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Abstract: We consider the effects of additive and multiplicative noise on the asymptotic behavior of a fourth order parabolic equation
arising in the study of phase transitions. On account that the deterministic model presents three different time scales, in this paper
we have established some conditions under which the third time scale, which encounter finite dimensional behavior of thesystem, is
preserved under both additive and multiplicative linear noise. In particular we have proved the existence of a random attractor in both
cases, and observed that the order of magnitude of the third time scale is also preserved.
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1 Introduction

The study of phase transitions has been an important
subject of research over the last decades (see [1]). Several
models have been introduced, among the others, the
Cahn-Hilliard (see for example [2]) equations have been
intensively studied. In [3] the authors introduced a model
related to that of Cahn and Hilliard (C-H) in the sense that
if u is the solution of the equation







ut = −ε2uxxxx+
1
2[W′(ux)]x

u = uxx = 0, on∂ I ,
u(0,t) = u0,

(1)

then ux solve the C-H equation. In (1), I is an open
interval, the functionW is the so called double well
potential, that is,W(p) = (p2 − 1)2 and ε is a small
parameter. The equation (1) represents theL2-gradient
dynamics associated to the energy functional (see [10]
and [14]):

Fε(u) =
1
2

∫

I
u2

xxdx+
1
2

∫

I
W(ux)dx.

The global dynamics of (1) have been studied in [3] by
numerical experiments and, in particular, the existence of
three time scales with different dynamical behavior has
been pointed out.

In a first time scale of orderO(ε2), the energy of the
initial datum is drastically reduced and a microstructure
appears in the region in which the gradients of the initial
data are in the set in which the potentialW is non convex,

that is(−
√

3
3 ,

√
3

3 ) (see [10] for an analysis of the first time
scale using variational techniques).
In the second time scale of orderO(1), the region without
microstructure evolves in a heat equation like behavior,
while the region with microstructure remains almost
stationary.
In the last time scale of orderO(ε−2), equation (1)
exhibits a finite dimensional behavior, the solution is
approximately the union of consecutive segments with
slops±1.
In the papers [11], [12], [13], and [4], the third time scale
has been studied. In [11] the authors prove the existence
of an exponential attractorMε whose dimension is of
order O(ε−10). In particular the time for which the
solutions enter the absorbing set is of order(ε−2). In [12]
the authors found an estimate of the dimension, of order
O(ε−1) (in accordance with the numerical experiments
presented in [3]), of the global attractorAε by the volume
elements evolution method and they proved the existence
of an inertial manifold whose dimension is of order
O(ε−19). Moreover, some estimates on the regularity
estimates and on the embedding dimension are
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performed. Since natural systems are subjected to random
perturbation we consider interesting to reconsider the
problem (1) in the context of stochastic processes.
Namely, when some multiplicative and additive noise
may appear in the formulation.

Thus, in Section 2 below we state the problem in the
multiplicative case, state some necessary preliminary
definitions on the theory of random attractors, and prove
that our problem generates a random dynamical system.
In Section 3 we prove the existence of a random attractor.
Finally, in Section 4 we consider the case in which the
noise appears as an additive one. We do not intend to
establish all the results in a formal and detailed way, but
only wish to provide the main estimates in order to justify
the existence of a random attractor, highlighting the main
differences with the multiplicative case. This additive
case requires of some additional technicalities which
make the analysis more involved.

2 Preliminary definitions

We consider the following stochastic version of the system
(1) with multiplicative noise






dX = (−ε2△2X + 1
2W′′(∇X)△X)dt+ σX ◦dw,

X = Xxx = 0, on∂ I ,
X(0,t) = X0,

(2)

where w(t) is a two-sided standard Wiener process
defined on a probability basis(Ω ,F ,{F}t∈R,P), where
{F}t∈R is a filtration that is an increasing collection of
sigma-algebras onΩ andF0 contains all the null sets.
In order to study the dynamics of equation (2) we first
recall some basic definitions of the theory of random
dynamical systems.
Let {θt : Ω → Ω , t ∈ R} be a family of measure
preserving transformations such that(t,ω) → θtω is
measurable,θ0 = id andθt+s = θtθs for all s,t ∈ R. The
flow θt together with the corresponding probability space
(Ω ,F ,P,(θt )t∈R) is called a measurable dynamical
system. Finally we suppose thatθt is ergodic.
A continuous random dynamical system is a measurable
map

ϕ : R
+ ×Ω ×X → X,

such thatP-a.s.

