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Abstract

In this paper we prove existence of weak solution with the reproductivity
in time property, for a penalized PDE’s system related to a nematic liquid
crystal model.

This problem is relatively explicit when time-independent Dirichlet bound-
ary conditions are imposed for the orientation of crystal molecules. Neverthe-
less, for the time-dependent case, the treatment of the problem is completely
different. The verification of a maximum principle for weak reproductive so-
lutions is fundamental in the argument.

Finally, the relation between reproductive and periodic in time (regular)
solutions will be pointed out, differenting the 2D and 3D cases. Basically,
in two-dimensional domains every reproductive solution is regular and time
periodic, whereas the problem remains open for three-dimensional domains.
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1 Introduction

In this work, a nematic liquid crystal model in a simplified Ericksen-Leslie version
is considered; see for instance [9] for a formulation of a more complete liquid crystal
problem.

This model can be seen as a variant of the Navier-Stokes problem (respect to
the unknowns velocity-pressure (u, p)) coupled with a convection-diffusion system
for a new variable d, a unit vectorial function modelling the orientation of the
crystal molecules. On the other hand, it is usual to consider an approximation by
Ginzburg-Landau penalization ([1]) for the constraint |d| = 1 (|d| = |d(t, x)| denotes
the point-wise euclidean norm).

This penalized model (in which the constraint |d| = 1 is relaxed by |d| ≤ 1) was
introduced by Lin in [7] and studied (from a mathematical point of view) by Lin
and Liu in [8, 9] and by Coutand and Shkoller in [2]. The main difficulties of the
model coming from the strongly nonlinear coupling between the orientation vector
d and the velocity-pressure (u, p) and from the constraint |d| ≤ 1, jointly with the
well known difficulties for the Navier-Stokes problem (a nonlinear parabollic system
with the free divergence constraint related to the pressure).

In all previous works, initial conditions and time-independent Dirichlet bound-
ary conditions for d are considered. Now, we are interested in time reproductive
solutions. In particular, we will see that this study is completely different for time-
independent or time-dependent boundary conditions for d.

We assume a (newtonian) fluid confined in an open bounded domain Ω ⊂ IRN

(N = 2 or 3) with regular boundary ∂Ω. In the penalized model the constraint
|d| = 1 is partially conserved to |d| ≤ 1 as consequence of the maximum principle
for the Ginzburg-Landau equation considering the penalization function

f(d) =
1

ε2
(|d|2 − 1)d

where ε > 0 is the penalization parameter. There exists a potential function

F (d) =
1

4ε2
(|d|2 − 1)2

such that f(d) = ∇d(F (d)) for each d ∈ IRN . Then, we consider the following PDE
system in (0, T )× Ω: ∂tu + (u · ∇)u− ν∆u +∇p = −λ∇ · (∇d�∇d), ∇ · u = 0,

∂td + (u · ∇)d = γ(∆d− f(d)), |d| ≤ 1,
(1)

The constants ν, λ and γ are positives, representing respectively, the fluid viscosity,
an elasticity constant and a relaxation time. Here, the following tensorial notation
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is used:

(∇d�∇d)ij =
N∑
k=1

∂xi
dk∂xj

dk, ∀ i, j = 1, . . . , N.

The problem (1) is completed with the (Dirichlet) boundary conditions

u(x, t) = 0, d(x, t) = h(x, t) on ∂Ω× (0, T ) (2)

(assuming as novelty a time-depending boundary data for d given by h : ∂Ω ×
(0, T ) 7→ IRN , in [8, 9] only a time-independent boundary data is considered) and
the reproductivity conditions:

u(x, 0) = u(x, T ), d(x, 0) = d(x, T ) in Ω (3)

These reproductive conditions jointly with the constraint |d| ≤ 1 are the main
difficulties of the problem (1)-(3), while the time-dependent boundary conditions
d = h(x, t) produces some additional difficulties. In particular, an adequate lifting
of this condition must be done.

It is important to remark that reproductive solution with the following boundary
data independent of time d(x, t)|∂Ω×(0,T ) = d0(x) has the trivial stationary (static)
solution:

u ≡ 0,

d solution of the elliptic problem: −∆d + f(d) = 0 in Ω, d|∂Ω = d0,

p such that ∇p = −λ∇ · (∇d�∇d).

