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The aim of this work is to prove the existence of regular time-periodic solutions for a
generalized Boussinesq model (with nonlinear diffusion for the equations of velocity and
temperature). The main idea is to obtain higher regularity (of H 3 type) for temperature
than for velocity (of H? type), using specifically the Neumann boundary condition for
temperature. In fact, the case of Dirichlet condition for temperature remains as an
open problem.
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1. Introduction

Assume that Q@ CRY (N=2 or 3) is a regular bounded domain. This paper is
concerned with a partial differential problem governing the coupled mass and heat
flow of a viscous incompressible fluid considering a generalized Boussinesq
approximation by assuming that viscosity and heat conductivity are explicit
functions depending on temperature (which is a much more natural condition that
takes viscosity and heat conductivity as constants). The equations involved are

du—V-(v(0)Vu) + (u-V)u + Vp = agl + f,

V-u =0, (1.1)

3,0 —V-(k(0)VE) + (u-V)d =0
in @X[0, ©), where w(z, t)€R" is the velocity field at point zEQ and time
te[0, + ©); p(z, t)ER is the (hydrostatic) pressure; and 6(z, t)ER is the
temperature. Data are g(z,t) €RY, the gravitational field with « >0, a constant
associated with the coefficient of volume expansion, f(z,t) €RY, the external

forces, v(+) : R— R, the kinematic viscosity, and k(-):R— R, the thermal
conductivity.
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We will search for a triplet { u, p, 8} regular periodic solution of (1.1) in Q X [0, o),
together with the Dirichlet—-Neumann boundary conditions,

u =0, 9,0 =0 on]0,%)XadQ. (1.2)

(the first one is a non-slip condition and the second one is a null heat flux
condition) and the time-periodic condition,

w(0) =u(T),  6(0)=6(T) inQ. (1.3)

It is important to remark that stationary solutions are not valid here, because the
external force fis time dependent.

Moreover, the problem with non-homogeneous boundary conditions can be
treated in a similar manner, using adequate lifting functions, rewriting the
problem (1.1)—(1.3) with a function f depending on boundary data.

The existence and uniqueness of the initial value problem related to (1.1), and
with Dirichlet boundary conditions for velocity and temperature, were proved in
the work of Lorca & Boldrini (1999). The stationary problem is studied in Lorca &
Boldrini (1996) for bounded domains and Notte-Cuello & Rojas-Medar (1998)
for exterior domains. On the other hand, the work of Moretti et al. (2002) is devoted
to the existence of reproductive weak solutions in exterior domains. The
classical Boussinesq model, where » and k are positive constants, has been analysed
in great extent (see, for instance, Oeda 1988; Morimoto 1992).

The arguments used in Lorca & Boldrini (1999) in order to obtain regular
solutions (and uniqueness) are not valid to find reproductivity, since the initial
conditions play a fundamental role. Our contribution in this paper is to obtain
higher-order estimates for the temperature than in Lorca & Boldrini (1999);
namely in Lorca & Boldrini (1999), H*(Q) regularity is obtained for velocity and
temperature, but now we will arrive at H 3({2) regularity for the temperature.
Consequently, a periodic condition for the time derivative of temperature also
holds, i.e. 3,0(0)=09,0(T). In addition, the arguments used in this paper are
remarkably simpler than the used ones in Lorca & Boldrini (1999). On the
contrary, now the regularity obtained for the solution is not sufficient to prove
uniqueness, because more regularity than H 2(.(2) for the velocity is necessary.

(a) Notation

—In general, the notation will be abridged. We set L'=L(Q), p>1,
H} = H}(Q), etc. If X=X(Q) is a space of functions defined in the open set
Q, we denote by L”(X) the Banach space LF(0, T; X). In addition, boldface
letters will be used for vectorial spaces, for instance L*= L*(Q)".

— The L” norm is denoted by |-|,, 1<p< o and the H™ norm by || || -

— We set V the space formed by all fields v & CO( )N satisfying V-v=0.
We denote by H (respectively V) the closure of V in L? (respectively H'). H
and V are Hilbert spaces for the norms || and |-]|;, respectively.
Furthermore,

H={ucl’ V-u=0, un=0ondQ},
V={ueH' V-u=0, u=00n0Q}.
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—Let P be the orthogonal projection of L* onto H. A denotes the Stokes
operator A= — PA defined in VN H>.

