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Abstract

In this paper, we consider some systems which are close to the insta-
tionary Navier-Stokes equations. The structure of these systems is the
following: An (N + 1)-dimensional equation for motion (including the in-
compressibility condition) and a scalar equation involving an additional
unknown, k = k(x, t). Among other things, they serve to model the be-
havior of certain turbulent flows. We are mainly concerned with existence
and uniqueness results. The main difficulties are due to the scalar equa-
tion. In particular, the right side is typically in L1; furthermore, there
are nonlinear terms of the kind ∇ · (µ(k)∇k) and ∇ · (B(k)), where µ
and B are general continuous functions (no growth condition at infinity
is imposed). Following the previous work of other authors, it is crucial to
introduce the notion of weak-renormalized solution. Our results provide
existence in the two-dimensional case, as well as the uniqueness of regular
solution in both the two and three-dimensional cases.
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Notation:

• L1 = L1(Ω), H1
0 = H1

0 (Ω), etc.; | · | (resp. ‖ · ‖) denotes the usual norm
in L2 (resp. H1

0 ).

• H−1 = H−1(Ω) is the dual space of H1
0 ; ‖ · ‖∗ denotes the usual norm

in H−1.

• In general, if X = X(Ω) is a space of functions defined in the open
set Ω and p ≥ 1 , we denote by Lp(X) (resp. C0(X)) the Banach space
Lp(0, T ;X) (resp. C0([0, T ];X)).

• z+ = max(z, 0) for any real z . Contrarily, z+ (resp. z−) denotes any real
number z′ > z (resp. z′ < z) close enough to z .

• TM (s) = s if s ∈ [−M,M ] ; TM (s) = M sign s otherwise.

• ξn,m = 1
m (Tn+m − Tn) for all n,m ≥ 1 .

• Sδ(s) = s if s ∈ [−δ, δ] ; Sδ(s) = sign s otherwise.

• S :D =
∑N
i,j=1 SijDij for any S = {Sij} and D = {Dij} .

• For each p ∈ [1,+∞] , p∗ is the associated Sobolev embedding exponent:
p∗ = Np

N−p if p < N ; 1 < p∗ < +∞ (arbitrary) if p = N and p∗ = +∞
otherwise.
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1 Introduction. Motivation of the problem

This paper is concerned with some nonlinear partial differential systems stem-
ming from fluid mechanics. These are variants of the instationary Navier-Stokes
equations and read as follows:

∂tu−∇ ·
(
νDu+ |k|1/2Φ′(Du)

)
+ (u · ∇)u+∇p = f ,

∇ · u = 0 ,

∂tk −∇ · (µ(k)∇k +B(k)) + u · ∇k = ν′|Du|2 + |k|1/2Φ′(Du) :Du
− |k|3/2ψ0(Du) .

(1)

In (1), it is assumed that Du = ∇u + t∇u . The functions D 7→ Φ(D) ,
D 7→ ψ0(D) , k 7→ µ(k) and k 7→ B(k) are prescribed. Given an open set
Ω ⊂ IRN , a final time T > 0 , the function f and the coefficients ν > 0 and
ν′ ∈ [0, ν] , we will search for a triplet {u, p, k} satisfying (1) in Q = Ω× (0, T ) ,
together with appropriate initial conditions at t = 0 and boundary conditions
on ∂Ω× (0, T ) .

Systems like (1) are motivated by turbulence modelling. More precisely, let
U = U(x, t) and P = P (x, t) be respectively the velocity field and pressure
distribution of the turbulent flow of a viscous incompressible fluid. Then, the
couple {U,P} must satisfy the instationary Navier-Stokes equations:

∂tU − ν∆U + (U · ∇)U +∇P = F , ∇ · U = 0 . (2)

Let us denote by u and p some averaged variables (we write u = U and p = P ;
u and p describe the mean flow). Let us put

U = u+ u′ , P = p+ p′ .

Then, instead of (2), it is appropriate to try to solve a system that should be
satisfied by u and p . After some computations, one finds:

∂tu−∇ · (νDu+R) + (u · ∇)u+∇p = f , ∇ · u = 0 , (3)

where f = f(x, t) is the averaged external forces field, i.e. f = F and R is the
so called Reynolds tensor:

R = {Rij} , with Rij = −u′iu′j .