Therefore, in this work will be fundamental assume time-dependent boundary data
for d.

The concept of reproductive solution in the Navier-Stokes context, appears for
the first time in [5], see also [10].

The goal of this paper is to obtain existence of (global in time) weak solution of
problem (1)–(3). We start defining a variational formulation, testing the maximum
principle for d and the energy inequality of the system. Afterwards, we introduce a
Galerkin discretization of the problem, proving existence and uniqueness of approx-
imate solution associated to arbitrary initial conditions. Then, a Leray-Schauder
argument (by means of fixed point process about initial and final in time values of
the solutions) allows us to obtain a reproductive Galerkin solution, which converges
towards a continuous reproductive solution. Finally, some comments about the rela-
tion between reproductive and periodic (regular) solutions will be pointed out, being
completely different the 2D and 3D cases. Basically, in two-dimensional domains
every reproductive solution associated to regular boundary data is regular and time
periodic, whereas the problem remains open for three-dimensional domains.
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In our opinion, other interesting open problem related with this work, is the
asymptotic behavior of reproductive solutions of (1)–(3) when ε→ 0. In the case of
initial-boundary problem, existence of weak solution of the limit problem is obtained
in [3], passing to the limit when ε→ 0.

2 Variational Formulation

For simplicity, we denote L2 and H1 instead of L2(Ω)N and H1(Ω)N , L∞(H1) instead
of L∞(0, T ;H1(Ω)N), etc. Also, the scalar product in L2 will be denoted by (·, ·),
and 〈·, ·〉 will denote some duality products.

Let us consider the following function spaces:

H = {u ∈ L2 : ∇ · u = 0 in Ω,u · n = 0 on ∂Ω}
V = {u ∈ H1

0 : ∇ · u = 0 in Ω}

Without less of generality, we fix the constants ν = λ = γ = 1.
Obviously, the following compatibility conditions will be imposed in this work

for the boundary data function h:

|h| ≤ 1 on ∂Ω× (0, T ) and h(0) = h(T ) on ∂Ω. (4)

2.1 The variational problem for (u,d)

Definition 1 We say that (u,d) is a weak reproductive solution of (1)–(3) if

u ∈ L2(V) ∩ L∞(H)

d ∈ L∞(H1), ∆d ∈ L2(L2), d|∂Ω×(0,T ) = h

verifying

〈∂tu, v〉+ ((u · ∇)u, v) + (∇u,∇v) + (∇dt∆d, v) = 0 ∀ v ∈ V ∩ L∞,

〈∂td, e〉+ ((u · ∇)d, e) + (f(d), e)− (∆d, e) = 0 ∀ e ∈ L3,

u(0) = u(T ), d(0) = d(T ) in Ω.

tu

In order to arrive at the previous variational formulation, the following equalities
have been used:

∇ · (∇d�∇d) = ∇
(
|∇d|2

2

)
+∇dt∆d

and (
∇
(
|∇d|2

2

)
,v

)
= 0 ∀v ∈ V.
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Notice that the reproductivity conditions u(0) = u(T ) and d(0) = d(T ) have sense,
because u and d are (at least weakly) continuous functions from [0, T ] onto some
Banach spaces.

2.2 Weak Maximum Principle for d

An essential characteristic of the problem for d (given u) is the following weak
maximum principle:

Lemma 2.1 Assume (4). Then, given u ∈ L2(0, T ;V) ∩ L∞(0, T ;H), any weak
solution for the d-problem, i.e. d ∈ L2(0, T ;H1) ∩ L∞(0, T ;L2) such that

〈∂td, e〉+ ((u · ∇)d, e) + (f(d), e) + (∇d,∇e) = 0, ∀ e ∈ H1
0, (5)

d|∂Ω×(0,T ) = h and d(0) = d(T ), (6)

verifies |d(x, t)| ≤ 1 a.e. in Ω× (0, T ).

tu
Proof.

