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Abstract

Here we report that the structure of the Sinorhizobium fredii HH103

exopolysaccharide (EPS) is composed of glucose, galactose, glucuronic acid,

pyruvic acid, in the ratios 5:2:2:1 and is partially acetylated. A S. fredii HH103 exoA

mutant (SVQ530), unable to produce EPS, not only forms nitrogen fixing nodules

with soybean but also shows increased competitive capacity for nodule occupancy.

Mutant SVQ530 is, however, less competitive to nodulate Vigna unguiculata.

Biofilm formation was reduced in mutant SVQ530 but increased in an EPS

overproducing mutant. Mutant SVQ530 was impaired in surface motility and

showed higher osmosensitivity compared to its wild type strain in media containing

50 mM NaCl or 5% (w/v) sucrose. Neither S. fredii HH103 nor 41 other S. fredii

strains were recognized by soybean lectin (SBL). S. fredii HH103 mutants affected

in exopolysaccharides (EPS), lipopolysaccharides (LPS), cyclic glucans (CG) or

capsular polysaccharides (KPS) were not significantly impaired in their soybean-

root attachment capacity, suggesting that these surface polysaccharides might not

be relevant in early attachment to soybean roots. These results also indicate that

the molecular mechanisms involved in S. fredii attachment to soybean roots might

be different to those operating in Bradyrhizobium japonicum.
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Introduction

Rhizobia are soil a- and b-proteobacteria that establish nitrogen-fixing symbioses

with plants belonging to the Leguminosae family. As a result of this symbiotic

interaction, a new plant organ, called the nodule, is developed on roots of

leguminous plants where the bacteria fix nitrogen. Nodule development requires

reciprocal molecular communication between the two symbiotic partners [1–3].

The specific flavonoid cocktail exuded by legume roots and the specific rhizobial

lipochitooligosaccharides (also called Nod factors or LCOs) are two key-

determinant signals that contribute significantly to the mutual recognition of the

symbionts by acting at the very early stages of the nodulation process. Bacterial

LCOs are necessary, but not sufficient, for the formation of nitrogen-fixing

nodules on legume roots. In addition to nodulation (nod, nol, noe) genes and

those involved in nitrogen fixation (fix and nif genes), other rhizobial signalling

molecules are required for the formation of mature nitrogen-fixing nodules [4, 5].

Rhizobial surface polysaccharides, such as acidic exopolysaccharides (EPS), cyclic

glucans (CG), lipopolysaccharides (LPS) and capsular polysaccharides (KPS) are

clearly relevant for the formation of an effective symbiosis [6–13]. However, it is

not yet known how a particular legume perceives compatibility factors other than

LCOs.

In contrast to LPS and KPS, EPS is weakly associated with the bacterial surface

and is released in large amounts into the cell’s milieu [9]. The chemical structure

of exopolysaccharides produced by diverse rhizobial species has been determined.

They typically consist of branched repeating units formed by a variable number

(from 2 to 9) of monosaccharides [14, 15]. Glucose is the most abundant

monosaccharide of rhizobial EPS, with the exception of the EPS produced by

Bradyrhizobium japonicum, Azorhizobium caulinodans, and Rhizobium sp. isolated

from Vigna mungo nodules [14]. Sugar composition and their linkage in the

repeating unit, repeating unit size and their degree of polymerization as well as

non-carbohydrate decoration account for the large diversity of EPS structures

found among rhizobia [14]. Sinorhizobium meliloti Rm1021 produces two

exopolysaccharides that are structurally distinct. EPS I (also called succinoglycan)

contains an octasaccharidic repeating unit composed of glucose and galactose at a

7:1 molar ratio [16], while the repeating unit of EPS II (the so-called

galactoglucan) is a disaccharide of glucose and galactose [17]. The presence of

acetyl, succinyl, and pyruvic acid (as ketal) substituents confers anionic properties

to EPS [16].

Genes involved in EPS I synthesis (exo) have been extensively studied and many

fundamental aspects of the EPS I biosynthesis pathway are well known [15, 18–

20]. Similarly to other bacterial EPS, rhizobial EPS play a significant role in

biofilm formation, being the major component of its matrix, which provides a

physical barrier against diffusion of toxic compounds and protection against

environmental stresses [21].

Different reports set forth the notion that EPS is, in general, necessary for the

infection and correct formation of indeterminate nodules but not very relevant for

S. fredii HH103 EPS
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determinate-nodule-forming symbioses [18, 22, 23]. For example, in S. meliloti

Rm1021 and Rhizobium leguminosarum bv. trifolii an increased production of EPS

I has been described to enhance symbiosis with Medicago truncatula and Trifolium

pratense respectively [24, 25]. The species Rhizobium leguminosarum, which

includes three biovars, is an interesting example of this issue. Thus, R.

leguminosarum biovars trifolii and viciae, which infect plants forming indetermi-

nate nodules, require EPS for successful symbiosis, whereas biovar phaseoli, which

nodulates Phaseolus (determinate nodules) does not [25–30]. However, the

situation is actually more complicated and appears to depend more on the specific

bacterium-host plant relation. For example, S. fredii HH103 EPS is not required

for effective symbiosis with Glycyrrhiza uralensis, a legume which forms

indeterminate nodules [31], and Bradyrhizobium japonicum exoB mutants not

only showed delayed nodulation and severe loss of their competitive capacity in

soybean, but also induced the occurrence of plant defence reactions [32, 33].

Sinorhizobium fredii HH103 is a fast growing rhizobial strain that nodulates

Glycine max (soybean) and many different herbaceous, shrub and tree legumes

able to form determinate or indeterminate nodules [34]. The genome sequence of

S. fredii HH103 (one chromosome and 6 plasmids) is available in the EMBL

Nucleotide Sequence Database (EMBL-Bank) under accession numbers

HE616890 to HE616899 [35]. S. fredii HH103 produces at least five different

surface polysaccharides: exopolysaccharides (EPS), lipopolysaccharides (LPS), two

different types of capsular polysaccharides (KPS [K-antigen polysaccharides]),

and cyclic glucans (CG). S. fredii HH103 CG consists of 18–24 units of R2)-b-D-

Glcp-(1R, partially substituted with glycerol-1-phosphate at the C-6 position of

some of the glucose units [7]. Two different types of KPS are constitutively

produced by S. fredii HH103. One of them, called poly-PseAc, is a homopolymer

of a derivative of the pseudaminic acid [36], while the other is a homopolymer of

3-deoxy-D-manno-oct-2-ulosonic acid [37] for which no symbiotic role has been

assigned.

S. fredii HH103 mutants affected in the production of KPS, CG or EPS have

been already constructed and described. HH103 mutants unable to produce EPS

are fully effective with soybeans [11], while those unable to produce CG only form

small knot like structures (pseudonodules) that do not fix nitrogen and are devoid

of rhizobial cells [7]. The HH103 poly-PseAc (hereafter called ‘‘KPS’’) plays an

important role in the S. fredii-soybean symbiosis, since mutants affected in genes

of the rkp-1 and rkp-3 regions are symbiotically impaired with soybean

[11, 31, 38, 39]. All these studies led to the conclusion that KPS and GC, but not

EPS, are relevant for the symbiotic capacity of S. fredii HH103 with soybean. In

this work we determine the chemical structure of the S. fredii HH103 EPS and

show that a S. fredii HH103 EPS mutant is more competitive than its parental

strain to nodulate soybean cv. Williams. In Vigna unguiculata plants, however,

this HH103 EPS mutant is outcompeted by its parental wild-type strain. We also

conclude that S. fredii HH103 attaches to soybean roots by a mechanism in which

neither the bacterial polysaccharides mentioned above nor soybean lectin (SBL)

appear to be involved. Furthermore, we show that HH103 EPS is essential for the

S. fredii HH103 EPS
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capacity of this strain to cope with an osmotic stress and to form biofilms in both

plastic and glass surfaces, and that this polysaccharide has also a role in surface

motility.