(i)ϕ(0,ω) = id on X,
(ii)ϕ(t +s,ω) = ϕ(t,θsω)ϕ(s,ω), ∀t,s∈ R

+,

where(X,d) is a Polish space with Borelσ -algebraB

overθ on (Ω ,F ,P).
In [16] the authors introduced, in the context of random
dynamical systems, the concept of attractor for stochastic
partial differential equations in order to study the
qualitative dynamical behavior of the solutions.

Definition 1. A random compact set{K(ω)}ω∈Ω is a
family of compact sets indexed byω such that for every

x ∈ X the mappingω → d(x,K(ω)) is measurable with
respect toF .

Definition 2. A random set K(ω)⊂X is said to absorb the
set B if for almost allω ∈ Ω there exists t(B,ω) such that
for all t ≥ t(B,ω)

ϕ(t,θ−tω)B⊂ K(ω).

Definition 3. A random setA (ω) is said to be a random
attractor associated to the random dynamical systemϕ if
P-a.s.

(i)A (ω) is a random compact set.
(ii)ϕ(t,ω)A (ω) = A (θt ω), ∀t ≥ 0,
(iii)attracts all B⊂ X bounded and non-random, that is

lim
t→∞

dist(ϕ(t,θ−tω)B,A (ω)) = 0,

wheredist denotes the usual Hausdorff semi-distance.

In the sequel we will use the fact thatϕ(t,θ−tω) can be
interpreted as the position att = 0 of the trajectory which
was in x at time −t and we consider the attraction
property att goes to−∞. This is the so called pullback
convergence which means to look at the position of the
solutions at present time when the initial ones go to−∞.
In the next section we will prove the existence of a
random attractor for equation (2) using the following
theorem (see [16]):

Theorem 1.Assume that there exists a compact set D(ω)
absorbing every bounded non-random set B⊂X. Then, the
set

A (ω) =
⋃

B⊂X

ΛB(ω)

is a random attractor forϕ , where the union is taken over
all B ⊂ X bounded, andΛB(ω) is the omega-limit set of B
given by

ΛB(ω) =
⋂

n≥0

⋃

t≥n

ϕ(t,θ−tω)B.

Moreover in [16] the author proved that random attractors
are unique and, by the ergodicity ofθt , there exists a
compact setK ⊂ X such thatP-a.s. the random attractor is
the omega limit set ofK, that is:

A (ω) =
⋂

n≥0

⋃

t≥n

ϕ(t,θ−tω)K.

In order to prove the existence of the random attractor, the
idea is to transform the stochastic evolution equation (2)
containing a noise term into an evolution equation
without noise but with a random coefficient, that is a real
function which takes random values. In this case all the
techniques and tools for the study of standard evolutions
equations are available.
For this purpose we consider the following change of
variable

ψ = T−1(ω)X, (3)
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where
T(ω) = eσz∗(ω),

and wherez∗ is the stationary solution of the equation

dz= −zdt+dwt , ω(t) = wt(ω), (4)

which is the so called Ornstein-Uhlenbeck process.
In particular, ifϕ is a random dynamical system andT

andT−1 are measurable then

(t,ω ,x) → T−1(θt ω ,ϕ(t,ω ,T(ω ,x))) := ψ(t,ω ,x)

is a random dynamical systems (see [6]). Before
proceeding with the analysis of the random system we
recall some important properties ofz∗(ω) (see [6] for
more details):

Proposition 1. There exists a{θt}t∈R-invariant subset
Ω̄ ∈ F of Ω = C0(R,R) of full measure such that

lim
t→±∞

|ω(t)|
t

= 0, for ω ∈ Ω̄ ,

and for suchω the random variable is given by

z∗(ω) := −
∫ 0

−∞
eτ ω(τ)dτ

and is well defined. Moreover, forω ∈ Ω̄ , the mapping

(t,ω) → z∗(θt ω) = −
∫ 0

−∞
eτ θt(ω(τ))dτ

= −
∫ 0

−∞
eτ (ω(t + τ)−ω(τ))dτ

is a stationary solution of equation(4) with continuous
trajectories. In addition, forω ∈ Ω̄ :

lim
t→±∞

|z∗(θtω)|
|t| = 0, lim

t→±∞

1
t

∫ t

0
z∗(θτ ω)dτ = 0,

and

E|z∗| = lim
t→±∞

1
t

∫ t

0
|z∗(θτ ω)|dτ < ∞.