Since in (3) we still find the unknown variables u′i , it is reasonable to introduce
closing hypotheses relating R to u. In the case of usual one-equation models,
one imposes the following hypothesis of the Boussinesq kind:

R = νT Du , where νT = νT (k) (an algebraic relation). (4)

Here, k = 1
2 |u′|2 is the mean turbulent kinetic energy. The problem is thus

closed using (3), (4) and an additional PDE for k .
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Unfortunately, when one tries to deduce an equation for k , one finds again
terms in which the turbulent perturbations u′i (and k′) appear. More precisely,
one has:

∂tk −∇ ·
(
ν∇k + (−(p′ + k′)u′)

)
+ u · ∇k = R :Du− ν

2 |Du′|2 . (5)

Consequently, one has to replace (5) by an approximation. This is made by
introducing new closing hypotheses:

• Of course, (4) is used again in order to approximate the production term
R :Du .

• The approximation of the dissipation term ν
2 |Du′|2 is almost always the

same: a constant times k3/2.

• Contrarily, the approximation of −(p′ + k′)u′ has been achieved in several
different ways in the litterature. In most papers, this term is replaced by
c νT∇k , where c is an experimental constant (for instance, see [14], [15]
and the references therein). In other papers, however, it is replaced by a
vector function B(k) (see [6]).

Hence, it is clear that equations like (1) can be used to describe the evolu-
tion of some turbulent flows. Another motivation for (1) can be found in non
Newtonian mechanics. In this setting, u and p are the true velocity field and
pressure, k is the temperature and it is assumed that the stress tensor τ depends
on Du and k as follows:

τ = ν′Du+ kΦ′(Du) .

2 The main results

In this section, we present our main results. These are concerned with existence
and uniqueness for systems of the kind (1) completed with appropriate initial
and boundary conditions. Let us mention that the authors have considered a
similar stationary problem in the previous paper [8]. At first sight, one could
think that, for (1), the results can be obtained in the same way as in [8]. This
is not true at least because of three reasons:

• As shown below, there is a major difficulty for the existence proof when
N = 3. This is related to the lack of regularity of ∂tu, typical of the
evolution Navier-Stokes problem and its variants.

• In order to prove that k is a solution to the third equation in (1), the
arguments used in the stationary case, which have been taken in part
from [12], do not work. This is maybe surprising but well known. Here,
another argument, essentially due to D. Blanchard and H. Redwane [3], is
used.
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• The uniqueness results presented in [8] (and also their proofs) are different
from those in this paper. Roughly speaking, in [8] we prove uniqueness
for regular data and sufficiently small Reynolds number, i.e. large ν . Of
course, it is not reasonable to expect results of this kind in the framework
of the time-dependent problem (1). In this paper, we prove that regular
solutions, in case they exist, must be unique.

We will consider a simplified version of (1):
∂tu− ν∆u−∇ · (kΦ′(∇u)) + (u · ∇)u+∇p = f ,

∇ · u = 0 ,

∂tk −∇ · (µ(k)∇k +B(k)) + u · ∇k = ν|∇u|2 + kΦ′(∇u) :∇u .
(6)

This is made for simplicity; in fact, the results in this section also hold for (1)
with appropriate minor changes. The first, second and third equations in (6)
will be known as the motion equation, the incompressibility condition and the
energy equation, respectively. Our basic assumptions are the following:

• Ω ⊂ IRN is a bounded, connected, open and regular set; T > 0 , ν > 0 and
f ∈ L2(H−1) .

• D 7→ Φ(D) is C1, Φ′(0) = 0, |Φ′(D)| ≤ Const. and D 7→ Φ′(D) :D is con-
vex (consequently, it is also locally Lipschitz-continuous). In particular,
D 7→ Φ(D) is convex and one has (Φ′(D1) − Φ′(D2)) : (D1 −D2) ≥ 0 for
all D1 and D2 .

• k 7→ µ(k) and k 7→ B(k) are continuous functions; furthermore, µ(k) ≥
µ0 > 0 for all k.

We want to solve (6) in Q = Ω× (0, T ) together with initial conditions

u|t=0 = u0 and k|t=0 = k0 in Ω (7)

and homogeneous Dirichlet conditions

u = 0 and k = 0 on ∂Ω× (0, T ) . (8)

Our main interest concerns general continuous functions µ and B. This is
motivated by the fact that, in turbulence modelling, an equation exactly satisfied
by the true turbulent kinetic energy is unknown. Besides the usual spaces
Lp(Lq) , L2(V ) , etc., we will use the following:

L = {ψ ∈ L1(Q) ; TM (ψ) ∈ L2(H1
0 ) ∀M > 0 ,

lim
n→+∞

1

n

∫∫
n≤|ψ|≤2n

|∇ψ|2 dx dt = 0 }
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(see the Notation). Moreover, β̃ , µ̃ , etc. will denote integrals of the correspond-
ing β , µ ,. . . For instance,

β̃(s) =

∫ s

0

β(σ) dσ for all s .

