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Abstract

RNA polymerases frequently deal with a number of obstacles during transcription elongation that need to be removed for
transcription resumption. One important type of hindrance consists of DNA lesions, which are removed by transcription-
coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair. To improve our knowledge of transcription
elongation and its coupling to TC-NER, we used the yeast library of non-essential knock-out mutations to screen for genes
conferring resistance to the transcription-elongation inhibitor mycophenolic acid and the DNA-damaging agent 4-
nitroquinoline-N-oxide. Our data provide evidence that subunits of the SAGA and Ccr4-Not complexes, Mediator, Bre1, Bur2,
and Fun12 affect transcription elongation to different extents. Given the dependency of TC-NER on RNA Polymerase II
transcription and the fact that the few proteins known to be involved in TC-NER are related to transcription, we performed
an in-depth TC-NER analysis of a selection of mutants. We found that mutants of the PAF and Ccr4-Not complexes are
impaired in TC-NER. This study provides evidence that PAF and Ccr4-Not are required for efficient TC-NER in yeast,
unraveling a novel function for these transcription complexes and opening new perspectives for the understanding of TC-
NER and its functional interconnection with transcription elongation.
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Introduction

Synthesis of an RNA transcript by RNA polymerase II

(RNAPII) requires the successful completion of at least four steps

in the transcription cycle: promoter binding and initiation,

promoter clearance, elongation, and termination. While many

studies have focused on the regulation of initiation, more recent

studies have demonstrated that transcription elongation is a

dynamic and highly regulated stage of the transcription cycle

capable of coordinating downstream events. Numerous factors

have been identified that specifically target elongation [1].

Importantly, multiple steps in mRNA maturation, including pre-

mRNA capping, splicing, 39-end processing, surveillance, and

export, are modulated through interactions with the RNAPII

machinery [2,3]. It also appears that distinct factors act in specific

transcriptional contexts; the requirements of these factors are

largely unknown and highlight the need to improve our

understanding of elongation in vivo. Several lines of evidence

indicate that transcript elongation by RNAPII involves frequent

pausing and stalling, and an important role of the many accessory

factors may be to minimize the negative impact of such events on

transcription [4].

Nucleotide excision repair (NER) is an evolutionarily conserved

DNA repair pathway that deals with severely distorting DNA

lesions including intrastrand crosslinks such as UV-induced

pyrimidine dimers (CPDs) and DNA bulky adducts such as those

generated by the model carcinogen 4-nitroquinoline-N-oxide (4-

NQO). Within NER two damage-sensing pathways are recog-

nized: one for the entire genome, global genome repair (GG-

NER), and the other for transcribed strand of active genes,

transcription coupled repair (TC-NER). As ongoing transcription

is required for TC-NER, damage recognition is likely triggered by

the elongating RNAP itself, whose progression gets obstructed at

the site of damage. RNAP arrests at injuries in the template strand

initiating, likely via additional specific factors, the recruitment of

the DNA repair machinery [5,6].

In eukaryotes, the precise mechanism of TC-NER remains

poorly understood. Mutations in proteins required for NER lead

to severe disorders known as Xeroderma pigmentosum and

Cockayne’s syndrome. One of these proteins, Cockayne syndrome

B protein (CSB), and its yeast orthologue Rad26, share conserved

functions [7,8] and represent putative eukaryotic transcription-

repair coupling factor (TRCF) candidates. The putative function

of CSB as a TRCF has been substantiated by in vitro reconstitution
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of the TC-NER initiation steps, in which an elongating RNAPII

arrested at a DNA lesion was shown to mediate an ATP-

dependent incision of the damaged DNA only in the presence of

CSB [9]. XPG, one of the structure-specific DNA endonuclease

responsible for the removal of an oligonucleotide containing the

DNA lesion in NER, is another protein involved in TC-NER.

Recent results imply a coordinated recognition of stalled RNAPII

by XPG and CSB in TC-NER initiation in mammalian cells and

suggest that TFIIH-dependent remodeling of stalled RNAPII

without release may be sufficient to allow repair [10]. In yeast, the

Rpb4 and Rpb9 subunits of RNAPII have also been shown to

contribute to TC-NER [11,12]. Recently, proteins of the THO,

Sub2-Yra1 and Thp1-Sac3 complexes, which are involved in

mRNP biogenesis and export [13], have also been shown to be

required for efficient TC-NER [14].

In addition, RNAPII is subject to ubiquitylation and protea-

some-mediated degradation in response to UV damage [15]. It has

been proposed that degradation of damage-stalled RNAPII

complexes might assist TC-NER [16]. Indeed, recent studies in

yeast have shown that arrested RNAPII elongation complexes are

the preferred substrate for ubiquitylation, which is mediated by

Def1, Rpb9, and the C-terminal repeat domain (CTD) of RNAPII

[17–19].

To improve our knowledge of gene products that function at the

interface between transcription and DNA repair, we used a yeast

mutant library covering the yeast non-essential genes for a

genome-wide analysis of the genes conferring resistance to the

inosine monophosphate dehydrogenase inhibitor mycophenolic

acid (MPA), and the DNA-damaging agent 4-NQO. This

approach allowed us to identify new putative candidates for genes

involved in transcription and TC-NER. Our study unravels a new

function for known transcription complexes in TC-NER and open

new perspectives for the understanding of TC-NER and its

functional interconnection with transcription elongation.

Results

Genome-Wide Analysis of mRNA Accumulation and 4-
NQO- and MPA-Sensitivity

We were interested in analyzing and comparing the genes

conferring resistance to 4-NQO and MPA. To explore the

functional consequences of the treatments with 4-NQO and MPA,

we first determined the expression levels of the whole genome

after treating wild-type cells with either 75 ng/ml 4-NQO or

50 mg/ml MPA during 30 min each. Expression of a total of

2374 genes was evaluated by microarray analysis (data available

at www.ncbi.nlm.nih.gov/geo/ under the access number

GSE11561). Among these genes, mRNA levels that were at

least 2-fold above or below mock treated cells were found for 376

genes in cells treated with 4-NQO and for 295 genes in cells

treated with MPA (Table S1). Of the genes affected by either

treatment, very few were coincident, which is consistent with the

fact that 4-NQO and MPA affect different cellular processes

(Figure 1A). Ontology analysis of the 644 genes showing

significant variations in expression levels indicated that there is

not a relevant class of genes specifically affected by any of the

compounds used (data not shown).