By the change of variable (3) the equation (2) becomes:

ψt = −ε2ψxxxx+
T−1(θtω)

2
[W′(T(θtω)ψx)]x (5)

+σz∗(θtω)ψ ,

ψ(0) = ψ0, (6)

The existence and uniqueness of solution follows from
classical methods such as Galerkin approximations (see
for example [26] Theorem 3.1.1), and we will omit the
details. In particular, we can prove the following result:

Theorem 2.For P−a.s.ω ∈ Ω and all T > 0, the problem
(5) admits a unique solutionψ such that

if ψ0 ∈ H = L2(I) thenψ ∈C0([0,T],H)∩L2(0,T;V);

if ψ0 ∈V = H2(I) thenψ ∈C([0,T],V)∩L2(0,T;D(A));

where D(A) = {ψ ∈ H4(I) : ψ = ψxx = 0 on ∂ I} is the

domain of the differential operator A= − ∂ 4

∂x4 .

The continuity of the cocycle is guarranteed by the
following stronger result:

Proposition 2.The solution of(5) is Lipschitz continuous
with respect to the initial data.

Proof. Let ψi , i = 1,2 be two solutions associated
respectively to the initial dataψ0,i , i = 1,2 and set
u = ψ1 − ψ2. Then the equation fulfilled byu is the
following:

ut = −ε2uxxxx+ σz∗(θt ω)u

+
T−1(θt ω)

2

[

W′(T(θtω)ψ1x)−W′(T(θt ω)ψ2x)
]

x ,

Multiplying the previous equation byu in H yields:

1
2

d
dt
‖u‖2+ ε2‖uxx‖2

+
T−1(θt ω)

2

∫

I

[

W′(T(θtω)ψ1x)−W′(T(θtω)ψ2x)
]

uxdx

+σz∗(θt ω)‖u‖2 = 0,

from which

1
2

d
dt
‖u‖2+ε2‖uxx‖2≤ 2‖ux‖2+2T2

∫

I
ūu2

xdx+σ |z∗|‖ux‖2,

where
ū = ψ1xψ2x.

In the next section we will prove the absorbing
properties in several spaces, in particular, we will find the
existence of random variablesr i(ω) such that

‖ψ(0)‖≤ r0(ω), ‖ψx(0)‖≤ r2(ω), ‖ψxx(0)‖≤ r3(ω),

where again we intend the above estimates in the following
sense

S(t,θ−tω)ψ0 = ψ(0).

Here we make use of that in order to conclude the proof
(see section below for the complete details).

In particular we use:

‖ū‖∞ ≤ ‖ψ1x‖∞‖ψ2x‖∞

≤ ‖ψ1‖‖ψ2‖‖ψ1xx‖‖ψ2xx‖
≤ r2

0(ω)r2
3(ω) := K(ω)

Then, we can easily obtain

1
2

d
dt
‖u‖2+ ε2‖uxx‖2 ≤ 2(1+T2K(ω)+

1
2

σ |z∗|)‖ux‖2

:= 2h(ω ,t)‖ux‖2

≤ ε2‖uxx‖2 +
h2(ω ,t)

ε2 ‖u‖2,

and integrating we arrive at

‖S(t,θ−tω)ψ1,0−S(t,θ−tω)ψ2,0‖
= ‖ψ1(0,ω ,−t,ψ1,0)−ψ2(0,ω ,−t,ψ2,0)‖
= ‖ψ1(0)−ψ2(0)‖

≤ e
1

ε2
∫ 0
−t h2(ω,t)dt‖ψ0,1−ψ0,2‖.
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3 Existence of the random attractor

In order to use Theorem1 to prove the existence of the
random attractor, we prove the existence of a compact
random absorbing set.
We start by proving the existence of an absorbing ball in
H.