— It is easy to deduce, from the convection—diffusion equation for 6, the equality
4 [o0(z, t) = 0. Then, we can fix 6 such that [0 = 0. Therefore, let us consider

the following spaces:

a0
H]’\‘7={0EH’“; — =0ondQ J 0=o},
on Q

where k=2, 3. Hence, HY is a closed subspace of H*. Consequently, |Af|, is
equivalent to ||0]|, in Hy and |VA6)|, is equivalent to ||0||5 in Hy (Veiga 1983).

(b) Some interpolation inequalities

We will use the following classical interpolation and Sobolev inequalities (for
three-dimensional domains):

1/2 1/2
lolg < Cllofly,  [ols<[opy[lo]l}/* YveH,

and

[0l < Cllell*lolly® VY ve B2

In this work, the following result (Lorca & Boldrini 1999) will be useful:

Lemma 1.1. Let u€ VN H? and consider the Helmholtz decomposition of ~Au,
i.e. —Adu= Au+ Vq, where € H is taken such that Jogdz =0 and A is the Stokes

operator. Then,
4l < ClAuly.

Moreover, for every 6> 0, there exists a positive constant Cs (independent of w),
such that
|qlo < C5|Vuly + 0|Aul,.

2. The main result

Definition 2.1. It will be said that (u, p, 6) is a regular solution of (1.1)—(1.3) in
(0, T), if

we X(HHNL®(HY), duel*(L*) and peL*(H'),
0 L*(Hy)NL*(Hy) and 0,0 € L*(Hy)

satisfying (1.1) a.e. in (0, T)XQ, boundary conditions (1.2) and time
reproductivity conditions (1.3) in the sense of spaces V and H3, respectively.
Note that we have imposed higher regularity for 6 than for u.

Theorem 2.1. Let T>0 and let Q be a bounded domain in RY (N=2 or 3)
with a boundary of class C*'. Let the functions vE C'(R) and k€ C*(R), such that
they satisfy

0<Vpmin <v(8) <o and 0<Fkyn <k(s) <kpa inR,

V() < Ve K ()] < B [K"(8)] < K e
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Assume that f€ LI*(L*), g€ L” (L?) and £l 20, 7; 12) are small enough, then there
exists a regular (and small) time-periodic solution of (1.1)-(1.3) in (0, T).
Moreover, this solution also verifies 4,60(0)=9,0(T).

Remark. More concretely, from the proof of theorem 2.1 (§5), the following
hypothesis of smallness of f will be imposed:

T
J F3de < 6(1—e 1),
0

where C'= C(Q,v,k)>0 and 6>0 is small enough. Moreover, the periodic
solution obtained, (u, ), verifies |[u(0)||7 + ||6(0)|3 + ||0,0(0)][5 < o.

Remark. The uniqueness of solutions furnished by theorem 2.1 remains open,
because higher regularity for the velocity is necessary. To obtain H?, regularity
for the Veloc1ty seems comphcated because the argument made in the proof of
lemma 4.2 in order to get H® regularity is based on the Neumann condition, but
we have Dirichlet condition for u.

The proof of theorem 2.1 will be given in §5. The method is based on the
Galerkin approximation with spectral basis (defined in §3) and some differential
inequalities in regular norms given in §4.

3. The Galerkin initial-boundary problem

Let {¢;}i>1 and {@,;};,>; be the ‘special’ basis of V and H{(Q), respectively,
formed by eigenfunctions of the Stokes and the Poisson problems as follows:

Ag; = 2Ai¢p; inQ —d¢; = pp; nQ
¢, =0 ondQ d,0; =0 ondQ
with ||¢ifli=1, [|¢ill1=1, for all ¢ and [o@,=0. Let V" and W™ be the finite-
dimensional subspaces spanned by {¢1,do,...,¢,,} and {@1,@9,..., 0},
respectively.