Theorem 1 – Assume N = 2 , u0 ∈ V and k0 ∈ L1 , with k0 ≥ 0 . Under
the previous assumptions, there exists {u, p, k} , with

u ∈ L2(V ) ∩ C0(H) , p ∈ L2(Q) , k ∈ L ,

such that:

1. The couple {u, p} solves the first two equations in (6) together with the
first initial condition in (7) in the usual weak sense.

2. k ≥ 0 and solves the energy equation in (6) and the second initial condition
in (7) in the following sense: For all β ∈W 1,∞(IR) with compact support,
one has 

∂tβ̃(k)−∇ · (β(k)(µ(k)∇k +B(k)))

+β′(k)∇k · (µ(k)∇k +B(k)) + β(k) (u · ∇k)

= β(k)
(
ν|∇u|2 + kΦ′(∇u) :∇u

)
in D′(Q) .

(9)

In particular, ∂tβ̃(k) ∈ L1(L1) + L2(H−1) and, for all q < 2 , one has

β̃(k) ∈ C0(W−1,q). Furthermore,

β̃(k)|t=0 = β̃(k0) . (10)

A triplet {u, p, k} as above will be called a weak-renormalized solution to (6),
(7), (8). Renormalized solutions to PDE’s have been introduced by R. DiPerna
and P.L. Lions in [9], in the framework of the Boltzmann equations. They
have been used in connection with various nonlinear elliptic (resp. parabolic)
equations by P. Benilan et al. [2], L. Boccardo et al. [5] and P.L. Lions and
F. Murat [12],[13] (resp. by D. Blanchard and H. Redwane [3]). For the analysis
of some problems similar to (1) and (6), weak-renormalized solutions were first
considered by R. Lewandowski [11]. That we search for a renormalized solution
k is motivated by the structure of the right side of the energy equation in (6)
(typically in L1) and also by our interest in keeping µ and B as general as
possible.
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Theorem 2 – Under the assumptions in theorem 1, assume also that B ≡ 0
and k0 ∈ L∞ . Then the solution {u, p, k} furnished by theorem 1 satisfies

µ̃(k) ∈
⋂
q<2

Lq(W 1,q
0 ) , ∇µ̃(k) = µ(k)∇k , (11)

∂tk ∈ L1(L1) + Lq(W−1,q) for all q < 2 (12)

and also the following:
〈∂tk , φ〉+

∫
Ω

µ(k)∇k · ∇φ+

∫
Ω

(u · ∇k)φ

=

∫
Ω

(
ν|∇u|2 + kΦ′(∇u) :∇u

)
φ ∀φ ∈ D(Ω) , a.e. in (0, T ) .

If {u, p, k} is as in theorem 2, it will be said it is a weak solution to (6), (7),
(8). As mentioned above, the situation considered in this theorem is the most
frequently found in connection with one-equation turbulence models.

Theorem 3 – Assume that N = 2 or N = 3 , k 7→ µ(k) is locally Lipschitz-
continuous, B ≡ 0 and

D 7→ Φ(D) is C2 , with |Φ′′(D)| ≤ Const.

Let u0 ∈ V and k0 ∈ W 2,∞ ∩H1
0 , with k0 ≥ 0 . For i = 1, 2 , let {ui, pi, ki} be

a (weak) solution to (6), (7), (8), with ui ∈ L∞(W 1,∞) and suppose that (for
instance) u2 ∈ L2(W 2,r) , where r > N (r ≥ 3 if N = 3 ). Then {u1,∇p1, k1}
and {u2,∇p2, k2} must coincide.

Before giving the proofs of these results, let us make some remarks:

1. Theorems 1 and 2 provide existence for (6), together with suitable initial
and boundary conditions when N = 2 . Other similar results can be found
in [11]. It is not clear how to extend the proofs in order to cover the
three-dimensional case (see the second and subsequent steps of the proof
of theorem 1).

2. However, several more or less obvious generalizations of theorems 1 and
2 are possible. Thus, an existence result similar to theorem 1 can be de-
duced if we replace kΦ′(∇u) by a term of the form D2Ψ(k,∇u) , where
(s,D) 7→ Ψ(s,D) satisfies appropriate assumptions. When N = 3, exis-
tence can also be obtained if one omits the nonlinear term (u · ∇)u . On
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the other hand, theorem 2 holds as well when B is not zero but Lipschitz-
continuous; for details, see [7]. An interesting situation arises when we
simply assume µ(k) ≥ 0 in (6). It seems also interesting to relax the as-
sumption “D 7→ Φ′(D) : D is convex” in order to account for more general
approximations of the Reynolds tensor. These cases are far from trivial
and will be considered in a future work.