Results

Determination of the chemical structure of the S. fredii HH103
exopolysaccharide

The exopolysaccharide (EPS) was isolated from culture medium of S. fredii

HH103 by precipitation with ethanol and then purified by dialysis. Proteins had

been previously eliminated by treatment with proteinase K. Initial composition

analysis indicated that EPS was composed by glucose and galactose in a ratio close

to 5:2.
1H-NMR spectrum (Fig. 1A) shows multiple signals in the anomeric region

(4.50 to 5.7 ppm) and signals of possible substituent groups: acetyl (close to

2.2 ppm) and pyruvate (close to 1.5 ppm); given the complexity of the structure,

the initial approach was to partially hydrolyse the polysaccharide and to study the

structure of the isolated oligosaccharides. Thus, EPS was treated with 0.5M TFA at

100 C̊ and the resulting oligosaccharides were isolated by dialysis, size exclusion

chromatography (SEC), and silica gel chromatography. NMR studies on one of

the fractions (S1 Figure) indicates that it contains the trisaccharide a-GlcpA-

(1R3)-a-GlcpA-(1R4)-Glc. The carboxyl group of uronic acids stabilizes

glycosidic linkages during hydrolysis [40], which explains that glucuronic acid had

not been found in the monosaccharide analysis. Additionally, NMR studies on

another fraction (data not shown) indicates the presence of a R4)-a-GlcpA and a

non-reducing terminal a-Galp substituted at O-4 and O-6 by a pyruvate group as

ketal.

Carboxylic groups of uronic acids were reduced to –CD2OH groups by the

method of carbodiimide (using NaBD4) and the modified polysaccharide was

submitted to several analyses. The monosaccharide analysis indicates that it

contains glucose and galactose in a ratio 7:2. The absolute configuration analysis

showed that all of the residues are D. Finally, methylation analysis gave the

partially methylated and acetylated alditols corresponding to R3)-D-Galp, R3)-

D-6-d2-Glcp (from a glucuronic acid unit), R4)-D-Glcp (coeluting with R4)-D-6-

d2-Glcp), R6)-D-Glcp, R4,6)-D-Glcp, and R4,6)-D-Galp in a ratio close to

1:1:4:1:1:1.

The occurrence of R3) and R4)-linked uronic acids makes appropriate the

degradation of EPS with lithium in ethylenediamine [41]. When the exopoly-

saccharide was treated in such way, a polysaccharide was obtained (EPS-Li), which

was purified by SEC and studied by NMR; this result indicates that glucuronic

acid units are located in branches, and not in the main chain.
1H-NMR of EPS-Li (Fig. 1C) shows only signals in the anomeric region

corresponding to b-configurations. 2D NMR experiments (DQF-COSY, TOCSY,

ROESY, HSQC (Fig. 2), HMBC, and HMQC-TOCSY), together with data from

S. fredii HH103 EPS
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program CASPER [42] lead to the determination of the structure for this

polysaccharide, as presented in Fig. 3 and summarized in S1 Table. Thus, EPS-Li

consists of an unbranched polysaccharide with a repeating unit containing five

glucose and one galactose units, all of them having b-configurations. Moreover,

according with the previous monosaccharide and methylation analysis, the

exopolysaccharide repeating unit must have a branch composed of a galactose and

two glucuronic acid residues.

The study of the complete sugar backbone was carried out on the

polysaccharide obtained after partial hydrolysis and purified by SEC. Its 1H-NMR

spectrum is shown in Fig. 1B. It is significant the presence of signals at 5.4 ppm,

corresponding to a-anomeric protons, and 1.5 ppm, characteristic of an pyruvate

ketal group. Again, 2D NMR experiments (DQF-COSY, TOCSY, HSQC (Fig. 4),

and HMBC) as well as the NMR study of EPS-Li allow the assignment of most of

the NMR signals (Table 1). Signals at 5.4 ppm corresponds to three residues with

a-configuration, forming the oligosaccharide a-D-Galp-(1R4)-a-D-GlcpA-

(1R3)-a-D-GlcpA-(1R; the galactose residue is substituted at O-4 and O-6 with a

pyruvate ketal group, whose absolute configuration can be deduced from chemical

shifts of residue G [43]. The branching point can be identified by a downfield shift

Fig. 1. 1H-NMR (500 MHz) spectra of exopolysaccharide of S. fredii HH103: a) after isolation and purification by dialysis, b) after partial hydrolysis,
and c) after lithium degradation. Signals from culture medium are marked with asterisks.

doi:10.1371/journal.pone.0115391.g001

S. fredii HH103 EPS
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of C-4 of residue B with regard to its value in EPS-Li (78.3 and 70.3 ppm,

respectively). The hydrolysis has partially released the terminal galactose residues

in this polysaccharide, as they can be found signals corresponding to a terminal

glucuronic acid unit (labelled H9). This structure has the same carbohydrate

backbone than that found in the exopolysaccharide isolated from Sinorhizobium

fredii strain NGR234 [44–46]. When comparing 1H-NMR spectra of exopoly-

saccharide isolated from S. fredii HH103 (Fig. 1A) and S. fredii strain NGR234

[47] it can be seen that both spectra are almost identical. It is necessary to point

out that both GlcA residues are a in the structure described for NGR234 by

Djordjevic et al. [44], but it was changed by mistake in one of the figures of a later

publication in spite of being correctly described in the text. Unfortunately, this

mistaken figure has been taken in later publications.

The exopolysaccharide of NGR234 bears up to three O-acetyl groups, two of

them located on the non-reducing terminal galactose (O-2 and/or O-3) and a

third one whose location has not been determined [45]. NMR of exopolysac-

Fig. 2. 1H (500 MHz)-13C (125 MHz) HSQC of the lithium-degraded polysaccharide obtained from EPS.

doi:10.1371/journal.pone.0115391.g002

Fig. 3. Structure for the lithium-degraded polysaccharide obtained from EPS.

doi:10.1371/journal.pone.0115391.g003

S. fredii HH103 EPS
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charide from S. fredii HH103 shows signals from three acetyl groups (Fig. 1A);

two of them are quite labile as they are lost after heating in water at 80 C̊ for

several hours (S2 Figure). Regarding H-1 of unit G, it appears as three different

signals in a ratio 50:25:25, corresponding to an a-Galp residue without acetyl

groups (G1), or with H-1 downfield shifted because of neighbour acetyl groups at

O-2 and/or O-3. After heating, acetyl groups are released, as signals from G19 and

G10 decrease together with those from two acetyl groups (Ac1 and Ac2). A third

acetyl group remains unchanged under this treatment and its location has not

been determined.

All these results show that the chemical structure of the EPS produced by S.

fredii HH103 is that described in Fig. 5, being equal to that of S. fredii NGR234

[44].

The S. fredii HH103 exo cluster

The S. fredii HH103 genome sequence has become available recently [34, 35].

Most genes involved in EPS biosynthesis are located on the largest plasmid

(pSfHH103e, 2096125-bp, Accession: NC_016815.1) and grouped into a cluster

that present the same genetic organisation than that found in S. fredii NGR234.

This cluster (Fig. 6) includes a regulatory gene (exoX), genes involved in EPS

polymerisation and transport (exoF, exoP, exoQ, exoK), as well as structural genes

coding for glucosyl transferases (exoA, exoL, exoM, exoO, exoU), a galactosyl

Fig. 4. 1H (500 MHz)-13C (125 MHz) HSQC of the partially hydrolysed polysaccharide obtained from
EPS.

doi:10.1371/journal.pone.0115391.g004

S. fredii HH103 EPS
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Table 1. Chemical shifts (1H and 13C) for the partially hydrolysed exopolysaccharide isolated from S. fredii HH103.