For the analysis of genes required for resistance to 4-NQO and

MPA, a collection of 4894 yeast haploid knock-out mutants,

covering 85% of all yeast genes and virtually all (99,4%) of yeast

non-essential genes, were grown in SC medium supplemented

either with 150 ng/ml 4-NQO or 25 mg/ml MPA. Cells were

incubated at 30uC and growth monitored after 48, 72, and 120 for

4-NQO and 72 hours for MPA. Analysis of the strains showing at

least 80% growth inhibition by 4-NQO at the indicated time led to

a classification of sensitive strains into three groups (Table S2):

group A contains 189 strains whose sensitivity to 4-NQO is

observed from early on (48 h) and is maintained over time, B

contains 308 strains whose sensitivity was observed only at early

time points (48 h), and C contains 100 slow-growing strains whose

sensitivity is observed later on (from 72 h). Direct comparison of

cell sensitivity to different DNA-damaging agents and stress

conditions (4-NQO, methyl-methanesulfonate [MMS], menadi-

one [Mnd], UV, and 37uC) in a selection of 4-NQO-sensitive

mutants validated our high-throughput results and confirmed that

4-NQO in addition to being a ‘UV-mimetic’ agent, causes

oxidative damage (Table S3). In the same line, comparison of

the mutants found sensitive to 4-NQO with the mutants found

sensitive to at least one of five oxidants [20] revealed that 35% of

the 4-NQO sensitive strains are sensitive to oxidative damage as

well. As compared to a genome-wide study in which deletion

strains were pooled and grown competitively in the presence of 4-

NQO [21], our set of 4-NQO sensitive strains contains the 10

strains found as top sensitive and 31 out of the 37 most sensitive

strains.

Correspondingly, 85 MPA-sensitive deletions showing at least

50% growth inhibition were found (Table S4), of which 40 had

been reported in a previous analysis for MPA sensitivity of the

yeast disruptome [22] and 45 had not been described as MPA-

sensitive to date. We focused on 289 4-NQO-sensitive (groups A

and C) and 68 MPA-sensitive deletions showing at least 60%

growth inhibition. Ontology analysis of the genes identified for

each drug is consistent with the fact that 4-NQO affects DNA

repair whereas MPA affects transcription (Figure 1B). Only 25

mutations led to sensitivity to both compounds (Figure 1C). From

these mutations, 13 identified known genes involved in aspects of

transcription and mRNP biogenesis, and 12 identified genes

involved in protein modification, intracellular trafficking, and

primary and secondary metabolism. Direct comparison of the

genes showing significant variations in their patterns of expression,

as determined by microarray analyses, with those showing

sensitivity to either MPA or 4-NQO reveals no obvious correlation

(data not shown). Therefore, a higher expression of a gene in the

presence of 4-NQO or MPA does not imply requirement for

resistance, but rather it is the result of an adaptation of the cell to

the new conditions of growth.

Author Summary

Dealing with DNA lesions is one of the most important
tasks of both prokaryotic and eukaryotic cells. This is
particularly relevant for damage occurring inside genes, in
the DNA strands that are actively transcribed, because
transcription cannot proceed through a damaged site and
the persisting lesion can cause either genome instability or
cell death. Cells have evolved specific mechanisms to
repair these DNA lesions, the malfunction of which leads to
severe genetic syndromes in humans. Despite many years
of intensive research, the mechanisms underlying tran-
scription-coupled repair is still poorly understood. To gain
insight into this phenomenon, we undertook a genome-
wide screening in the model eukaryotic organism Saccha-
romyces cerevisiae for genes that affect this type of repair
that is coupled to transcription. Our study has permitted
us to identify and demonstrate new roles in DNA repair for
factors with a previously known function in transcription,
opening new perspectives for the understanding of DNA
repair and its functional interconnection with transcription.

New Transcription-Coupled Repair Factors
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Effect of SAGA, CTK, Mediator, Ccr4-Not, Bre1-Rad6, and
Fun12 in Transcription Elongation

We have previously shown that mutants impaired in transcrip-

tion elongation display lower efficiency in the transcription of long

vs. short transcription units [23]. To gain insight into the putative

defects in RNAPII transcription of 45 MPA-sensitive mutants, the

ratios of acid phosphatase activity for a long (PHO5-lacZ or PHO5-

LAC4) vs. a short transcription unit (PHO5), which is taken as an

approximate measurement of Gene Length Accumulation of

mRNA (GLAM) were determined (Table S4). GLAM-ratios were

previously used as an indirect estimation of RNAPII elongation

[24]. Similar GLAM-ratios were obtained with the two long

transcription units (Figure S1). Out of the assayed mutants, 24

showed values below 0.5, which were taken as criteria for

candidates with defects in RNAPII elongation. 6 mutants carried

deletions of genes encoding subunits of protein complexes that

were previously related to RNAPII elongation, including RNAPII

(rpb4D and rpb9D), THO (tho2D), Spt4-Spt5 (spt4D), and PAF (rtf1D
and cdc73D). 7 mutants carried deletions of genes encoding

proteins affecting transcription, for which an implication in

transcription elongation has been proposed in the past. These

included subunits of SAGA (spt3D and spt20D) [25], CDK (bur2D)

[26], and Ccr4-Not (ccr4D) [27] complexes as well as proteins

involved in H2B ubiquitylation (bre1D, rad6D, and lge1D) [28].

Another 4 mutants carried deletions of genes encoding proteins

affecting transcription, but that had not been related to RNAPII

elongation. These included subunits of Mediator (med2D and

med15D) and Ccr4-Not (not5D) complexes as well as the Uvs1

putative transcription factor (YPL230wD). The remaining 7

mutants affected proteins whose function has not been previously

linked to transcription (tpd3D, fun12D, shp1D, lip2D, est2D, and

ubp15D) or is unknown (YJR018wD). To evaluate the significance

of these putative new links with RNAPII elongation, and because

some mutants of the SAGA (spt7D and spt8D), CDK (ctk1D and

ctk3D), and Mediator (med12D) complexes did not exhibit

expression deficiencies, we extended our analysis to deletions of

other functionally related genes.

Gene expression was analyzed in all viable SAGA deletions

(Figure 2). We found that, in addition to spt20D and spt3D, the

absence of three other subunits (Hfi1, Sgf73, and Sgf29) showed a

clear gene expression defect (GLAM,0.5) while the remaining 5

viable deletions (gcn5D, ada2D, ubp8D, ngg1D, and sgf11D) were only

poorly or not affected, as observed for spt7D and spt8D.

Since the H2B-ubiquitylases Rad6, Bre1, and Lge1, two PAF

subunits (Cdc73 and Rtf1) as well as Bur2 belonged to the MPA-

sensitive mutants exhibiting low GLAM-ratios, we extended the

analysis to mutants of COMPASS, the complex responsible for

H3-K4 methylation. Low GLAM values were observed for some

Figure 1. Analysis of genes similarly affected by 4-NQO and MPA. (A) Venn diagram representing the overlap between genes whose
expression is changed after treatment with 4-nitroquinoline-N-oxide (4-NQO) and mycophenolic acid (MPA). (B) Fraction of mutant strains sensitive to
4-NQO (left) and MPA (right), classified by GO annotation. The MPA-sensitive set is significantly enriched in genes with the label ‘‘RNA elongation’’
and ‘‘chromatin modification’’ (p,3.38E-03 and p,7.96E-05, respectively), and the 4-NQO-sensitive set in ‘‘response to DNA damage’’ (p,6.3E-19).
Enrichment analyses were carried out with the GO Term Finder tool of the SGD. (C) Venn diagram representing the overlap between genes conferring
resistance to 4-NQO and MPA. The 25 genes common to both analyses are listed to the right.
doi:10.1371/journal.pgen.1000364.g001

New Transcription-Coupled Repair Factors
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of the COMPASS and H2B ubiquitylation mutants (Figure 2),

suggesting that both H2B ubiquitylation and H3-K4 methylation

may be important for transcription elongation. Interestingly,

analysis of Ctk1-Ctk2-Ctk3 (CTDK-I)—the other cyclin-depen-

dent protein kinase involved in transcription elongation [29]—

suggests that, despite ctk1D and ctk3D being MPA-sensitive,

CTDK-I might be dispensable for the expression of long genes.