3. Some variants of theorem 3 can also be proved. Nevertheless, there is an
important question that remains open: For N = 2 , is there uniqueness of
weak-renormalized solution ? This seems to be complicate, but a positive
answer would have a very interesting interpretation.

4. The existence of a weak-renormalized solution (and the existence and
uniqueness of a weak solution) to the stationary analog of (6) have been
established by the authors in [8] under reasonable assumptions (see also
[1] and [11] for other similar results).

3 The proof of theorem 1

In the sequel, C denotes a constant which may depend on Ω and the other data
in (6). The proof of theorem 1 consists of six steps:

First step: The introduction of a family of approximations.
For each ε > 0, we consider the following approximation to (6):

∂tu
ε −∇ · τε + (uε · ∇)uε +∇pε = f ,

∇ · uε = 0 ,

∂tk
ε −∇ · (µε(kε)∇kε +Bε(k

ε)) + uε · ∇kε = T 1
ε
(τε :∇uε) .

(13)

Here, we have used the following notation:

µε = T 1
ε
◦ µ , Bε = B ◦ T 1

ε
, τε = ν∇uε + T 1

ε
(kε)+Φ′(∇uε) .

Again, these equations are required to be satisfied in Q = Ω × (0, T ) together
with the initial conditions

uε|t=0 = u0 and kε|t=0 = T 1
ε
(k0) in Ω (14)

and the boundary conditions

uε = 0 and kε = 0 on ∂Ω× (0, T ) . (15)

The existence of a triplet {uε, pε, kε} satisfying (13), (14) and (15) can be estab-
lished using (for instance) a Galerkin method. In fact, with this technique one
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finds some nontrivial difficulties that can be solved arguing as in the following
steps. One sees that

uε ∈ L2(V ) ∩ C0(H) , kε ∈ L2(H1
0 ) ∩ C0(L2)

and, also, that kε ≥ 0 .

Second step: A priori estimates and weak convergence.
Using uε as a test function in the first equation in (13), one obtains:

|uε(t)|2 +

∫ t

0

∫
Ω

τε :∇uε ≤ C in (0, T ) .

In particular,
‖uε‖L∞(H) ≤ C , ‖uε‖L2(V ) ≤ C . (16)

¿From this, one also deduces by interpolation:

uε is bounded in L( 2a
a−2 )

−

(La) , for all finite a > 2

(recall that z− is, for each z ∈ IR , an arbitrary real number z′ < z , close enough
to z ). Since N = 2 , (16) suffices to deduce a bound for ∂tu

ε in L2(V ′) :

‖∂tuε‖L2(V ′) ≤ C .

Let us now consider the third equation in (13) (the energy equation). We
will succesively use Sδ(k

ε) , TM (kε) and ξn,m(kε) as test functions (see the
Notation). We easily find:

‖kε‖L∞(L1) ≤ C , ‖TM (kε)‖L2(H1
0 ) ≤ C ·M (17)

and also

1

m

∫∫
n≤kε≤n+m

µε(k
ε)|∇kε|2 ≤

∫∫
kε≥n

T 1
ε
(τε :∇uε) +

∫
Ω

ξ̃n,m(T 1
ε
(k0)) (18)

(recall that ξ̃n,m is the primitive of ξn,m which vanishes at zero). From (18),
one sees that

1

m

∫∫
n≤kε≤n+m

|∇kε|2 ≤ C(n,m) . (19)

¿From (17) and (19), arguing as in [4] and [13], one deduces the following:

‖kε‖Lq(W 1,q
0 ) ≤ Cq for all q < 2 .

By interpolation, it is also seen that

kε is bounded in L( 2b
b−1 )

− (
Lb
)
, for all finite b > 1 .
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Furthermore, for any compactly supported function β ∈W 1,∞(IR) , one has:

∂tβ̃(kε) is bounded in L1(L1) + L2(H−1) . (20)

This is found by simply multiplying the energy equation in (13) by β(kε) . In

particular, ∂tβ̃(kε) is also uniformly bounded in L1(W−1,q) for any q ∈ (1, 2) .
The above estimates for uε and kε lead to the existence of subsequences that

converge weakly. Indeed, at least for a subsequence, one must have:

uε → u weakly in L2(V ) , strongly in L( 2a
a−2 )

−

(La) ∀a > 2 and a.e.,

∂tu
ε → ∂tu weakly in L2(V ′) ,

kε → k weakly in Lq(W 1,q
0 ) ∀q < 2 , strongly in L( 2b

b−1 )
−

(Lb
−

) ∀b > 1
and a.e.,

TM (kε)→ TM (k) weakly in L2(H1
0 ) ∀M > 0 .

