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Abstract: We consider the effects of additive and multiplicative eais the asymptotic behavior of a fourth order parabolic tooa
arising in the study of phase transitions. On account thatdgterministic model presents three different time scahethis paper
we have established some conditions under which the thire sicale, which encounter finite dimensional behavior oftretem, is

preserved under both additive and multiplicative lineaseoln part
cases, and observed that the order of magnitude of the thiedscal
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icular we have proved the existence of a randaractdr in both
e is also preserved.

1 Introduction

In a first time scale of orde©(&?), the energy of the
initial datum is drastically reduced and a microstructure

The study of phase transitions has been an importanappears in the region in which the gradients of the initial

subject of research over the last decades (¥geJeveral

models have been introduced, among the others, thg, .tis

Cahn-Hilliard (see for example€?]) equations have been
intensively studied. In3] the authors introduced a model
related to that of Cahn and Hilliard (C-H) in the sense that
if uis the solution of the equation

U = _£2Uxxxx+ %[W/(Ux)]x
U=Ux=0, ondal,
U(O,t) = Uo,

(1)

then uy solve the C-H equation. Inlj, | is an open
interval, the functionW is the so called double well
potential, that isW(p) = (p?> —1)? and ¢ is a small
parameter. The equatiori)(represents thé.2-gradient
dynamics associated to the energy functional (s [
and [14]):

17/ 17
Fe(u) =3 /Iu)z(xdx+§ /IW(uX)dx

The global dynamics ofl) have been studied ir8] by

data are in the set in which the potentidlis non convex,

(— ‘f ‘f) (see [LQ) for an analysis of the first time
scale usmg varlational techniques).

In the second time scale of ord®(1), the region without
microstructure evolves in a heat equation like behavior,
while the region with microstructure remains almost
stationary.

In the last time scale of orde®(¢~?), equation {)
exhibits a finite dimensional behavior, the solution is
approximately the union of consecutive segments with
slops+1.

In the papers11], [12], [13], and [], the third time scale
has been studied. IlL]] the authors prove the existence
of an exponential attractarZ: whose dimension is of
order O(¢7109). In particular the time for which the
solutions enter the absorbing set is of or@er?). In [12]

the authors found an estimate of the dimension, of order
O(e71) (in accordance with the numerical experiments
presented ind]), of the global attractors by the volume
elements evolution method and they proved the existence
of an inertial manifold whose dimension is of order

numerical experiments and, in particular, the existence ofp(¢—19). Moreover, some estimates on the regularity

three time scales with different dynamical behavior hasgstimates and on

been pointed out.

the embedding dimension are
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performed. Since natural systems are subjected to randome X the mappingw — d(x,K(w)) is measurable with

perturbation we consider interesting to reconsider therespectto%.

problem (@) in the context of stochastic processes. e ) i

Namely, when some multiplicative and additive noise P€finition 2. Arandom set Kw) C X is said to absorb the

may appear in the formulation. set B if for almost alkw € Q there exists (B, w) such that
Thus, in Section 2 below we state the problem in thefor allt > (B, )

multiplicative case, state some necessary preliminary

definitions on the theory of random attractors, and prove 9(t,6-1w)B C K(w).

that our problem generates a random dynamical systeMyefinition 3. A random set (w) is said to be a random
In Section 3 we prove the existence of a random attractor

X - i ) - . attractor associated to the random dynamical systeih
Finally, in Section 4 we consider the case in which thep_5 o

noise appears as an additive one. We do not intend to )

establish all the results in a formal and detailed way, but ()% (w) is a random compact set.

only wish to provide the main estimates in order to justify (i) ¢ (t, w)«/ (w) = &/ (G w), vt >0, _
the existence of a random attractor, highlighting the main(iiattracts all B C X bounded and non-random, that is
differences with the multiplicative case. This additive N

case requires of some aF()JIditionaI technicalities which tlmdlst(qb(t,e,tw)B,d(w)) =0,

make the analysis more involved. ) o
wheredistdenotes the usual Hausdorff semi-distance.

