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1 Introduction

We are mainly interested in the stability of a class of nonlinear stochastic partial differential
equations of monotone type. The question of the asymptotic stability of the second moment
of Xt (which is the solution of equation (2.1) below) has received considerable attention in the
literature. Willems [7], [18] have established sufficient conditions which guarantee asymptotic
stability when the spaces are finite dimensional. Wonham [20], and Willems [19] have considered
a related problem, the stabilization problem, again in finite dimension. Recently Ichikawa [14]
have extended these results to infinite dimensions. In fact, a coercivity condition, extending the
one considered by Chow [11] and Caraballo and Real [8], is introduced and will play the role of
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a stability criterion. To be precise, under the coercivity condition from Caraballo and Real [8],
almost sure exponential stability of solutions is obtained, while in Chow [11] pathwise asymptotic
stability is proved. However, as we will explain later, coercivity criteria from Caraballo and Real
[8] are too restrictive to be applied to a number of interesting and, in our opinion, important
examples, especially in the non-autonomous case. In this work, we shall improve their results to
cover the general non-autonomous stochastic differential equations in Hilbert spaces.
The organization of the paper is as follows. In section 2, we introduce the basic notations and
assumptions. In Section 3, we prove some sufficient conditions ensuring almost sure practical ex-
ponential stability in mean square of solutions of a class of nonlinear stochastic partial differential
equation, and study an example to illustrate these results.

2 Preliminaries

Let V be a Banach space and H, K real, separable Hilbert spaces such that

V ↪→ H ≡ H
′
↪→ V

′
,

where the injections are continuous and dense.
We denote by ‖ . ‖, | . | and ‖ . ‖∗ the norms in V , H and V

′
respectively, by (., .) the inner

product in H, and by < ., . > the duality product between V and V
′
, and β is a constant such

that
|x| ≤ β||x||, ∀x ∈ V.

Let Wt be a Wiener process defined on some complete probability space {Ω,F ,P} and taking
its values in the separable Hilbert space K, with increment covariance operator Q, and let
(Ft)t≥0 be the usual family of subt-σ-algebras of F such that, for each t ≥ 0, Ft is generated by
{Ws, 0 ≤ s ≤ t}.

Consider the following nonlinear stochastic diffusion equation:

Xt = X0 +

∫ t

0

A(s,Xs)ds+

∫ t

0

B(s,Xs)dWs, (2.1)

where A(t, .) : V → V
′

is a family of nonlinear operators defined a.e.t. satisfying there exists
t ∈ R+ such that A(t, 0) 6= 0, and where B(t, .) : V → L(K,H), the family of all bounded linear
operators from K into H, satisfies

(b.1) There exists t ∈ R+ such that B(t, 0) 6= 0,
(b.2) There exist continuous non-negative functions k(t), ψ(t) and positive constants θ and ξ

such that

θ :=

∫ +∞

0

k2(t)dt, ξ :=

∫ +∞

0

ψ2(t)dt,

and
||B(t, x)||2 ≤ k(t)||x||+ ψ(t), for all x ∈ V, a.e.t.,

2



where ||.||2 denotes the Hilbert-Shmidt norm of nuclear operators, i.e.,

||B(t, x)||22 = tr(B(t, x)QB(t, x)∗).

(b.3) The map t ∈ (0, T ) 7→ B(t, x) ∈ L(K,H) is Lebesgue-measurable ∀x ∈ V , ∀T > 0.

Definition 2.1. Let {Ω,F , (Ft)t≥0,P} be the stochastic filter associated to the K-valued Wiener
process Wt with covariance operator Q. Suppose that X0 ∈ L2(Ω,F0,P;H), i.e, X0 is an H-
valued F0-measurable random variable such that E|X0|2 <∞. A stochastic process Xt is said to
be a strong solution on Ω to the SDE (2.1) for t ∈ [0, T ] if the following conditions are satisfied
(see [12]):
(a) Xt is a V -valued Ft-measurable random variable;
(b) Xt ∈ Ip(0, T ;V )∩L2(Ω;C(0, T ;H)), p > 1, T > 0, where Ip(0, T ;V ) denotes the space of all
V -valued processes (Xt)t∈[0,T ] (we will write Xt for short) measurable (from [0, T ] × Ω into V ),
satisfying that Xt is Ft-measurable (hence Xt is Ft-adapted) for almost all t ∈ [0, T ], and

E
∫ T

0

||Xt||pdt <∞.

Here C(0, T ;H) denotes the space of all continuous functions from [0, T ] into H.