Here, the fact that N = 2 has been used (if N = 3 , we would have only uε → u
weakly in L4/3(V ′) ). Also, notice that u ∈ C0(H) and u(0) = u0 . The previous
a.e. and strong convergence of kε stems from (17) (which must be satisfied for
all M > 0) and the fact that, for any β as above, one has (20). Obviously, one
has k ≥ 0 .

Third step: u is, together with some p, a solution to the motion equation.
In order to take limits in the first two equations in (13), it will be convenient to
introduce an equivalent variational inequality. For each ε > 0 , uε is a solution
to the following:

∫ T

0

〈∂tuε, v − uε〉+ ν

∫∫
Q

∇uε : (∇v −∇uε)

+

∫∫
Q

(uε · ∇)uε · (v − uε) +

∫∫
Q

T 1
ε
(kε)Φ(∇v)−

∫∫
Q

T 1
ε
(kε)Φ(∇uε)

≥
∫ T

0

〈f, v − uε〉 ∀v ∈ V , uε ∈ V .

This can also be written as follows:

∫ T

0

〈∂tuε, v〉+ ν

∫∫
Q

∇uε :∇v +

∫∫
Q

(uε · ∇)uε · v +

∫∫
Q

T 1
ε
(kε)Φ(∇v)

+ 1
2 |u0|2 ≥ ν

∫∫
Q

|∇uε|2 +

∫∫
Q

T 1
ε
(kε)Φ(∇uε)

+

∫ T

0

〈f, v − uε〉+
1

2
|uε(T )|2 ∀v ∈ V , uε ∈ V .
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Taking limits as ε→ 0 , one obtains:∫ T

0

〈∂tu, v〉+ ν

∫∫
Q

∇u :∇v +

∫∫
(u · ∇)u · v +

∫∫
Q

kΦ(∇v)

+ 1
2 |u0|2 ≥ ν lim inf

ε→0

∫∫
Q

|∇uε|2 + lim inf
ε→0

∫∫
Q

T 1
ε
(kε)Φ(∇uε)

+ 〈f, v − u〉+ 1
2 |u(T )|2 .

Here, N = 2 is needed: we have used the weak convergence in H of uε(T ) . The
first term in the right is bounded from below by

ν

∫∫
Q

|∇u|2 .

In what concerns the second term, let us notice that∫∫
Q

T 1
ε
(kε)Φ(∇uε) =

∫∫
Q

(T 1
ε
(kε)− k)Φ(∇uε) +

∫∫
Q

kΦ(∇uε) .

Thus, taking into account that the function

v 7→
∫∫
Q

kΦ(∇v)

is lower semicontinous, we find:

lim inf
ε→0

∫∫
Q

T 1
ε
(kε)Φ(∇uε) ≥ lim

ε→0

∫∫
Q

(T 1
ε
(kε)− k)Φ(∇uε)

+ lim inf
ε→0

∫∫
Q

kΦ(∇uε) ≥
∫∫
Q

kΦ(∇u) .

Consequently, u is a solution to the variational inequality

∫ T

0

〈∂tu, v − u〉+ ν

∫∫
Q

∇u : (∇v −∇u)

+

∫∫
Q

(u · ∇)u · (v − u) +

∫∫
Q

kΦ(∇v)−
∫∫
Q

kΦ(∇u)

≥
∫ T

0

〈f, v − u〉 ∀v ∈ V , u ∈ V .

(21)

Introducing in (21) test functions v of the form u+λw , where w ∈ V and λ ∈ IR
and letting λ → 0 , it is quite easy to prove that u solves, together with some
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p ∈ L2, the first two equations in (6) in the usual weak sense.

Fourth step: The strong convergence of ∇uε.
For almost t , let us use u(t) as function in the motion equation in (6). Inte-
grating twice with respect to time, one obtains:

1

2

∫ T

0

|u|2 +

∫∫
Q

(T − t)
(
ν|∇u|2 + kΦ′(∇u) :∇u

)
=

∫ T

0

(T − t)〈f, u〉+
T

2
|u0|2 .

Here, we have used the fact that ∂tu ∈ L2(V ′) , which is true because N = 2 .
On the other hand, choosing uε as test function in the first equation in (13),
one also has:

1

2

∫ T

0

|uε|2 +

∫∫
Q

(T − t)
(
ν|∇uε|2 + T 1

ε
(kε)Φ′(∇uε) :∇uε

)
=

∫ T

0

(T − t)〈f, uε〉+
T

2
|uε0|2 .

Consequently,

lim
ε→0

∫∫
Q

(T − t)
(
ν|∇uε|2 + T 1

ε
(kε)Φ′(∇uε) :∇uε

)
=

∫∫
Q

(T − t)
(
ν|∇u|2 + kΦ′(∇u) :∇u

)
.