Let us define the function:

ϕ(x, t) = (|d(x, t)|2 − 1)+

where z+ = max(z, 0) for each z ∈ IR. Hypothesis |h| ≤ 1 on ∂Ω × (0, T ) implies
that also ϕ = 0 on ∂Ω× (0, T ). Taking e = ϕd as test function (5), one has:

1

2

∫
Ω
∂t(|d|2)ϕ+

∫
Ω

(u · ∇)|d|2ϕ+
∫

Ω
∇d : ∇(ϕd) +

∫
Ω
ϕ f(d) · d = 0 (7)

The first three terms of (7) can be written as follows:

1

2

∫
Ω
∂t(|d|2)ϕ =

1

2

∫
Ω
∂t(|d|2 − 1)ϕ =

1

4

d

dt
‖ϕ‖2

L2(Ω),∫
Ω

(u · ∇)|d|2ϕ =
∫

Ω
(u · ∇)(|d|2 − 1)ϕ =

∫
Ω

(u · ∇)ϕ · ϕ = 0,

∫
Ω
∇d : ∇(ϕd) =

1

2

∫
Ω
∇(|d|2) · ∇ϕ+

∫
Ω
|∇d|2ϕ

≥ 1

2

∫
Ω
∇(|d|2 − 1)∇ϕ =

1

2
‖∇ϕ‖2

L2(Ω).

Taking into account in the last term of (7) that f(d) · d > 0 = 1
ε2

(|d|2 − 1)|d|2 as
|d| > 1 (and f(d) · d = 0 as |d| ≤ 1), we arrive at the differential inequality:

d

dt
‖ϕ‖2

L2 + 2‖∇ϕ‖2
L2 ≤ 0.
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Integrating in [0, T ] one has

‖ϕ(T )‖2
L2 + 2

∫ T

0
‖∇ϕ‖2

L2 ≤ ‖ϕ(0)‖2
L2

Since ϕ(T ) = ϕ(0), the previous inequality implies ∇ϕ = 0 a.e. in Ω × (0, T ).
Therefore ϕ(·, t) ≡ constant in Ω. But, since ϕ(·, t) = 0 on ∂Ω (thanks to |d| =
|h| ≤ 1 on ∂Ω), we conclude ϕ(x, t) = 0 a.e. in (x, t) ∈ Ω× (0, T ), i.e. |d(x, t)| ≤ 1
a.e. in Ω× (0, T ). tu

Notice that, although the constraint |d| ≤ 1 has been explicitly included in the
problem (1)–(3), the previous Lemma say us that it is not necessary because this
constraint can be obtained a posteriori.

In the sequel, we will consider the penalized function f as a bounded function,
since from maximum principle one has |d| ≤ 1, hence one can consider the problem
(1) changing f by f̃ the auxiliary function

f̃(d) =

 f(d) if |d| ≤ 1

0 if |d| > 1

Indeed, if (u, p,d) is a solution of (1) with f̃ , in particular |d| ≤ 1 (because the
maximum principle is also verified, since f̃(d) · d > 0 as |d| > 1), then (u, p,d) is
also a solution of (1) with f . The inverse implication is easy to verify .

Notice that, |f̃(d)| ≤ 1/ε2 for each d ∈ IRN , hence all estimates below will
be dependent on ε (recall that the asymptotic behavior as ε → 0 for reproductive
solutions remains as open problem).

2.3 Variational Formulacion in u and d̂

Since a time-dependent boundary data h(x, t) on ∂Ω× (0, T ) has been considered,
an adequate lifting is necessary. Assuming h ∈ H1(0, T ;H1/2(∂Ω)N), if we define
d̃(t) as the weak solution of the Laplace-Dirichlet problem −∆d̃ = 0 in Ω,

d̃|∂Ω = h(t) on ∂Ω,

then d̃ ∈ H1(0, T ;H1(Ω)N) (notice that only weak regularity of this Laplace-Dirichlet
problem is used, therefore it is suffices Lipschitz regularity for the domain Ω). More-
over, since h(0) = h(T ) on ∂Ω, then d̃(0) = d̃(T ) in Ω.

Therefore, if we define d̂(t) = d(t) − d̃(t), then d̂(t) ∈ H1
0(Ω)N , ∆d̂ = ∆d in

Ω × (0, T ) and d(0) = d(T ) if and only if d̂(0) = d̂(T ). Then, we can rewrite the
problem in the variables (u, d̂) as follows:
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Notice that (u,d) is a weak reproductive solution of (1)–(3) if and only if (u, d̂)
with d = d̂ + d̃ (d̃ previously defined) verifies

u ∈ L2(V) ∩ L∞(H),

d̂ ∈ L∞(H1
0), ∆d̂ ∈ L2(L2),

and

〈∂tu,v〉+ ((u · ∇)u,v) + (∇u,∇v) + (∇dt∆d̂,v) = 0 ∀v ∈ V ∩ L∞,

〈∂td̂, e〉+ ((u · ∇)d, e) + (f(d), e)− (∆d̂, e) = −(∂td̃, e) ∀ e ∈ L3,

u(0) = u(T ), d̂(0) = d̂(T ) in Ω.