For each m>1, given wuy,,€ V™ and 6,,,€ W™, we seek an approximate
solution (u,,, 6,,), with w,, : [0, T+ V™ and 6,, : [0, T|—~ W™, verifying the
following variational formulation a.e. in t€ (0, T'):

(94w (1), v) + (i (1) - V)0 (1), 03) + (0, (2)) Vi (1), V)
_( (t g,v m) (f7 m) 0 V’U Evm
um( ) Uom, Hm( )_00771

(3.1)
If we put

Zam )¢; and 6, Zcm i
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then (3.1) can be rewritten as a first-order ordinary differential system (in normal
form) associated with the unknowns (£;,,(¢), {; (). Then, one has the existence
of a maximal solution (defined in some interval [0, 7,,) C[0, T]) of the related
Cauchy problem. Moreover, from a priori estimates (independent of m) that
will be obtained below, in particular, one has that 7,,=7. Finally, using
regularity of the chosen spectral basis, uniqueness of approximate solution holds
(Climent-Ezquerra et al. 2006).

4. Differential inequalities in regular norms
In the sequel, v and ¢ will denote some constants sufficiently small. By C, we will
denote different constants, independent of data, and v and e.

Lemma 4.1. For each v, ¢>0 sufficiently small, there exists a constant
K=K(vy,e)>0, such that

d
T |10+ DT s+ 180003 < 7181 + el 10
K (llf + Ll 10,08 + 191312101 + 1515 (4.1)

Proof. Lemma 1.1 is crucial in this proof because the nonlinear diffusion term,
V-(v(0,,)Vu,,), is decomposed in v(6,,)Aw,, and v'(0,,)VOVu,,, and the control on
the difference between Aw,, and —Aw,, is necessary in the treatment of the
Laplacian term, »(6,,)Au,,.

First, taking v= Au,, as test function in the w,-system of (3.1) (A is the
Stokes operator mentioned in lemma 1.1), one has

(atuma Aum) - (V' (V(Hm)vum)a Aum) + ((um'v)um,7 Aum) _a(90m7 Aum)

= (f, Au,). (4.2)
We can write the first term as
1d
(atumv Aum) = 5 & HumH%
The second term of (4.2) is split as follows (using the Helmholtz decomposition

Aum = _Aum + VQm))

_(V (V(Bm)vum)a Aum) = (V(am)A'u'rm Aum) + (V(am)vqm’ Aum)
- (V’(t?,,,L)Vﬁ,,LVu,,L, Aum)'

Taking into account that
(V(em)Vva Aum) = _(Qma V- (V(em)Aum))
= _(Qma V/(am)vemAum) - (Qma v(em)v ) Aum)

= _(Qma V/(am)vemAum))
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since V- Aw,, = 0, hence the second term of (4.2) becomes
_<V (y(em)vum)a Aum) = (V(am)A'uwm Aum) - (Qm7 Vl(am)VHmAum)
- (V/(ﬁm)VHmV’u,m, Aum)'

Then, (4.2) can also be written as follows (using v(6,,) >V, >0):

1d
5 a ||'u’m”% + VminHum”% < _((um'v)uma Aum) + a(gb’m, Aum)
+ (g, v'(0,,)V0,,Au,,) + (v'(0,,)V0,,Vu,,, Au,,) + (f, Au,,)

211+I2+I3+I4+I5.

(4.3)

The first two terms and the last term on the right-hand side of (4.3) are bounded
respectively by

L <yllulls + Cllunllt, L <ylluls + Clglllon]3,
and
L<y|lu,|l3 + CylfE5.
In order to estimate the third term, we use lemma 1.1 (and |v'(6,,)] < V' 1.ux)

1/2 1/2
IS < Vlmax‘QWL‘3’V07n|6‘Aum‘2 < C‘Qm’Q/ H%n”l/ H0mH2HumH2

1/2 1/2 3/2 1/2 3/2
S C(CeHumHl/ + 8H’u’mHQ/ >||um”2/ ||0m||2S C£||umH1/ HumHQ/ HamHQ
+ el 310mll2 < Vllwnll3 + Coyllanl[ 116,12 + ell w131 6:]l2-

While for the fourth term,

1/2 3/2
I4£ V,maX|V0m|6|Vum|3|Aum|2£ C||Hm‘|2||um||1/ ||um“2/
< vllwnl3 + Gyl 11652

Consequently, choosing y small enough, from (4.3) we arrive at

d 2 2 6 2 4 2 2 2
— w7+ Viinl| @l 2 Cr (w7 + |11 65ll2 + 0,5 +
dtll I 12, |3 C ([l + lwnl[110,]15 + gl110,115 + [£15) (4.4)

+€”umH§H0mH2-

On the other hand, using d,u,, as a test function in the wu,-system of (3.1),
one obtains