Since Φ′ is uniformly bounded, one finds:

0 = lim
ε→0

(∫∫
Q

(T − t)(ν|∇uε|2 + kΦ′(∇uε) :∇uε)

−
∫∫
Q

(T − t)(ν|∇u|2 + kΦ′(∇u) :∇u)

)
= lim
ε→0

(
2ν

∫∫
Q

(T − t)∇(uε − u) :∇u+ ν

∫∫
Q

(T − t)|∇(uε − u)|2

+

∫∫
Q

(T − t)kΦ′(∇uε) :∇uε −
∫∫
Q

(T − t)kΦ′(∇u) :∇u
)

≥ lim sup
ε→0

(
ν

∫∫
Q

(T − t)|∇(uε − u)|2
)

+ lim inf
ε→0

(∫∫
Q

(T − t)kΦ′(∇uε) :∇uε −
∫∫
Q

(T − t)kΦ′(∇u) :∇u
)
.
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Here, the last term is ≥ 0 , in view of the lower semicontinuity of the function

v 7→
∫∫
Q

(T − t)kΦ′(∇v) :∇v .

Thus,

lim
ε→0

∫∫
Q

(T − t)|∇(uε − u)|2 = 0 ,

whence we deduce that

∇uε → ∇u strongly in L2(Ω× (0, T−)) .

Fifth step: For all M > 0 , TM (kε) converges strongly.
First, we write the energy equation in (13) in the form

∂tk
ε −∇ · (µε(kε)∇kε +Bε(k

ε)) = F ε1 + F ε2 , (22)

with
F ε1 = T 1

ε
(τε :∇uε), F ε2 = −uε · ∇kε . (23)

We already know that

F ε1 → ν|∇u|2 + kΦ′(∇u) :∇u strongly in L1(Ω× (0, T−)) .

On the other hand, F ε2 converges weakly in Lc(Q) for some c > 1 . This last
assertion can be demonstrated from the convergence properties deduced in the
second step as follows. One has:

∇kε → ∇k weakly in Lq(Q) for all q < 2 . (24)

On the other hand, recall that

uε → u strongly in L( 2a
a−2 )

−

(La) for all finite a > 2 .

In particular, if q < 2 and a is chosen greater than q′ but close enough, one also
has 2a

a−2 > q′ , whence it is also true that uε → u strongly in Lp(Lp) for some
p > q′ . This, together with (24), gives the desired result.

Now, it can be deduced that

lim
ε→0

∫∫
Q

(T − t)
∣∣∣µε(kε) 1

2∇TM (kε)− µ(k)
1
2∇TM (k)

∣∣∣2 = 0

for each M > 0 . This is due to D. Blanchard and H. Redwane (see [3]). The
main consequence is:

∇TM (kε)→ ∇TM (k) strongly in L2(Ω× (0, T−)) . (25)
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Sixth step: k is a renormalized solution.
Let us choose ϕ ∈ D(Q) and β ∈ W 1,∞(IR) , with support in [−M,M ] . Using
β(kε)ϕ as test function in the energy equation in (22), we find the following:∫ T

0

〈∂tβ̃(kε), ϕ〉+

∫∫
Q

µε(k
ε)∇kε · ∇(β(kε)ϕ)

+

∫∫
Q

Bε(k
ε) · ∇(β(kε)ϕ) =

∫∫
Q

(F ε1 + F ε2 )β(kε)ϕ .

In these integrals, kε can be replaced by TM (kε) . Hence, writing ∇(β(kε)ϕ)
in the form ϕ∇β(kε) + β(kε)∇ϕ and using the fact that ∇TM (kε) converges
strongly, it is not difficult to take limits as ε→ 0 . One obtains:∫ T

0

〈∂tβ̃(k), ϕ〉+

∫∫
Q

(µ(k)∇k +B(k)) · ∇(β(k)ϕ)

=

∫∫
Q

(ν|∇u|2 + kΦ′(∇u) :∇u− u · ∇k)β(k)ϕ .

Since ϕ and β are arbitrary, this shows that (9) is satisfied.
In order to check that k satisfies the second initial condition in (7) in the

sense of (10), we will use the following result, whose proof can be found in [17]:

Lemma– Let X , B and Y be three Banach spaces with X ⊂ B ⊂ Y , where
the first embedding is compact and the second one is continuous. Let F be a
family in L∞(X) satisfying the following two properties:

1. F is bounded in L∞(X) .

2. ∂tv ∈ L1(Y ) for each v ∈ F and there exist ψ ∈ L1(0, T ) , r > 1 and a
bounded set B in Lr(0, T ) such that

‖∂tv‖Y ∈ ψ + B ∀ v ∈ F . (26)

Then F is precompact in C0(B) .