Proposition 3.There exists a random variable r0(ω) such
that for anyρ > 0 there exists t(ω ,ρ) < −1 satisfying

‖ψ(0,ω ; t0,ψ0)‖ ≤ r0(ω),

for all t0 ≤ t(ω ,ρ) and‖ψ0‖ ≤ ρ .

Proof. If we multiply the equation (5) by ψ we obtain the
following inequality:

1
2

d
dt
‖ψ‖2+ ε2‖ψxx‖2 +2[T(θtω)]2‖ψx‖4

4

= 2‖ψx‖2 + σz∗(θtω)‖ψ‖2

≤ (2+ σz∗(θt ω))‖ψx‖2

≤ (2+ σz∗(θt ω))‖ψ‖‖ψxx‖,

from which

1
2

d
dt
‖ψ‖2+

ε2

2
‖ψxx‖2 ≤ (2+ σz∗(θtω))2‖ψ‖

≤ (2+ σz∗(θtω))4

ε2 +
ε2

4
‖ψxx‖2.

Then

d
dt
‖ψ‖2+

ε2

2
‖ψxx‖2 (7)

≤ 2[2+ σz∗(θtω)]4

ε2 := F (θt ω).

Integrating the previous inequality in[t0,−1] with t0 ≤−1:

‖ψ(−1)‖2 ≤ ‖ψ(t0)‖2e−
ε2
2 (−1−t0)

+

∫ −1

t0
e−

ε2
2 (−1−s)

F (θsω)ds,

from which

‖ψ(−1)‖2 ≤ e
ε2
2

{

‖ψ(t0)‖2e
ε2
2 t0 +

∫ −1

t0
e

ε2
2 s

F (θsω)ds

}

≤ e
ε2
2

{

T−2(θt0ω)‖X(t0)‖2e
ε2
2 t0

+

∫ −1

−∞
e

ε2
2 s

F (θsω)ds

}

.

Now, if we fix the initial datumX0 in B(0,ρ) ⊂ H, then
there exists a timet(ω ,ρ) such that for allt0 ≤ t(ω ,ρ)
and for allX0 ∈ B(0,ρ) we have:

‖ψ(−1)‖2 ≤ r2
1(ω),

where

r2
1(ω) = e

ε2
2

{

1+

∫ −1

−∞
e

ε2
2 s

F (θsω)ds

}

.

In detail, it is sufficient to choset(ω ,ρ) such that:

T−2(θt0ω)ρ2e
ε2
2 t0 ≤ 1,

and this is possible sinceP-a.s.T−2(θt0ω)e
ε2
2 t0 → 0 as

t0 →−∞. Using again (7), for all t ∈ [−1,0] we have that

‖ψ(t)‖2≤‖ψ(−1)‖2e−
ε2
2 (t+1)+

∫ t

−1
e−

ε2
2 (t−s)

F (θsω)ds,

and then

‖ψ(0)‖2 ≤ r2
1(ω)e−

ε2
2 +

∫ 0

−1
e

ε2
2 s

F (θsω)ds:= r2
0(ω).

We remark that, from Proposition1, it follows that

∫ −1

−∞
e2ε2s

F (θsω)ds< ∞.

Remark.For any fixedω ∈ Ω the time for which the
absorbing property is fulfilled is of orderO(ε−2), and this
is in perfect accordance with the numerical experiments
in [3] and with the autonomous case (see [11] and [12]).

Integrating inequality (7), we deduce the following
estimate that will be useful later
∫ 0

−1
‖ψ‖2dt ≤

∫ 0

−1
‖ψx‖2dt

≤
∫ 0

−1
‖ψxx‖2dt

≤ 1
2ε2

{

r2
1(ω)+

∫ 0

−1
F (θt ω)dt

}

:= R(ω),

while integrating in(t0,0) and lettingt0 →−∞ we derive

∫ 0

−∞
‖ψxx‖2dt ≤ 1

ε2

{

ρ2

2
+

∫ 0

−∞
F (θt ω)dt

}

.