(atumv az‘um) + (V(em)vuma atvum) + ((um'v)uma az‘um)
= a(gama atum) + (fa atum)' (45)

By taking into account that the second term of the left-hand side of (4.5) can be
written as

(v(0,,)Vu,,,30,Vu,,) = % % (v(0,,)Vu,,, Vu,,) — = (9,(v(0,,))Vu,,, Vu,,),

N | -
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we deduce from (4.5) that

1d
5 EJ V(ﬁm)|v’llzm‘2 + |afum|% < _((’u,mV)Um, atum) —+ a(gﬁn“ afum)
Q
1
+ 5 (0;(v(0,,)) Vi, V) + (f, 0pwy,) = J1 + o + J3 + Jy. (4.6)

2

The first two terms and the last term on the right-hand side of (4.6) are bounded,
respectively, by

and ) )
J4 < 7|atum|2 + Oy|f|2

Lastly, we go into detail for the third term,

1 1
J3 = 5 (Vl(am)atamvurm Vum) < 5 Vlmax‘at0m|6‘vum|3|V’u’m‘2

3/2 2
< 00l w1 enlls”* < v (10,017 + etnl3) + Cy a5

Consequently, choosing v small enough,
d
jQV(GTIL)|Vu77L‘2 + ’atumg < Y(Hatamn% + Humng)

dt
+ Gy ([lunllt + 1gB110.5 + I£13)- (4.7)
Finally, (4.4) and (4.7) prove the lemma.
Lemma 4.2. For each v>0 small enough, there exists C,>0 such that

d
I+ (Hamng + ’atamg> + kmin(Hamug + Hat‘?mH%) < ’Y|atum|§
dt

+ Cy(110all5 + 18,nl1210:0m3 + 116131 I1).- (4.8)
|

Proof. Differentiating with respect to the time the 6, -equation of (3.1) and
multiplying by 8,0,, as test function, using that (u,,-Vd,6,,,09,8,,) = 0, one obtains
1d
2 dt
By taking into account that the second term in (4.9) can be split as
(0,(k(0,,)V0,,),9,v0,,) = (K'(0,,)9,0,,V0,,,0,V0,,) + (k(0,,)3,V0,,,9,V0,,),

we deduce from (4.9) that

1d
5 a ’atamg + kmin‘atV&mg < _(k/(am)atﬁmvenn atVBWL) - (atum 'Vama atem)'

‘atam@ + (at(k(am)vem)7 atvem) + (atum'venn atem) = 0. (49)

(4.10)
Bounding both terms on the right-hand side of (4.10) (¥, = max|&’|),

_(k/(am)afamvemv atvam) < k/max|vam|6’at6m|3|atvam|2

< C)\0ll210:0m 5 211081377 < ¥[|0:0,0]1F + C,l10,ml1310:6,0 13,
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and
_(atum 'Vama atem) < |atum|2|V0m’6|at0m|3 < C|atum|2 ||0mH2|at6m|;/2 ||at(9m||}/2

<y (10:8ll% + 10,3) + Cyll010]1210,0,0 3,

we obtain, for v small enough,
d

Now, using A%f,, as test function (A%6,,€ W™ thanks to the choice of spectral basis)
and integrating by parts in all terms (boundary terms vanish since (VA6,,-n)|50 = 0),
one obtains

—(8,V0,,,VAG,,) + (V[V-(k(0,,)V0,,)], VAB,,) — (V(u-Vb,,),VAG,) = 0. (4.12)

Note that if Dirichlet boundary condition is imposed for the temperature 6, the
boundary terms do not vanish in the integration by parts and we cannot obtain the
previous inequalities.

Integrating by parts the first term of (4.12) (again the boundary term vanishes
since (9,V0,,-n)|so =0), the term becomes % % |A0,,]5. The second term is

(VIV- (k(0,,)V0,,)), VAG,,) = (K"(6,,)(V0,,)°, VAG,,) + 2(K (,,)V%6,,V0,,, VAG,,)

+ (k/(oﬂl)vaﬂlAaﬁl’ VA&TYL) + (k(07ﬂ)VA6WL7 VA&WL)'

Hence, we deduce from (4.12) that (|k"(6,,)| < k. = max]|k”|)
1d
2 dt

+ K| (V0,,00,,, VAG,)| + |(Vu,,V0,,, VAG,,)| + |(u,,V°0,,, VAG,,)]
=L, +Ly+Ly+ L+ Ls.