Unit Signal 1 2 3 4 5 6a 6b

A 1H 4.55 3.36 3.51 3.67 3.61 n.aa n.a

R4)-b-D-Glcp 13C 103.0 73.5 76.2 79.3 75.3 n.a

B 1H 4.52 3.34 3.79 3.65 3.78 4.29 3.94

R6)-b-D-Glcp 13C 103.2 73.6 76.3 78.3 74.0 68.7

C 1H 4.53 3.34 3.50 3.50 3.62 4.19 3.88

R6)-b-D-Glcp 13C 103.1 73.6 76.2 70.1 75.3 69.2

D 1H 4.54 3.38 3.79 3.75 n.a n.a n.a

R4)-b-D-Glcp 13C 102.9 73.4 74.1 78.8 n.a n.a

E 1H 4.71 3.43 3.67 3.63 3.60 3.95 3.83

R4)-b-D-Glcp 13C 103.9 73.6 74.7 79.2 75.1 60.6

F 1H 4.54 3.72 3.83 4.17 3.72 3.77 3.77

R3)-b-D-Galp 13C 103.1 70.6 82.5 68.9 75.3 61.4

G 1H 5.44 3.93 3.93 4.22 3.73 4.03 3.89

R4,6)-a-D-Galp 13C 100.5 68.6 68.5 72.2 63.1 65.5

H 1H 5.39 3.68 3.98 3.81 4.58 _

R4)-a-D-GlcpA 13C 99.7 71.8 73.6 82.6 71.2 n.a

H9 1H 5.39 3.63 3.77 3.59 4.52 _

a-D-GlcpA 13C 99.6 71.9 73.3 71.9 71.6 n.a

I 1H 5.41 3.75 3.85 3.84 4.21 _

R3)-a-D-GlcpA 13C 100.5 70.4 79.7 72.0 72.4 n.a

R-Pyr 1H _ _ 1.51
13C 174.5 100.0 25.5

aNot assigned.

doi:10.1371/journal.pone.0115391.t001

Fig. 5. Structure for the exopolysaccharide isolated from S. fredii HH103. The structure includes three O-
acetyl groups, two of them located at O-2 and/or O-3 of unit G. The location of the third acetyl group is
unknown.

doi:10.1371/journal.pone.0115391.g005

S. fredii HH103 EPS
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transferase (exoY), an UDP-glucose-4-epimerase (exoB), an acetyl transferase

(exoZ), and exoN (which codes for the protein responsible for the synthesis of

UDP-glucose from glucose-1P). This genetic region is also very similar to that

present in S. meliloti Rm1021, although the later contains 4 genes that are not

present in S. fredii HH103: exoV (coding for a pyruvyl transferase), exoW (glycosyl

transferase), exoT (Wzx-type transport protein), and exoH (succinyl transferase).

In a previous work we obtained a S. fredii HH103 mutant derivative, called

SVQ530, in the exoA gene [11]. NMR analyses confirmed that the extracellular

milieu of S. fredii SVQ530 cultures does not contain EPS (our own unpublished

results). This is what it is expected if the ExoA protein has the same function in S.

fredii HH103 and S. meliloti Rm1021: the addition of the first glucose (Fig. 5, E)

to the lipid-galactose structure (Fig. 5, F) of the nascent EPS repeating unit.

Competition for nodulation of a S. fredii HH103 mutant (exoA)
unable to produce exopolysaccharide

The S. fredii HH103 exoA mutant, SVQ530, induces the formation of nitrogen

fixing nodules in both Glycine max cv. Williams and Vigna unguiculata cv. Bisbee

Red [11], [38]. S3 Figure shows the aspect of both roots and aerial parts of plants

inoculated with strain SVQ530 or its parental strain HH103 RifR. SVQ530 not

only forms nitrogen fixing nodules with soybean Williams [11] but also with the

wild soybean (Glycine soja) accession PI597455 (data not shown). Since the

mutation in exoA did not impair S. fredii HH103 to nodulate primitive and

advanced soybeans, four independent competition assays were carried out to

investigate the capacity of SVQ530 to occupy soybean Williams nodules in

competition with its parental wild type strain HH103. The percentage of soybean

nodules occupied by the gentamycin-resistant co-inoculant (SVQ530) was higher

in all the four experiments and significantly different (p,0.05) in three of them

(Table 2). These results suggest that the absence of EPS production enhances, or

Fig. 6. Genetic organization of the S. fredii HH103 exo region and a comparison to that of S. meliloti 1021. The HH103 DNA region covered by cosmid
pMUS764 is also shown.

doi:10.1371/journal.pone.0115391.g006

S. fredii HH103 EPS
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at least does not affect negatively, the S. fredii HH103 capacity to compete for

soybean nodule occupancy. In Vigna unguiculata, however, mutant SVQ530 was

significantly less competitive than its parental EPS-producing strain (Table 2).

S. fredii HH103 does not bind to soybean lectin (SBL)

The fact that mutant SVQ530 is not negatively affected in its competitive capacity

to nodulate soybean prompted us to investigate whether S. fredii HH103 binds, or

not, to soybean lectin (SBL). Lectin-binding capacity of different fast- and slow-

growing soybean rhizobia grown on nitrocellulose filters was determined using

peroxidase-labelled soybean lectin (Sigma) as described previously [48]. Lectin

binding was considered positive if the area where the bacteria grew became blue

(Fig. 7). All the B. japonicum strains tested showed positive binding to the

peroxidase-labelled soybean lectin while those belonging to B. elkanii did not

develop any detectable blue colour. Positive signals were also found with B.

liaoningense (another soybean symbiont). Forty-two S. fredii strains (including

HH103) and other Bradyrhizobium strains that do not nodulate soybeans also

failed to bind the SBL (Table 3).

S. fredii HH103 RifR cultures grown in the presence of the flavonoid genistein

did not bind to SBL (Fig. 7D), which indicates that this soybean-secreted

flavonoid able to induce the transcription of S. fredii HH103 nodulation genes

[49] does not induce the presence of SBL receptors.

S. fredii HH103 mutants affected in bacterial surface

polysaccharides (SPs) are not significantly impaired in their

attachment capacity with soybean roots

Because mutant SVQ530 showed enhanced competitiveness to nodulate soybeans

in spite of not producing EPS, we investigated whether the capacity of this mutant

to attach to soybean roots was different to that of its parental-strain HH103 RifR.

Since rhizobial mutants impaired in the production of a particular surface

polysaccharide (SP) can be also affected in the production of other SPs, a

collection of S. fredii HH103 mutants negatively affected in the production of

Table 2. Competition between HH103 RifR and its exoA derivative (SVQ530) on Glycine max cv. Williams and V. unguiculata cv. Bisbee Red.

Legume Experiment Total number of nodules analyzed % nodules occupied by SVQ530

Glycine max I 161 60.8 **

II 96 56.2

III 120 77.5 **

IV 120 62.0 **

Vigna unguiculata I 120 19.2 **

II 120 41.6 *

Nodule occupancy by strain SVQ530 was determined by assessing the gentamycin resistant marker (presence of the lacZDp-GmR cassette).
Determinations were carried out 6 weeks after inoculation. Level of significance (p,0.05 ** and p,0.10 *) of the Chi-square analyses for nodule occupancy.

doi:10.1371/journal.pone.0115391.t002

S. fredii HH103 EPS
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diverse SPs (EPS, cyclic glucans, KPS and LPS) were also included in this study.

None of the S. fredii HH103 SPs mutants showed any clear reduction of the

number of bacteria attached to soybean cv. Williams roots (Table 4). Thus, in the

experimental conditions used, S. fredii HH103 surface polysaccharides (SPs)

appear not to be significantly involved in attachment to soybean roots.

Fig. 7. Soybean-lectin (SBL) binding to Bradyrhizobium and S. fredii strains. SBL was labelled with
peroxidase as described by Liang and Emerich (1987). Panels: A, B: B. japonicum USDA110; C, D: S. fredii
HH103; E: B. elkanii USDA46; F: B. liaoningense 2281; G: S. fredii SMH12; H: S. fredii HWG35. Panels B and
D correspond to cultures grown in the presence of 3.37 mM genistein.

doi:10.1371/journal.pone.0115391.g007

Table 3. Soybean lectin (SBL) binding assays to different species of Bradyrhizobium and Sinorhizobium.