(c) E
∫ T

0

||A(t,Xt)||2∗dt <∞.

(d) Eq. (2.1) is satisfied for every t ∈ [0, T ] with probability one.
If T is replaced by ∞, Xt is called a global strong solution of (2.1).

As we are mainly interested in the stability analysis, we always assume that for each X0 ∈
L2(Ω,F0,P;H), there exists a global strong solution to (2.1). This happens, for instance, if the
following assumptions hold true (see, for example, Pardoux [17]).

(a.1) Coercivity: There exist α > 0, p > 1 and λ, γ ∈ R∗ such that

2 < A(t, x), x > +||B(t, x)||22 ≤ −α||x||p + λ|x|2 + γ for all x ∈ V, a.e.t.

(a.2) Boundedness: There exists β > 0, c > 0 such that

||A(t, x)||∗ ≤ c||x||p−1 + β for all x ∈ V, a.e.t.

(a.3) Monotonicity:

||B(t, x)−B(t, y)||2 ≤ λ|x− y|2 −
(
2 < A(t, x)− A(t, y), x− y >

)
for all x, y ∈ V, a.e.t.

(a.4) Hemicontinuity: The map θ ∈ R 7→< A(t, x + θy), z >∈ R is continuous for every
x, y, z ∈ V , a.e. t.
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(a.5) Measurability: for every x ∈ V , the map t ∈ (0, T ) 7→ A(t, x) ∈ V ′
is Lebesgue measur-

able, a.e. t., ∀T > 0.

Now we establish a version of the Itô formula (see Pardoux [17]) which will be needed later
in this paper. Let C(1,2)([0,∞)×H,R+) denote the space of all R+-valued functions Ψ defined
on [0,∞)×H with the following properties:
(1) Ψ(t, x) is differentiable in t ∈ [0,∞) and twice Frechet differentiable in x with
Ψt(t, .), Ψx(t, .) and Ψxx(t, .) locally bounded on H,
(2) Ψ(t, .), Ψt(t, .) and Ψx(t, .) are continuous on H,
(3) for all trace class operators R, tr (Ψxx(t, .)R) is continuous from H into R,
(4) if v ∈ V then Ψx(t, v) ∈ V , and u→ 〈Ψx(t, u), v∗〉 is continuous for each v∗ ∈ V ′

,
(5) ‖Ψx(t, v)‖ ≤ C0(t)(1 + ‖v‖), C0(t) > 0, for all v ∈ V .

Theorem 2.1. (Itô’s formula). Let Ψ ∈ C(1,2)([0,∞) × H,R+). If the stochastic process X(t)
is a weak solution to (2.1), then it holds that

Ψ(t,X(t)) = Ψ(0, X(0)) +

∫ t

0

LΨ(s,X(s))ds,

+

∫ t

0

(Ψx(s,X(s)), B(s,X(s))dW (s)),

where

LΨ(s,X(s)) = Ψt(s,X(s)),

+ 〈A(s,X(s)),Ψx(s,X(s))〉,

+
1

2
tr(Ψxx(s,X(s))B(s,X(s))QB(s,X(s))∗).

Remark 2.2. Notice that any strong solution in the sense of Definition 2.1 is a weak solution
in the weak or variational sense in Theorem 2.1 (see e.g. [8, 9, 17]).

We state now the definitions of the almost surely convergence of solutions to a small closed
ball Br ⊂ H centered at zero with radius r (see [1]-[6], [10]), and we will consider initial values
in the space X0 ∈ L2(Ω,F0,P;H).

Definition 2.2. The ball Br is said to be almost surely globally practically uniformly exponen-
tially stable if:

For any initial value X0 ∈ L2(Ω,F0,P;H), such that its corresponding strong solution X(t) :=
X(t,X0) to (2.1) satisfies 0 < |X(t)| − r, for all t ≥ 0, it holds that

lim sup
t→∞

1

t
ln(|X(t,X0)| − r) < 0, a.s. (2.2)

System (2.1) is said to be almost surely globally practically uniformly exponentially stable if
there exists r > 0 such that Br is almost surely globally practically uniformly exponentially
stable.
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Definition 2.3. The ball Br is said to be almost surely globally practically uniformly exponen-
tially stable in mean square if:

For any initial value X0 ∈ L2(Ω,F0,P;H), such that its corresponding strong solution X(t) :=
X(t,X0) to (2.1) satisfies 0 < E

(
|X(t,X0)|2

)
− r, for all t ≥ 0, it holds that

lim sup
t→∞

1

t
ln
(
E(|X(t,X0)|2)− r

)
< 0, a.s. (2.3)

System (2.1) is said to be almost surely globally practically uniformly exponentially stable
in mean square if there exists r > 0 such that Br is almost surely globally practically uniformly
exponentially stable in the mean square.