From the previous proposition we obtain the absorbing
property in H and we can pass to the proof of the
absorbing property in

H1
0(I) := {v∈ L2(I) : vx ∈ L2(I) andv = 0 on∂ I}.

Proposition 4.There exists a random variable r2(ω) such
that for anyρ > 0 there exists t(ω ,ρ) < −1 satisfying

‖ψ(0,ω ; t0,ψ0)‖H1
0 (I) ≤ r2(ω),

for all t0 ≤ t(ω ,ρ) and‖ψ0‖ ≤ ρ .
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Proof. If we multiply equation (5) by ψxx we obtain

1
2

d
dt
‖ψx‖2 + ε2‖ψxxx‖2 +6[T(θtω)]2

∫

I
ψ2

x ψ2
xx

= 2‖ψxx‖2 + σz∗(θtω)‖ψx‖2

≤ (2+ σz∗(θt ω))‖ψxx‖2, (8)

from which

d
dt
‖ψx‖2 ≤ 2

[

σz∗(θtω)+
1
ε2

]

‖ψx‖2, (9)

and by the uniform Gronwall lemma

‖ψx(0)‖2 ≤ R(ω)exp

(

2
∫ 0

−1

[

σz∗(θsω)+
1
ε2

]

ds

)

:= r2
2(ω).

Before proving the absorbing property for the norm
‖ψxx‖, we perform some important estimates. We
consider the following inequality
∫ t

t+t0
‖ψx‖2ds≤

∫ t

t+t0
‖ψxx‖2ds

≤ 1
ε2

{

ρ2

2
+

∫ t

t+t0
F (θsω)ds

}

,

and apply the uniform Gronwall lemma in(t + t0, t) with
t,t0 ≤ 0 :

‖ψx(t)‖2 ≤







1
ε2

{

ρ2

2 +
∫ t
t+t0

F (θsω)ds
}

−t0







×

×exp

(

2
∫ t

t+t0

[

σz∗(θsω)+
1
ε2

]

ds

)

.

From the Birkhof ergodic theorem (see Da Prato and
Zabczyk [17, Chapter 1] and the stationarity of the
Ornstein-Uhlenbeck process we have that

lim
t0→−∞

− 1
t0

∫ t

t+t0
|z∗(θpω)|dp= E(|z∗|).

Then, there existsT0(ω) such that for allt0 ≤ T0(ω) we
have

− 1
t0

∫ t

t+t0
|z∗(θpω)|dp≤ 2E(|z∗|).

Moreover, by the same argument, there existsT1(ω)≤
T0(ω) such that for allt0 ≤ T1(ω):

− 1
t0

∫ t

t+t0
F (θsω)ds

= − 1
t0

∫ t

t+t0

2
ε2 (2+ σz∗(θsω))4ds

≤− 1
t0

∫ t

t+t0

16
ε2 [24 +(σz∗(θsω))4]ds

≤ 28

ε2 +
16σ4

ε2

(

1
−t0

∫ t

t+t0
(z∗(θsω))4ds

)

≤ 28

ε2 +
16σ4

ε2 2E([z∗]4) := f (ω).

Then,

‖ψx(t)‖2 ≤
{

ρ2

2ε2(−T1(ω))
+ f (ω)

}

e4σE(|z|)+ 2
ε2 T1(ω)

:= R̃2(ω).

Additionally, integrating equation (8) in (−1,0), we have

∫ 0

−1
‖ψxxx‖2dt ≤ 2

ε2

{

r2
1(ω)+2

(

σM(ω)+
2
ε2

)

R(ω)

}

:= R′(ω),

where

M(ω) := max
t∈[−1,0]

[T(θtω)]4.

Proposition 5.There exists a random variable r3(ω) such
that, for anyρ > 0, there exists a constant
T(ω ,ρ) := min{t(ω ,ρ),T1(ω)} < −1 satisfying

‖ψxx(0,ω ; t0,ψ0)‖ ≤ r3(ω),

for all t0 ≤ T(ω ,ρ) and‖ψ0‖ ≤ ρ .

