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Time-periodic solutions for a generalized
Boussinesq model with Neumann boundary

conditions for temperature
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The aim of this work is to prove the existence of regular time-periodic solutions for a
generalized Boussinesq model (with nonlinear diffusion for the equations of velocity and
temperature). The main idea is to obtain higher regularity (of H 3 type) for temperature
than for velocity (of H 2 type), using specifically the Neumann boundary condition for
temperature. In fact, the case of Dirichlet condition for temperature remains as an
open problem.
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1. Introduction

Assume that U3R
N (NZ2 or 3) is a regular bounded domain. This paper is

concerned with a partial differential problem governing the coupled mass and heat
flow of a viscous incompressible fluid considering a generalized Boussinesq
approximation by assuming that viscosity and heat conductivity are explicit
functions depending on temperature (which is a much more natural condition that
takes viscosity and heat conductivity as constants). The equations involved are

vtuKV$ðnðqÞVuÞCðu$VÞuCVpZagqCf ;

V$uZ 0;

vtqKV$ðkðqÞVqÞCðu$VÞqZ 0

8><
>: ð1:1Þ

in U![0, N), where u(x, t)2R
N is the velocity field at point x2U and time

t2[0,CN); p(x, t)2R is the (hydrostatic) pressure; and q(x, t)2R is the
temperature. Data are gðx; tÞ2R

N , the gravitational field with aO0, a constant
associated with the coefficient of volume expansion, f ðx; tÞ2R

N , the external
forces, nð$Þ : R/R, the kinematic viscosity, and kð$Þ : R/R, the thermal
conductivity.
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Wewill search for a triplet {u, p, q} regular periodic solution of (1.1) inU![0,N),
together with the Dirichlet–Neumann boundary conditions,

uZ 0; vnqZ 0 on ½0;NÞ!vU: ð1:2Þ

(the first one is a non-slip condition and the second one is a null heat flux
condition) and the time-periodic condition,

uð0ÞZuðTÞ; qð0ÞZ qðTÞ in U: ð1:3Þ

It is important to remark that stationary solutions are not valid here, because the
external force f is time dependent.

Moreover, the problem with non-homogeneous boundary conditions can be
treated in a similar manner, using adequate lifting functions, rewriting the
problem (1.1)–(1.3) with a function f depending on boundary data.

The existence and uniqueness of the initial value problem related to (1.1), and
with Dirichlet boundary conditions for velocity and temperature, were proved in
the work of Lorca & Boldrini (1999). The stationary problem is studied in Lorca &
Boldrini (1996) for bounded domains and Notte-Cuello & Rojas-Medar (1998)
for exterior domains. On the other hand, the work of Moretti et al. (2002) is devoted
to the existence of reproductive weak solutions in exterior domains. The
classical Boussinesq model, where n and k are positive constants, has been analysed
in great extent (see, for instance, Óeda 1988; Morimoto 1992).

The arguments used in Lorca & Boldrini (1999) in order to obtain regular
solutions (and uniqueness) are not valid to find reproductivity, since the initial
conditions play a fundamental role. Our contribution in this paper is to obtain
higher-order estimates for the temperature than in Lorca & Boldrini (1999);
namely in Lorca & Boldrini (1999), H 2(U) regularity is obtained for velocity and
temperature, but now we will arrive at H 3(U) regularity for the temperature.
Consequently, a periodic condition for the time derivative of temperature also
holds, i.e. vtqð0ÞZvtqðTÞ. In addition, the arguments used in this paper are
remarkably simpler than the used ones in Lorca & Boldrini (1999). On the
contrary, now the regularity obtained for the solution is not sufficient to prove
uniqueness, because more regularity than H 2(U) for the velocity is necessary.
(a ) Notation

—In general, the notation will be abridged. We set LpZLp(U), pR1,
H 1

0 ZH 1
0 ðUÞ, etc. If XZX(U) is a space of functions defined in the open set

U, we denote by Lp(X) the Banach space Lp(0, T; X). In addition, boldface
letters will be used for vectorial spaces, for instance L2ZL2ðUÞN .