Let us choose β as above and let us set X = L∞ and B = Y = W−1,q ,
with q < 2 . We will apply the previous lemma to the sequence β̃(kε) with these

spaces X , B and Y . Obviously, β̃(kε) is uniformly bounded in L∞(X) . On

13



the other hand, one has:

∂tβ̃(kε) = −µε(kε)β′(kε)|∇TM (kε)|2 + β(kε)T 1
ε
(τε :∇uε)

+∇ ·
(
µε(k

ε)β(kε)∇TM (kε) + β(kε)Bε(k
ε)− β̃(kε)uε

)
− β′(kε)∇TM (kε) ·Bε(kε) .

Here, the first two terms in the right side converge strongly in L1(Q) . The other
terms are bounded in L2(H−1) . It is thus clear that, for some ψ ∈ L1(0, T )
and some bounded set B in L2(0, T ) , one has (26). Consequently, passing

again to a subsequence if necessary, β̃(kε) converges strongly in C0(W−1,q) ,

β̃(k) ∈ C0(W−1,q) and β̃(k)(0) = β̃(k0) .

4 The proof of theorem 2

Let us assume that B ≡ 0 and k0 ∈ L∞ and repeat the proof of theorem 1.
Since (25) is satisfied for all M > 0 , we can also assume that ∇kε → ∇k a.e. in
Q . Hence, for each q < 2 ,

∇kε → ∇k strongly in Lq(Q) .

Accordingly, uε·∇kε converges strongly, for instance, in L1(Q) . Let us introduce
the following functions:

µ̃ε(s) =

∫ s

0

µε(r) dr , bε = (µ̃ε)
−1 .

Let us set vε = µ̃ε(k
ε) . We know that

∂tbε(v
ε)−∆vε = F ε1 + F ε2 in Q , (27)

where F ε1 and F ε2 are given by (23). Let us see that vε is bounded in Lq(W 1,q
0 )

for each q < 2 . Since both kε and ∇kε converge a.e., this will give (11) and
(12).

¿From the results in [4] and [12], we know that it is sufficient to check the
following:∫∫

Q

|∇TM (vε)|2 ≤ CM ,
1

m

∫∫
n≤vε≤n+m

|∇vε|2 ≤ C(n,m) . (28)

First, by multiplying (27) by TM (vε) and integrating in time and space, the
following inequality is easily obtained:∫∫

Q

|∇TM (vε)|2 ≤M
∫∫
Q

|F ε1 + F ε2 |+
∫

Ω

Y εM (vε0) . (29)
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Here,

Y εM (z) =

∫ z

0

b′ε(r)TM (r) dr and vε0 = vε(0) = µ̃(k0)

(observe that vε0 is bounded in L∞). The right side in (29) is ≤ CṀ , since
F ε1 + F ε2 converges strongly in L1(Q) and 0 ≤ Y εM (z) ≤ µ0Mz for all z ≥ 0 .
Hence, the first part of (28) holds.

Now, let us use ξn,m(vε) as test function in (27). This gives:

1

m

∫∫
n≤vε≤n+m

|∇vε|2 ≤
∫∫
vε≥n

|F ε1 + F ε2 |+
∫

Ω

ξ̂εn,m(vε0) .

Here, we have introduced the function ξ̂n,m , given as follows:

ξ̂εn,m(z) =

∫ z

0

b′ε(r)ξn,m(r) dr ∀ z .

It is clear that 0 ≤ ξ̂εn,m(z) ≤ µ0z for all z ≥ 0 , whence we easily deduce the
second estimate in (28).

5 The proof of theorem 3

Let us set u = u1 − u2 and k = k1 − k2 . It is not difficult to see (in the usual
way) that

1

2

d

dt
|u|2 + ν ‖u‖2 ≤ −((u · ∇)u2, u)− (kΦ′(∇u2),∇u) (30)

in (0, T ) . The first term in the right side can be bounded as follows:

|((u · ∇)u2, u)| ≤ ‖∇u2‖L∞ · |u|2 .

The second one satisfies:

|(kΦ′(∇u2),∇u)| = |(Φ′(∇u2)∇k, u) + (k∇ · (Φ′(∇u2)), u)|

≤ C‖k‖ · |u|+ C‖k‖Lb‖D2u2‖Lr · |u| ,

where b is given by the identity 1
b + 1

r + 1
2 = 1 . Since r > N , one has b < 2∗

and one obtains:

|(kΦ′(∇u2),∇u)| ≤ C
(
1 + ‖D2u2‖Lr

)
‖k‖ · |u| .