Bacteria Strain

Binding to soybean lectin
(SBL) conjugated with
peroxidase A

Symbiotic capacity
with Glycine max B

Bradyhizobium

B. japonicum USDA6, USDA38, USDA110, USDA123, USDA122,
USDA136 (5CB1809), USDA138.

+ Fix+

B. elkanii USDA46, USDA76 - Fix+

Bradyrhizobium liaoningense 2281 + Fix+

B. betae PL7HG1 - Nod- (C)

B. pachyrhizi PAC48 - Nod- (D)

B. canariense ISLU16 - Nod-

Sinorhizobium fredii

- Bacteria isolated from Chinese
soils

USDA192, B1, B2, B4, B6, B8, B50, HH4, HH18, WH5,
WH7, HW26, S4

- Fix+ (E)

- Bacteria isolated from Chinese
soils

HH103, B33, HH3, HH5, HH25, HH29, HHG35, WH4,
WHG11, WHG14-S, HW1, HW5, HW16, HW22, HWG35,
WW2, WW9, WWG11, WWG14, S1, S2, S5, S8, S28,
S44, S48, S49

- Fix+ (F)

- Strain isolated from Vietnamese
soils

SMH12 - Fix+ (F)

- Strain isolated from Papua New
Guinean soils

NGR234 - Nod- (G)

A+, dark purple spot; -, absence of coloured spot.
BNod-, nodules are not formed; Fix-, ineffective or poorly effective nodules are formed; Fix+, effective nitrogen-fixing nodules are formed.
CBacteria isolated from Beta vulgaris (sugar beet).
DBacteria isolated from Pachyrhizus ahipa.
EFix+ with some Asiatic soybean cultivars but Nod- or Fix- with the American soybean cv. Williams.
FFix+ with some Asiatic soybean cultivars and also with the American soybean cv. Williams.
GBroad host range S. fredii strain isolated from nodules of Lablab purpureus. Nod- with all soybeans tested.

doi:10.1371/journal.pone.0115391.t003
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The S. fredii HH103 EPS is involved in biofilm formation

Bacterial surface polysaccharides are known to participate in biofilm formation

[8]. Since S. fredii HH103 does not bind to the soybean lectin and none of the

mutants affected in SPs production are significantly affected in their attachment

capacity to soybean roots, we investigated whether any of these polysaccharides is

involved in biofilm formation on inert surfaces. S. fredii HH103 mutants affected

in the production of EPS (mutant SVQ530), cyclic glucans (SVQ562), KPS

(SVQ536 and SVQ575), and KPS and LPS (SVQ581) were tested for their capacity

to form biofilms on a plastic surface. Mutants SVQ536, SVQ575, and SVQ581 did

not show differences with respect to the parental strain HH103 RifR (Fig. 8).

The biofilm formation capacity of mutant SVQ530 was severely reduced

(Fig. 8). Conjugal transfer of cosmid pMUS764 to SVQ530 produced tetracycline-

resistant transconjugants that have gained EPS production (data not shown).

Cosmid pMUS764 was isolated from a S. fredii HH103 genomic library

constructed in the cosmid vector pLAFR1 and it restores EPS production in S.

meliloti AK631, a spontaneous exoB mutant of S. meliloti Rm41 [50]. Sequencing

of the 59- and 39-regions of the S. fredii HH103 DNA insert cloned in pMUS764

showed that it contains an approximately 25.5-kb segment of plasmid pSfHH103e

(covering from 553370 to 578921, accession number HE616899). Thus, with the

only exception of exoP, cosmid pMUS764 carries all the exo cluster of plasmid

SfHH103e (Fig. 6). The biofilm formation capacity of mutant SVQ530 carrying

pMUS764 was even higher than that of S. fredii HH103 RifR (Fig. 8). This could

be due to the fact that the amount of EPS (mg EPS/mL) produced by SVQ530

pMUS764 (85.4¡9.6) is significantly higher (a55%) than that recovered from

HH103 RifR cultures (68.1¡5.7). In fact, mutant SVQ562, which is unable to

produce cyclic glucans but overproduces EPS [7], also produced a higher amount

of biofilm when compared to its parental wild-type strain HH103 RifR. As

expected, introduction of the empty cosmid vector pLAFR1 into SVQ530 did

restore neither EPS production (data not shown) nor the capacity to form

biofilms (Fig. 8). The growth rates of all strains tested were similar (data not

shown).

Table 4. Binding assays of S. fredii HH103 RifR and different surface polysaccharide (SPs) mutants to Glycine max cv. Williams roots.

Inoculant A Characteristics of the inoculants Number of bacteria attached per gram of root

S. f. HH103 RifR Wild type surface polysaccharides are produced 7–57B6104 (27.7¡19.33) C

S. f. SVQ530 S. f. HH103 exoA, EPS is not produced 2–246104 (11.39¡9.40)

S. f. SVQ562 S. f. HH103 cgs, cyclic glucans are not produced 3–306104 (15.77¡13.44)

S. f. SVQ536 S. f. HH103 rkpA, KPS is not produced 6–546104 (33.00¡20.12)

S. f. SVQ613 S. f. HH103 lpsB, LPS is altered 13–156104 (14.00¡1.00)

S. f. SVQ581 S. f. HH103 rkpM, KPS is not produced and LPS is altered. 12–286104 (18.25¡7.14)

ABibliographic references in which each of the S. fredii HH103 SPs mutants is described are listed in Table 6.
BNumbers refer to the highest and lowest values found in the different experiments carried out.
CMean¡standard deviation. At least three independent experiments were carried out for each treatment.

doi:10.1371/journal.pone.0115391.t004
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The putative relevance of S. fredii HH103 EPS in bacterial attachment to inert

surfaces was further investigated on glass surfaces. Mutants SVQ530 (EPS-) and

SVQ562 (CG- EPS++) were cultivated in MGM medium containing glass slides

(see Material and Methods). Optical microscopy of crystal-violet-stained bacteria

attached to the slides showed that the S. fredii HH103 exoA mutant is impaired in

its attachment capacity to glass surfaces only at a short incubation period (one

day) but not later (four days). In contrast, the attachment capacity of SVQ562 is

higher than that of HH103 RifR at short and long incubation periods (S4 Figure).

S. fredii HH103 RifR and its mutant derivative SVQ530 carrying cosmid pMUS764

showed similar capacity to form biofilms on glass surfaces (data not shown).

S. fredii HH103 cgs expression is not affected by the exoA
mutation

S. fredii SVQ562 is mutated in the cgs gene (formerly called ndvB). This mutant

fails to produce cyclic glucans but overproduces EPS and its exoA gene is

transcribed at higher levels than in HH103-RifR [7]. Two independent real-time

reverse-transcription polymerase chain reaction (rt-RT-PCR) experiments were

carried out to investigate whether the cgs gene, encoding a cyclic glucan synthase,

was transcribed at higher levels in the exoA background (mutant SVQ530) than in

the wild type strain HH103-RifR. The expression level of the cgs gene in SVQ530

was similar (1.03¡0.16) to that present in the wild type strain. Thus, S. fredii

HH103 exoA gene is overexpressed in a mutant unable to produce cyclic glucans

(SVQ562) but transcription of the cgs gene is not increased in a mutant unable to

produce EPS (SVQ530). To our knowledge, this is the first time that cgs

expression is analysed in an EPS-deficient rhizobial strain. However, previous

studies carried out in S. fredii NGR234 and S. meliloti showed that expression of

Fig. 8. Attachment to plastic surfaces of S. fredii HH103 and various mutants affected in surface
polysaccharide production. Bacterial biofilm formation was estimated by the relation OD570/OD600 obtained
for the different bacterial cultures. Mutant SVQ530 (exoA) complemented with a cosmid clone (pMUS764)
carrying the S. fredii HH103 exo cluster and mutant SVQ530 carrying the empty cosmid vector pLAFR1 were
also included in these experiments.

doi:10.1371/journal.pone.0115391.g008
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cgs was not affected by changes in osmolarity of the growth medium either

[51, 52].

The S. fredii HH103 exoA mutant is impaired in surface motility

Recently, the exopolysaccharides EPS I and EPS II produced by S. meliloti have

been shown to facilitate surface translocation [53, 54]. To investigate if S. fredii

motility was affected by the exoA mutation, strains HH103 and SVQ530 were

assayed in motility tests. No significant differences in swimming motility were

detected on 0.3% agar BM between the wild type strain (11.4¡0.4 mm) and its

exoA mutant derivative (11.6¡0.4 mm). However, a different behavior was

observed between these two strains on semisolid MM (0.6% agar). The exoA

mutation significantly impaired the surface translocation exhibited by the wild

type strain, a defect that could be complemented by introducing the exo cluster-

containing cosmid pMUS764 but not when the empty vector pLAFR1 was used

(Fig. 9 and Table 5). The behaviour of the cgs-deficient, EPS-overproducing

mutant SVQ562 was also examined. This mutant showed a poor surface

colonization during the first 24 h but it increased with time. In contrast to the

exoA mutant, the surface area colonized by SVQ562 after 48 and 72 hours was

similar to that of the wild type. These results indicate that S. fredii EPS promotes

surface translocation. Although colonizing a similar surface area, a different

surface spreading pattern was observed for HH103 and SVQ562. Thus, whereas

HH103 colonies showed irregular shapes and the presence of protruding tendrils,

those formed by SVQ562 were circular with smooth borders. This could indicate

that different mechanisms of surface translocation are taken place in these strains

but this hypothesis has not been investigated here.