—The Lp norm is denoted by j$jp, 1%p%N and the Hm norm by k$km.
—We set V the space formed by all fields v2CN

0 ðUÞN satisfying V$vZ0.
We denote by H (respectively V) the closure of V in L2 (respectively H1). H
and V are Hilbert spaces for the norms j$j2 and k$k1, respectively.
Furthermore,

H Z fu2L2; V$u Z 0; u$n Z 0 on vUg;
V Z fu2H 1; V$u Z 0; u Z 0 on vUg:
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—Let P be the orthogonal projection of L2 onto H. A denotes the Stokes
operator AZKPD defined in VhH2.

— It is easy to deduce, from the convection–diffusion equation for q, the equality
d
dt

Ð
Uqðx; tÞZ0. Then, we can fix q such that

Ð
UqZ0. Therefore, let us consider

the following spaces:

Hk
N Z q2Hk ;

vq

vn
Z 0 on vU ;

ð
U

qZ 0

� �
;

where kZ2, 3. Hence, Hk
N is a closed subspace of Hk. Consequently, jDqj2 is

equivalent to kqk2 in H 2
N and jVDqj2 is equivalent to kqk3 in H 3

N (Veiga 1983).
(b ) Some interpolation inequalities

We will use the following classical interpolation and Sobolev inequalities (for
three-dimensional domains):

jvj6%Ckvk1; jvj3% jvj1=22 kvk1=21 cv2H 1;

and
jvjN%Ckvk1=21 kvk1=22 cv2H 2:

In this work, the following result (Lorca & Boldrini 1999) will be useful:

Lemma 1.1. Let u2VhH2 and consider the Helmholtz decomposition of –Du,
i.e.KDuZAuCVq, where q2H1 is taken such that

Ð
UqdxZ0 and A is the Stokes

operator. Then,
kqk1%C jAuj2:

Moreover, for every dO0, there exists a positive constant Cd (independent of u),
such that

jqj2%CdjVuj2 CdjAuj2:

2. The main result

Definition 2.1. It will be said that (u, p, q) is a regular solution of (1.1)–(1.3) in
(0, T ), if

u2L2ðH 2ÞhLNðH 1Þ; vtu2L2ðL2Þ and p2L2ðH 1Þ;

q2L2ðH 3
N ÞhLNðH 2

N Þ and vtq2L2ðH 1
N Þ

satisfying (1.1) a.e. in (0, T )!U, boundary conditions (1.2) and time
reproductivity conditions (1.3) in the sense of spaces V and H 2

N , respectively.
Note that we have imposed higher regularity for q than for u.

Theorem 2.1. Let TO0 and let U be a bounded domain in R
N (NZ2 or 3)

with a boundary of class C2,1. Let the functions n2C 1(R) and k2C2(R), such that
they satisfy

0!nmin%nðsÞ%nmax and 0!kmin%kðsÞ%kmax in R;

jn0ðsÞj%n0max; jk 0ðsÞj%k 0max; jk 00ðsÞj%k 00max:
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Assume that f2L2(L2), g2LN(L2) and kfkL2ð0;T ; L2Þ are small enough, then there
exists a regular (and small) time-periodic solution of (1.1)–(1.3) in (0, T).
Moreover, this solution also verifies vtqð0ÞZvtqðTÞ.

Remark. More concretely, from the proof of theorem 2.1 (§5), the following
hypothesis of smallness of f will be imposed:ðT

0
jf j22dt%dð1KeK

�C TÞ;

where �C Z �C ðU; n; kÞO0 and dO0 is small enough. Moreover, the periodic
solution obtained, (u, q), verifies kuð0Þk21Ckqð0Þk22Ckvtqð0Þk20%d.

Remark. The uniqueness of solutions furnished by theorem 2.1 remains open,
because higher regularity for the velocity is necessary. To obtain H 3, regularity
for the velocity seems complicated because the argument made in the proof of
lemma 4.2 in order to get H 3 regularity is based on the Neumann condition, but
we have Dirichlet condition for u.