2.4 Energy Inequality

Taking v = u and e = −∆d̂ as test functions in previous formulation, one has (∂tu,u) + ((u · ∇)u,u) + (∇u,∇u) + (∇dt∆d̂,u) = 0

−(∂td̂,∆d̂)− ((u · ∇)d,∆d̂)− (f(d),∆d̂) + (∆d̂,∆d̂) = (∂td̃,∆d̂).

Adding up, taking into account that

((u · ∇)u,u) = 0 and (∇dt∆d̂,u)− ((u · ∇)d,∆d̂) = 0,

one arrives (at least formally) at the following energy equality:

1

2

d

dt

(
‖u‖2

L2 + ‖∇d̂‖2
L2

)
+ ‖∇u‖2

L2 + ‖∆d̂‖2
L2 = (f(d),∆d̂) + (∂td̃,∆d̂).

Consequently, one has the energy inequality:

d

dt

(
‖u‖2

L2 + ‖∇d̂‖2
L2

)
+ 2‖∇u‖2

L2 + ‖∆d̂‖2
L2 ≤ 2

(
‖f(d)‖2

L2 + ‖∂td̃‖2
L2

)
, (8)

where the right hand side is bounded in L1(0, T ) since ∂td̃ ∈ L2(L2).

3 The Main Result

Theorem 3.1 Let T > 0 and Ω ⊂ IRN (N = 2 or 3) an open bounded domain with
Lipschitz boundary. Assume h ∈ H1(0, T ;H1/2(∂Ω)) such that (4) hold. Then there
exists a weak reproductive solution (u,d) of problem (1)–(3) tu
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Remark. Hypothesis of regularity for boundary data h can be relaxed by

h ∈ L∞(0, T ;H1/2(∂Ω)) with ∂th ∈ L2(0, T ;L2(∂Ω)).

Indeed, this regularity implies the following regularity for the lifting function

d̃ ∈ L∞(0, T ;H1(Ω)) with ∂td̃ ∈ L2(0, T ;L2(Ω)),

which will be sufficient in the sequel. Notice that regularity for time derivative can
be proved using the “transposition solution” of the Laplace-Dirichlet problem with
boundary data equal to ∂th (due to ∂th has not a trace sense). By the contrary,
further regularity for the domain Ω is necessary (which implies to have H2-regularity
for the adjoint problem), in order to define the transposition solution.

In the proof of this theorem, the Galerkin method will be used. Firstly, we con-
sider the initial-boundary problem associated to arbitrary initial data. Afterwards,
the key is to find certain initial data at t = 0 that are “reproduced” at final time
t = T .

3.1 The Galerkin Initial-Boundary Problem

Let {φi}n ≥ 1 and {ϕi}n ≥ 1 “special” basis of V and H1
0(Ω), respectively, formed

by eigenfunctions of the Stokes problem

(∇φi,∇v) = λi(φi,v) ∀v ∈ V, φi ∈ V, con ‖φi‖L2 = 1, λi ↗ +∞

and of the Poisson problem

(∇ϕi,∇w) = µi(ϕi,w) ∀w ∈ H1
0, ϕi ∈ H1, con ‖ϕi‖L2 = 1, µi ↗ +∞

Let Vm and Wm be the finite-dimensional subspaces spanned by {φ1, φ2, . . . , φn}
and {ϕ1, ϕ2, . . . , ϕn} respectively.