Effect of the exoA mutation on S. fredii HH103 tolerance to osmotic

and oxidative stress

To test if the EPS of S. fredii HH103 contributes to bacterial protection against

unfavourable environmental conditions, tolerances to oxidative and hyperosmotic

stresses of mutant SVQ530 were analyzed and compared to those shown by the

wild type strain. Differences in sensitivity to the oxidizing agents H2O2 or

paraquat were not detected (data not shown). In contrast, mutant SVQ530

showed an altered tolerance pattern to hyperosmotic stress in comparison to its

parental strain. Osmotolerance of S. fredii strains was determined in TY and

defined MM media supplemented with NaCl (25 mM, 50 mM, 75 mM, 100 mM,

200 mM, 300 mM, and 400 mM) and in MM supplemented with sucrose (5%

and 10% W/V).

The addition of 50-100 mM of NaCl to TY medium significantly decreased the

growth of S. fredii HH103 RifR and its exoA mutant derivative, being this effect

slightly stronger in the case of SVQ530 (Fig. 10A). On the other hand, SVQ530

(pMUS764) was less osmotolerant in TY medium supplemented with NaCl than

HH103 or SVQ530. The fact that the introduction of the empty vector pLAFR1

S. fredii HH103 EPS
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did not affect SVQ530 survival under this condition suggests that the presence of

extra copies of the exo cluster could be responsible for the increased

osmosensitivity of this strain in TY medium supplemented with NaCl.

The differences in osmotolerance showed by HH103 RifR and SVQ530 were

even stronger in MM media. Thus, whereas the presence of NaCl in MM at a final

concentration of 50 mM did not alter the growth ability of the wild type strain,

the survival of its exoA mutant derivative was severely impaired (Fig. 10B). A

higher osmosensitivity of SVQ530 compared to that of the wild type strain was

also detected when the osmotic stress was imposed by adding sucrose to MM

(Fig. 10C). The presence of cosmid pMUS764, but not that of pLAFR1, increased

the survival of SVQ530 in MM media supplemented with sucrose and, partially, in

MM media supplemented with NaCl.

Discussion

S. fredii HH103, B. japonicum, and B. elkanii effectively nodulate many soybean

cultivars but produce EPS that are structurally different. B. japonicum USDA110

EPS is composed of pentasaccharide subunits containing D-mannose, D-

Fig. 9. Surface motility of S. fredii HH103 RifR, mutant SVQ562 (cgs), mutant SVQ530 (exoA), mutant
SVQ530 complemented with a cosmid clone (pMUS764) carrying the S. fredii HH103 exo cluster, and
mutant SVQ530 carrying the empty cosmid vector pLAFR1 on semisolid MM plates containing 0.6%
Difco Agar, Noble (BD). A representative example of at least three experiments is shown.

doi:10.1371/journal.pone.0115391.g009

Table 5. Surface motility (in mm) of different S. fredii strains semisolid MM plates containing 0.6% Difco Agar, Noble (BD).

24 h 48 h 72 h

HH103 (wt) 11.8¡0.6 a 13.4¡1.2a 15.5¡1.4a

SVQ530 (exoA) 8¡0.5b 9¡0.9b 8.8¡0.6b

SVQ530 pMUS764 10.1¡0.5a 13.9¡0.9a 14.9¡1.2a

SVQ562 (cgs) 6.6¡0.1b 11.7¡0.2a 14.5¡0.4a

Mean values and standard errors obtained from three independent experiments with at least three replicates each.
a,bDifferent letters indicate significant differences according to an ANOVA test (P # 0.01).

doi:10.1371/journal.pone.0115391.t005
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galacturonic acid, D-glucose, and D-galactose in a molar ratio 1:1:2:1 (reviewed by

[19]). The EPS produced by sixteen other B. japonicum strains has the same sugar

composition [55]. The EPS repeating-unit of B. elkanii is a tetrasaccharide that

contains L-rammnose and D-glucuronic acid in a 3:1 molar ratio [56]. In contrast,

the EPS repeating-unit of S. fredii HH103 is a nonasaccharide composed of five

units of D-glucose, two units of D-galactose and two units of D-glucuronic acid.

Methyl substitutions are present in the slow-growers (B. japonicum and B. elkanii)

while pyruvyl substitutions are found in the fast-grower (S. fredii). Acetyl

substitutions are present in B. japonicum USDA110 and S. fredii HH103 but not in

B. elkanii. In contrast to the structural divergences among the EPS produced by

the different soybean-rhizobia analyzed, the S. fredii HH103 EPS is more similar

to that of S. meliloti Rm1021 [16] and identical to the S. fredii strain NGR234 EPS

[44], two rhizobial strains unable to nodulate soybeans. Hence, the structure of

Fig. 10. Osmotolerance of S. fredii HH103 RifR, mutant SVQ530 (exoA), mutant SVQ530 complemented with a cosmid clone (pMUS764) carrying
the S. fredii HH103 exo cluster, and mutant SVQ530 carrying the empty cosmid vector pLAFR1. Bacterial cultures were grown on TY (A) and MM (B)
supplemented with different concentrations of NaCl, and on MM supplemented with different concentrations of sucrose (C). In each row, drops contained
approximately the number of CFU indicated on the left. A representative example of at least two experiments is shown. Pictures were taken 5 days after
inoculation except for TY medium supplemented with 100 mM NaCl where the picture was taken 7 days after inoculation.

doi:10.1371/journal.pone.0115391.g010
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the EPS produced by S. fredii HH103 is more related to close-related rhizobia

unable to nodulate soybeans than to that of other soybean microsymbionts.

S. fredii HH103 exoA does not show any symbiotic impairment with G. max cv.

Williams or Vigna unguiculata [11, 38]. The number of nodules formed by

soybean and V. unguiculata plants inoculated with SVQ530 was slightly higher

and slightly lower respectively than in those inoculated with HH103 RifR.

Although these differences were not statistically significant, they correlate with the

fact that SVQ530 shows enhanced and reduced competitive capacity with soybean

Williams and V. unguiculata respectively (see Table 2). Thus, the symbiotic

importance of S. fredii HH103 EPS varies among determinate-nodule-forming

legumes, reducing or increasing the bacterial competitive capacity to nodulate.

The apparent lack of specific EPS structural motifs in soybean-nodulating

(sino/brady)rhizobia commented above fits well with the general belief that

bacterial EPS is not relevant for soybean nodulation. However, an exoB mutant of

B. japonicum USDA110 showed reduced competitivity on soybean [32]. Similarly,

other reports have shown that some B. japonicum USDA110 EPS mutants were

symbiotically defective on G. soja PI468397 [33] and PI339871A [57] while here

we report that a S. fredii exoA mutant formed effective nodules with the wild

soybean accession PI597455 and showed increased competitivity on soybean

Williams. These differences indicate that the symbiotic roles played by B.

japonicum and S. fredii EPS might be different according to their different

structure. This hypothesis is supported by two other results presented here:

soybean lectin (SBL) binds to B. japonicum but not to S. fredii strains (Table 3)

and S. fredii exoA is not impaired in its attachment capacity to soybean roots.

Moreover, the presence of genistein, a flavonoid present in soybean root exudates,

provokes a dramatic reduction of the amount of EPS produced in S. fredii HH103

[58] but not in B. japonicum USDA110 (our own unpublished results).

The total absence of EPS in SVQ530 does not provoke symbiotic impairment

with soybeans but increases the bacterial competitive capacity to occupy soybean

nodules. B. japonicum USDA 110 mutants producing EPS devoid of galactose

induced ineffective empty pseudonodules [57] or showed reduced competitive-

ness for nodulation with G. max cv. Preston [32]. The fact that certain alterations

of the EPS structure appear to be more deleterious for the symbiosis than the total

absence of EPS production suggests that EPS might play a signalling role in early

nodulation events and that ‘‘wrong signalling’’ by altered EPS forms could trigger

plant defence reactions [32, 33, 59]. A similar situation has been described for

another determinate-nodule-forming symbiosis: a Mesorhizobium loti R7A exoA

mutant formed nitrogen-fixing nodules on Lotus corniculatus and L. japonicus

‘Gifu’ whereas an exoU mutant (affected in later steps of EPS biosynthesis)

induced empty nodules on both hosts and, occasionally, a few infected nodules

following a lengthy delay [60].