The proof of theorem 2.1 will be given in §5. The method is based on the
Galerkin approximation with spectral basis (defined in §3) and some differential
inequalities in regular norms given in §4.
3. The Galerkin initial-boundary problem

Let ffigiR1 and f4igiR1 be the ‘special’ basis of V and H 1
0ðUÞ, respectively,

formed by eigenfunctions of the Stokes and the Poisson problems as follows:

Afi Z lifi in U

fi Z 0 on vU

KD4i Zmi4i in U

vn4i Z 0 on vU

((

with kfik1Z1, k4ik1Z1, for all i and
Ð
U4iZ0. Let Vm and Wm be the finite-

dimensional subspaces spanned by ff1;f2;.;fmg and f41;42;.;4mg,
respectively.

For each mR1, given u0m2Vm and q0m2Wm, we seek an approximate
solution (um, qm), with um : ½0;T �1Vm and qm : ½0;T �1Wm, verifying the
following variational formulation a.e. in t2(0, T ):

ðvtumðtÞ;vmÞCððumðtÞ$VÞumðtÞ;vmÞCðnðqmðtÞÞVumðtÞ;VvmÞ
KðaqmðtÞg;vmÞKðf ;vmÞZ0 cvm2Vm

ðvtqmðtÞ;emÞCððumðtÞ$VÞqmðtÞ;emÞCðkðqmðtÞÞVqmðtÞ;VemÞZ0 cem2Wm

umð0ÞZu0m; qmð0ÞZq0m:

8>>>><
>>>>:

ð3:1Þ
If we put

umðtÞZ
Xm
jZ1

xi;mðtÞfi and qmðtÞZ
Xm
jZ1

zi;mðtÞ4i;
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then (3.1) can be rewritten as a first-order ordinary differential system (in normal
form) associated with the unknowns (xi,m(t), zi,m(t)). Then, one has the existence
of a maximal solution (defined in some interval [0, tm)3[0, T ]) of the related
Cauchy problem. Moreover, from a priori estimates (independent of m) that
will be obtained below, in particular, one has that tmZT. Finally, using
regularity of the chosen spectral basis, uniqueness of approximate solution holds
(Climent-Ezquerra et al. 2006).
4. Differential inequalities in regular norms

In the sequel, g and 3 will denote some constants sufficiently small. By C, we will
denote different constants, independent of data, and g and 3.

Lemma 4.1. For each g, 3O0 sufficiently small, there exists a constant
KZK(g, 3)O0, such that

d

dt

ð
U

ðnðqmÞC1ÞjVumj2Cnminkumk22C jvtumj22%gkvtqmk21 C3kumk22kqmk2

CK kumk61Ckumk21kqmk42 Ckgk2LNðL2Þkqmk
2
2C jf j22

� �
: ð4:1Þ

Proof. Lemma 1.1 is crucial in this proof because the nonlinear diffusion term,
V$ðnðqmÞVumÞ, is decomposed in n(qm)Dum and n0ðqmÞVqVum, and the control on
the difference between Aum and KDum is necessary in the treatment of the
Laplacian term, n(qm)Dum.

First, taking vZAum as test function in the um-system of (3.1) (A is the
Stokes operator mentioned in lemma 1.1), one has

ðvtum;AumÞKðV$ðnðqmÞVumÞ;AumÞCððum$VÞum;AumÞKaðgqm;AumÞ

Z ðf ;AumÞ: ð4:2Þ

We can write the first term as

ðvtum;AumÞZ
1

2

d

dt
kumk21:

The second term of (4.2) is split as follows (using the Helmholtz decomposition
DumZKAumCVqm),

KðV$ðnðqmÞVumÞ;AumÞZ ðnðqmÞAum;AumÞCðnðqmÞVqm;AumÞ
Kðn0ðqmÞVqmVum;AumÞ:

Taking into account that

ðnðqmÞVqm;AumÞZKðqm;V$ðnðqmÞAumÞÞ

ZKðqm; n0ðqmÞVqmAumÞKðqm; nðqmÞV$AumÞ

ZKðqm; n0ðqmÞVqmAumÞ;
Proc. R. Soc. A (2007)
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since V$AumZ0, hence the second term of (4.2) becomes

