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= 1. Statement of the problem

Q c RY regular bounded domain, N = 2,3, T > 0.

([ Oyu—V - (v(0)Vu) + (u-V)u—agd + Vp = f,

.« V.u=0, (1)
L 00 =V - (k(0)VO) + (u- V)0 =0,

in Q x [0, 00)

o u(x,t) € RY velocity of the fluid at point z € Q and time t € [0,T)

e p(x,t) € R (hydrostatic) pressure. e 6(x,t) € R temperature.

o g(x,t) € RYN gravitational field e f(x,t) € RY resulting of external forces.
e a > (0 constant associated to the coeflicient of volume expansion.

e v(-): R — R kinematic viscosity, e k(-) : R — R thermal conductivity.



= 1. Statement of the problem

Q c RY regular bounded domain, N = 2,3, T > 0.

( Ou—V - (v(0)Vu)+ (u-V)u—agd +Vp=F
¢ V-u=0,

L 00 =V - (k(0)VO) + (u- V)0 =0,

in Q x [0, 00)

e Dirichlet-Neumann boundary conditions:

u =0, Onf =0 on [0,00) x 0L,

e Time reproductive condition:



= 1. Statement of the problem

Previous results: Existence and uniqueness of initial value problem
with Dirichlet’s boundary conditions

S.A. Lorca, J.L. Boldrini, Stationary solutions for generalized
Boussinesg models, 1. Diferential Equations 124 (2), (1996).

Goal: To obtain strong estimates: H~ for the velocity, H° for
the temperature and consequently, existence of regular
reproductive solution

Difficulties: Time reproductive condition
Nonlinear diffusion



= 1. Statement of the problem.

Let us consider the following spaces

H]’“Vz{eer %—Oom@ﬁ /9:0}
Q2

where k = 2, 3.
A0y ~ 0] in Hy

IVAG|5 ~ ||0||5 in Hy



L 1. Statement of the problem.

Definition:

(u,p,0) is a regular solution in (0,7), if
we L*(H)NL>*(H') and dyue L*(L?),
p € L*(H"),
0c L*(Hy)NL*(Hy) and 0,0 € L*(Hy),

satisfying (1) a.e. in € x (0,7, boundary conditions and time reproductivity
conditions in the sense of spaces V and H3% respectively.



= 1. Statement of the problem.

Theorem

LetT >0, Q c RY a bounded domain (N =2 or 3), 00 € C?%1.

e v € CHIR), 0 < Vmin < V(S) < VUmaz, [V(S)| <V, .0
o k€ C*R), 0<kmin <k(S) < hmazs K ()] < hppaws [K(8)] < Ko

o fe L3(L?), geL>=(L%), |flrz2) <6, & small enough

then there exists a regular (and small) reproductive solution of (1) in (0,T).
Moreover, this solution also verifies 0.0(0) = 0.0(T).



] 2. The Galerkin initial-boundar

Let {¢;}i>1 and {p;}i>1 “special” basis of V and Hy(f2), respectively, formed
by eigenfunctions of the Stokes and the Poisson problems following:

—~Ag; = N¢; inQ —Ap; = pip; in Q
»; = 0 on 0} Onpi = 0 on 01,

pilli =1, [|¢s]l1 = 1 for all i and [, ¢; = 0.

U, (1) = Zfz‘,m(tWi O (1) = Z Ci.m ()i



] 2. The Galerkin initial-bounda

For each m > 1, given ug,, € V" and 0, € W™, there exits a unique solution
(W, 01), with uy, : [0,T] — V"™ and 0,, : [0,T] — W™, verifying the following
variational formulation a.e. in ¢t € (0,7):

( (Ort (£), Vi) + (i (£) - V)um (£), Vin) + (2(0 (1)) Vi (£), Vi)

— (a0 (0)g; Vi) = (ivi) =0 Vvy, € V"

¢ (00 (1), €m) 4 ((um(t) - V)0 (1), em)

+(k(0,,(t)) VO (t),Ven,) =0 Ve, € WM

\ U, (0) = Up, 0, (0) = O,




3. Differential inequalities in rec

(wy,system, Au,, ) + (w,system, Oy, )

a
dt /o,

|t 3]0 |2 4 K (Nt |7+ N[0 12 + [[9l]7 < (12 [10m 15 + [£3)

(v(0m) + 1)|Vum|2 + me||um||§ + |3tum|§ < 5”8759?71”%

for 6, > 0 small enough, and K = K(d,&) > 0

From viscosity term



3. Differential inequalities in reg

\4

(0 (0meq.), 0t0,) + (Omeq., A%0,,)

d
= 10ml13 + 10:0m13) + Fomin (16rm 13 + 10660 1)

< 010 tml3 + Cs([10ml|3 + 110120603 + 110 15| wm |I1)

for 6 > 0 small enough, and Cs > 0



= 3. Differential inequalities in

e A%0,, € W™ thanks to the election of spectral basis

e Integrating by parts in all terms, boundary terms vanish since

(VAQm . n)|aQ =0

One obtains:

—(0tV0, VAOy,) + (VIV - (k(0m)V0,)], VAO,) — (V(u-VO,,), VAG,) = 0.

4



3. Differential inequalities in reg

a
dt

el w3102 + K ([t 1§ + 1o 111012 + 19117 12) 10m )13 + 1£2)

(v(Om) + 1)|vum|2 + Vmin”umng + |8tum|g < 5||at9m||%

_|_

d
218113 +10:013) + Fsin (165 + 1010, I7)

< 010 tml3 + Cs([16ml|3 + 10 121063 + 10 15| wma[|7)

Adequate balance = ||g||7 .. L2)||0m||%



] 4. Proof of theorem

We denote:
B, (1) = / (A(0) + )|Vt + [ Oum |3+ 10:60m 2

Wi (t) = [[t||3 + 10tz + [10m]5 + 10600 11

We obtain:
{ O 4+ CV,, < U, D17 + Co(t) + DO3,

B,,(0) = By
Co(t) = Colfl3



] 4. Proof of theorem

First step: If @,,(0) < 0 and ||f]|z2(z2) < 0, then ®,,(t) < 20 Vt € [0,T].