Most viable deletions lacking Mediator subunits and the viable

deletions lacking other subunits of the Ccr4-Not complex were

also assayed (Figure 2). The results indicated that in addition to

Med2 and Med15, the Med18, Med19 and Med20 subunits might

affect transcription elongation, whereas the remaining viable

subunits may be dispensable. For the Ccr4-Not complex, not4D
showed low expression of long genes, as observed for not5D and

ccr4D, whereas this was not the case for caf1D and not3D.

Finally, since the only known function of Fun12 is related to

translation initiation, we assayed other viable deletions of

translational machinery elements playing a role during initiation

(Gcn2, Gcn3, Hcr1 and Tif3). To understand the low GLAM-

ratios of tpd3D, all other deletions lacking subunits of the PP2A

complex were assayed. Figure 2 shows that neither the translation

initiation machinery nor the PP2A complex influence gene

expression in a gene length-dependent way.

Since the analysis of GLAM-ratios relies on measurement of

enzymatic activities, we decided to assess directly the efficiency of

transcription of representative mutants using an in vitro elongation

assay. This assay is based on a plasmid (pGCYG1-402) in which a

hybrid GAL4-CYC1 promoter containing a Gal4 binding site is

fused to a 1.88-kb DNA fragment coding for two G-less cassettes.

The first cassette is right downstream of the promoter and is 84-nt-

long. The second is located 1.48-kb from the promoter and is 376-

nt-long. The efficiency of elongation is determined in whole cell

extracts (WCEs) by the values of the ratio of accumulation of the

376- versus the 84-nt-long G-less RNA fragments after RNase T1

digestion [30].

WCEs from representative mutants of Mediator (med15D), CTK

(bur2D), Bre1-Rad6 (bre1D), SAGA (spt20D), Ccr4-Not (not5D), and

PP2A (tpd3D) complexes as well as the translation initiation mutant

fun12D were analyzed. As can be seen in Figure 3, bre1D, spt20D,

and not5D WCEs transcribed the 376-nt G-less cassette with

efficiencies around or below 60% of the wild-type levels. These

results indicate severe defects in transcription elongation in those

subunits of the Bre1-Rad6, SAGA, and Ccr4-Not complexes.

Strikingly, fun12D cell extracts also led to a clear transcription

elongation phenotype in our assay (62%). WCEs extracts of bur2

and med15 mutants were moderately affected in transcription

Figure 2. Gene expression analyses of selected MPA-sensitive and functionally related mutants. PHO5-lacZ/PHO5 and PHO5-LAC4/PHO5
ratios were calculated after assaying acid phosphatase activity of mutants lacking the indicated gene. Averages of at least three independent assays
are shown. Error bars indicate standard deviation.
doi:10.1371/journal.pgen.1000364.g002

Figure 3. In vitro transcription elongation. In vitro transcription assay of WCEs from BY4741 (wt), med15, bur2, fun12, bre1, spt20, tpd3, and not5
strains. Each reaction was stopped after 30 min, treated with RNaseT1 and run in a 6% PAGE. Two bands from each G-less cassette were obtained,
probably due to incomplete action of RNaseT1. Efficiency of transcription elongation was determined as the percentage of transcripts that reach the
376-nt cassette in respect to those that cover the 84-nt cassette. Radioactivity incorporated into the cassettes was quantified in a Fuji FLA3000 and
normalized with respect to the C content of each cassette. The mean value of the wt (84%) was normalized to 100%. Mean value and standard
deviation of three independent experiments are shown.
doi:10.1371/journal.pgen.1000364.g003
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elongation, with efficiencies ranging from 68 to 77% of wild-type

levels. Transcription elongation efficiencies of tpd3D WCEs

reached wild-type levels, indicating that this mutant was fully

transcription elongation-proficient in this assay.

In addition, we aimed at testing whether the candidate

mutations changed the distribution of RNAPII along a

transcribed unit, as an alternative method to measure elongation

[31]. Therefore, RNAPII occupancy was analyzed by ChIP for

the representative mutants selected for the in vitro assay in the

LAUR expression system [32], which contains a 4.15 kb lacZ-

URA3 translational fusion under the control of the Tet promoter.

The presence of RNAPII was determined at a 59-end and a 39-

end region of the lacZ sequence, as well as within the fused URA3

gene (Figure 4). The spt20D, not5D mutants and, to a lesser

extent, bur2D were impaired in elongation in this assay, as less

RNAPII was found toward the 39-end than at the 59-end of the

transcription unit. Strikingly, RNAPII appeared to accumulate

toward the 39-end of the gene in med15D cells. No significant

changes in RNAPII distribution were observed in the bre1D,

fun12D, and tpd3D mutants, the latter of which is consistent with

the in vitro result.

Therefore, our results indicate that subunits of SAGA, Ccr4-

Not, Mediator, and, to a lesser extent, CDK affect transcription

elongation, as seen with the three different assays tested while the

effect of Bre1-Rad6 and the translation factor Fun12 on

transcription elongation depends on the assay used.

Genetic Analysis of UV Sensitivity in the Absence of
Global Genome Repair

Given the strong dependency of TC-NER on RNAPII

transcription and the fact that the few proteins known to be

involved in TC-NER are related to transcription, we made use of

the results of our MPA-sensitivity screen to select 18 mutants

encoding for transcription factors, protein de-ubiquitylase, H2B-

ubiquitylase, subunits of the CDK, SWI/SNF, SAGA, Mediator,

PAF, Ccr4-Not complexes, and RNAPII and look for those

possibly involved in TC-NER. For this purpose, we abolished GG-

NER by deleting the RAD7 gene in the chosen mutants. In the

absence of GG-NER, deficiencies in TC-NER lead to increased

UV-sensitivity, a phenotype that we screened for by drop assay

(Figure 5). Growth of each double mutant was compared to the

growth of rad7D, giving rise to the classification of 5 mutants as not

more sensitive than rad7D (dst1D, ubp15D, ctk3D, bur2D, and spt7D)

and 4 mutants as slightly more sensitive to UV than rad7D (snf6D,

spt4D, spt8D, and med12D), this effect being more obvious when

higher UV doses were used (data not shown). The remaining 9

strains were much more sensitive to UV than rad7D (rad6D, rpb9D,

med2D, med15D, spt20D, spt3D, rtf1D, cdc73D, and not5D). Rad6 and

Rpb9 are known to be involved in post-replication repair of UV-

damaged DNA and TC-NER, respectively [11,33]. However, the

7 other mutants have no known connection to any UV-damaged

DNA repair pathway. These mutants include subunits of the

mediator (med2D and med15D), SAGA (spt3D and spt20D), PAF

(rtf1D and cdc73D), and Ccr4-Not (not5D) complexes. Given the

fact that other subunits of the Mediator and SAGA complexes

were represented in the moderately UV-sensitive strains (med12D,

spt7D, and spt8D), we focused on the PAF and Ccr4-Not complexes

for a more detailed analysis.