KðV$ðnðqmÞVumÞ;AumÞZ ðnðqmÞAum;AumÞKðqm; n0ðqmÞVqmAumÞ

Kðn0ðqmÞVqmVum;AumÞ:

Then, (4.2) can also be written as follows (using n(qm)RnminO0):

1

2

d

dt
kumk21 Cnminkumk22%Kððum$VÞum;AumÞCaðgqm;AumÞ

Cðqm; n0ðqmÞVqmAumÞCðn0ðqmÞVqmVum;AumÞCðf ;AumÞ
Z I1 CI2CI3 CI4CI5:

ð4:3Þ

The first two terms and the last term on the right-hand side of (4.3) are bounded
respectively by

I1%gkumk22CCgkumk61; I2%gkumk22 CCgjgj22kqmk22;

and

I5%gkumk22 CCgjf j22:

In order to estimate the third term, we use lemma 1.1 (and jn0ðqmÞj%n0max)

I3%n0maxjqmj3jVqmj6jAumj2%C jqmj1=22 kqmk1=21 kqmk2kumk2
%C C3kumk1=21 C3kumk1=22

� �
kumk3=22 kqmk2%C3kumk1=21 kumk3=22 kqmk2

C3kumk22kqmk2%gkumk22 CC3;gkumk21kqmk42C3kumk22kqmk2:

While for the fourth term,

I4%n0maxjVqmj6jVumj3jAumj2%Ckqmk2kumk1=21 kumk3=22

%gkumk22CCgkumk21kqmk42:

Consequently, choosing g small enough, from (4.3) we arrive at

d

dt
kumk21 Cnminkumk22%C3 kumk61 Ckumk21kqmk42 C jgj22kqmk22 C jf j22

� �
C3kumk22kqmk2:

ð4:4Þ

On the other hand, using vtum as a test function in the um-system of (3.1),
one obtains

ðvtum; vtumÞCðnðqmÞVum; vtVumÞCððum$VÞum; vtumÞ
Zaðgqm; vtumÞCðf ; vtumÞ: ð4:5Þ

By taking into account that the second term of the left-hand side of (4.5) can be
written as

ðnðqmÞVum; vtVumÞZ
1

2

d

dt
ðnðqmÞVum;VumÞK

1

2
ðvtðnðqmÞÞVum;VumÞ;
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we deduce from (4.5) that

1

2

d

dt

ð
U
nðqmÞjVumj2C jvtumj22%Kððum$VÞum; vtumÞCaðgqm; vtumÞ

C
1

2
ðvtðnðqmÞÞVum;VumÞCðf ; vtumÞZ J1CJ2CJ3 CJ4: ð4:6Þ

The first two terms and the last term on the right-hand side of (4.6) are bounded,
respectively, by

J1%g jvtumj22 Ckumk22
� �

CCgkumk61; J2%gjvtumj22 CCgjgj22kqmk22
and

J4%gjvtumj22CCgjf j22:
Lastly, we go into detail for the third term,

J3 Z
1

2
ðn0ðqmÞvtqmVum;VumÞ%

1

2
n0maxjvtqmj6jVumj3jVumj2

%Ckvtqmk1kumk3=21 kumk1=22 %g kvtqmk21 Ckumk22
� �

CCgkumk61:
Consequently, choosing g small enough,

d

dt

ð
U

nðqmÞjVumj2C jvtumj22%g kvtqmk21Ckumk22
� �

CCg kumk61C jgj22kqmk22C jf j22
� �

: ð4:7Þ
Finally, (4.4) and (4.7) prove the lemma.