Surprisingly, none of the HH103 mutants affected in the production of surface

polysaccharides (EPS, KPS, LPS, and CG) used in this study were significantly

affected in their attachment capacity to soybean roots (Table 4), suggesting that

these polysaccharides might not play a relevant role in the early steps of the

S. fredii HH103 EPS
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soybean-S. fredii recognition process. This result is in contrast to the known

relevance of cyclic glucans for attachment of other sinorhizobia to their host

plants roots, such as that of S. meliloti to alfalfa [61] or that of S. fredii NGR234 to

Vigna unguiculata and Leucaena leucocephala roots [51]. Moreover, our results

also indicate that the molecular mechanisms mediating in S. fredii HH103

attachment to soybean roots could be different from that operating in the B.

japonicum-soybean symbiosis. One could hypothesise that S. fredii HH103

adhesins might act as relevant components in bacterial attachment to soybean

roots while the interaction between B. japonicum EPS and soybean lectins could be

pivotal in the first steps of this interaction. In the R. leguminosarum-Pisum

sativum symbiosis [62] it has been established that under slightly alkaline

conditions, bacterial attachment would mainly take place through a rhicadhesin-

mediated mechanism whereas under acidic conditions plant lectins would be

essential for bacterial attachment to the plant [62, 63]. In accordance to this

hypothesis, several reports indicate that S. fredii is more competitive than B.

japonicum if soybeans are growing under alkaline conditions while the former is

overcompeted by the latter under acidic conditions [64, 65].

Results presented here indicate that neither HH103 mutants affected in KPS

(SVQ536) nor those affected in both KPS and LPS (SVQ575 and SVQ581) are

affected in their attachment capacity to plastic surfaces (Fig. 8). S. fredii HH103

mutants affected in LPS (lpsB and lpsE) formed biofilms that were similar to those

produced by HH103 RifR [10]. Thus, in S. fredii HH103, neither KPS nor LPS are

relevant for this bacterial trait. In contrast, the absence of EPS (exoA mutant)

reduced dramatically the amount of biofilm formed on plastic surfaces.

Introduction of cosmid pMUS764, carrying exoA as well as most of the HH103

exo genes, not only restored EPS production but also led to increased biofilm

formation. In fact, the amount of EPS produced by SVQ530 pMUS764 is slightly,

but significantly, higher than that formed by HH103 RifR. Interestingly a HH103

cgs mutant (SVQ562), unable to produce CG, overproduces EPS [7] and also

forms a higher amount of biofilm on plastic (Fig. 8) and glass (S4 Figure) surfaces

when compared to HH103. Similarly, Pseudomonas fluorescens hypermucoid

mutants show increased biofilm formation [66]. However, a S. meliloti exoS

mutant overproduces EPS and forms a thicker but less stable biofilm [67], which

indicates that EPS overproduction does not necessarily correlate with increased

biofilm formation.

Bacterial motility is an important factor for the establishment of symbiosis

under natural soil conditions. In S. meliloti several regulatory proteins, such as

MucR, ExoR, and ExpR, are involved in both EPS production and flagella-driven

motility (reviewed by [19]). In addition, it has recently been reported an EPS-

mediated sliding motility in S. meliloti [53]. The impairment in surface spreading

shown by the EPS deficient exoA derivative mutant of S. fredii HH103 indicates

that EPS promotes surface motility in this rhizobium. The EPS overproduction

characteristic of the cgs mutant (SVQ562) could account for the similar surface

colonization efficiency exhibited by this strain compared to the wild type,

although this has not been demonstrated in this work. The different macroscopic
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appearance of HH103 and SVQ562 colonies on semisolid surfaces could be an

indication that different mechanisms are involved. Considering that the cgs

mutant is impaired in flagellar motility [7], one can speculate that the surface

spreading shown by this strain is an EPS-mediated sliding motility similar to that

described for S. meliloti.

One of the structural functions assigned to EPS produced by rhizobia is to act

as a protective barrier against environmental stresses and antimicrobial

compounds [8, 19, 68]. In fact, a positive correlation between increased EPS

production and enhanced protection against H2O2 has been demonstrated in

Azorhizobium caulinodans [69]. EPS production has also been positively correlated

with desiccation tolerance in R. leguminosarum [70] and hyperosmotic stress has

been found to induce up-regulation of exo genes in S. meliloti [52]. Results

presented here demonstrate that the S. fredii SVQ530 mutant is more sensitive to

hyperosmotic stress conferred by both ionic (e.g. NaCl) and non-ionic (e. g.

sucrose) osmolites than its parental wild-type strain HH103 RifR (Fig. 10). The

differences observed are higher in MM than in TY, which correlated with the fact

that bacterial mucosity is reduced in the latter (in fact TY was formulated with the

only purpose of reducing bacterial mucosity). Cosmid pMUS764, which carries

most genes of the exo cluster, not only restored the mucoid phenotype of SVQ530

but also led to an increased production of EPS with regard to the parental strain

HH103. Interestingly, the presence of this cosmid had a positive and a negative

effect on SVQ530 osmotolerance to NaCl in MM and TY media respectively,

suggesting that in the latter medium a correct balance in the production of EPS is

important for appropriate growth upon ionic hyperosmotic stress. This

hypothesis might also explain why the ability of cosmid pMUS764 to complement

SVQ530 growth in MM medium is better under non-ionic (sucrose) than under

ionic (NaCl) hyperosmotic stress.

In summary, the results presented in this work indicate that bacterial EPS is

dispensable in the S. fredii HH103-soybean symbiosis. Although this poly-

saccharide is important for bacterial surface motility and biofilm formation on

abiotic surfaces and increases bacterial osmotolerance, it is not involved in root

attachment. The fact that the absence of EPS increases competitiveness capacity

with soybean could explain why the production of this polysaccharide is

downregulated by genistein.

Materials and Methods

Isolation and purification of the S. fredii HH103 EPS

Culture medium (1.2 L) was treated with proteinase K (10 mg/mL, 6 hours a

37 C̊). Then, it was concentrated up to 20% of the initial volume on a rotary

evaporator and three volumes of ethanol were added. After 24 h at 4 C̊, the

resulting precipitate was separated by centrifugation, re-dissolved in water and

purified by dialysis against distilled water at 4 C̊. The solution was concentrated

and freeze dried, yielding 404 mg of exopolysaccharide.
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Monosaccharide analysis

Monosaccharides were identified on Gas-liquid chromatography coupled with

mass spectrometry (GLC-MS) separation of their per-O-trimethylsilylated methyl

glycosides [71]. The absolute configurations of monosaccharides were assigned

following GLC-MS analysis of their per-O-trimethylsilylated (S)- and (R,S)-2-

butyl glycosides as described by Gerwig et al. [72]. Derivatives from standard

monosaccharides were prepared for comparison. GLC-MS was performed on an

Agilent Technologies GC system 7890A coupled to a mass spectrometer 5975C

fitted with a column HP-5MS (30 m60.25 mm, Agilent). The temperature

program for separating the per-O-trimethylsilylated methyl glycosides was

isothermal at 140 C̊ for 2 min, followed by an 8 C̊/min gradient up to 280 C̊, and

isothermal for 10 min. The temperature program for separating the per-O-

trimethylsilylated 2-butyl glycosides was isothermal at 130 C̊ for 3 min, followed

by a 3 C̊/min gradient up to 150 C̊, then increasing at 10 C̊/min up to 250 C̊, then

isothermal for 30 min. The ionization potential was 70 eV, and spectra were

recorded in low-resolution mode.

Reduction of carboxylic groups

Carboxylic groups were reduced to deuterated hydroxymethyl groups (-CD2OH)

by the method of carbodiimide as described in Rodrı́guez-Carvajal et al. [73].

Methylation analysis

Vacuum-desiccated samples of polysaccharide having carboxyl groups previously

reduced were methylated by using the method of Ciucanu and Costello [74].