. N In the sequel we will use the fact thétt, 6_tw) can be
2 Preliminary definitions interpreted as the position &&= 0 of the trajectory which
. . , ) was in x at time —t and we consider the attraction
We consider the following stochastic version of the systemproIoerty att goes to—. This is the so called pullback
(1) with multiplicative noise convergence which means to look at the position of the
B P VT solutions at present time when the initial ones ge-to.
dX = (—€e°A X+3W (OX)AX)dt+oXodw 5 In the next section we will prove the existence of a
ézXXX_: 0, ondl, (2)  random attractor for equatior?)( using the following
(0.t) = Xo, theorem (seellg]):

where w(t) is a two-sided standard Wiener process Theorem 1.Assume that there exists a compact sebp
defined on a probability basi®2, . #,{.Z }icr,P), where  absorbing every bounded non-randomset K. Then, the
{F }er is a filtration that is an increasing collection of set

sigma-algebras o and.%g contains all the null sets. o (w) = U Ng(w)

In order to study the dynamics of equatia®) (ve first BCX

recall some basic definitions of the theory of random
dynamical systems.

Let {6 : Q — Q,t € R} be a family of measure

is a random attractor fowp, where the union is taken over
all B ¢ X bounded, and\g(w) is the omega-limit set of B

preserving transformations such th@tw) — Gw is given by _
measurablegy = id and 6.5 = 66 for all s,;t € R. The Ns(w) = J ¢t 6-1w)B.
flow 6 together with the corresponding probability space n=0t=n
(Q,7.P,(&)er) is called a measurable dynamical Moreover in [L6] the author proved that random attractors
system. Finally we suppose thatis ergodic. are unique and, by the ergodicity &, there exists a
A continuous random dynamical system is a measurableompact seK c X such thaf?-a.s. the random attractor is
map the omega limit set oK, that is:
P:RTxQxX—X,

such that#-a.s. ()= Jo(t 6-rw)K.

. . n>0t>n

()¢9 (0,w) =id on X,
(i@ (t+sw)=9(t,0w) (s w), Vt,se RT, In order to prove the existence of the random attractor, the

idea is to transform the stochastic evolution equat@®n (
containing a noise term into an evolution equation
In [16] the authors introduced, in the context of random without noise but with a random coefficient, that is a real

dynamical systems, the concept of attractor for stochasti{uncupn which takes random values. In this case aII_the
partial differential equations in order to study the echniques and tools for the study of standard evolutions

o ; ; ; equations are available.
qualitative dynamical behavior of the solutions. For this purpose we consider the following change of
Definition 1. A random compact sefK(w)}weq is @  variable
family of compact sets indexed bysuch that for every g =T Hw)X, 3)

where (X,d) is a Polish space with Boref-algebraz
overfon(Q,#,P).
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where
T(w) =e’% (@),

and wherez* is the stationary solution of the equation
w(t) = w(w), (4)

which is the so called Ornstein-Uhlenbeck process.
In particular, if¢ is a random dynamical system and
andT ! are measurable then

(t,w,x) = T 8w ¢t wT(wXx)):= Yt wX)

is a random dynamical systems (seé]).[ Before

dz= —zdt+ dw,

The continuity of the cocycle is guarranteed by the
following stronger result:

Proposition 2. The solution of(5) is Lipschitz continuous
with respect to the initial data.

Proof. Let ¢5 , i = 1,2 be two solutions associated
respectively to the initial datajpi, i = 1,2 and set
u = 1 — Yp. Then the equation fulfilled by is the
following:

U = — & Uyt 0Z (B )u
T 8w

proceeding with the analysis of the random system we =% (W/(T(Brw)dix) =W (T (B w)dax) ],

recall some important properties af(w) (see p] for
more details):

Proposition 1. There exists a{6 }icr-invariant subset
Q € .7 of Q = Cp(R,R) of full measure such that

lim w:O

Jm = , forwe Q,

and for suchw the random variable is given by

0
7 (@) == —/ & w(1)dt
and is well defined. Moreover, fao € Q, the mapping

0
tw)—7 (@) = - [ eaem)dr

= 7/0 e (w(t+1)—w(r))dT

[

is a stationary solution of equatio®) with continuous
trajectories. In addition, fow € Q:

o Z(80)
t—doo |'[|

t
0, lim %/ 7 (6;w)dT =0,
0

t—+oo
and
o1t
E|f|:tllr£m¥/() 17 (6;0)|dT < o,

By the change of variable] the equationZ) becomes:

-1

Uy = _524’xxxx+ %W[W’(T(Qtw)l#x)]x (5)
Loz (80,

¥(0) = Yo, (6)

The existence and uniqueness of solution follows from—
classical methods such as Galerkin approximations (se
for example 26] Theorem 3.1.1), and we will omit the

details. In particular, we can prove the following result:
Theorem 2.For P—a.s.o € Q and all T > 0, the problem
(5) admits a unique solutiogy such that

if Yo € H =L?(1)theny € C%([0,T],H)NL?(0,T;V);
if Yo eV =H2(I) theny € C([0,T],V)NL2(0,T;D(A));
where DA) = {Y e H4(l): ¢ = s =00n3l} is the
domain of the differential operator A —%.