Given u0 ∈ H and d0 ∈ H1 (verifying the compatibility condition d0|∂Ω = h(0)),
for each m ≥ 1, we seek an approximate solution (um,dm), with um : [0, T ] 7→ Vm

and dm = d̂m + d̃, with d̂m : [0, T ] 7→ Wm, verifying the following variational
formulation a.e. in t:

(∂tum(t),vm) + ((um(t) · ∇)um(t),vm) + (∇um(t),∇vm)

+(∇dt
m(t)∆d̂m(t),vm) = 0 ∀vm ∈ Vm

(∂td̂m(t), em) + ((um(t) · ∇)dm(t), em) + (f(dm(t)), em)

+(∇d̂m(t),∇em) = −(∂td̃(t), em) ∀ em ∈Wm

um(0) = u0m = Pm(u0), dm(0) = d0m = Qm(d0),

(9)
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Here, Pm : H 7→ Vm denotes the usual orthogonal projector of H onto Vm, and
Qm : L2 7→Wm the orthogonal projector of L2 onto Wm. In particular, u0m → u0

in L2 and d0m → d0 in H1 (as m→ 0).
If we put

um(t) =
m∑
j=1

ξi,m(t)φi and d̂m(t) =
m∑
j=1

ζi,m(t)ϕi,

then (9) can be rewritten as a first order ordinary differential system (in normal form)
associated to the unknowns (ξi,m(t), ζi,m(t)). Then, one has existence of a maximal
solution (defined in some interval [0, τm) ⊂ [0, T ]) of the related Cauchy problem.
Moreover, from a priori estimates (independent on m) which will be obtained below,
in particular one has that τm = T . Finally, using regularity of the chosen spectral
basis, uniqueness of approximate solution will be proved in section 3.3.

Remark. Since a discretization in space has been done in definition of approximate
solution, the maximum principle is not always verified, therefore the constraint
|dm| ≤ 1 is not true in general.

3.2 “A priori” estimates

Taking um(t) ∈ Vm as test function in the u-system of (9) and −∆d̂m(t) ∈Wm in
the d-system (latter is possible due to consider the special eigenfunction basis), and
following the argument that yields to energy inequality (Section 2.4), one has

d

dt

(
‖um‖2

L2 + ‖∇d̂m‖2
L2

)
+ 2‖∇um‖2

L2 + ‖∆d̂m‖2
L2 ≤ 2

(
‖f(dm)‖2

L2 + ‖∂t‖2
L2

)
, (10)

hence, using the initial estimates ‖um(0)‖2
L2 ≤ C and ‖∇d̂m(0)‖2

L2 ≤ C, Gronwall’s
lemma implies

(um) is uniformly bounded in L∞(H) ∩ L2(V)

and
(d̂m) is uniformly bounded in L∞(H1

0) ∩ L2(H2)

Therefore, since dm = d̂m + d̃ with d̃ ∈ L∞(H1) and ∆dm = ∆d̂m, one has

(dm) is uniformly bounded in L∞(H1)

and
(∆dm) is uniformly bounded in L2(L2).

Using previous estimations in (9), it is easy to obtain the following estimations:

(∂tum) is uniformly bounded in L2((V ∩ L∞)′)
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and
(∂td̂m) is uniformly bounded in L2(L3/2)

Using compactness results for time spaces with values in Banach spaces (see [12])
with the triplet V ↪→ H ↪→ (V ∩ L∞)′ and H2 ∩H1

0 ↪→ H1
0 ↪→ L3/2, one has

(um) is relatively compact in L2(H)

and
(d̂m) is relatively compact in L2(H1

0).

Consequently, (dm) is relatively compact in L2(H1).
In fact, this compactness is sufficient in the pass to the limit in (9) in order to

control the nonlinear terms.

Remark. Notice that if h and Ω are regular enough, then d̃ ∈ L2(H2) and (dm) is
bounded in L2(H2).

3.3 Uniqueness of Approximate Solution

Without less of generality, in this section only the 3D case (N = 3) will be con-
sidered. Let (u1

m,d
1
m) and (u2

m,d
2
m) be two solutions of (9), and we denote um =

u1
m−u2

m and dm = d1
m−d2

m (notice that dm = d̂m). Making the difference between
(9) for (u1

m,d
1
m) and (u2

m,d
2
m), considering um and −∆dm as test functions, and

taking into account the equalities(
(u1

m · ∇)u1
m − (u2

m · ∇)u2
m,um

)
=

(
(u1

m · ∇)um + (um · ∇)u2
m,um

)
=

(
(um · ∇)u2

m,um

)
,

and (
∆d1

m · ∇d1
m −∆d2

m · ∇d2
m,um

)
+
(
(u1

m · ∇)d1
m − (u2

m · ∇)d2
m,−∆dm

)
=

(
∆d1

m · ∇dm + ∆dm · ∇d2
m,um

)
+
(
(u1

m · ∇)dm + (um · ∇)d2
m,−∆dm

)
=

(
∆d1

m · ∇dm,um

)
+
(
(u1

m · ∇)dm,−∆dm

)
,

the following equality holds

1

2

d

dt

(
‖um‖2

L2 + ‖∇dm‖2
L2

)
+ ‖∇um‖2

L2 + ‖∆dm‖2
L2

= −((um · ∇)u2
m,um)− ((∆d1

m · ∇)dm,um)

+((u1
m · ∇)dm,∆dm)− (f(d1

m)− f(d2
m),∆dm).