Definition 2.4. The system (2.1) is said to be almost surely globally practically uniformly
exponentially convergent to zero in mean square if there exists a function r(·) such that:

For any initial value X0 ∈ L2(Ω,F0,P;H), such that its corresponding strong solution X(t) :=
X(t,X0) to (2.1) satisfies 0 < E

(
|X(t,X0)|2

)
− r(t), for all t ≥ 0, it holds that

lim sup
t→∞

1

t
ln
(
E(|X(t,X0)|2)− r(t)

)
< 0, a.s. (2.4)

with limt→+∞ r(t) = 0.

Definition 2.5. The ball Br is said to be uniformly stable in probability if the strong solution
X(t) := X(t,X0) to (2.1) satisfies:

For each ε ∈]0, 1[ and k > r, there exists δ = δ(ε, k) > r such that

P
(
|X(t,X0)| < k, ∀t ≥ 0

)
≥ 1− ε for all |X0| < δ. (2.5)

Remark 2.3. Noting that if r → 0 we have the classical definition of the stability in probability.
We write in the definition (2.5) that δ = δ(ε, k) > r because if we take δ = δ(ε, k) < r and
letting r → 0 we get |X0| < 0 which contradicts with the classical definition of the stability in
probability when 0 is an equilibrium point.

3 Practical exponential stability in mean square

Now we shall impose the following coercivity condition (CC):
There exist constants α > 0, µ > 0, λ ∈ R, and a nonnegative continuous function γ(t),

t ∈ R+, such that

2 < A(t, v), v > +||B(t, v)||22 ≤ −α||v||p + λ|v|2 + γ(t)e−µt, v ∈ V, (3.1)

where p > 1 and, for arbitrary δ > 0, γ(t) satisfies γ(t) = o(eδt), as t → ∞, i.e., lim
t→∞

γ(t)

eδt
= 0

and

∫ +∞

0

γ(t)e−δtdt ≤ K with K > 0.
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Remark 3.1. Observe that, owing to the continuity and subexponential growth of the term
γ(t)e−µt, there exists a positive constant γ̃ such that γ(t)e−µt ≤ γ̃ for all t ∈ R+.
As a consequence, (3.1) implies (a.1) (by replacing γ by γ̃), i.e., this assumption is compatible
with the existence of the strong solutions to (2.1).

Theorem 3.2. Assuming conditions (CC) and (b.3), there exists a constant τ > 0 such that if
Xt is a global strong solution to Eq. (2.1) corresponding to an initial value X0 ∈ L2(Ω,F0,P;H),
satisfying that E|Xt|2 > r(t) := Ke−τt, for all t ≥ 0, then

E|Xt|2 ≤ E|X0|2e−τt + r(t), ∀t ≥ 0, (3.2)

if either one of the following hypotheses holds
(i) λ < 0, (∀p > 1);
(ii) λβ2 − α < 0, (p = 2).
Then, system (2.1) is almost surely globally practically uniformly exponentially convergent to zero
in mean square.

Proof. Firstly, let us denote ν =
(α− λβ2)

β2
for case (ii) and ν =

−λ
β2

for case (i), which are

positive by assumption (ii) and (i) respectively, and the rest of the proof is the same for both
cases. Then, if µ − ν ≤ 0, we can choose δ > 0 small enough such that µ − δ > 0 and define
τ := µ− δ. If, on the other hand, µ− ν > 0, then we can choose δ > 0 small enough such that
µ− ν − δ > 0 and, in this case, we define τ := ν. Now, let us suppose that E|Xt|2 > r(t), for all
t ≥ 0. Then, Itô’s formula implies

e(µ−δ)t|Xt|2 − |X0|2 = (µ− δ)
∫ t

0

e(µ−δ)s|Xs|2ds+ 2

∫ t

0

e(µ−δ)s < A(s,Xs), Xs > ds,

+ 2

∫ t

0

e(µ−δ)s < Xs, B(s,Xs)dWs > +

∫ t

0

e(µ−δ)str(B(s,Xs)QB(s,Xs)
∗)ds. (3.3)

Now, since

∫ t

0

e(µ−δ)s < Xs, B(s,Xs)dWs >, t ∈ R+, is a continuous martingale, it follows that

E
(∫ t

0

e(µ−δ)s < Xs, B(s,Xs)dWs >
)

= 0, t ∈ R+.