Multiplying the previous equation byin H yields:
1d 2 5
2 dtHuH +E€ HUXXH

Tfl w .
g W/ (T (o)) W (T (Breo) )] usclx
+0Z (B w)|[ul]* =0,

from which

1d

2dt

where

||U||2+82||Uxx||2S2Hux||2+2T2/llTl§dX+UIZ*IHUx||27

U= YaxtPox.
In the next section we will prove the absorbing

properties in several spaces, in particular, we will find the
existence of random variablegw) such that

1pO)] <ro(w), [[Ux(0)]| <r2(w), [[Px(0)] <r3(w),

where again we intend the above estimates in the following
sense

S(t. 6_1w) o = Y(0).
Here we make use of that in order to conclude the proof
(see section below for the complete details).
In particular we use:

[[Ulleo < [ rxlloo [ @] o

< [l @2l | |

< rj(w)rf(w) = K(w)
Then, we can easily obtain
1d

A

ulf? + &2 usod

1
2(1+ T?K(w) + 501Z'))[lux®

2h(a,t))|u|®

h?(w,t)
20000112 ) 2
7wl |” 4+ — 7 [lull%,

2dt

IN

and integrating we arrive at
[S(t, 6-tw) 10— S(t, 6-tw) P20l
= || L,Uj_(o, wa 7t5 L.U]_,O) - L.UZ(O, O), 7ta l1U2,O) ||
= 11¢41(0) — g(0)|

0
< ez [ hz(w’t)dtl\ o1 — Yozl
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3 Existence of the random attractor

In order to use Theorerh to prove the existence of the
random attractor, we prove the existence of a compact

random absorbing set.

We start by proving the existence of an absorbing ball in

H.

Proposition 3. There exists a random variablg(w) such
that for anyp > 0 there exists(w, p) < —1 satisfying

[14(0, w;to, Yo) || < ro(w),
foralltg <t(w,p) and| ol < p.

Proof. If we multiply the equation%) by ¢ we obtain the
following inequality:

2 101 + €2+ 2T ()
=2|lyx|*+ 07 (Bw)l||?
< (2+0Z'(8w)) |y
< (2+0z(6w)) | @]l
from which
2 2
L8 g2+ gl < 2+ 07 (8) 2]
(2+az*(9[w)) &2 2
< TWLZ”QUXXH .
Then
d 2
S92+ S 2 ™
22+ 0z
< 22007008 (g0
Integrating the previous inequality jiy, — 1] with to < —1:
lW(=D)* < w(to)]*e 7 (1)
-1
+ [ e z0Y.7(6w)ds
to
from which

012 < o { o)+ / 557 (60)ds|

N

£

=€ {T2<aow>||x<to>|2eTt°

-1 2
+/ eTSﬂ(QSw)ds}.

Now, if we fix the initial datumXg in B(0,p) C H, then
there exists a timé(w, p) such that for alltyg < t(w,p)
and for allXp € B(0, p) we have:

lw(—=1))? < r{(w),

where

{1+/ ez S/(9 m)ds}

In detall, it is sufficient to chosE w, p) such that:

rl(m)

2
72(&0 w)pze%to S 15

2
and this is possible sinc@-a.s.T*Z(aow)e%to — 0 as
to — —o. Using againT), for allt € [—1,0] we have that

lw® 1< llw(- )|\29’7”1+/ e 29 7 (Bw)ds

and then

£
2

1w(0)2 < rZ(w)e +/01e§553(65w)ds::rg(w).

We remark that, from Propositidh it follows that
-1 5
/ 557 (Bsw)ds < oo.
Remark.For any fixedw € Q the time for which the
absorbing property is fulfilled is of ord@(s~2), and this

is in perfect accordance with the numerical experiments
in [3] and with the autonomous case (sé&é&][and [12]).