(11)
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We bound each term on the right hand side of (11) as follows:

|((um · ∇)um,u
2
m)| ≤ ‖um‖L4 · ‖∇um‖L2 · ‖u2

m‖L4

≤ ‖um‖1/4
L2 · ‖um‖7/4

H1 · ‖u2
m‖L4

≤ ε̄‖um‖2
H1 + Cε̄‖u2

m‖8
L4 · ‖um‖2

L2 .

(12)

∣∣∣((∆d1
m · ∇)dm,um)

∣∣∣ ≤ ‖∆d1
m‖L3 · ‖∇dm‖L6 · ‖um‖L2

≤ C‖∆d1
m‖L3 · ‖∇dm‖H1 · ‖um‖L2

≤ ε̄‖∆dm‖2
L2 + Cε̄‖∆d1

m‖2
L3 · ‖um‖2

L2 .

(13)

|((u1
m · ∇)dm,∆dm)| ≤ ‖u1

m‖L4 · ‖∇dm‖L4 · ‖∆dm‖L2

≤ C‖u1
m‖L4 · ‖∆dm‖7/4

L2 · ‖∇dm‖1/4
L4

≤ ε̄‖∆dm‖2
L2 + Cε̄‖u1

m‖8
L4 · ‖∇dm‖2

L2 .

(14)

In order to bound (f(d1
m)− f(d2

m),∆dm) we will use the following equality:

f(d1
m)− f(d2

m) =
1

ε2
(|d1

m|2d1
m − |d2

m|2d2
m − dm)

(±|d1
m|2d2

m) =
1

ε2
g(d1

m,d
2
m)dm

where g(d1
m,d

2
m) = |d1

m|2 + (d1
m + d2

m)d2
m − 1. In particular, |g(d1

m,d
2
m)| ≤ 4.

Therefore

|(f(d1
m)− f(d2

m),∆dm)| ≤
∣∣∣∣∣
(

1

ε2
g(d1

m,d
2
m)dm,∆dm

)∣∣∣∣∣
≤ 4

ε2
‖dm‖L2‖∆dm‖L2

≤ ε̄‖∆dm‖2
L2 +

C(ε̄)

ε4
‖∇dm‖2

L2

(15)

Accordingly (13)–(15) and choosing ε̄ small enough, one has
d

dt

(
‖um‖2

L2 + ‖∇dm‖2
L2

)
≤ am(t)(‖um‖2

L2 + ‖∇dm‖2
L2)

‖um(0)‖2
L2 + ‖∇dm(0)‖2

L2 = 0.

with am(t) bounded in ∈ L1(0, T ) (using that ‖∆d1
m‖2

L3 , ‖u2
m‖8

L4 and ‖u1
m‖8

L4 are
bounded in L1(0, T )). Applying Gronwall’s Lemma, one has um = 0 and ∇dm = 0.
Finally, since dm = 0 on ∂Ω, then dm = 0. Therefore, uniqueness of approximate
solution for the initial-boundary problem is proved.
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3.4 Existence of approximate reproductive solution.

From energy inequality (10), one has in particular

d

dt

(
‖um‖2

L2 + ‖∇d̂m‖2
L2

)
+ C

(
‖um‖2

L2 + ‖∇d̂m‖2
L2

)
≤ 2

(
‖f(dm)‖2

L2 + ‖∂td̃‖2
L2

)
.

Multiplying by eCt and integrating in [0, T ]:

eCT
(
‖um(T )‖2

L2 + ‖∇d̂m(T )‖2
L2

)
≤ ‖um(0)‖2

L2 + ‖∇d̂m(0)‖2
L2

+ 2
∫ T

0
eCt

(
‖f(dm)‖2

L2 + ‖∂td̃‖2
L2

)
.

