc� � �T c�sA�� T c�sM�� Tf� Tg� T�−���	

Now, in order to get the differential of the bar construction on the initial DG-module,
we consider the simplicial differential as a perturbation datum of this contraction.
We can easily check the pointwise nilpotency of T�−��ds since T�−�� does not affect
the simplicial dimension of the element, while ds decreases this amount by one and so
will be zero after a finite number of steps. Then, by applying the Basic Perturbation
Lemma, a new contraction is obtained,

�f̃ � g̃� �̃� � B�A� ⇒ �T c�sM�� d̃��

where �T c�sM�� d̃� is called the tilde bar construction ofM (Stasheff, 1963), denoted by
B̃�M� and the formula obtained for the perturbed differential is

d̃ = dt +
∑
i≥0

�−1�iTf ds�T�−��ds�
iTg	

We call

d̃1 = dt� d̃i = �−1�iTf ds�T�−��ds�
i−2Tg for i ≥ 2	
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Let us consider the induced morphisms mn � M
⊗n → M of degree n− 2, with the

formula

mn = �−1�
n/2� ↓ (d̃n��sM�⊗n

) ↑⊗n�

where the brackets refer to the integer part. Then, it is easy to check that

mn = �−1�n+1 f��1� �
⊗2� ��2� · · ·�
⊗n−1� ��n−1�g⊗n	

Finally, the fact that d̃2 = 0 can be translated into relations between the morphisms
mn which are, actually, the ones recalled in Eq. (1). �

An analogous theorem can be established for the case of an A�-coalgebra
structure, whose proof is completely dual to the one given above.

Theorem 3.2 (Gugenheim et al., 1991; Kadeishvili, 1980). Let �C� dC� �� and
�M� dM� be a simply connected DG-coalgebra and a DG-module, respectively, and
c � �C�M� f� g� �� a contraction between them. Then the DG-module M is endowed with
an A�-coalgebra structure by the morphisms

�1 = −dM

�n = �−1�
n/2�+n+1f⊗n��n��
⊗n−1���n−1� · · ·�
⊗2���2�g� n ≥ 2

where

��k� =
k−2∑
i=0

�−1�i1⊗i ⊗ �C ⊗ 1⊗k−i−2	

In this case, the simple connection of the DG-coalgebra guarantees that
the formulas implied in the contraction ��C� ⇒ �̃�M�, obtained by the Basic
Perturbation Lemma, are finite.

Now we are concerned about the inverse process: given an A�-(co)algebra,
finding a suitable contraction that generates, in the sense given in this section, such a
structure.

4. FROM A�-STRUCTURES TO CONTRACTIONS

In this section, we explicitly construct a rectification of an A�-algebra. As a
result, we establish that such a structure can be structurely represented as a contraction
from a DG-algebra onto a DG-module. Recall that by “DG-module” we shall mean a
connected DG-module.

Munkholm (1974) obtained a contraction between the reduced cobar
construction of the reduced bar construction of a DGA-algebra A, �BA, and the
DGA-algebra itself.

cA �
{
�BA� A� �A� �A� hA

}
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The same contraction can be obtained by means of perturbation theory, for the
connected case: starting from a “basic” contraction

��Tc�sA�� A� �� �� h��

and taking the perturbation datum � = �↓ �−ds� ↑�
 �, the contraction cA is obtained
by applying the Basic Perturbation Lemma. This technique will allow us to extend
this result to the case of A being an A�-algebra, obtaining a contraction between the
reduced cobar construction of the tilde bar construction of A,�B̃A, and A.

Now we expose the main theorem of the article. Afterwards, we will dualize the
result for A�-coalgebras.

Theorem 4.1. Let M be a DG-module endowed with an A�-algebra structure. Then
there exists a contraction, cM � �AM�M� f� g� ��, between a connected DG-algebra AM

and the DG-moduleM , such that the application of the tensor trick (followed by the Basic
Perturbation Lemma) to cM provides the original A�-algebra structure onM .