TC-NER Is Impaired in Cells Defective in the PAF and
Ccr4-Not Complexes

To refine the UV sensitivity analysis of PAF and Ccr4-Not

mutants in the absence of GG-NER, UV survival curves were

performed for all viable PAF and Ccr4-Not mutants (rtf1D, cdc73D,

paf1D, leo1D, not5D, not4D, not3D, caf1D, ccr4D) alone or in

combination with the rad7D mutation (Figure 6). The rtf1D,

cdc73D, leo1D, not3D, caf1D and ccr4D single mutants show no

increased UV sensitivity as compared with wild-type cells.

However, upon UV irradiation viability of the corresponding

double mutants dropped below the levels of the rad7D single

mutant. The paf1D, not5D and not4D single mutants showed a

moderate UV sensitivity, reaching levels very close to that of rad7D
in the case of paf1D and not4D. Nevertheless, the viability of the

paf1D rad7D, not5D rad7D, and not4D rad7D double mutants

dropped far below the levels of the corresponding single mutants

upon UV irradiation.

Figure 4. RNAPII occupancy analysis. ChIP analyses in BY4741 (wt), not5, spt20, bre1, med15, bur2, fun12, and tpd3 strains in the LAUR expression
system. The scheme of the gene and the PCR-amplified fragments are shown. The DNA ratios in region 59, 39 and URA3 were calculated from their
signal relative to the signal of the intergenic region. The recruitment data shown are referred to the value of the 59 region taken as 100%. ChIPs were
performed from 3 independent cultures, and quantitative PCRs were repeated three times for each culture. Error bars, SDs.
doi:10.1371/journal.pgen.1000364.g004
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Both the PAF and the Ccr4-Not complexes have been

previously linked to the DNA damage checkpoint pathway [34–

37]. Therefore, we wondered whether the observed UV sensitivity

might rely on checkpoint activation defects. Firstly, we checked the

GLAM-ratios of cells lacking the DNA damage checkpoint protein

Rad9 (Figure 2). No transcription defects were observed in this

assay. Secondly, we performed UV survival curves of the DNA

damage checkpoint rad9D and the bre1D mutants alone or in

combination with the rad7D mutation (Figure 7A). The rad9D
single mutant was sensitive to UV irradiation, as previously shown

[38]. Deletion of the GG-NER factor Rad7 increased the UV

sensitivity of rad9D cells. Together, these data indicate that a

functional DNA damage checkpoint response is important for

viability upon UV irradiation both in repair proficient and in GG-

Figure 5. UV sensitivity in the absence of global genome repair in selected MPA-sensitive mutants. UV sensitivity analysis of 18 mutant
strains in which the RAD7 gene has been disrupted. rad7 and wild-type strains were used as control. Cell dilutions were dropped on YPDA plates, UV
irradiated with 15 J/m2 and grown at 30uC in the dark for 3 days.
doi:10.1371/journal.pgen.1000364.g005

New Transcription-Coupled Repair Factors
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NER deficient cells. Surprisingly, the bre1D mutant behaved

differently, as the single mutant was not UV-sensitive while the

bre1D rad7D double mutant was not more sensitive to UV irradiation

than the rad7D single mutant. Finally, we analyzed the impact of the

rad9D mutation on the UV survival of the rtf1D, rtf1D rad7D, not5D,

and not5D rad7D strains. A similar set of UV survival curves were

performed with the TC-NER mutant rpb9D as a control. As shown

in Figure 7B, a synergistic effect was observed in the absence of GG-

NER in mutants of the PAF and Ccr4-Not complexes, since the rft1D
rad9D and not5D rad9D mutants were as sensitive to UV irradiation as

the rad9D mutant alone, while both the rtf1D rad7D rad9D and the

not5D rad7D rad9D strains were significantly more sensitive to UV

than the corresponding double mutants. In the TC-NER deficient

rpb9D strains, a synergistic effect with rad9D was observed

independently of the rad7D mutation. Consequently, the enhanced

UV sensitivity of mutants of the PAF and Ccr4-Not complexes in the

absence of GG-NER is not due to Rad9-dependent checkpoint

activation failure.

Thus, because UV sensitivity in the absence of GG-NER is a

phenotype mostly associated with TC-NER deficiencies, we tested

whether PAF and Ccr4-Not are required for proficient TC-NER

by monitoring the repair rates on the transcribed (TS) and non-

transcribed (NTS) strands of the constitutively expressed RPB2

gene. Molecular analysis of strand-specific removal of UV

photoproducts was performed in rtf1D and not5D cells. Wild-type

and TC-NER-deficient tho2D [14] strains were used as controls.

Repair at various time points after UV irradiation was determined

in a 4.4-kb RPB2 restriction fragment by T4 endonuclease V (T4

endoV) digestion -resulting in ssDNA cleavage at CPD sites-

followed by alkaline electrophoresis and indirect end-labeling with

strand-specific probes (Figure 8). Non-irradiated and DNA not

treated with T4 endoV show the intact restriction fragment.

Repair of CPDs is visualized by a time-dependent increase of the

T4 endoV-resistant fraction of restriction fragments. In rtf1D and

not5D cells, repair of the TS was significantly reduced compared to

wild-type level. As observed by UV sensitivity assays in the absence

Figure 6. PAF and Ccr4-Not mutants are sensitive to UV in the absence of global genome repair. UV sensitivity curves of strains carrying
single and double combinations of the (A) rtf1, (B) cdc73, (C) paf1, (D) leo1, (E) not5, (F) not4, (G) not3, (H) caf1, (I) ccr4, and rad7 mutations. Mutants
shown in (A–D) are subunits of the PAF and mutants shown in (E–I) of the Ccr4-Not complex. Average values and standard deviations from 3
independent experiments are shown.
doi:10.1371/journal.pgen.1000364.g006
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of GG-NER (Figure 6), not5D cells were more strongly affected in

TS repair than rtf1D cells. The repair deficiencies of these PAF and

Ccr4-Not mutants were comparable to those of the TC-NER-

deficient tho2D and rad26D strains. In the NTS, in contrast to the

GG-NER-deficient rad7D strain, the repair levels of rtf1D and

not5D were similar to wild-type and tho2D cells, indicating that

GG-NER is not significantly affected in rtf1D and not5D cells.