|A07IL ’% + kIIliIl|VA07IL|§ S klinaX| ((V07IL)37 VAa"L) | + 2k/max‘ (Vza’ﬂbve’fﬂ’ VAH’UL)|

Replacing in the above inequality the following estimations,

Ly < C|V0,, VA, < v[|0,.[55 + C, 10,15,
Ly < C|V%0,|5|V0,, 16| VAO,, |5 < Cll8, 11510137 < ¥110,u113 + Cyl18,:]15,
3/2 3/2
Ly < C|V8,|6|A0,,[5|VAB,, | < Cl8,]13 21615 < [16,]13 + C, 116,015,

1/2 3/2
Ly < C|Vtu o[ VO, ]| VAO, |5 < Ol 18,15 10mll3 < v[16,0]13
+ C, || 16,]13,

1/2 3/2
Ly < Ol 6|V 0,5 VAO, 5 < Ol |1 1013 10,37 < ¥110,0]13
+ | 110,113,
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we get, taking vy small enough,

d
T 18,0115 + Fuinl 1015 < C (10,115 + 1w l111160]15) . (4.13)

Finally, (4.11) added to (4.13) proves the lemma.

5. Proof of theorem 2.1

If we denote
Do) = | (00) + DI + 10,13 +10,6,

W, (1) = I3 + 10wl + 105 + [10:6,0]I7,
taking an adequate balance between inequalities (4.1) and (4.8) (from lemmas
4.1 and 4.2, respectively) in order to eliminate the term KHgH%m(Lz)HHmH%

from the right-hand side of (4.1) (more concretely, adding (4.1) and (4.8),
multiplied by (2K/kmin)||g||2Lw(L2)), one has

{ @+ OW, < W, 0,7 + GolffE + DO, 5.1)

me(O) = czjmO7

where C, D, Cy>0 are constants.
Let 6>0 be a small enough constant that we will specify below.
First step. It @,,(0) <6 and ||| 129, 7.12) < 0/ Co, then @, (1) <24, VtE€[0, T7.

Indeed, by an absurd argument, let 7" be the first value in [0, 7] such that
®,,(T")=24, hence

@, (T") =20 and @,(s)<26 Vs€[0,T).

Moreover, there exists a Poincaré constant C,<0 such that @,,(t) < C,¥,,(1).
Then for ¢ small enough, we have

Clpm - €WWL®17{2 > Clpm - slpm(zé)l/z > é’qu > gz)m é gbm'

%Q‘ Q)

The above inequality together with (5.1) leads to
@', + Co, < Cylfl; + DI,

in [0, T*]. Then, @', + C®,, < Cy|f|3 + 46>D®,, in [0, T*]. We can find 6>0 such
that C' —46°D > C being a positive constant (for instance, C = C /2). Therefore,

(plm + é@m < CO|f|% in [O7T*]7

hence, integrating in [0, 7] with a Gronwall’s technique, one finds

; (5.2)

_ T
@, (T")<oe T +C’OL Ifl3.
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We can choose IOT* Colf ]% small enough, such that the right-hand side is smaller

than 26 (e.g. [, |f]3<6/Cy). Thus, we arrive at a contradiction.
Second step. Under the conditions of the first step and assuming that

JT if3<o(1—e T/ Gy,
0

then @,,(7)< @,,(0).
Now, since @,,(t)<206 Vt€][0,T], we can repeat the above argument
obtaining (5.2) in [0, 7] and arrive at

_ T
0,(7)< 0,007+ Gy [ 175,

hence @,,(T) < ®,,(0) using the additional hypothesis IOT If3<6(1—eCT)/C).
Third step. Existence of approximate periodic solution
Given (g, 0,,0) € V" X W™, we define the map

L™ : [0, T] — R™ X R™
t'_) (gI’NL(t>7 ct E’N”IL(t)7 Cl’ﬂL(t)7 M CWLWL(t))

where (£1,,(t), ..., Emm(t)) and (£1,,(8), ..., Cm(t)) are coefficients of w,,(t) and

0,,(t) with respect to V"™ and W™, respectively, (u,,(?), 8,,(t)) being the (unique)

approximate solution of (3.1) corresponding to the initial data (w,,, 0.0)-
Now, varying the initial data (w9, 0,,0), we are going to define a new map