Lemma 4.2. For each gO0 small enough, there exists CgO0 such that

d

dt
kqmk22 C jvtqmj22
� �

Ckmin kqmk23Ckvtqmk21
� �

%gjvtumj22

CCg kqmk62Ckqmk42jvtqmj22 Ckqmk22kumk41
� �

: ð4:8Þ
&

Proof. Differentiating with respect to the time the qm-equation of (3.1) and
multiplying by vtqm as test function, using that ðum$Vvtqm; vtqmÞZ0, one obtains

1

2

d

dt
jvtqmj22 CðvtðkðqmÞVqmÞ; vtVqmÞCðvtum$Vqm; vtqmÞZ 0: ð4:9Þ

By taking into account that the second term in (4.9) can be split as

ðvtðkðqmÞVqmÞ; vtVqmÞZ ðk 0ðqmÞvtqmVqm; vtVqmÞCðkðqmÞvtVqm; vtVqmÞ;
we deduce from (4.9) that

1

2

d

dt
jvtqmj22 CkminjvtVqmj22%Kðk 0ðqmÞvtqmVqm; vtVqmÞKðvtum$Vqm; vtqmÞ:

ð4:10Þ
Bounding both terms on the right-hand side of (4.10) (k 0maxZmaxjk 0j),

Kðk 0ðqmÞvtqmVqm; vtVqmÞ%k 0maxjVqmj6jvtqmj3jvtVqmj2

%Ckqmk2jvtqmj1=22 kvtqmk3=21 %gkvtqmk21CCgkqmk42jvtqmj22;
Proc. R. Soc. A (2007)
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and

Kðvtum$Vqm; vtqmÞ% jvtumj2jVqmj6jvtqmj3%C jvtumj2kqmk2jvtqmj1=22 kvtqmk1=21

%g kvtqmk21 C jvtumj22
� �

CCgkqmk42jvtqmj22;

we obtain, for g small enough,

d

dt
jvtqmj22Ckminkvtqmk21%gjvtumj22 CCgkqmk42jvtqmj22: ð4:11Þ

Now, usingD2qm as test function (D2qm2Wm thanks to the choice of spectral basis)
and integratingbyparts inall terms (boundary termsvanish since ðVDqm$nÞjvUZ0),
one obtains

KðvtVqm;VDqmÞCðV½V$ðkðqmÞVqmÞ�;VDqmÞKðVðu$VqmÞ;VDqmÞZ 0: ð4:12Þ
Note that if Dirichlet boundary condition is imposed for the temperature q, the

boundary terms do not vanish in the integration by parts and we cannot obtain the
previous inequalities.

Integrating by parts the first term of (4.12) (again the boundary term vanishes
since ðvtVqm$nÞjvUZ0), the term becomes 1

2
d
dt jDqmj

2
2. The second term is

ðV½V$ðkðqmÞVqmÞ�;VDqmÞZ ðk 00ðqmÞðVqmÞ3;VDqmÞC2ðk 0ðqmÞV2qmVqm;VDqmÞ

Cðk 0ðqmÞVqmDqm;VDqmÞCðkðqmÞVDqm;VDqmÞ:

Hence, we deduce from (4.12) that (jk 00ðqmÞj%k 00maxZmaxjk 00j)
1

2

d

dt
jDqmj22CkminjVDqmj22%k 00maxjððVqmÞ3;VDqmÞjC2k 0maxjðV2qmVqm;VDqmÞj

Ck 0maxjðVqmDqm;VDqmÞjC jðVumVqm;VDqmÞjC jðumV
2qm;VDqmÞj

ZL1 CL2 CL3CL4CL5:

Replacing in the above inequality the following estimations,

L1%C jVqmj36jVDqmj2%gkqmk23 CCgkqmk62;

L2%C jV2qmj3jVqmj6jVDqmj2%Ckqmk3=22 kqmk3=23 %gkqmk23CCgkqmk62;

L3%C jVqmj6jDqmj3jVDqmj2%Ckqmk3=22 kqmk3=23 %gkqmk23 CCgkqmk62;

L4%C jVumj2jVqmjNjVDqmj2%Ckumk1kqmk1=22 kqmk3=23 %gkqmk23
CCgkumk41kqmk22;

L5%C jumj6jV2qmj3jVDqmj2%Ckumk1kqmk1=22 kqmk3=23 %gkqmk23
CCgkumk41kqmk22;
Proc. R. Soc. A (2007)
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we get, taking g small enough,

d

dt
kqmk22Ckminkqmk23%Cg kqmk62 Ckumk41kqmk22

� �
: ð4:13Þ

Finally, (4.11) added to (4.13) proves the lemma.
5. Proof of theorem 2.1

If we denote

FmðtÞZ
ð
U

ðnðqmÞC1ÞjVumj2Ckqmk22 C jvtqmj22;