A number of factors have been implicated in the repair of DNA

lesions encountered by the RNAPII in eukaryotes, but our

knowledge on the mechanisms of TC-NER is scarce. Since

proteasome-mediated degradation of UV damage-stalled RNAPII

complexes is believed to be alternatively required for DNA repair,

we tested whether the effect of PAF and Ccr4-Not effect on TC-

NER was dependent on RNAPII degradation. For this, we

performed an epistatic analysis of the PAF mutant rft1D with both

the def1D and the rpb9D mutants, which are deficient in RNAPII

degradation in response to UV in yeast [16,19]. As can be seen in

Figure 9, a synergistic enhancement of the UV sensitivity was

observed in both cases, the rft1D def1D and the rft1D rpb9D mutants

being more sensitive to UV than the corresponding single mutants.

Similarly, the rft1D def1D rad7D and the rft1D rpb9D rad7D triple

mutants were more sensitive to UV irradiation than the

corresponding double mutants. These results suggest that the

TC-NER phenotype of PAF mutants is not due to an alteration of

the Def1- or Rpb9-mediated degradation of UV damage-stalled

RNAPII.

Taken together, our results place the PAF and the Ccr4-Not5

complexes as new factors needed for efficient TC-NER.

Discussion

Genome-wide analyses of the genes conferring resistance to

MPA and 4-NQO allowed us to identify new putative candidates

of genes involved in transcription elongation and TC-NER.

Deletion of some subunits of the SAGA and Ccr4-Not complexes

as well as Bur2 show defects in transcription elongation in all the

tested assays, while deletion of the Bre1 and Fun12 proteins as well

as some subunits of the Mediator complex show defects in

transcription elongation as measured by MPA sensitivity, GLAM-

ratios and in vitro transcription assay, but not by RNAPII

occupancy. Notably, we provide genetic and molecular evidence

that PAF and Ccr4-Not are required for efficient TC-NER in

yeast. Sensitivity analysis of viable deletion mutants showed that

the 4-NQO sensitive mutants were enriched in DNA repair genes,

while the MPA sensitive mutants were enriched in both DNA

repair and transcription genes, in agreement with the known effect

of MPA on transcription elongation and 4-NQO on DNA repair.

Out of the 25 mutations conferring sensitivity to both compounds,

13 correspond to genes involved in RNAPII transcription and

mRNP biogenesis (see Figure 1). Interestingly, the large majority

(10) of these mutants shows either TC-NER defects or increased

UV sensitivity in the absence of GG-NER (this study; [11,14]).

Figure 7. The increased UV sensitivity of PAF and Ccr4-Not mutants in the absence of global genome repair is not due to
checkpoint activation failure. (A) UV sensitivity curves of strains carrying single and double combinations of the rad9 or bre1, and rad7 mutations.
(B) UV sensitivity curves of strains carrying single, double, and triple combinations of the rtf1, rad9, and rad7 mutations (left), the not5, rad9, and rad7
mutations (middle), or the rpb9, rad9, and rad7 mutations (right). Average values and standard deviations from at least 3 independent experiments
are shown.
doi:10.1371/journal.pgen.1000364.g007
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Previously Characterized Transcription-Initiation Factors
with an Effect in Transcription Elongation

After identifying a number of mutants with impairment in the

expression of long genes (see Figure 2), we showed that WCEs

depleted of representative subunits of the SAGA, Mediator and

Ccr4-Not complexes, as well as of the Bre1, Bur2, and Fun12

proteins, were impaired in transcription elongation (see Figure 3).

In addition, RNAPII elongation defects were observed by ChIP

analysis for mutants of the SAGA, Ccr4-Not, Bur2, and, in a

different manner, Med15 (see Figure 4). Therefore, these factors

seem to have a putative role in transcription elongation in addition

to their previously reported roles in either transcription initiation

or other gene-expression processes. Although further molecular

and biochemical analyses are required to understand how these

mutations affect transcription elongation, our knowledge of the

function of these proteins, as discussed below, may provide insight

into explaining some of these effects.

SAGA is a 1.8 MDa complex identified as a factor promoting

transcription activation through histones H3 and H2B acetylation

by its HAT domain [25,39]. One of SAGA’s functions consists of

the deubiquitylation of histone H2B by its Upb8/Sgf11 module

[40]. Interestingly, Gcn5, which belongs to the HAT catalytic

core, is recruited to actively transcribed genes in a RNAPII CTD-

phosphorylation-dependent manner and promote transcription of

a long ORF [41], indicating that SAGA’s role is not confined to

transcription initiation. Our in vivo gene expression analyses of

different SAGA-subunit mutants are consistent with a putative

defect in transcription elongation. Importantly, the in vitro

transcription-elongation assay showed that spt20D extracts, in

which the SAGA complex is disrupted, leads to significant

elongation defects. Furthermore, RNAPII elongation defects were

observed in spt20D cells by ChIP analysis of RNAPII. However,

neither the upb8 nor the sgf11 mutants were significantly affected in

our assays, suggesting that the H2B de-ubiquitylation module of

Figure 8. Transcription coupled repair is impaired in PAF and Ccr4-Not deficient cells. (A) Southern blot analysis showing repair of a 4.4
kb (NsiI/PvuI) RPB2 fragment in tho2, rft1, not5, and wt cells. Initial damage was on the average 0.3160.07 CPD/Kb in the transcribed strand (TS, left)
and 0.2660.06 CPD/Kb in the non-transcribed strand (NTS, right). The remaining intact restriction fragment after treatment of damaged DNA with
T4endoV (+UV, +T4endoV) corresponds to the fraction of undamaged DNA. Non-irradiated DNA (2UV) and DNA not treated with T4endoV
(2T4endoV) were used as controls. (B) Graphical representation of the repair analysis. The CPD content was calculated using the Poisson expression,
2ln (RFa/RFb), where RFa and RFb represent the intact restriction fragment signal intensities of the T4endoV- and mock-treated DNA, respectively.
Repair curves were calculated as the fraction of CPDs removed vs. repair time. Average values derived from two independent experiments are
plotted. Repair curves of rad26 and rad7 (data taken from [14]) are depicted for the TS and the NTS, respectively (dash lines).
doi:10.1371/journal.pgen.1000364.g008
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SAGA might be dispensable for transcription elongation. Our

result portends that SAGA’s effect in transcription elongation

might not only rely on histone modifications, since the template

used in the in vitro assay is devoid of histones, although the use of

crude extracts does not exclude that some histone deposition

occurs spontaneously on the template during the reaction.