(16)

Given (um
0 ,d

m
0 ) ∈ V m ×Wm, we define the map

Lm : [0, T ] 7→ IRm × IRm

t 7→ (ξ1m(t), ..., ξmm(t), ζ1m(t), ..., ζmm(t))

where (ξ1m(t), ..., ξmm(t)) and (ζ1m(t), ..., ζmm(t)) are coefficients of um(t) and d̂m(t)
respect to Vm and Wm respectively, being (um(t), d̂m(t)) the (unique) approximate
solution of (9) corresponding to the initial data (um

0 ,d
m
0 ).

Now, varying the initial data (um
0 ,d

m
0 ), we are going to define a new map Φm :

IRm×IRm 7→ IRm×IRm as follows: given Lm
0 ∈ IRm×IRm, we define Φm(Lm

0 ) = Lm(T ),
where Lm(t) is related to the solution of problem (9) with initial data Lm

0 (= Lm(0)).
By uniqueness of approximate solution of the initial-boundary problem, this map

is well-defined. Moreover, using regularity of the corresponding ordinary differential
system (equivalent to (9)), this map is continuous.

In order to prove existence of fixed point of Φm, we will use Leray-Schauder’s
Theorem. Consequently, we have to prove that for all λ ∈ [0, 1], solutions Lm

0 (λ) of

Lm
0 (λ) = λΦm(Lm

0 (λ))

are uniformly bounded (independent of λ). Since Lm
0 (0) = {0}, it is suffices to

analyse λ ∈ (0, 1] and the equation

1

λ
Lm

0 (λ) = Φm(Lm
0 (λ)).

Considering the norm ‖Lm(t)‖IRm×IRm =
(
‖um(t)‖2

L2 + ‖∇d̂m(t)‖2
L2

)1/2
in IRm× IRm,

inequality (16) yields

eCT‖1

λ
Lm

0 (λ)‖2
IRm×IRm ≤ ‖Lm

0 (λ)‖2
IRm×IRm +K(T ),

11



where K(T ) is an upper bound of 2
∫ T

0
eCt

(
‖f(dm)‖2

L2 + ‖∂td̃‖2
L2

)
dt.

Since λ ∈ (0, 1], one has

‖Lm
0 (λ)‖2

IRm×IRm ≤
K(T )

eCT − 1

which is a bound independent of λ (and m). Consequently, Leray-Schauder Theorem
implies the existence of fixed point of Φm, that is existence of reproductive Galerkin
solution.

Moreover, for each approximate reproductive solution (um,dm), their corre-
sponding initial-end data is bounded in the L2×H1-norm, i.e ‖(um, d̂m)(0)‖L2×H1 ≤
C (independent of m). Therefore, the estimations obtained in Section 3.2 hold for
the approximate reproductive solutions. tu

3.5 Pass to the limit in reproductive approximate solutions

The pass to the limit in variational formulation (9) can be done as in [8], using
estimations and compactness obtained in Section 3.2 (independents of m) in order
to control nonlinear terms. Consequently, here we will only write the pass to the
limit in reproductive conditions.

¿From estimations of (dm) in L∞(H1) and (∂tdm) in L2(L3/2) and using the
triplet of spaces H2 ↪→ L2 ↪→ L3/2, one has ([12]) that (dm) is relatively compact
in C([0, T ];L2), hence dm(T ) → d(T ) and dm(0) → d(0) in L2(Ω). Since dm(T ) =
dm(0), then d(T ) = d(0) in L2(Ω). Moreover, it is easy to see that d ∈ Cw([0, T ];H1)
(i.e. d is continuous from [0, T ] onto H1, respect to the weak topology in H1),
therefore d(T ) = d(0) in H1(Ω). The argument for u is similar.

Consequently, we have found a weak reproductive solution of problem (1)− (3).

4 Relation between reproductive and periodic so-

lutions

4.1 The 2D case

When the domain Ω ⊂ IR2, uniqueness of weak solution for the initial-boundary
problem (associated to any initial data u0 and d0) can be showed.

Consequently, given a reproductive solution (u,d) associated to u(0) = u(T ) :=
u0 and d(0) = d(T ) := d0, then (u,d) is the (unique) solution of the initial-boundary
problem associated to the initial data (u0,d0), which is defined in all time t ∈ (0,∞).
Therefore, this solution is T-periodic, because for instance in (T, 2T ) must be equal

12



to the reproductive solution such that u(T ) = u(2T ) = u0 and d(T ) = d(2T ) = d0,
etc.