Integrating inequality 7), we deduce the following
estimate that will be useful later

0 0
[ IwiPae< [ ot

0
< [ I it
< 2 z{rl +/ (Bw) dt} R(w),

while integrating in(to, 0) and lettingto — —oo we derive

1
e +/
From the previous proposition we obtain the absorbing

property in H and we can pass to the proof of the
absorbing property in

INCE F(Bwyt).

Hi(1):={veL?(1): weL%()andv=0ondl}.

Proposition 4. There exists a random variablg(iw) such
that for anyp > O there exists(tw, p) < —1 satisfying
1¢(0, w;to, Yo) g1y < ra(w),

forallty <t(w,p) and||yo| < p.

@© 2015? NSP
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Proof. If we multiply equation §) by (i« we obtain Then,
2, .2 2 2
Zdt”q-’x” + &% o | =+ B[T (B )] /Wx‘-’-’xx ||wx(t>H2 < {252( pT ™) + f(m)}e4aE(z)+g%T1(w)
—h
= 2 ¢sad >+ 07 (80) | — Rw)
< (2+ 07 (6w)) | Yol (8)
from which Additionally, integrating equatior8j in (—1,0), we have
d 2 1 2 0 2 2 {5 2
SlwP<2loz@o)+ 51wl @ [ It < 5 @) +2(oM(@)+ 5 | R@)
and by the uniform Gronwall lemma = R(w),
0 1 where
0> < R(w)ex 2/ [O'Z* Bsw +—}ds>
)2 < Rwyenp(2 ] |7 (6w + 5 = mas (a0t
te[-1,

= r3(w).
Before proving the absorbing property for the norm

|ywl, we perform some important estimates. We Proposition 5. There exists a random variablg(t) such
consider the following inequality that, for anyp > 0, there exists a constant

! 2 t 2 T(w,p) :=min{t(w,p), Ti(w)} < —1 satisfying
[ s < [ fusos

p2 H wXX(Oa w; to, l.UO)H < rg(&)),
< F(Bsw)ds
- 52{ 2 * t+to (800) } forallto < T(w,p) and||yp|| < p.
and apply the uniform Gronwall lemma i+ to,t) with
t,t0<0: Proof. In order to prove the absorbing property\ihwe
Itipl ti b :
) E_lz{p_22+_ﬁt+t0j(esm)ds} mu Ipyequa ion 6) waXXX
()] < x
—To ZdtHwXXH2+€2HwXXXXH2
ot 1
« exp(Z i [az*(esw) + ?] ds) | = 6T (8w | U Uhthoonclx
Jt+tg .
From the Birkhof ergodic theorem (see Da Prato and +2|| Y| ? + 07 (BW) | x|
Zabczyk [L7, Chapter 1] and the stationarity of the
Ornstein-Uhlenbeck process we have that < 6[T(6162) 2112 | ol | W] + Hl.UxxxxH
t
im — 1 [ 1Z(60)dp=E(Z)). 2 o2+ 07 () g2
to—— o Jt+ € !
~ €
Then, there exist3y(w) such that for alky < To(w) we < 6[T (6.w) Rl oI | Yool + EHWXXXXHZ
have
1 2
71/ 7' (6pw)|dp< 2E(|Z]). +(?+GZ*(9tw))”q-’xxH27
fo. t+to

Moreover, by the same argument, there exig{sy) < from which:

To(w) such that for alty < Ti(w): 18

2 o 29 4
7%[ F(Bsw)ds ||wxx|| 218 )]l e (10)
T + (G +20z8(@) ) 0wl
- to /+to 52(2+Uf(95w))4ds ’
1/t 16 If we integrate equationlQ) in (s,0) for s€ (—1,0) we
i L P2 (07 (80) s have
28 1604/ 1 [t 4 2 , 18 0 4 4
S o O 907 < oS+ 35 | [T (@ e
28 160* 2
§?+72E([Z*]4)::f(m). +/( +207(6( ))) (| [ dit.
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Integrating again with respect &n (—1,0) we obtain where for simplicity we have set:
o017 = [ )| dsx 9(X) = 9x.0:,0) = BX) ~ & Booo¥).
J-1
18 /0 4 4 Once at this point, it is possible to establish a result
2/ [T(st)] (| il *dIs ensuring the existence and uniqueness of solution of the
initial value problems associated ta2j, as well as the
+/ ( +207 (64( ))) |yl dis continuity with respect to the initial data. However, we
will only comment on the main differences between this
18M(w) ~ case and the multiplicative noise one. Thus, we will show
< R(w) + 2 R(w)R (w) how to obtain inequalities concernitig]|, ||| and||vxx||
2 similar to those of the previous sections. We note that
+ (—2 +20 max |z*(95w)|> R(w) obtaining the estimates requires more technicalities in ou
€ se(-1,0) computations.
= r(w), We start with the absorption irL2(l). Multiplying