Proof. Let �M� �mi�i≥1� be an A�-algebra and consider the contraction{
�Tc�sM�� M� �� �� h

}
�

whose component morphisms are described below.
In order to make clearer the formulas, we denote by ci the ith component an

element of the cobar, 
c1� · · · �cn�, with length k�i� ≥ 1, that is, ci = 
ai�1� · · · �ai�k�i��
and we will only specify the whole expression 
ai�1� · · · �ai�k�i�� in the case we want to
emphasize its composition. Particularly, when k�i� = 1, we write 
ai�.

• � � �Tc�sM� → M ,

�
c1� · · · �cn� = 0 if n ≥ 1 or k�1� ≥ 1�

�

a�� = a�

• � � M → �Tc�sM�,

��a� = 

a��

• h � �Tc�sM� → �Tc �sM�

h
c1� · · · �cn� = 0 if n = 0 or n = 1 or k�1� ≥ 1�

h

a1��c2� · · · �cn�� = �−1��a1�+1

a1�a2�1� · · · �a2�k�2���c3� · · · �cn��

Now the perturbation � will consist in including �m2�m3� 	 	 	 � in the tensor
differential of the cobar, so that ��Tc�sM�� d� + ��, becomes�B̃�M�:

� =
(
↓
(
−∑

k≥2

( ↑ mk ↓⊗k
)
 �) ↑

)
 �
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The composition h� is pointwise nilpotent, since � decreases the simplicial degree of
the components on the bar construction and h decreases the number of components
on the cobar.

Then, we apply the Basic Perturbation Lemma, obtaining the contraction

cM � ��B̃�M�� M� f� g� ���

where�B̃�M� will be the algebra AM satisfying the theorem.
Notice that for an element � = 

a1��c2� · · · �cn�

� h��� = �−1��a1�+�k�2�+1
〈[
mk�2�+1

(
a1 ⊗ a2�1 ⊗ · · · ⊗ a2�k�2�

)]�c3� · · · �cn〉
+ other summands with k�1� ≥ 1�

where �k�2�+1 = k�2��a1� + �k�2�− 1��a2�1� + · · · + �a2�k�2�−1� + 
�k�2�+ 1�/2�	
Then, we can describe recursively ��h�i, up to sign:

��h�i��� = 〈[
mk�i+1�+1

(
�1�1���h�

i−1��⊗ ai+1�1 ⊗ · · · ⊗ ai+1�k�i+1�

)]�ci+2� · · · �cn
〉
�

where �1�1

a1�1� · · · �a1�k�1���c2� · · · �cn� = a1�1.
Taking into account these notes, we can describe the morphisms of the

contraction above:

• f��� = ±mk�n�+1

(
�1�1���h�

n−2��⊗ an�1 ⊗ · · · ⊗ an�k�n�

)
.

In the particular case of the element 

a1��c2�,

f

a1��c2� = �−1�1+�a1�+�k�2�+1mk�2�+1

(
a1 ⊗ a2�1 ⊗ · · · ⊗ a2�k�2�

)
	 (3)

• g = �, since �

a�� = 0.
• ���� =∑n−1

i=1 �−1�i−1h��h�i−1

a1��c2� · · · �cn�

= �−1��a1�+1
〈[
a1�a2�1� · · · �a2�k�2�

]�c3� · · · �cn〉
+

n−1∑
i=2

±〈[mk�i�+1��11���h�
i−2��⊗ ai�1 ⊗ · · · ai�k�i���ai+1�1� · · · �ai+1�k�i+1�

]
�ci+2� · · · �cn

〉
	

Particularly, for an element 

a1��c2�,

�

a1��c2� = �−1��a1�+1
〈[
a1�a2�1� · · · �a2�k�2�

]〉
	 (4)

Besides, the perturbed differential onM is zero since �� = 0, what means thatM
still remains with the same differential structure.