Consequently, integrating (30) with respect to time in (0, t) , one is led to the
following:

1

2
|u(t)|2 + ν

∫ t

0

‖u(s)‖2 ds ≤
∫ t

0

‖∇u2(s)‖L∞ · |u(s)|2 ds

+

∫ t

0

C
(
1 + ‖D2u2(s)‖Lr

)
‖k(s)‖ · |u(s)| ds .

(31)
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In the sequel, we will derive an estimate of ‖k‖ in terms of ‖u‖ . In view of (31),
it will then be possible to apply Gronwall’s lemma and to deduce that u ≡ 0 ,
i.e. u1 ≡ u2 .

First, notice that
|µ(k1)− µ(k2)| ≤ l |k|

for some l > 0 . This happens because µ is locally Lipschitz-continuous and
both k1 and k2 are bounded. In turn, this is a consequence of the fact that, in
the PDE satisfied by ki ,

|∇ui|2 ∈ L∞(Q) and Φ′(∇ui) :∇ui ∈ L∞(Q) .

¿From the results in [10], taking into account that k0 ∈W 2,∞∩H1
0 , one deduces:

ki ∈ L2(W 2,p) for all finite p (in particular, ∇ki ∈ L2(L∞)).

¿From the equations satisfied by k1 and k2 , we find:

∂tk + u1 · ∇k −∇ · (µ(k1)∇k) = −u · ∇k2

+∇ · ((µ(k1)− µ(k2))∇k2) + ν(∇u1 +∇u2) :∇u

+ k1 (Φ′(∇u1) :∇u1 − Φ′(∇u2) :∇u2) + kΦ′(∇u2) :∇u2 .

Hence,

1

2

d

dt
|k|2 + µ0‖k‖2 ≤

∫
Ω

|∇k2| · |k| · |u|

+ l

∫
Ω

|∇k2| · |k| · |∇k|+ ν

∫
Ω

(|∇u1|+ |∇u2|) |k| · |∇u|

+ C

∫
Ω

k1 (1 + |∇u2|) |k| · |∇u|+ C

∫
Ω

|∇u2| · |k|2

≤ ‖∇k2‖L∞ · |k| · |u|+ l ‖∇k2‖L∞ · |k| · ‖k‖

+
[
ν(‖∇u1‖L∞ + ‖∇u2‖L∞) + C‖k1‖L∞(1 + ‖∇u2‖L∞)

]
|k| · ‖u‖

+ C‖∇u2‖L∞ · |k|2

in (0, T ) . It is thus clear that, for some g ∈ L1(0, T ) , one can write:

d

dt
|k|2 + µ0‖k‖2 ≤ g(t)|k|2 + ‖u‖2 . (32)

After some elementary computations, we find∫ t

0

‖k(s)‖2 ds ≤ G
∫ t

0

‖u(s)‖2 ds for all t ,
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where G is a constant only depending on ‖g‖L1 . Consequently, going back to
(31), one deduces:

|u(t)|2 + 2ν

∫ t

0

‖u(s)‖2 ds ≤ 2

∫ t

0

‖∇u2(s)‖L∞ · |u(s)|2 ds

+ C

(∫ t

0

‖u(s)‖2 ds
) 1

2
(∫ t

0

(
1 + ‖D2u2(s)‖Lr

)2 |u(s)|2 ds
) 1

2

≤ ν
∫ t

0

‖u(s)‖2 ds+ C

∫ t

0

(
1 + ‖∇u2(s)‖L∞ + ‖D2u2(s)‖2Lr

)
|u(s)|2 ds .

In other words, we have proved that

|u(t)|2 + ν

∫ t

0

‖u(s)‖2 ds ≤
∫ t

0

h(s)|u(s)|2 ds for all t

for some nonnegative h ∈ L1(0, T ) . This implies u ≡ 0 ; from (32), one also has
k ≡ 0 . Therefore, the proof is completed.

Acknowledgment: The authors are indebted to D. Blanchard, for several fruitful

discussions.
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search Report R93023, LAN, University Paris VI, 1993.

[14] M. Nallasamy – Turbulence models and their applications to the predic-
tion of turbulent flows, Computers & Fluids, Vol. 15, No. 2, pp. 151–194,
1987.

[15] W.C. Reynolds – Computation of turbulent flows, Annual Reviews
(1976), p. 183–207.

[16] J. Simon – Compact sets in the space Lp(0, T ;B), Annali Mat. Pura
Appl. (IV), Vol CXLVI (1987), p. 65–96.

[17] J. Simon – Existencia de solución del problema de Navier-Stokes con den-
sidad variable, Lectures at the University of Sevilla (Spain), 1990.

18