Among the analyzed Mediator mutants, some were affected in

expression of long genes while others were not. Notably, the

affected mutants correspond to subunits of the tail (Med2 and

Med15) or head (Med18, Med19, and Med20) domains [42]. The

fact that the tested med15D mutant is impaired in transcription

elongation in vitro and the observation that RNAPII accumulates

toward the 39-end of the analyzed gene in med15D cells supports

the idea that Mediator influences transcription elongation in a

different manner to other factors previously reported. A possible

explanation might be that its effect on elongation arises from a

stalling of RNAPIIs at the 39-end of the gene. The putative

involvement of Mediator in elongation is further substantiated by

the recent findings that it binds to chromatin throughout the ORF

of active genes [43]. Interestingly, while other Mediator null

mutants showed no effect in our in vivo gene expression assay,

deletion of the Srb11 subunit of the associated cyclin-dependent

Ser/Thr protein kinase complex CDK8 or Med13, to which this

domain is attached, appeared to increase the efficiency of

expression, in agreement with the involvement of CDK8 in the

negative regulation of gene expression [42,44].

Although transcription regulation by Ccr4-Not mostly occurs

during the initiation stage, it seems likely that this complex control

gene expression at several levels, including regulation of

transcription initiation, mRNA deadenylation and degradation,

and protein turnover [45–47]. Genetic interactions suggested that

Ccr4-Not could also be involved in transcriptional elongation [27].

Our data support an involvement of Ccr4-Not in transcription

elongation, as suggested by the deficiency of long gene expression

conferred by most viable deletions (the exception is not3).

Importantly, we show that not5 cells are impaired in transcription

elongation in vitro and show RNAPII elongation defects in vivo, as

determined by ChIP analysis.

Ubiquitylation of histone H2B by Rad6-Bre1 is associated with

active transcription [48] and is required for subsequent COM-

PASS-mediated methylation of histone H3 [49]. Both chromatin

modifications are controlled by PAF and the Bur1-Bur2 cyclin-

dependent protein kinase, which associate with the elongating

RNAPII [50,51]. Interestingly, H2B ubiquitylation has been

recently shown to be required for efficient reassembly of

nucleosomes during transcription elongation [52]. Mutants of

the Rad6-Bre1 ubiquitylation complex show a significant reduc-

tion in the expression of long ORFs in vivo and deletion of BRE1

leads to elongation defects in vitro, suggesting that this complex has

a role in transcription elongation. However, no significant

alterations of RNAPII occupancy on a transcribed gene were

observed by ChIP. Similar findings were obtained in bur2 mutants,

although in this case ChIP analyses also showed an RNAPII

distribution consistent with an in vivo transcription elongation

defect, alluding that the Bur1-Bur2 complex might also be

involved in transcription elongation. These findings are in

agreement with the previous report that Bur1 and Bur2 are both

recruited to transcription elongation complexes [26].

Finally, the Fun12 translation initiation factor also affects

transcription elongation in all assays but RNAPII occupancy

measurement, although we show that this is not a general feature

of translation initiation factors. Further studies would be required

to better understand the function of Fun12 and how this might

influence transcription elongation. In this sense, it is worth

noticing that mutants showing elongation deficiencies in the in vitro

transcription elongation assay but not in RNAPII ChIP assays

have been reported previously, as it is the case of PAF complex

mutants [31,53]. It is likely that the interconnection of transcrip-

tion with other nuclear processes like RNA processing and export

may be responsible for a different behavior of particular mutations

in vitro and in vivo. Further development of novel transcription

elongation assays may be required to solve such cases. In any case,

the putative implication of a number of known transcription-

initiation factors and other factors in transcription elongation

opens new perspectives about the function of these proteins in

transcription that demand further studies.

Novel Role for the PAF and Ccr4-Not Complexes in TC-
NER

Among all factors analyzed, a striking observation of this study

is that two known transcription factors, PAF and Ccr4-Not, have a

novel role in TC-NER. Although evidence for a direct

involvement of these complexes in TC-NER, as any other

previously reported, would require the development of a TC-

NER in vitro assay, the fact that PAF and Ccr4-Not work during

transcription elongation makes it plausible that both complexes

Figure 9. Synergistic increase of UV sensitivity phenotypes in rft1 def1 and rft1 rpb9 double mutants. UV sensitivity curves of strains
carrying single, double, and triple combinations of the rft1, def1, and rad7 mutations (left) or the rtf1, rpb9, and rad7 mutations (right). Average values
and standard deviations from at least 3 independent experiments are shown.
doi:10.1371/journal.pgen.1000364.g009
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affect TC-NER directly. The PAF complex is present at promoters

and coding regions of all active genes tested and has been involved

in transcription initiation and elongation, as well as in the 39-end

formation of polyadenylated and nonpolyadenylated RNAPII

transcripts [49,54–56]. It is required for association of the H2B

monoubiquitylating enzyme Bre1-Rad6 with hyperphosphory-

lated RNAPII and therefore for H2B monoubiquitylation [48,57],

as well as for Set1 and Set2 recruitment and therewith for correct

H3-K4 and H3-K36 methylation [50]. PAF also functions in the

regulation of histone acetylation [58]. An involvement of histone

modifications in the repair of UV damages by NER was found

only for monoubiquitylation at H3-K79 [59] and for H3 and H4

histone acetylation [60,61]. Interestingly, residues in both the N-

and C-terminal tail of H2A have been recently found important

for UV survival [62]. Since PAF’s role in transcription elongation

is not confined to the regulation of histone modifications [53,63],

and that bre1D cells were not sensitive to UV irradiation in the

absence of GG-NER (see Figure 7), it remains to be determined

whether the TC-NER phenotype of PAF mutants relies on some

alteration of histone modifications.

In addition to genetic interactions (synthetic lethality) between the

PAF and Ccr4-Not complexes [64], a functional interplay was

inferred from the observation that both PAF and Ccr4-Not mutants

give rise to HU-sensitivity and a deregulation of RNR gene

transcription [36,65,66]. In addition, both the PAF and the Ccr4-

Not complexes have been previously linked to the DNA damage

checkpoint pathway. The PAF complex is responsible for the

recruitment of the Bre1-Rad6 ubiquitylation complex to transcribed

genes [48] and H2B ubiquitylation by the Bre1-Rad6 complex has

been shown to be necessary for the activation of the DNA damage

checkpoint [34]. The Ccr4-Not complex has been shown to promote

cell cycle transition from G1 to S phase after ionizing radiation [35]

and its deadenylase subunits Ccr4 and Caf1 were shown to influence

Crt1 abundance via mRNA poly(A) tail length regulation, which in

turn regulates the expression of a number of DNA-damage inducible

genes. Furthermore, Ccr4 and Caf1 show complex genetic

interactions with a number of DNA damage checkpoint genes in

response to HU and MMS [37]. More recently, Ccr4 was reported

to modulate the timing of gene expression of G1-phase cyclins [67],

which are key regulators of the G1-S checkpoint.

Thus, the TC-NER deficiencies of mutants of the PAF and

Ccr4-Not complexes could rely on some failure in the activation of

the DNA damage checkpoint response. UV survival analysis of

rad9D cells revealed that a functional DNA damage checkpoint

response is important for viability upon UV irradiation both in

repair proficient and in GG-NER deficient cells (see Figure 7).