We can check now that the structure ofA�-algebra generated onM via the tensor
trick coincides with the original infinite structure onM .

Take the contraction T�scM� � �T�sAM�� T�sM�� Tf� Tg� T�−��� and the
simplicial differential, ds, that depends on the juxtaposing product ��, as a
perturbation datum. The pointwise nilpotency of T�−��ds is due to the fact that ds
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does not modify the sum of the lengths of the components of the cobar, meanwhile
T�−�� decreases, at least by one, this amount. Then, applying the Basic Perturbation
Lemma, the following contraction is obtained

�fs� gs� �s� � B�AM� ⇒ �T�sM�� d̃�	

In order to shorten the formulas ahead, we will denote the iterated composition of
morphisms �
⊗i���i� · · ·�
⊗j���j�, with i ≤ j, by ��i�j� and �
⊗i���i�, simply by ��i�. So,
the family of morphisms given in Section 3 that provides an A�-algebra structure for
M can be expressed as follows:

m̃n = �−1�n+1f��1�� �2�n−1�g⊗n	

We will prove that each morphism m̃n is exactly the original mn of the A�-algebra
structure onM . Take a = a1 ⊗ · · · ⊗ an ∈ M⊗n. Then,

��n−1�g⊗n�a� =
n−2∑
i=0

�−1�i+1

a1�� ⊗ · · · ⊗ 

ai�� ⊗ 

ai+1��
ai+2��

⊗ 

ai+3�� ⊗ · · · ⊗ 

an��	

The only non-null summand of �
⊗n−1� that can be now applied on each summand on
the right hand side is 1⊗i ⊗ �⊗ �gf�⊗n−i−2, where � is applied (following (4)) to the
only element of cosimplicial dimension 2.

�
⊗n−1���n−1�g⊗n�a� =
n−2∑
i=0

�−1�i+1+�i

a1�� ⊗ · · · ⊗ 

ai�� ⊗ 

ai+1�ai+2��

⊗ 

ai+3�� ⊗ · · · ⊗ 

an���

where �i = �a1� + · · · �ai� + �ai+1� + 1.
Notice that the obtained summands have again, only factors of cosimplicial

dimension 1 and this condition remains every time that��k�, for any k, is applied: take
an element from �AM�

⊗j in the form �̄ = 
c1� ⊗ · · · ⊗ 
cj�, then,

��j−1���̄� =
j−2∑
i=0

�−1�i+1
c1� ⊗ · · · ⊗ 
ci� ⊗ 
ci+1�ci+2� ⊗ 
ci+3� ⊗ · · · ⊗ 
cj��

so �
⊗j−1� (on each summand above) is reduced to 1⊗i ⊗ �⊗ �gf�⊗j−i−2 where � is
applied to the only factor of cosimplicial degree 2 and will be non-null only if
ci+1 = 
ai+1�,

��j−1���̄� =
j−2∑
i=0

�−1�i+1+�i
c1� ⊗ · · · ⊗ 
ci� ⊗
〈[
ai+1�ai+2�1� · · · �ai+2�k�i+2�

]〉
⊗ gf
ci+3� ⊗ · · · ⊗ gf
cj�� (5)

with �i = �c1� + · · · + �ci� + i+ �ai+1� + 1.
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Besides, the elements f
ci+3�� 	 	 	 � f
cj� will be non-null only if
k�i+ 3�= 1= · · · = k�j�. In this case, the ith summand of (5) will be


c1� ⊗ · · · ⊗ 
ci� ⊗
〈[
ai+1�ai+2�1� · · · �ai+2�k�i+2�

]〉⊗ 

ai+3�� ⊗ · · · ⊗ 

aj���

which has only factors with 1 component.
This way, in order to obtain a non-null result for the ith summand, the element

to which ��j−1� is applied must be


c1� ⊗ · · · ⊗ 
ci� ⊗ 

ai+1�� ⊗ 
ci+2� ⊗ 

ai+3�� ⊗ · · · ⊗ 

aj��	 (6)