JmðtÞZ kumk22 C jvtumj22 Ckqmk23Ckvtqmk21;
taking an adequate balance between inequalities (4.1) and (4.8) (from lemmas
4.1 and 4.2, respectively) in order to eliminate the term Kkgk2LNðL2Þkqmk

2
2

from the right-hand side of (4.1) (more concretely, adding (4.1) and (4.8),
multiplied by (2K=kminÞkgk2LNðL2Þ), one has

F0
m CCJm%3JmF

1=2
m CC0jf j22 CDF3

m;

Fmð0ÞZFm0;

(
ð5:1Þ

where C, D, C0O0 are constants.
Let dO0 be a small enough constant that we will specify below.
First step. If Fm(0)%d and kfkL2ð0;T ;L2Þ%d=C0, then FmðtÞ!2d; ct2½0; T �.
Indeed, by an absurd argument, let T� be the first value in [0, T] such that

Fm(T
�)Z2d, hence

FmðT�ÞZ 2d and FmðsÞ!2d cs2½0;T�Þ:
Moreover, there exists a Poincaré constant Cp!0 such that FmðtÞ%CpJmðtÞ.
Then for 3 small enough, we have

CJmK3JmF
1=2
m RCJmK3Jmð2dÞ1=2R �CJmR

�C

Cp

Fm h ~CFm:

The above inequality together with (5.1) leads to

F0
m C ~CFm%C0jf j22 CDF3

m

Fmð0ÞZFm0

;

(
ð5:2Þ

in [0, T�]. Then, F0
mC ~CFm%C0jf j22C4d2DFm in [0, T�]. We can find dO0 such

that ~C K4d2DR �C being a positive constant (for instance, �C Z ~C =2). Therefore,

F0
m C �CFm%C0jf j22 in ½0;T��;

hence, integrating in [0, T�] with a Gronwall’s technique, one finds

FmðT�Þ%deK
�C T�

CC0

ðT�

0
jf j22:
Proc. R. Soc. A (2007)
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We can choose
ÐT�

0 C0jf j22 small enough, such that the right-hand side is smaller

than 2d (e.g.
ÐT�

0 jf j22%d=C0). Thus, we arrive at a contradiction.
Second step. Under the conditions of the first step and assuming thatðT

0
jf j22%dð1KeK

�C TÞ=C0;

then FmðTÞ%Fmð0Þ.
Now, since FmðtÞ!2d c t2½0;T �, we can repeat the above argument

obtaining (5.2) in [0, T] and arrive at

FmðTÞ%Fmð0ÞeK
�C T CC0

ðT
0
jf j22;

hence FmðTÞ%Fmð0Þ using the additional hypothesis
ÐT
0 jf j22%dð1KeK

�C TÞ=C0Þ.
Third step. Existence of approximate periodic solution
Given ðum0; qm0Þ2Vm!Wm, we define the map

Lm : ½0;T �1R
m!R

m

t1ðx1mðtÞ;.; xmmðtÞ; z1mðtÞ;.; zmmðtÞÞ
;

where ðx1mðtÞ;.; xmmðtÞÞ and ðz1mðtÞ;.; zmmðtÞÞ are coefficients of um(t) and
qm(t) with respect to Vm and Wm, respectively, (um(t), qm(t)) being the (unique)
approximate solution of (3.1) corresponding to the initial data (um0, qm0).

Now, varying the initial data (um0, qm0), we are going to define a new map

Rm : �B 3R
m!R

m1R
m!R

m;

as follows: given Lm
0 2R

m!R
m, we define Rm Lm

0ð ÞZLmðTÞ, where Lm(t) is
related to the solution of problem (3.1) with initial data Lm

0 ðZLmð0ÞÞ and
�B Z ðx1m;.; xmm; z1m;.; zmmÞZLm

0 : Fmð0Þ%df g:
By the uniqueness of approximate solution of problem (3.1), this map is well
defined. Moreover, using regularity of the corresponding ordinary differential
system (equivalent to (3.1)), thismap is continuous.By the second step,Rmmaps �B
into �B and �B is a closed, convex and compact set. Consequently, Brouwer’s
theorem implies the existence of fixed point of Rm, which gives us the existence of
periodic Galerkin solution.