Hydrolysis, reduction with NaBD4, and acetylation was performed according to

Kim et al. [75], yielding the corresponding partially methylated and acetylated

alditols (PMAAs), which were solubilized in 80 mL of CH2Cl2, and analyzed by

GLC-MS. Gas–liquid chromatography–mass spectrometry was performed on a

Hewlett-Packard 5890 Series II instrument fitted with a TRB-1 column

(25 m60.25 mm, Teknokroma) coupled to a 5971 Series mass spectrometer. The

temperature program was isothermal at 120 C̊ for 1 min, followed by an 8 C̊/min

gradient up to 250 C̊, and isothermal for 30 min. The ionization potential was

70 eV, and spectra were recorded in low-resolution mode. Peak assignments were

made based on retention times and mass spectra against PMAA standards [76].

Partial hydrolysis assays

A solution of the exopolysaccharide (250 mg) in 0.5 M TFA (40 mL) was heated

for 1 h at 100 C̊, and then dialysed against water. The diffusate was concentrated

and the residue was chromatographed on Bio-Gel P-2 using water as eluent. The

effluent was monitored by thin layer chromatography and fractionated

accordingly. The non-diffusable fraction was lyophilized, and the procedure was

repeated. Silica gel was added to fractions containing low molecular-weight
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oligosaccharides and the suspensions were freeze dried. The powder was deposited

at the top of a silica gel column (160.5 cm), and a gradient (acetonitrile, then

acetonitrile/water 95:5, 90:10, 85:15, and 75:25 (v/v)) was used to elute the

oligosaccharides [77].

Lithium degradation analyses

The polysaccharide was stirred in ethylenediamine with lithium metal as described

in Fernández de Córdoba et al. [78], and then purified by size exclusion

chromatography on Biogel P-2.

NMR experiments

Samples were deuterium-exchanged several times by freeze-drying from D2O and

then examined in solution (1–5 mg/750 mL) in 99.98% D2O. Spectra were

recorded at 303 K and 333 K on a Bruker AV500 spectrometer operating at

500.20 MHz (1H) and 125.8 MHz (13C). Chemical shifts are given in ppm, using

the HDO signal (4.71 ppm at 303 K, 4.40 ppm at 333 K) (1H) as reference.

Standard Bruker sequences were used for 2D experiments [79]. The TOCSY

experiment was acquired using a data matrix of 25662K points to digitize

spectral widths of 3930 to 5081 Hz; an isotropic mixing time of 80 ms was used.

The 2D homonuclear DQF-COSY was performed by using a data matrix of

25661K points to digitize a spectral width of 3930 to 5081 Hz. The 2D

heteronuclear one-bond proton-carbon correlation experiment was registered in

the 1H-detection mode via single-quantum coherence (HSQC). A data matrix of

25661K points was used to digitize a spectral width of 4006 to 5681 in F2 and

22522 Hz in F1. 13C decoupling was achieved by the GARP scheme. Squared-sine-

bell functions were applied in both dimensions, and zero-filling was used to

expand the data to 1K61K. The HMBC experiment was performed using the

Bruker standard sequence with 256 increments of 1K real points to digitize

spectral widths of 4006 to 7334 Hz in F2 and 30030 Hz in F1; a delay

corresponding to 8 Hz was used for evolution of long-range couplings. The

ROESY experiment was performed with a mixing time of 100 ms. A data matrix

of 25662K points was used to digitize a spectral width of 5681 Hz; 32 scans were

used per increment. HMQC-TOCSY was acquired using a data matrix of 25661K

points to digitize spectral widths of 4807 and 22525 Hz in F2 and F1, respectively.

NMR spectra have been assigned using the program Sparky [80].

Microbiological and Molecular techniques

The bacterial strains and plasmids used in this work are listed in Table 6.

Sinorhizobium fredii strains were grown at 28 C̊ on TY medium [81], yeast extract/

mannitol (YM) medium [82], MGM medium [83], Bromfield medium (BM)

(0.04% tryptone, 0.01% yeast extract, and 0.01% CaCl2?2H2O) or in minimal

medium (MM) containing glutamate (6.5 mM), mannitol (55 mM), mineral salts

(K2HPO4, 1.3 mM; KH2PO4?3H2O, 2.2 mM; MgSO4?7H2O, 0.6 mM;
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CaCl2?2H2O, 0.34 mM; FeCl3?6H2O, 0.022 mM; NaCl, 0.86 mM), biotin

(0.2 mg/L) and calcium pantothenate (0.1 mg/L) [84]. Escherichia coli was

cultured on Luria-Bertani (LB) medium [85] at 37 C̊. When required, the media

were supplemented with the appropriate antibiotics as described by Vinardell et

al. [49]. Osmotic stress was achieved by adding different concentrations of either

NaCl (25 mM, 50 mM, 75 mM, 100 mM, 200 mM, 300 mM, 400 mM) or

sucrose (5, 10 and 15% w/v) to the indicated media. Flavonoids were dissolved in

ethanol at a concentration of 1 mg/mL and used at 1 mg/mL. Plasmids were

transferred from E. coli to rhizobia by triparental mating by using pRK2013 as the

Table 6. Bacterial strains and plasmids.

Strain or plasmid Derivation and relevant properties Source or reference

Sinorhizobium fredii

HH103 Wild type strain [34]

SVQ269 HH103-RifR [88]

SVQ530 SVQ269 exoA::lacZ-Gmr [11]

SVQ536 SVQ269 rkpA::lacZ-Gmr [33]

SVQ562 SVQ269 cgs::lacZ-Gmr [7]

SVQ575 SVQ269 rkpU::V [38]

SVQ581 SVQ269 rkpM::V [39]

SVQ613 SVQ269 lpsB::V [10]

USDA192 Wild-type strain [92]

B1, B2, B4, B6, B8, B33, B50 Wild type strains from soil samples of Xingjian
province

[93]

S1, S2, S4, S5, S8, S28, S44, S48, S49 Wild type strains from soil samples of Hubei
province

[93]

HH3, HH4, HH5, HH18, HH25, HH29, HHG35, WH4, WHG11 WHG14-S,
WH5, WH7

Wild type strains from soil samples of Henan
province

[93]

HW1, HW5, HW16, HW22, HWG35, WW2, WW9, WWG11, WWG14 Wild type strains from soil samples of Shan Dong
province

[93]

NGR234 Broad host range strain isolated from nodules of
Lablab purpureus

[94]

Bradyrhizobium japonicum USDA6, USDA38, USDA110, USDA123,
USDA122, USDA136 (5CB1890), USDA138

Wild type strains USDAA

Bradyrhizobium elkanii USDA6 and USDA76 Wild type strains USDA

Bradyrhizobium liaoningense 2281 Wild type strain [95]

Bradyrhizobium pachyrhizi PAC48 Wild type strain isolated from Pachyrhizus ahipa [96]

Bradyrhizobium canariense ISLU16 Wild type strain isolated from Ornithopus com-
pressus

[97]

Plasmids

pLAFR1 Cosmid vector, TcR [98]

pMUS764 pLAFR1 carrying the exo region of the symbiotic
plasmid pSfHH103e

This work

pRK2013 Helper Plasmid, KmR [99]

AUSDA: U.S. Department of Agriculture, Beltsville, MD (USA).

doi:10.1371/journal.pone.0115391.t006
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helper plasmid [86]. The Optical Density (OD) of bacterial cultures was

determined by using a Pharmacia LKB Novaspec II spectrophotometer.

For EPS quantification, bacterial cultures were grown on YM for 96 hours at

28 C̊ (OD60051.2–1.3) under shaking conditions. Cells were removed by

centrifugation (20000 g, 15 min) and total carbohydrate amounts of the EPS-

containing supernatants were determined using the anthrone-H2SO4 method,

which measures the total reducing sugar content in a given sample, as previously

described [87]. Four independent experiments in duplicate were carried out. The

amounts of EPS produced by each strain were compared by the nonparametric

test of Kruskal-Wallis.

Nodulation and competition for nodulation assays

Nodulation assays of Glycine max cv. Williams (soybean) and Vigna unguiculata

cv. Bisbee Red (cowpea) were carried out as described by Hidalgo et al. [38].

Competition for nodulation between S. fredii SVQ530 and its parental strain

HH103 RifR were performed as previously described [88]. Nodule occupancy by

strain SVQ530 was determined by assessing the gentamycin resistant marker

(presence of the lacZDp-GmR cassette) of at least one hundred isolates from

soybean or cowpea nodules. Determinations were carried out 6 weeks after

inoculation.