As for the application of the whole sequence ��1�� �2�n−1�, starting from a tensor
product of n elements from the cobar construction, themorphism ��i� always decreases
by one the number of factors from the cobar construction and �
⊗i� does not touch
this amount. This way, after applying ��1�� �2�n−1�, only one factor is obtained to which
f will be applied. Taking this into account together with the fact that the only elements
that survive to ��j−1� are those in the form (6), we conclude that the only summand of
��j−1� that will pass trough f��1�� �2�j−2� is that of i = j − 2 in the sum (5), whenever
cj−1 = 
aj−1�. Then,

��j−1���̄� = �−1�j−1+�j−2
c1� ⊗ · · · ⊗ 
cj−2� ⊗
〈[
aj−1�aj�1� · · · �aj�k�j�

]〉+ · · · �

where dots represent the rest of summands that, from now on, we will omit.
Now, by induction on k, one can easily prove that

��n−k�n−1�g⊗n�a� = �−1���k�

a1�� ⊗ · · · ⊗ 

an−k−1�� ⊗ 

an−k� · · · �an���

where ��k� =∑k−1
i=0 �n− i�+∑k

i=1 i�an−i� + k
∑n−1

i=k+1 �an−i�	
So, for the case k = n− 2,

��2�n−1�g⊗n�a� = �−1���n−2�

a1�� ⊗ 

a2� · · · �an���

where

��n− 2� =
n−3∑
i=0

�n− i�+
n−2∑
i=1

i�an−i� + �n− 2��a1�

≡ 
�n− 1�/2�+
n−2∑
i=1

i�an−i� + �n− 2��a1� (mod 2)	

Taking up again the calculation of m̃n,

m̃n�a1 ⊗ · · · ⊗ an� = �−1�n+1+��n−2�f ��1�

a1�� ⊗ 

a2� · · · �an��
= �−1�n+��n−2�f

a1� � 
a2� · · · �an��

(using 3) = �−1�n+��n−2�+1+�a1�+�nmn�a1 ⊗ · · · ⊗ an��
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where �n =
∑n−1

i=1 i�an−i� + 
n/2� and hence

n+ ��n− 2�+ 1+ �a1� + �n ≡ 0 (mod 2)	

That is, theA�-algebra structure obtained coincides with the original one defined
onM . �

This theorem, together with the Theorem 3.1, provide a structural representation
of an A�-algebra as a contraction.

Corolary 4.2. A DG-module M is endowed with an A�-algebra structure if and only if
there exists a contraction c � �AM�M� f� g� ��, between a connected DG-algebra AM and
a DG-moduleM .

Now, we show the dual result to the theorem given above, in the case of
A�-coalgebras, omitting its proof since it follows a similar scheme (though quite
more tedious). From now on, all the DG-modules will be considered to be simply
connected. This way, any A�-coalgebra can be represented as a contraction from a
simply connected DG-coalgebra.

Theorem 4.3. Let M be a DG-module endowed with an A�-coalgebra structure. Then
there exists a contraction c � �CM�M� f� g� ��, between a simply connected DG-coalgebra
CM and the DG-moduleM , such that the application of the tensor trick to c (and the Basic
Perturbation Lemma) yields the initial A�-coalgebra structure onM .

In this case, the simply connection guarantees that the perturbation process is
finite and a contraction cM � �B �̃�M��M� f� g� �� can be constructed.

Corolary 4.4. ADG-moduleM is endowed with anA�-coalgebra structure if and only if
there exists a contraction c � �CM�M� f� g� ��, between a simply connected DG-coalgebra
CM and a DG-moduleM .

We are aware that, at this point, the development of a categorical framework
for A�-(co)algebras in terms of chain contractions would be a natural direction of our
future efforts.
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