Finally, using regularity of solution (u,d) for strictly positive times (see [4] for
the Navier-Stokes equations and [8] for the nematic liquid crystal model), it is easy
to prove that every periodic solution is regular, assuming regularity on boundary
data h.

4.2 The 3D case

For the Navier-Stokes problem (i.e. d = 0), it is known an argument that provides
(global in time) regularity of any reproductive solution associated to regular and
small enough data [6]. In [11] this argument is applied to an abstract parabolic
problem, which is a generalization of some of the main hydrodynamic models.

The argument is based in three main properties of the model:

1. Integrating in (0, T ) the weak energy inequality, the terms ‖u(T )‖2
L2−‖u(0)‖2

L2

vanish thanks to the reproductivity, hence an estimate is deduced for the
L2(0, T ;H1(Ω))-norm of velocity u, which is decreasing to zero as data goes
to zero, but for any reproductive initial value.

2. From previous estimate, and using an mean value argument, one has that there
exists t? ∈ (0, T ) such that ‖u(t?)‖H1 ≤ ε̄ small enough.

3. Using the global regularity for the initial value problem with small and regular
data, the strong solution associated to the model with initial data u(t?) is
defined in [t?,+∞) and remains small in all times t ≥ t?. Moreover, this
solution coincides with the weak reproductive solution u in [t?, T ], thanks to
the weak-strong uniqueness result of the model. Therefore u(T ) (and u(0)) is
small respect to the H1-norm. Consequently u is regular and periodic in the
whole [0,+∞).

But now, for the liquid crystal model (1)-(3) in Ω ⊂ IR3, it is not clear how
regularity of reproductive solution can be proved, because previous argument (point
1) is not valid. The problem is that smallness of the right hand-side of energy
inequality (8) cannot be assured, because of the term ‖f(d)‖2

L2 (which is bounded
by not small). Indeed, integrating in (0, T ) and using the reproductivity (now the
different constants of problem are considered), one arrives at

λγ
∫ T

0
‖∆d̂‖2

L2 ≤
∫ T

0
C
(
λγ‖f(d)‖2

L2 + ‖∂td̃‖2
L2

)
≤ ε̄+ Cλγ

∫ T

0
‖f(d)‖2

L2

where ε̄ is small enough. But this bound is not small, even taking µ or γ big
enough. Only, previous right hand-side is small when penalty parameter ε is big
enough, which is not a physical interesting case.
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On the other hand, we can consider other energy inequality (see [8] for the case
of time-independent boundary data h):

d

dt

(
‖u‖2

L2 + λ‖∇d̂‖2
L2 + 2λ

∫
Ω
F (d)

)
+ 2µ‖∇u‖2

L2

+λγ‖∆d̂− f(d)‖2
L2 ≤

λ

γ

∫ T

0
‖∂td̃‖2

L2 +
2λ

ε2

∫ T

0
‖∂td̃‖L1 (17)

which can be obtained considering u as test function in the u-system of problem and
λ(−∆d̂+ f(d)) in the d-system, where F (d) = (|d|2− 1)2/4ε2 and f(d) = ∇dF (d)
is used. Indeed, one has

d

dt

(
‖u‖2

L2 + λ‖∇d̂‖2
L2

)
+2λ

∫
Ω
∂td̂·f(d)+2µ‖∇u‖2

L2 +λγ‖∆d̂−f(d)‖2
L2 ≤

λ

γ
‖∂td̃‖2

L2

Then, ∫
Ω
∂td̂ · f(d) =

d

dt

∫
Ω
F (d) +

∫
Ω
∂td̃ · f(d)

Therefore, bounded the last term by
1

ε2
‖∂td̃‖L1 , inequality (17) is proven.

In this case, smallness for
∫ T

0 ‖∆d̂− f(d)‖2
L2 can be obtained (if

∫ T
0 ‖∂td̃‖2

L2 and∫ T
0 ‖∂td̃‖L1 are small), but this does not give sufficient information in order to obtain

smallness of the H2 norm of d̂ (again the term ‖f(d)‖2
L2 appears).

In conclusion, existence of periodic solution (and regularity) remains as an open
problem.
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