R™:BCR™XR"— R™XR",

as follows: given Lj' €R™ XR™, we define R™(Ly')= L™(T), where L™(t) is
related to the solution of problem (3.1) with initial data Lj'(=L"(0)) and

B = {(glmv (ERS) Emm’ Clma ceey Cmm) = L6n : @m(o) S 6}

By the uniqueness of approximate solution of problem (3.1), this map is well
defined. Moreover, using regularity of the corresponding ordinary differential
system (equivalent to (3.1)), this map is continuous. By the second step, R maps B
into B and B is a closed, convex and compact set. Consequently, Brouwer’s
theorem implies the existence of fixed point of R™, which gives us the existence of
periodic Galerkin solution.

Fourth step. Pass to the limit in periodic approximate solutions

If the data of the problem are small, thanks to the first step, we have

)

Do) = | (410 + DITu 6,1+ 18,6, <25
Q
Therefore, the following bounds hold uniformly:
(U, 0,,) in L¥(H" X Hy) N L*(H? X Hy),
(atum) iIl LQ(LQ)v
(0,0,,) in L*(L*) N L*(H").

Using compactness results for time spaces with values in Banach spaces with the
compact embedding of H? into H', one has

(U, 0,,) is relatively compact in L*(H' X H?).

Proc. R. Soc. A (2007)


http://rspa.royalsocietypublishing.org/

Downloaded from http://rspa.royalsocietypublishing.org/ on September 11, 2015

Periodic solutions for Boussinesq model 2163

In fact, this compactness is sufficient in the pass to the limit in (3.1) in order to
control the nonlinear terms.

Now, we go to pass to the limit in periodic conditions. From the estlmatlons
of ,,in L*(H?) and 9,0,, in L*(H") and using the compact embedding of H? into
H', one has that 6, is relatively compact in C([0, T);H"), hence 0,,(T)—0(T)
and 6,,(0)—0(0) strongly in H'(Q). Since 0,,(T)=0,,(0), then 6(T)=60(0) in
H'(Q). Finally, since 6,,(T) and 6,,(0) are bounded in H?*(Q), we have that
0(T)=6(0) in H*(Q).

The argument for u is similar, hence one deduces u(T)=wu(0) in H'(Q).

To prove 0,0(0)=09,0(T), we are going to consider the orthogonal

projector P, : H' — W™ defined as P,(g)=>1,(Vg, Vo,)e,, for all g€ H'.
One has || Pyl g gy <1 and || Pyl gy mryy < 1 (Lions 1969). Since P,,(g) =
ST wilg, 0:)e;, for all g€ H', then P,, is also the orthogonal projector from L?
to W™ with respect to the L? inner product. Therefore,

(Pu(9)9:) = (9,0:) Vi, YgeH (Q),
hence the Galerkin equation for 6, can be written as
a,0,, = P, (—u,, V0, +V-(k(,,)V0,,)).
Differentiating with respect to the time,
04l = Po(—04u,,-V0,, —u,,-V3,0,, + V- (k'(0,,)9,0,,V0,, + k(0,,)0,96,,)).
In particular,
19:0mll a1ty < | = Bpthyy V O, — -9, 8, g5y + V- (K(6,,)0,6,, V0,
+ k(0)0:V00) |y < 10060 |2[VO0]5 + |20, |3[V 9,6, 2
+ |%'(8,,)9,0,,V0,, + k(0,,)9,90,,].

The terms on the right-hand side of the previous 1nequahty W111 be bounded in
L*(0, T). Indeed, 9,8,, is bounded in L*(L*) and V#,, in L (H"), hence

10,1,,|5|V0,,|5 is bounded in L*(0, T).
Using that u,, is bounded in L*(H"') and 9,V6,, in L*(L?), one has
[U,,]3/V9,0,,]> is bounded in  L*(0, T).

Using that d,0,, and V@,, are bounded in L*(L*) and L*(H'), respectively,

one has that &'(6,,)9,0,,90,, is bounded in L*(L%). Finally, k(6,,)0,V8,, is bounded
in L7(L7).
Consequently, [0,0,, ) is unlformly bounded in L*(0, T). This along with

d,0,, which is umformly bounded in L* (L ) gives that d,0,, is relatively compact
in C([0, T];(H")"), which suffices to prove 9,0(0) = 9,0( )
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