Soybean lectin (SBL) binding assays

Fourteen bradyrhizobia and 42 S. fredii strains grown on nitrocellulose filters were

tested for soybean lectin (SBL) binding capacity. Binding assays using peroxidase-

labelled soybean lectin (Sigma) were carried out as described by Liang and

Emerich [48]. Positive SBL binding was scored when any particular strain

developed a dark blue colour spot on the growth area of the filter after immersion

in development solution (60 mg of chloronaphthol, 15 mL of methanol, 85 mL of

PBS, and 50 mL of a 30% hydrogen peroxide) for 10 min at room temperature.

Bacterial attachment to roots

Surface disinfected and pre-germinated soybean seeds cv. Williams were sown in

sterile glass containers of 200 mL filled up with quartz sand, watered with a

nutrient solution [89], one seed per container. Plants were placed in a growth

chamber (16 h at 25 C̊/8 h 18 C̊ day/night, and 88% RH). Roots were harvested 5

days after sown, washed up with sterile water to eliminate most of the adhered

sand, aseptically weighted, and then transferred to sterile 15 mL plastic tubes.

Roots were incubated with 30 mL of each bacterial culture (105–106 bacteria/mL)

during 4 h in a rotary shaker, at 120 rpm. The procedure for the estimation of the

viable cells attached to roots basically followed Albareda et al. [90] methodology,

except that the whole root system was used and that a blender (IKA Ultra-TurraxH
tube drive) was used to obtain root homogenates.

S. fredii HH103 EPS

PLOS ONE | DOI:10.1371/journal.pone.0115391 December 18, 2014 23 / 31



Motility and biofilm formation assays

Swimming was examined on plates prepared with BM containing 0.3% Bacto agar

and inoculated with 3 mL droplets of rhizobial cultures grown in TY

(OD600nm51). Surface motility was analyzed on semisolid MM plates containing

0.6% Difco Agar, Noble (BD) by inoculating 2 mL of washed 10-fold concentrated

cultures grown in TY broth to the late exponential phase. The migration zone was

determined as the colony diameter (mm) after 2 days (for swimming motility), or

24, 48 and 72 hours (for surface motility on semisolid MM) of incubation.

Assays for biofilm formation on plastic surfaces were carried out as described

by Margaret et al. [10]. Cultures were grown in MGM medium as described

above, diluted to an OD600nm of 0.2, and inoculated into the microtiter

polystyrene plate wells in 100-mL aliquots. The plates were covered with a sterile

lid to prevent evaporation, turned upside down and incubated without agitation

at 28 C̊ for 48 h. Cell growth was quantified by measuring the OD600nm at the end

of the experiment. The contents of each well were then removed, the wells were

dried at room temperature and washed three times with 100 mL of sterile

physiological saline solution in order to remove all non-adherent bacteria. The

plates were emptied, air dried, stained for 20 min with 100 mL of 0.1% crystal

violet per well, air dried, then rinsed three times with water and air dried. Biofilm

formation was quantified by the addition of 100 mL of 96% ethanol to each crystal

violet-stained microtiter dish well, and the OD570nm of the solubilized crystal

violet was determined with a microplate reader (Synergy HT; BioTek; Winooski,

Vermont, USA). Data presented are the media of at least three independent

experiments performed in duplicate; in each experiment, at least 12 wells for each

treatment were measured.

In order to visualise biofilm formation on glass surface, S. fredii strains were

cultured in MGM medium (28 C̊, static conditions) in sterile Glass Coplin

Staining Jars containing glass slides. 1 and 4 days after inoculation glass slides were

collected, air dried, stained with 0.1% crystal violet (1 min), rinsed with water, air

dried, and observed and photographed using an Olympus BX61 optic microscope.

Expression of the cgs gene in a S. fredii HH103 exoA mutant

For RNA extraction, S. fredii strains were incubated in YM broth in an orbital

shaker (180 rpm) at 28 C̊. When the cultures reached an OD600nm of 0.4–0.5, cells

were harvested, and RNA was extracted by using the RNAprotect Bacteria

Reagent, the RNAeasy mini kit, and the RNase-free DNase Set (all provided by

Qiagen, Basel, Switzerland) following the manufacturer’s instructions. To ensure

that genomic DNA was not present in RNA samples, a control PCR was

performed employing primers qndvB-F (59 ACTATTCTCTTTCACTGG) and qndvB-R

(59 GCGTTGCTTCTGACTATG). Only those RNA samples showing no PCR

amplification were selected for further work. Reverse transcription of total RNA

was carried out using the Quantitect kit (Qiagen), which includes a genomic DNA

elimination step before RNA reverse transcription.
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qPCR experiments were performed in a 20-mL final volume containing 1 mL of

cDNA, 0.6 pmol of each primer, and 10 mL of FastStart SYBR Green Master Mix

(Roche Diagnostics). PCR was conducted on the iCycler IQ (Bio-Rad

Laboratories SA, Marnes La Coquette, France), and the threshold cycles were

determined with the iCycler software. Primers used for amplification of a 112-bp

internal fragment of the S. fredii HH103 cgs cDNA were qndvB-F and qndvB-R. To

normalize the data, a 197-bp internal fragment of the S. fredii HH103 16S rRNA

(accession number AY260145) was employed as an internal control in each

sample by using primers HH16S-F and HH16S-R [10]. For each strain the relative

expression of cgs with regard to that of HH103 was calculated by using the

formula 2DDCT, where DDCT 5 (CT cgs - CT 16S) problem strain - (CT cgs- CT 16S)

HH103. Two independent experiments performed in triplicate were carried out

and averaged. These two experiments were performed with different, indepen-

dently extracted RNA samples for each strain.

Hydrogen peroxide and paraquat sensitivity tests

Sensitivity to H2O2 and paraquat was determined by a disc diffusion assay

performed basically as previously described [91] with some modifications. Briefly,

S. fredii cells were grown from glycerol stocks to mid logarithmic phase

(OD600nm50.5) in TY broth supplemented with the corresponding antibiotics.

For the filter disk assay, 50 mL of culture was added to 3 mL TY of soft agar (7 g/

L) and poured onto TY plates. After 30 min, a paper disk (6 mm diameter)

previously soaked with 5 mL of the agent to be tested (1 M H2O2 or 1 M paraquat

was placed in the center of the plate. At least three plates were prepared for each

agent tested. Plates were incubated for 48 h at 30 C̊, and then the diameter of

growth inhibition was recorded.

Supporting Information

S1 Figure. 1H (500 MHz)-13C (125 MHz) HSQC of the trisaccharide isolated

from partial hydrolysis of EPS. Primes indicate that the residue is not the same as

found in the polysaccharide.

doi:10.1371/journal.pone.0115391.s001 (TIF)

S2 Figure. 1H (500 MHz, 353 K) of anomeric and acetyl regions of EPS a)

Initial; b) After several hours of heating.

doi:10.1371/journal.pone.0115391.s002 (TIF)

S3 Figure. Plant responses to inoculation of Glycine max cv. Williams (panels

A, B, E) and Vigna unguiculata cv. Brisbee (panels C, D, F) with Sinorhizobium

fredii HH103 RifR (A, C, E, F) and its exoA mutant derivative (B, D, E, F).

Panels A to D show nitrogen-fixing root nodules. Panels E and F show plant aerial

parts.

doi:10.1371/journal.pone.0115391.s003 (TIF)
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S4 Figure. Attachment to glass surfaces of S. fredii HH103 RifR, and its exoA
(SVQ530) and cgs (SVQ562) mutant derivatives. Bacterial cultures were grown

in MGM medium for one (1 dpi) and four days (4 dpi), then glass slides were

stained with crystal violet and visualised in the microscope at 200X and 1000X.

doi:10.1371/journal.pone.0115391.s004 (TIF)

S1 Table. Chemical shifts (1H and 13C) for the lithium-degraded polysaccharide

obtained from EPS.

doi:10.1371/journal.pone.0115391.s005 (DOCX)
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57. Quelas JI, Mongiardini EJ, Casabuono A, López-Garcı́a SL, Althabegoiti MJ, et al. (2010) Lack of
galactose or galacturonic acid in Bradyrhizobium japonicum USDA 110 exopolysaccharide leads to
different symbiotic responses in soybean. Mol Plant-Microbe Interact 23: 1592–1604.
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