Proof. In order to prove the absorbing property inV we
multiply equation (5) by ψxxxx:

1
2

d
dt
‖ψxx‖2 + ε2‖ψxxxx‖2

= 6[T(θtω)]2
∫

I
ψ2

x ψxxψxxxxdx

+2‖ψxxx‖2 + σz∗(θtw)‖ψxx‖2

≤ 6[T(θtω)]2‖ψx‖2
∞‖ψxx‖‖ψxxxx‖+

ε2

2
‖ψxxxx‖2

+
2
ε2‖ψxx‖2 + σz∗(θtw)‖ψxx‖2

≤ 6[T(θtω)]2R̃‖ψxx‖2‖ψxxxx‖+
ε2

2
‖ψxxxx‖2

+(
2
ε2 + σz∗(θt ω))‖ψxx‖2,

from which:

d
dt
‖ψxx‖2 ≤ 18

ε2 [T(θtω)]4‖ψxx‖4 (10)

+

(

2
ε2 +2σz∗(θt(ω))

)

‖ψxx‖2.

If we integrate equation (10) in (s,0) for s∈ (−1,0) we
have

‖ψxx(0)‖2 ≤ ‖ψxx(s)‖2 +
18
ε2

∫ 0

s
[T(θt ω)]4‖ψxx‖4dt

+
∫ 0

s

(

2
ε2 +2σz∗(θt(ω))

)

‖ψxx‖2dt.
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Integrating again with respect tos in (−1,0) we obtain

‖ψxx(0)‖2 ≤
∫ 0

−1
‖ψxx(s)‖2dsx

+
18
ε2

∫ 0

−1
[T(θsω)]4‖ψxx‖4ds

+

∫ 0

−1

(

2
ε2 +2σz∗(θs(w))

)

‖ψxx‖2ds

≤ R(ω)+
18M(ω)

ε2 R̃2(ω)R′(ω)

+

(

2
ε2 +2σ max

s∈(−1,0)
|z∗(θsω)|

)

R(ω)

:= r2
3(ω),

where we have used
∫ 0

−1
‖ψxx‖4ds≤

∫ 0

−1
‖ψx‖2‖ψxxx‖2ds

≤ R̃2(ω)

∫ 0

−1
‖ψxxx‖2ds

≤ R2(ω)R′(ω).

From the above propositions we get that there exists a
random ball B(ω) in L2(I) ∩ H1

0(I) ∩ H2(I) which
absorbs any bounded non random subset ofH at time 0
for any t0 ≤ min{T1(ω),T0(ω), t(ω ,ρ)}. The
compactness ofB(ω) in L2(I) follows from the compact
embedding ofH1

0(I) in L2(I). Then, by Theorem1, we
conclude that

Theorem 3.The equation(5) admits a random attractor
Aε(ω) in H.

4 Additive noise

In this final section we consider some remarks on the
stochastic version of (1) with additive noise and compare
the results with that of multiplicative noise. The system
takes the form:






dX = (−ε2△2X + 1
2W′′(∇X)△X)dt+ σφ(x)dw(t),

X = Xxx = 0, on ∂ I ,
X(t0,x) = X0(x),

(11)
whereσ > 0 andφ ∈ H satisfiesφxxxx∈ L∞(I). As in the
previous section we consider a transformation involving
the Orstein-Uhlenbeck process:

v(t) = X(t)−σz∗(θtω)φ .

Then the equation can be rewritten as

vt + ε2vxxxx =
1
2

[

W′(vx + σφxz
∗(θt ω))

]

x

+σz∗(θt ω)g(x), (12)

where for simplicity we have set:

g(x) := g(x,φ ,ε,σ) = φ(x)− ε2φxxxx(x).