equation 12) by vin L?(1) we obtain
where we have used

0 4 0 2 2
/ [ x| dSS/ |||l Pxx|| “d's
-1 -1
< R(0) [ 0
=~ 1 XXX

1d 2 2 2
5 < IVIP+ 2 v

— §/|[W//(VX+sz(9tw)(&ﬂ (Vex+ 0@z (6 ) )vdx

+0Z' (6w / vdx
< R(w)R () )9
- _ and, in more details,

From the above propositions we get that there exists a q
random ball Z(w) in L2(1) N H&(1) N H2(1) which 1 — (V12 €| Vieel|? + 2|4
absorbs any bounded non random subsdil aft time 0 2dt
for any tp < mln{Tl(w),To(w),t(w,p)}. The _ GaY/vaqq(de+ GUZYZ/VXquade
compactness of4(w) in IEZ(I) follows from the compact [ [
embedding ofH2(1) in L2(1). Then, by Theoreni, we 3 3/
conclude that +607Y Ivcpfqa(xdx
Theorem 3. The equatiorn(5) admits a random attractor +120Y/VxxVxV<ﬂ<dX
Ag(w) inH. !

+1202Y2/VXV@(dX+ GY/gvdx
| |

4 Additive noise where we have set, for notational simplicity,= z* (6 w).
We observe that using integration by parts we have:

In this final section we consider some remarks on the

stochastic version oflj with additive noise and compare 6oy /, WV adx-+120Y /, ViV
the results with that of multiplicative noise. The system B

takes the form: = _GGY/ pdx

3
dX = (—£2A2X + IW/(OX) AX)dt + o@(x)dw(t), < 60|\;||\‘PKH°°ZH‘;XH3 .
X =Xx=0, ondl, < [IWllz+90Y = | “l [«
X(to,) = (), an < I+ 8022l V] o
- o . 2 A4
whereo > 0 andg € H satisfiespoux € L(1). As in the < w4+ <"3_||VXXH2Jr g Z el v
previous section we consider a transformation involving 4
the Orstein-Uhlenbeck process: Then,
1d
v(t) =X(t) — 0Z' (B w)¢. SqlvI+e; 3 v 2+ el
Then the equation can be rewritten as 04 4
) =I5 IVII?+ 602 2 [viee VI [ 12
2 !
Vi & = 5 [W et 00 (80))] VIR
+0Z (B w)g(x), (12) +1202Y?|[v][||vx| [| @[l + T 1Y |0 [V,

@© 2015? NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.Vol?, No. No?, 1-9 (2015?)www.naturalspublishing.com/Journals.asp NS 2 7

from which
1d 2, 2 2
L8 10+l Il < O+ 200,
where
4Y4
fa(t) —2+1202Y2H<ﬂ<||oo+37 |,

and
falt) = 0 i+ 90 g

Finally, using||vi||2 < |I|2|[v]|2, we conclude that
VP-4 €2l ? < ),

where

h(t) :=2 ("74| f2(t) + fz(t)) :

Simply using 2b < a? + b? we obtain
1d
2dt

where

fa(t) := 5+ 902Y2||gx/|2 + 3602Y?| |2

+1202Y2| koo | ex] o

— [|Vadll® + €2 Voo |2 < () [|Viel|® + Fa(t),

and

02Y

fa(t) := ——119)l*+ 02Y?| @udl|” + 90°Y | | @I
Thus we conclude

d 2f2

I LU ICRAT)
We note that the use of the uniform Gronwall lemma is

possible using similar arguments to those of the previous
section such as the ergodic theorem.