Therefore, condition (3.1) and the continuous injection V ↪→ H yield

e(µ−δ)tE|Xt|2 ≤ E|X0|2 + (µ− δ − ν)

∫ t

0

e(µ−δ)sE|Xs|2ds+

∫ t

0

γ(s)e−δsds. (3.4)

If µ− ν ≤ 0, it follows immediately

e(µ−δ)tE|Xt|2 ≤ E|X0|2 +

∫ t

0

γ(s)e−δsds ≤ E|X0|2 +K,
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thus
E|Xt|2 ≤ E|X0|2e−(µ−δ)t +Ke−(µ−δ)t ≤ E|X0|2e−τt + r(t).

On the other hand, if µ− ν > 0, as we have chosen δ > 0 small enough such that µ− ν − δ > 0,
then, from (3.4) and Gronwall’s lemma one can obtain

e(µ−δ)tE|Xt|2 ≤
(
E|X0|2 +

∫ t

0

γ(s)e−δsds
)
e(µ−δ−ν)t ≤

(
E|X0|2 +K

)
e(µ−δ−ν)t,

finally
E|Xt|2 ≤ E|X0|2e−νt +Ke−νt ≤ E|X0|2e−τt + r(t),

as required. 2

Remark 3.3. Notice that we can have a second version of Theorem 3.2 under the same hy-
potheses as it is straightforward to prove that

E|Xt|2 ≤ E|X0|2e−τt +K, ∀t ≥ 0.

Then, system (2.1) is almost surely globally practically uniformly exponentially in mean square.

Theorem 3.4. In addition to hypotheses in Theorem 3.2, assume that b2) also holds and∫ +∞

0

γ(s)e−µsds ≤ η < +∞ and sup
u∈[s,t)

k2(u) ≤ ϕ < +∞ for 0 ≤ s ≤ t, µ > 0, η > 0 and ϕ

is a positive constant independent of t and s. Then, there exist positive constants M , ε and a
subset N0 ⊂ Ω with P(N0) = 0 such that, for each ω ∈ Ω \ N0, there exists a positive random
number T (ω) such that

|Xt|2 ≤Me−εt + η, ∀t ≥ T (ω). (3.5)

Then, the ball B√η ⊂ H is uniformly stable in probability.

Proof. We only prove case (ii). Case (i) can be proved similarly. We shall split our proof into
several steps, as follows.

Step 1: We will find three constants C = C(δ,X0) > 0, ζ > 0 and τ > 0, independent of
t ∈ R+, such that ∫ t

s

E||B(u,Xu)||22du ≤ Ce−τs + ζ, 0 ≤ s ≤ t. (3.6)

Applying Itô’s formula to (2.1) as in theorem 3.2, we get that for any δ > 0 with µ− δ > 0

e(µ−δ)tE|Xt|2 ≤ E|X0|2 + (µ− δ − ν)

∫ t

0

e(µ−δ)sE|Xs|2ds+

∫ t

0

γ(s)e−δsds, (3.7)

and

e(µ−δ)tE|Xt|2 ≤ E|X0|2 + (µ− δ + λ)

∫ t

0

e(µ−δ)sE|Xs|2ds
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+

∫ t

0

γ(s)e−δsds− α
∫ t

0

e(µ−δ)sE||Xs||2ds, (3.8)

where ν =
(α− λβ2)

β2
.

Now, if µ− ν ≤ 0, it follows from (3.7) that∫ t

0

e(µ−δ)sE|Xs|2ds ≤
E|X0|2 +

∫ t
0
γ(s)e−δsds

ν + δ − µ
, (3.9)

which, together with (3.8), immediately implies∫ t

0

e(µ−δ)sE||Xs||2ds ≤
1

α

[
E|X0|2 +

∫ t

0

γ(s)e−δsds
]
,

+
µ− δ + λ

α

∫ t

0

e(µ−δ)sE|Xs|2ds,

≤ 1

α

[µ− δ + λ

ν + δ − µ
+ 1
][

E|X0|2 +

∫ t

0

γ(s)e−δsds
]
,

≤ 1

α

[µ− δ + λ

ν + δ − µ
+ 1
][

E|X0|2 +K
]
. (3.10)