Once at this point, it is possible to establish a result
ensuring the existence and uniqueness of solution of the
initial value problems associated to (12), as well as the
continuity with respect to the initial data. However, we
will only comment on the main differences between this
case and the multiplicative noise one. Thus, we will show
how to obtain inequalities concerning‖v‖, ‖vx‖ and‖vxx‖
similar to those of the previous sections. We note that
obtaining the estimates requires more technicalities in our
computations.
We start with the absorption inL2(I). Multiplying
equation (12) by v in L2(I) we obtain

1
2

d
dt
‖v‖2 + ε2‖vxx‖2

=
1
2

∫

I

[

W′′(vx + σz∗(θtω)φx)
]

(vxx+ σφxxz
∗(θt ω))vdx

+σz∗(θt ω)

∫

I
gvdx,

and, in more details,

1
2

d
dt
‖v‖2 + ε2‖vxx‖2 +2‖vx‖4

4

= 6σY
∫

I
v2

xvφxxdx+6σ2Y2
∫

I
vxxvφ2

x dx

+6σ3Y3
∫

I
vφ2

x φxxdx

+12σY
∫

I
vxxvxvφxdx

+12σ2Y2
∫

I
vxvφxdx+ σY

∫

I
gvdx,

where we have set, for notational simplicity,Y := z∗(θtω).
We observe that using integration by parts we have:

6σY
∫

I
v2

xvφxxdx+12σY
∫

I
vxxvxvφxdx

= −6σY
∫

I
v3

xφxdx

≤ 6σ |Y|‖φx‖∞‖vx‖3
3

≤ ‖vx‖4
4+9σ2Y2‖φx‖2‖vx‖2

≤ ‖vx‖4
4+9σ2Y2‖φx‖2‖v‖‖vxx‖

≤ ‖vx‖4
4+

ε2

4
‖vxx‖2 +

σ4Y4

ε2 ‖φx‖4
∞‖v‖2.

Then,

1
2

d
dt
‖v‖2 + ε23

4
‖vxx‖2 +‖vx‖4

4

≤ σ4Y4

ε2 ‖φx‖4
∞‖v‖2+6σ2Y2‖vxx‖‖v‖‖φx‖2

∞

+6σ3|Y3|‖φx‖2
∞‖φxx‖‖v‖

+12σ2Y2‖v‖‖vx‖‖φx‖∞ + σ |Y|‖g‖‖v‖,
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from which

1
2

d
dt
‖v‖2+

ε2

2
‖vxx‖2+‖vx‖4

4 ≤ f1(t)‖vx‖2 + f2(t),

where

f1(t) := 2+12σ2Y2‖φx‖∞ +37
σ4Y4

ε2 ‖φx‖4
∞,

and

f2(t) :=
σ2Y4

4
‖g‖2+9σ6Y6‖φx‖4

∞‖φxx‖.

Finally, using‖vx‖2 ≤ |I | 1
2‖vx‖2

4, we conclude that

d
dt
‖v‖2+ ε2‖vxx‖2 ≤ h(t),

where

h(t) := 2

( |I |
4

f 2
1 (t)+ f2(t)

)

.

Thus, we have obtained a similar inequality to the one in
the previous section and, for this reason, we do not repeat
the details while we pass to obtain the inequality for‖vx‖.
By multiplying equation (12) by vxx in L2(I) we arrive at

1
2

d
dt
‖vx‖2 + ε2‖vxxx‖2

+
1
2

∫

I

[

W′′(vx + σφxz
∗(θt ω))

]

(vxx+ σz∗(θtω)φxx)vxxdx

+σz∗(θt ω)

∫

I
gvxxdx= 0.

In details

1
2

∫

I

[

W′′(vx + σφxz
∗(θtω))

]

(vxx+ σz∗(θtω)φxx)vxxdx

= 6‖vxvxx‖2 +6σz∗(θtω)

∫

I
v2

xvxxφxxdx

+6σ2[z∗(θtω)]2
∫

I
φ2

x v2
xxdx

+6σ3[z∗(θtω)]3
∫

I
φ2

x φxxvxxdx

+12σ [z∗(θtω)]
∫

I
vxv

2
xxφxdx

+12σ2[z∗(θt ω)]2
∫

I
vxvxxφxφxxdx

−2‖vxx‖2−2σz∗(θtω)

∫

I
φxxvxxdx.