Thus, we have obtained a similar inequality to the one inwe conclude with the inequality involving||viy| -
the previous section and, for this reason, we do not repea¥ultiplying equation (2) by Vyxxxin H,

the details while we pass to obtain the inequality fay]|.
By multiplying equation {2) by vy in LZ(I) we arrive at

1d 2
Zdt”VXH
+3 /| (W (W + 0@z (8 w)) ] (Vax+ TZ'(6.0) B Vo X

+£2||VXXXH2

+af(aw)/lgvxxdx: 0.
In details
% /. (W (W + 0@z (Bw)) ] (Vax + Z' (6 0) Bix) Vel X

= 6] vV | > + 607 (B w) /| VaVax X
+60%1Z (8w)? [ ghiax
+60%Z (80))° [ @i
+120(7 (80)] [ wmax
+120%7 (Bw)? /I'vxvquax@xdx

—2|\VXX|\2—Zaz*(etw)/qu(xvxxdx

Then
1d
2dt|

< oY [[|g]l[[Vaxll + 6T [Y ][ | @] oo [ Vx| [| VicViexl
+60°1Y || gl 1Z || e [ e
+120Y [[[ @ oo | Vacx [ Vocviex |
+120%Y2 | @ || oo Vi Vx|
+2 V|2 4 20| || e[| Vi

|Vx||2 + £2||VxxxH2+ 6||VxVxx||

1d
> dt (1ol 2+ €[ Voo 2

- % /IWN(VX +oz (a m) (ﬂ() (VXX +0z (a w) @(X)Vxxxxdx

+0Z'(6w) /I OxxVxxd X.

The term involving the potential can be written in details:
6 /| Biohanudx+ 607 (860) /I 2 GoxPocodx
+602[Z (B w)]? /I EVxVsoood X
+603[z*(6[w)]3/|(q§(ﬂ<xvxxx>dx
+1207" (G w) /| Vi VaexVoood X
+1202[7 ()2 /| B BoVaViooodX

*Z/IVxxVxxxde* 20—2*(& O‘))/Ifkavxxxxdxa
and can be estimated by
6||Vx|\020|\Vxx|| [[Vsoodl| + 60Y [ @l ||¢&XXX||°°||VX><H2

+602Y2H@<H020|\Vxx|| (| Vsl

+60°Y2| 15| P [ Vo
+120°Y [| @ o [ Vix [ eo | Viex [ Vi
+1202Y2| koo | @ex] o | Vx| | Vit
+2| Vi | 4 20 || @ Vs -
Then, by using the estimatefidg (1), thatis||v|| < Ry, the
interpolating inequalities

ulleo < [l uc 2, [IVso0dl? < [[Vooxl [ Vs000d
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and b < a2+ b?, we have

d
aHVXXHZ < fs(t) Voo * + To (1) Vil |* + (1),

where

VR 1+ 4022 x2).

fs(t) = 2

72
f(0) = 21+ 60V g ol + 730V

288 8
+ 2R lalnl2+ 3 ).
and
2v2
oY 72
tl6) = 2( T3 oo+ 2 0™l a4l

802Y? )
t—mzleudl” ) -

[7]C. Cardon-Weber, Cahn-Hilliard stochastic equation:
existence of the solution and of its dend®grnoulli 7
(2001), no. 5.

[8] A.N. Carvalho, J.A. Langa, J.C. RobinsoAttractors for
infinite-dimensional non-autonomous dynamical systems
Applied Mathematical Sciences, 182. Springer, New York,
2013

[9] V.V. Chepyzhov, M.l. Vishik, Attractors for equations
of mathematical physicsAmerican Mathematical Society
Colloquium Publications, 49. American Mathematical
Society, Providence, RI, 2002.

[10] R. Colucci, Analysis of microstructure of a non-convex
functional with penalization terrd, Math. Anal. Appl388
(2012), no. 1, 370-385.

[11] R. Colucci, G.R. Chacon, Asymptotic behavior of a fibur
order evolution equation, to appear Monlinear analysis:
Theory, Methods & Applications

[12] R. Colucci, G.R. Chacon, Dimension Estimate for the
Global Attractor of an evolution equatiolbstract and
Applied AnalysisVolume 2012, Article ID 541426, 18
pages, doi:10.1155/2012/541426.

Again we have obtained a similar inequality to that of the [13] R. Colucci, G.R. Chacon, Hyperbolic Relaxation of a

case of multiplicative noise. Then, it is not difficult to
obtain the existence of the random attractor also in this

additive case.
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