Consequently, for 0 ≤ s ≤ t,∫ t

s

E||Xu||2du ≤
∫ t

s

e(µ−δ)(u−s)E||Xu||2du,

≤ e−(µ−δ)s
∫ t

0

e(µ−δ)uE||Xu||2du,

thus, ∫ t

s

E||Xu||2du ≤
1

α

[µ− δ + λ

ν + δ − µ
+ 1
][

E|X0|2 +K
]
e−(µ−δ)s, (3.11)

which, together with (b.2) immediately yields that∫ t

s

E||B(u,Xu)||22du ≤ 2

∫ t

s

k2(u)E||Xu||2du+ 2

∫ t

s

ψ(u)2du

≤ 2 sup
u∈[s,t)

k2(u)

∫ t

s

E||Xu||2du+ 2

∫ +∞

0

ψ(u)2du

≤ 2ϕ

∫ t

s

E||Xu||2du+ 2ξ

therefore, ∫ t

s

E||B(u,Xu)||22du ≤ Ce−(µ−δ)s + ζ, (3.12)
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where k1 is a positive constant, C = C(δ,X0) =
2ϕ

α

[µ− δ + λ

ν + δ − µ
+ 1
][

E|X0|2 +K
]

and ζ = 2ξ.

On the other hand, if µ − ν > 0, it is always possible to choose a suitable δ > 0 such that
ν − δ > 0. Then, by applying Itô’s lemma to the strong solution Xt, it is easy to deduce

e(ν−δ)tE|Xt|2 ≤ E|X0|2 + (ν − δ + λ)

∫ t

0

e(ν−δ)sE|Xs|2ds,

+

∫ t

0

γ(s)e−(µ−ν+δ)sds− α
∫ t

0

e(ν−δ)sE||Xs||2ds,

≤ E|X0|2 + (ν − δ + λ)

∫ t

0

e(ν−δ)sE|Xs|2ds,

+

∫ t

0

γ(s)e−δsds− α
∫ t

0

e(ν−δ)sE||Xs||2ds. (3.13)

Noticing that, in this case, the parameter τ in theorem 3.2 turns out to be ν, (3.13) yields

α

∫ t

0

e(ν−δ)sE||Xs||2ds ≤ E|X0|2 + (ν − δ + λ)

∫ t

0

e−δsds+K,

and we can argue in a similar manner as we did previously. Hence our claim is proved.

Step 2: We claim that there exists a positive constant M > 0 such that

E
(

sup
0≤t<∞

|Xt|2
)
≤M.

Indeed, Itô’s formula implies

|Xt|2 − |X0|2 = 2

∫ t

0

< A(s,Xs), Xs > ds+

∫ t

0

tr
(
B(s,Xs)QB(s,Xs)

∗)ds,
+ 2

∫ t

0

< Xs, B(s,Xs)dWs > . (3.14)

On the other hand, from Burkholder-Davis-Gundy’s inequality, we get for any T ∈ R+

2E
[

sup
t∈[0,T ]

∣∣∣ ∫ t

0

< Xs, B(s,Xs)dWs >
∣∣∣],

≤ K1E
[( ∫ T

0

|Xs|2||B(s,Xs)||22ds
) 1

2
]
,

≤ K1E
{

sup
0≤s≤T

|Xs|
[ ∫ T

0

||B(s,Xs)||22ds
] 1

2
}
,
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≤ 1

2
E
[

sup
0≤s≤T

|Xs|2
]

+K2

∫ T

0

||B(s,Xs)||22ds, (3.15)

where K1; K2 are two positive constants. Therefore, in addition to condition (CC), (3.14) and
(3.15) imply

E
(

sup
0≤s≤T

|Xs|2
)
≤ E|X0|2 + ν

∫ T

0

E|Xs|2ds+

∫ T

0

γ(s)e−µsds,

+
1

2
E
[

sup
0≤s≤T

|Xs|2
]

+K2

∫ T

0

E||B(s,Xs)||22ds. (3.16)

Thus, our claim can be easily obtained owing to (3.2), (3.6) and condition (CC).