Then

1
2

d
dt
‖vx‖2 + ε2‖vxxx‖2 +6‖vxvxx‖2

≤ σ |Y|‖g‖‖vxx‖+6σ |Y|‖‖φxx‖∞‖vx‖‖vxvxx‖
+6σ3|Y3|‖φx‖2

∞‖φxx‖‖vxx‖
+12σ |Y|‖φx‖∞‖vxx‖‖vxvxx‖
+12σ2Y2‖φx‖∞‖φxx‖∞‖vx‖‖vxx‖
+2‖vxx‖2 +2σ |Y|‖φxx‖‖vxx‖.

Simply using 2ab≤ a2 +b2 we obtain

1
2

d
dt
‖vx‖2 + ε2‖vxxx‖2 ≤ f3(t)‖vxx‖2 + f4(t),

where

f3(t) := 5+9σ2Y2‖φxx‖2
∞ +36σ2Y2‖φx‖2

∞

+12σ2Y2‖φx‖∞‖φxx‖∞

and

f4(t) :=
σ2Y2

4
‖g‖2+ σ2Y2‖φxx‖2+9σ6Y6‖φx‖4

∞‖φxx‖2.

Thus we conclude

d
dt
‖vx‖2 ≤ 2 f 2

3 (t)
ε2 ‖vx‖2 + f4(t).

We note that the use of the uniform Gronwall lemma is
possible using similar arguments to those of the previous
section such as the ergodic theorem.
We conclude with the inequality involving‖vxx‖.
Multiplying equation (12) by vxxxx in H,

1
2

d
dt
‖vxx‖2 + ε2‖vxxxx‖2

=
1
2

∫

I
W′′(vx + σz∗(θtω)φx)(vxx+ σz∗(θt ω)φxx)vxxxxdx

+σz∗(θt ω)

∫

I
gxxvxxdx.

The term involving the potential can be written in details:

6
∫

I
v2

xvxxvxxxxdx+6σz∗(θt ω)

∫

I
v2

xφxxφxxxxdx

+6σ2[z∗(θtω)]2
∫

I
φ2

x vxxvxxxxdx

+6σ3[z∗(θtω)]3
∫

I
φ2

x φxxvxxxxdx

+12σz∗(θt ω)

∫

I
φxvxvxxvxxxxdx

+12σ2[z∗(θt ω)]2
∫

I
φxφxxvxvxxxxdx

−2
∫

I
vxxvxxxxdx−2σz∗(θt ω)

∫

I
φxxvxxxxdx,

and can be estimated by

6‖vx‖2
∞‖vxx‖‖vxxxx‖+6σY‖φxx‖‖φxxxx‖∞‖vxx‖2

+6σ2Y2‖φx‖2
∞‖vxx‖‖vxxxx‖

+6σ3Y3‖φx‖2
∞‖φxx‖‖vxxxx‖

+12σY‖φx‖∞‖vx‖∞‖vxx‖‖vxxxx‖
+12σ2Y2‖φx‖∞‖φxx‖∞‖vxx‖‖vxxxxx‖
+2‖vxxx‖2+2σY‖φxx‖‖vxxxx‖.

Then, by using the estimate inH1
0(I), that is‖vx‖ ≤Rx, the

interpolating inequalities

‖ux‖∞ ≤ ‖ux‖1/2‖uxx‖1/2, ‖vxxx‖2 ≤ ‖vxx‖‖vxxxx‖,
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and 2ab≤ a2 +b2, we have

d
dt
‖vxx‖2 ≤ f5(t)‖vxx‖4 + f6(t)‖vxx‖2 + f7(t),

where

f5(t) =
144R2

x

ε2

(

1+4σ2Y2‖φx‖2
∞
)

,

f6(t) = 2

(

1+6σY‖φxx‖‖φxxxx‖∞ +
72
ε2 σ4Y4‖φx‖4

∞

+
288
ε2 σ4Y4‖φx‖2

∞‖φxx‖2
∞ +

8
ε2

)

,

and

f7(t) = 2

(

σ2Y2

4
‖gxx‖2 +

72
ε2 σ6Y6‖φx‖4

∞‖φxx‖2

+
8σ2Y2

ε2 ‖φxx‖2
)

.

Again we have obtained a similar inequality to that of the
case of multiplicative noise. Then, it is not difficult to
obtain the existence of the random attractor also in this
additive case.
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