Absurd argument: T* such that ®,,(T*) =25 @,,(s) <25 Vse [0,T).

_|_

Poincaré inequality: C), > 0 such that ®,,(t) < C,V,,(t) (¢ small enough)

= & +C0U,, <0, 024 Cy(t) + DD

N

o+ C®,, < Cy(t) + DD,

N

Integrating in [0, T*]: ®,,(T*) < de=CT" —I—/ Co(t)< 20. ———
0



[ 4. Proof of theorem

Second step: If ®,,(0) and ||f]|r2(z2) are small enough, then ®,,(T") < ®,,(0).
Similarly, integrating in [0, 7],

O,,(T) < @, (0)e~ T + /O ' Co(s).
<<

20



] 4. Proof of theorem

Third step: Existence of approximate reproductive solution.

Given (Um0, 0mo) € V™ X W™,
L™ 0,T] — R™xR™
t — (Slm(t)v"'7£mm(t)7C1m(t)7"'7Cmm(t))

(E1m (), ooy Emm (1)), (Cim(t), -y Gmum () coefficients of w,, (t) and 0,,(t)

Given L{* = L™(0)
B = {(Slma eors Emms Clm ---7Cmm) -= Lgl : (I)m(o) < 5}
R™:BCR™xR™ — R™xR™
Ly = RO(LE) = L(T)

Brouwer Theorem.



] 4. Proof of theorem

Four step: Pass to the limit in reproductive approximate solutions
Do (£) = /(y(em) 1) [Vt |2+ [0 |2 + 0002 < 26
Q

(independent of m) for small data.

(y,) uniformly bounded in L°°(H') N L*(H?),
(0,,) uniformly bounded in L (H]2V) N L2(H13v),
(0t uy,) uniformly bounded in L2( L2)7
(0¢0,,) uniformly bounded in L (LQ) N LQ(Hl),

and
() is relatively compact in L*(H*')

(6,,) is relatively compact in L*(H?).

Sufficient to pass to the limit in equations.



] 4. Proof of theorem

0., is relatively compact in C([0,T]; H')
00 (T) — O(T) in H'(Q)
9?:(0) — 0(0) in H'(Q)
0., (T) and 6,,(0) are bounded in H?(2)

=  O(T) =0(0) in H*(Q)

O¢¢0p, is uniformly bounded in L*((H')’)

9¢0,, is uniformly bounded in L (L?)
= 0,0, is relatively compact in C([0,T]; (H')")
Il
010, (0) — 9:0(0) in (H)'(Q)

= 0:0(0) = 0:0(T)



= 5. Some comments and opéen ¢

e Dirichlet boundary condition is imposed for the temperature 6, the boundary
terms do not vanish in the integration by parts.

e The uniqueness remains open. Higher regularity for the velocity is necessary.
H3-regularity for w and Dirichlet condition 7



Periodicity for a nematic liquid

crystal model




6. Periodicity for a nematic liqu

Temperature:
random order
molecules

Solid state

Cristal liquid:
optical characteristics of a liquid(anisotropic)
electro-magnetics characteristics of solid

Liquid state



6. Periodicity for a nematic liquid ¢

W

Isotropic phase Nematic phase
Average direction: d

[ §hossonh | fhoo-osil|

Chiral nematic phase

e

Smetic phase Chiral Smetic phase



6. Periodicity for a nematic lig

Ericksen-Leslie version:

QCRY (N =2or3), 00 regular
1

Ginzburg-Landau penalization function: f(d) = —2(|d|2 —1)d, >0
£

= |d| = 1 is partially conserved to |d| <1

Od+ (u-V)d =(Ad - f(d)), |[d]| <1,
in (0,7) x

{ ou+ (u-V)u—vAu+ Vp=-Vd'Ad, V-u=0,

u(z,t) =0, d(z,t) = h(z,t) on 002 x (0,7
u(z,0) =u(x,T), d(z,0) =d(x,T) in



6. Periodicity for a nematic li

Previous results: Existence of reproductive weak solution for a
nematic liquid crystal model.
N=2 periodic solution

B. Climent Ezquerra, F. Guillén Gonzalez, M. Rojas Medar;
Reproductivity for a nematic liquid crystal model, Z. Angew Math.
Phys. (to appear)

Goal: To obtain strong estimates: H? for the velocity, H* for
the orientation vector and consequently, existence of periodic
solution

Difficulties: Time reproductive condition

Constraint |d| <1
Time dependent boundary conditions



= 6. Periodicity for a nematic liguid

Lifting =d=d —d

A

d+u-V(d+d)—Ad+ f(d+d)— f(d)=0 inQx(0,7T),
d=0 ondQx(0,7), d0)=d(T) inQ.



= 6. Periodicity for a nematic lig

(usystem, —Awu) + (usystem, Oy u)
+
(8(d system), 8,d) + (d system, A?d)

&

' +CU < Cy(t) + D(® + D% + &3)
d(0) =

where

e(t) = [luli + 43 +18.d3,  ¥(t) = [ull3 +[dpul3 + |d]f + [|2.d]f}

P+ CP < Cy(t) + D(P + @2 + P°)

N7

?



6. Periodicity for a nematic liquid cry

® /ad I
O.f(@,08) (V) vAd f(d) = 5(dP - 1)d