Step 3: Now, we can finish our proof. We only sketch it because it is similar to that in
Caraballo [9] and Haussmann [13].
Firstly, the coercivity condition (CC) and (3.14) imply

|XT |2 ≤ |XN |2 + ν

∫ T

N

|Xs|2ds+

∫ T

N

γ(s)e−µsds,

+ 2
[

sup
t∈[N,T ]

∣∣∣ ∫ t

N

< Xs, B(s,Xs)dWs >
∣∣∣],

≤ |XN |2 + ν

∫ T

N

|Xs|2ds+

∫ +∞

0

γ(s)e−µsds,

+ 2
[

sup
t∈[N,T ]

∣∣∣ ∫ t

N

< Xs, B(s,Xs)dWs >
∣∣∣],

≤ |XN |2 + ν

∫ T

N

|Xs|2ds+ η,

+ 2
[

sup
t∈[N,T ]

∣∣∣ ∫ t

N

< Xs, B(s,Xs)dWs >
∣∣∣],

Consequently, we obtain

|XT |2 − η ≤ |XN |2 + ν

∫ T

N

|Xs|2ds+ 2
[

sup
t∈[N,T ]

∣∣∣ ∫ t

N

< Xs, B(s,Xs)dWs >
∣∣∣], (3.17)

for T ≥ N , where N is a natural number.
In particular, taking N ∈ N large enough, we can easily obtain

P
{

sup
t∈[N,N+1]

|Xt|2 − η ≥ ε2N

}
≤ P

{[
sup

t∈[N,N+1]

∣∣∣ ∫ t

N

< Xs, B(s,Xs)dWs >
∣∣∣] ≥ ε2N

6

}
,

+ P{|XN |2 ≥
ε2N
3
},
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+ P{ν
∫ N+1

N

|Xs|2ds ≥
ε2N
3
}, (3.18)

where ε2N = Ce−
τ(N+1)

4 .
Now, we can estimate the terms on the right-hand side of (3.18) using Kolmogorov’s inequality
and (3.2) for the last two terms, and Burkholder-Davis-Gundy’s lemma, Hölder inequality and
an argument similar to that used in Steps 1 and 2 for the first one. Consequently, there exists a
positive constant K3 > 0 such that

P
{

sup
t∈[N,N+1]

|Xt|2 − η ≥ ε2N

}
≤ K3e

− τN
4 .

Finally, a Borel-Cantelli’s lemma-type there exist a subset N0 ⊂ Ω with P(N0) = 0 such that,
for each ω ∈ Ω \N0, there exists a positive random number T (ω) such that

|Xt|2 ≤ η + Ce−
τ(N+1)

4 , ∀t ≥ T (ω).

Noting that Ce−
τ(N+1)

4 ≤ Ce−
τt
4 . Then we have

|Xt|2 ≤ η + Ce−
τt
4 , ∀t ≥ T (ω).

as desired. 2

Next, we give an example to illustrate our results.

Example 3.5. We consider the following semi-linear stochastic partial differential equation,
which models the heat production by an exothermic reaction taking place inside a rod of length π
whose ends are maintained at 0◦ and whose sides are insulated (see Haussmann [13] for a similar
situation in the linear case):{

dYt(x) =
[
∂2Yt(x)
∂x2 + r0Yt(x)

]
dt+ α(t, Yt(x))dW (t), t > 0, x ∈ (0, π),

Y0(x) = y0(x), Yt(0) = Yt(π) = 0, t ≥ 0.
(3.19)

Here Wt is a real standard Wiener process (so, K = R and Q = 1), r0 ∈ R, and α(·, ·) : R×R→
R is a continuous function such that α(t, 0) 6= 0, for some t ∈ R, and |α(t, u)| ≤ e−t|u| + te−at

with a > 0. We can set this problem in our formulation by taking H = L2[0, π], V = W 1,2
0 ([0, π])

(a Sobolev space with elements satisfying the boundary conditions above), K = R, A(t, u) =
(d2/dx2)u(x) + r0u(x), and B(t, u) = α(t, u).
Clearly, operator B satisfies (b.2) and (b.3). On the other hand, it is easy to deduce for arbitrary
u ∈ V that

2 < A(t, u), u > +||B(t, u)||22 ≤ −2||u||2 + 2r0|u|2 + 2e−2t|u|2 + 2t2e−2at,

≤ −2||u||2 + (2r0 + 2)|u|2 + 2t2e−2at.

The norm in V is given by

||u||2 =

∫ π

0

(u′(x))2dx.
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Therefore, it follows that hypothesis (b) in theorems 3.2 and 3.4 is fulfilled provided (2+2r0)β
2 < 2

(observe that we can set β = π√
2

in this case). We can take α = 2, γ(t) = 2t2, µ = 2a, λ = 2r0+2

and r(t) =
4

δ3
e−νt where ν =

2

β2
− (2 + 2r0).

Consequently, we easily deduce that the strong solution of the equation is almost surely practically
exponentially stable in mean square.
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