Our epistatic analysis of UV survival in double and triple

combinations of rad9D with the rtf1D, not5D, or rpb9D mutations

indicate that removal of the Rpb9 TC-NER factor as well as Rtf1

and Not5 increase the sensitivity of rad9D rad7D double mutants,

suggesting that the enhanced UV sensitivity of mutants of the PAF

and Ccr4-Not complexes in the absence of GG-NER is not due to

Rad9-dependent checkpoint activation failure. These findings are

in agreement with the observation that PAF and Ccr4-Not

mutants are impaired in the repair of UV lesions exclusively on the

transcribed strand of an active gene (see Figure 8), while rad9D has

been previously reported to alter the repair efficiency of both the

transcribed and the non-transcribed strands [68].

Interestingly, despite Bre1-Rad6 being required for Rad9-

dependent DNA damage checkpoint activation [34] and rad9 cells

being sensitive to UV independently of GG-NER, bre1 mutants

were not sensitive to UV, not even in the absence of GG-NER.

Thus, the Rad9 protein has functions in DNA damage checkpoint

that are not dependent on the Bre1-Rad6 complex.

Recently, subunits of the Ccr4-Not complex were shown to be

required for tri-methylation of H3K4 and PAF recruitment in a

Bur1/Bur2-independent manner [69]. Notably, Ccr4 and Caf1,

the two major yeast deadenylases [70], did not share this

phenotype, suggesting a functional distinction between the

cytoplasmic deadenylase activity of the Ccr4-Caf1 module and

the nuclear function of the Not proteins of the Ccr4-Not complex.

However, CCR4 shows similar genetic interactions (synthetic

lethality) with BUR1 and BUR2 as well as 6-AU sensitivity as

NOT2 and NOT4 mutants do [27,69]. Our analysis of UV survival

in the absence of GG-NER in viable Ccr4-Not mutants indicates

that caf1 and ccr4 share the TC-NER phenotype of not mutants (see

Figure 6). Furthermore, deletion of BUR2 did not lead to increased

UV sensitivity in the absence of GG-NER (see Figure 5),

suggesting that the TC-NER deficiencies of Ccr4-Not mutants

are not a consequence of misrecruitment of the PAF complex.

Is There a Link between Transcription Elongation
Efficiency and TC-NER?

The finding that both the PAF and Ccr4-Not complexes lead to

impaired TC-NER could suggest that transcription might be

altered in a similar way in these mutants, this alteration being the

cause for the inefficient TC-NER. Strikingly, all factors known to

be required for TC-NER are also somehow involved in

transcription elongation. Although original studies suggested that

RAD26, the CSB yeast homolog, might be a transcription-repair

coupling factor by analogy to the bacterial TRCF, this idea has not

been validated. Instead, several studies have opened the possibility

that Rad26/CSB might have a role in transcription elongation in

the absence of DNA damage [71,72]. Mutants of the Rpb9 and

Rpb4 RNAPII subunits, which both have an effect on transcrip-

tion elongation, confer TC-NER phenotypes [11,12]. Mutants of

the THO/TREX and Thp1-Sac3 complexes, which show

impairment in transcription elongation, also lead to TC-NER

deficiencies [14].

In light of these observations, it is conceivable that proficient

transcription elongation might be a pre-requisite for efficient TC-

NER. However, transcription-elongation mutants like spt4 do not

show defects in TC-NER [73]. On the contrary, spt4 suppresses

the TC-NER defects of rad26, indicating that reduced RNAPII

elongation can even act positively on TC-NER. Another example

arising from our study is bur2, which shows poor expression of long

genes in vivo and has a general role in transcription elongation [49]

but no increase in UV sensitivity in the absence of GG-NER.

Thus, it appears that the TC-NER phenotype is not directly linked

to elongation efficiency. Furthermore, analysis of TC-NER in a

TFIIE mutant in which transcription is significantly reduced

demonstrated that TC-NER occurs even at low levels of RNAPII

transcription [74].

Another possibility is that the signaling of damage-stalled

RNAPII to the repair factors might occur via post-translational

modification of the RNAPII, such as ubiquitylation or CTD

phosphorylation; and that this signaling might be affected in

mutants leading to TC-NER phenotypes. The assumption that

CTD phosphorylation might be important for TC-NER is

supported by the finding that KIN28 mutants –the TFIIH subunit

with CTD kinase activity- are affected in TC-NER [75]. Along

this line, we have proposed the existence of feedback mechanism

acting on the RNAPII holoenzyme in response to mRNP

biogenesis and export deficiencies associated with THO/TREX

and Thp1-Sac3 mutations [14]. As a result of this feedback

mechanism, the elongating RNAPII would no longer be proficient

for TC-NER. Noteworthy, both the PAF and Ccr4-Not complexes

have functions in mRNA 39-end processing [54–56,76,77], which
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might lead to a feed-back mechanism on the elongating RNAPII

as proposed for THO and Thp1-Sac3 mutants.

Interestingly, bacterial TRCF has the ability to promote

elongation of backtracked polymerases, resulting in polymerase

release in case elongation cannot take place, as is the case at sites of

UV lesions [78]. By analogy, it is conceivable that PAF and Ccr4-

Not, and perhaps THO and Thp1-Sac3 complexes, might also be

capable of such anti-backtracking activity. Finally, RNAPII is

subject to ubiquitylation and proteasome-mediated degradation in

response to UV-generated DNA damage [4]. Degradation of

damage-stalled RNAPII complexes is believed to be alternatively

required for DNA repair and depends on the Def1 and the Rpb9

proteins in yeast [16,19]. Our epistatic analysis of the PAF mutant

rft1 and the def1 and rpb9 mutants (see Figure 9) suggest that PAF is

not acting in the degradation of stalled RNAPII upon UV

irradiation. Further studies will be required to understand how

PAF and Ccr4-Not controls TC-NER.

In conclusion, our study open new perspectives to understand

TC-NER by providing evidence for TC-NER being a process

intimately linked to transcription elongation, a number of specific

transcription factors having a dual role in transcription and TC-

NER.

Materials and Methods

Strains and Plasmids
All strains used were purchased from Euroscarf and are isogenic

to BY4741. The rad7D::URA3 strains were obtained by direct

replacement of the RAD7 gene. The rtf1D::KAN rad9D::KAN and

rft1D::KAN rpb9D::KAN strains were obtained by genetic crosses.

The not5D::KAN rad9D::HYGR strains were obtained by direct

replacement of the RAD9 gene. The rpb9D::HIS3 rad9D::KAN

strains were obtained by direct replacement of the RPB9 gene. The

def1D::HYGR strains were obtained by replacement of the DEF1

gene in rft1D::KAN rad7D::URA3 diploids and subsequent tetrad

dissection. Plasmids pCYC1-402 [30] and pCM184-LAUR [32]

were described previously.