Fourth step. Pass to the limit in periodic approximate solutions
If the data of the problem are small, thanks to the first step, we have

FmðtÞZ
ð
U
ðnðqmÞC1ÞjVumj2 Ckqmk22C jvtqmj22%2d:

Therefore, the following bounds hold uniformly:

ðum; qmÞ in LNðH 1!H 2
N ÞhL2ðH 2!H 3

N Þ;
ðvtumÞ in L2ðL2Þ;

ðvtqmÞ in LNðL2ÞhL2ðH 1Þ:
Using compactness results for time spaces with values in Banach spaces with the
compact embedding of H 2 into H 1, one has

ðum; qmÞ is relatively compact in L2ðH 1!H 2Þ:
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In fact, this compactness is sufficient in the pass to the limit in (3.1) in order to
control the nonlinear terms.

Now, we go to pass to the limit in periodic conditions. From the estimations
of qm in LN(H 2) and vtqm in L2(H 1) and using the compact embedding of H 2 into
H 1, one has that qm is relatively compact in C([0, T ];H 1), hence qm(T )/q(T )

and qm(0)/q(0) strongly in H 1(U). Since qm(T )Zqm(0), then q(T )Zq(0) in

H 1(U). Finally, since qm(T ) and qm(0) are bounded in H 2(U), we have that
q(T )Zq(0) in H 2(U).

The argument for u is similar, hence one deduces u(T )Zu(0) in H1(U).
To prove vtqð0ÞZvtqðTÞ, we are going to consider the orthogonal

projector Pm : H 1/Wm defined as PmðgÞZ
Pm

kZ1ðVg;V4iÞ4i, for all g2H 1.

One has kPmkLðH 1;H 1Þ%1 and kPmkLððH 1Þ0;ðH 1Þ0Þ%1 (Lions 1969). Since PmðgÞZPm
kZ1 miðg;4iÞ4i; for all g2H 1, then Pm is also the orthogonal projector from L2

to Wm with respect to the L2 inner product. Therefore,

ðPmðgÞ;4iÞZ ðg;4iÞ c i; cg2H 1ðUÞ;
hence the Galerkin equation for qm can be written as

vtqm ZPmðKum$Vqm CV$ðkðqmÞVqmÞÞ:

Differentiating with respect to the time,

vttqm ZPmðKvtum$VqmKum$Vvtqm CV$ðk 0ðqmÞvtqmVqm CkðqmÞvtVqmÞÞ:

In particular,

kvttqmkðH 1Þ0%kKvtum$VqmKum$VvtqmkðL6Þ0 CkV$ðk 0ðqmÞvtqmVqm
CkðqmÞvtVqmÞkðH 1Þ0% jvtumj2jVqmj3 C jumj3jVvtqmj2
C jk 0ðqmÞvtqmVqm CkðqmÞvtVqmj2:

The terms on the right-hand side of the previous inequality will be bounded in
L2(0, T ). Indeed, vtqm is bounded in L2(L2) and Vqm in LN(H1), hence

jvtumj2jVqmj3 is bounded in L2ð0;TÞ:

Using that um is bounded in LN(H1) and vtVqm in L2(L2), one has

jumj3jVvtqmj2 is bounded in L2ð0;TÞ:

Using that vtqm and Vqm are bounded in L4(L3) and LN(H 1), respectively,

one has that k 0ðqmÞvtqmVqm is bounded in L2(L2). Finally, kðqmÞvtVqm is bounded
in L2(L2).

Consequently, kvttqmkðH 1Þ0 is uniformly bounded in L2(0, T ). This along with
vtqm which is uniformly bounded in LN(L2) gives that vtqm is relatively compact
in C([0, T ];(H1)0), which suffices to prove vtqð0ÞZvtqðTÞ.
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