Expression Profiling Experiments
Yeast cells were grown at 28uC in 10 ml YPD medium to an

OD660 of 0.6. The appropriate compounds were added to reach a

final concentration of 75 ng/ml (4-NQO) or 50 mg/ml (MPA).

Cell harvesting, purification of total RNA and transcriptional

profiling were performed using DNA microarrays containing

PCR-amplified fragments of S. cerevisiae ORFs as previously

described [79]. For each condition assayed three independent

experiments were performed and dye-swapping was carried out in

each case. Data were combined and the mean calculated yielding

2374 genes significant for statistical analysis. Induction or

repression was considered significant when the mean of the ratios

was at least 2-fold above or below mock treated cells.

High-Throughput Screen for MPA and 4-NQO Sensitivity
The screenings of the complete collection of yeast haploid

mutant strains were performed as described [80], using MPA

(25 mg/ml), or 4-NQO (150 ng/ml).

In Vivo Gene Expression Analysis
An indirect measurement of Gene Length Accumulation of

mRNA, GLAM ratios were determined by measuring acid

phosphatase of plasmid gene expression constructs sharing the

same ‘‘short’’ transcription unit (GAL1pr::PHO5), but differing in

the 39UTR of the ‘‘long’’ one (GAL1pr::PHO5-lacZ and GAL1pr::

PHO5-LAC4) as described [24].

In Vitro Transcription Elongation Assay
Yeast cells were grown in rich YEPD medium at 30uC to an

OD600 of 1 and WCEs were prepared as described [30]. Each in

vitro transcription reaction was performed with 100 mg WCEs and

100 ng of purified Gal4-VP16, using as template the pCYC1-402

plasmid containing the two G-less cassette used to assay

transcription elongation.

ChIP Assay
Yeast cells harboring pCM184-LAUR were grown in synthetic

complete medium (SC) medium at 30uC to an OD600 of 0.5.

Samples were taken and ChIP assay were performed as described

previously [81]. Primer sequences are available upon request.

UV Survival Curves and Drop Assays
UV survival curves were performed as described [14]. UV

irradiation was performed using germicidal lamps (Philips TUV

15 W) and a UVX radiometer (UVP) for the curves shown in

Figure 6, and in a BS03 UV irradiation chamber and UV-Mat

dosimeter (Dr. Gröbel UV-Elektronik GmbH) for the curves

shown in Figures 7 and 9. For the drop assays, yeast cells were

grown in YPD-rich medium to an OD600 of 0.7. Serial dilutions

(100-, 500-, 1000-, 5000-, and 10000-fold) were dropped on

YPAD plates, irradiated with 15 J/m2 UV light, and incubated in

the dark at 30uC for 3 days.

Gene- and Strand-Specific Repair Assays
Irradiation and repair at the RPB2 gene, mapping of CPDs, and

analysis and quantification of membranes were carried out as

described [14].

Supporting Information

Figure S1 Correlation between PHO5-lacZ/PHO5 and PHO5-

LAC4/PHO5 gene expression ratios (Pearson coefficient of 0.75).

Values plotted are those shown in Table S4.

Found at: doi:10.1371/journal.pgen.1000364.s001 (0.45 MB EPS)

Table S1 Analysis of genes whose expression is affected by 4-

NQO and MPA. Expression of a total of 2374 genes was

determined by microarray analysis after treating wild-type cells

with either 75 ng/ml of 4-NQO or 50 mg/ml of MPA for 30 min

each. The genes showing mRNA levels that were at least 2-fold

above or below mock treated cells for each treatment are listed.

The complete microarray data are available at http://www.ncbi.

nlm.nih.gov/geo/ under the access number GSE11561.

Found at: doi:10.1371/journal.pgen.1000364.s002 (0.06 MB

PDF)

Table S2 Analysis of mutant strains leading to 4-NQO

sensitivity. Growth was monitored after 48, 72, and 120 hours in

4-NQO-containing media (150 ng/ml) and the sensitive strains

classified into three groups. Group A contains 189 strains whose

sensitivity to 4-NQO is observed from early on (48 h) and is

maintained over the course of the experiment (up to 120 h for

group A1, and up to 72 h for group A2), group B contains 315

strains whose sensitivity was observed only at early time points

(48 h), and group C contains 100 slow-growing strains which

showed 4-NQO sensitivity only at later time points (from 72 h on

and up to 120 h). The strains of group B were not considered as

significantly inhibited by 4-NQO and excluded from further

analyses. Values between 60% and 80% and above 80% inhibition

are highlighted (orange and red, respectively).

Found at: doi:10.1371/journal.pgen.1000364.s003 (0.07 MB PDF)
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Table S3 Genetic analysis of sensitivity to DNA-damaging

agents. Thirty 4-NQO-sensitive strains of group A that encom-

passed mutations of the SAGA, PAF, CDKs, and Mediator

complexes as well as proteins involved in RNAPII transcription,

mRNA processing and degradation, chromatin remodeling, DNA-

damage response, and translation initiation were analyzed for drug

sensitivity. The indicated strains were spotted as 10-fold serial

dilutions on complete minimal medium (SC) and minimal medium

containing 0.1 mg/ml 4-nitroquinoline-N-oxide (4-NQO), 0,015%

methyl methane sulfonate (MMS), or 0.1 nM menadione (Mnd).

UV sensitivity (UV) was assessed following irradiation with 70 J/

m2. Plates were grown for 3 days at 30uC or 37uC and cell viability

for each condition was scored as + for growth as wild-type, as +/2

for moderate growth defects, and as - for severe growth defects.

Most of the UV sensitive strains were also sensitive to 4-NQO,

consistent with the fact that the bulky adduct produced by 4-NQO

get repaired by NER (exceptions are ctk2, spt5, bdf1, lsm1, npl6, and

fps1). However, 9 of the 4-NQO sensitive strains were not sensitive

to UV (spt20, bur2, med2, med16, med20, hpr1, spt4, rpb9, and swi6),

indicating that 4-NQO is more than a ‘UV-mimetic’ agent. Those

strains appeared mainly sensitive to Mnd, reflecting their

deficiencies in the presence of oxidative damage. Comparison of

strain sensitivity to 4-NQO, MMS, Mnd, and heat stress did not

lead to significant clustering of cross-resistance, indicating that

each drug leads to its own response, as observed previously for 15

DNA-damaging agents including MMS and 4-NQO [21,82].

Found at: doi:10.1371/journal.pgen.1000364.s004 (0.09 MB

DOC)

Table S4 Analysis of mutant strains leading to MPA sensitivity.

Growth was monitored after 72 hours in MPA-containing media

(25 mg/ml). Strains showing at least 50% growth inhibition are

listed together with their GLAM-ratios. Values above 60%

inhibition and ratios below 0.5 are highlighted in red. n.d., not

determined.

Found at: doi:10.1371/journal.pgen.1000364.s005 (0.03 MB PDF)
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