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Fast ionic conductors are important to study because of their use in the construction of technological-
ly useful devices such as electrochemical cells, oxygen monitors, and the high-temperature fuel cell.
Oxygen-ion conductors form a major subgroup of these materials, and, in particular, stabilized zirconia
is one of the more important solid electrolytes. However, the ionic conductivity of this material is still
only rather poorly understood. The aim of the present work is to describe, by means of a method of lo-
cal fits (LF’s) to Arrhenius’s law, the experimental values of the ionic conductivity of ZrO,—12
mol % Y,0; single crystals in the temperature range from 200°C to 1600°C. This method yields two sets
of data: the preexponential factor, ALF,,, and the activation enthalpy, AH LF,- The lnALFi versus

AS(T)/k plot [where AS(T) is the entropy change in the process] is a very good test of the accuracy of
the LF method. The AH LF, values are fitted by a least-squares procedure to an empirical temperature-

dependence function with four adjustable parameters. In order to interpret these results and to under-
stand the physical meaning of the fitted parameters, a microscopic model is proposed that allows us to
deduce a theoretical function of temperature for the activation enthalpy similar to the empirical func-
tion. Then, from this function, we determine the association (0.57 eV) and migration (0.73 eV) enthalpies
for oxygen vacancies, and analyze the temperature variation of the free energy (AG) and entropy (AS),
as well as the degree of dissociation of the vacancies in the conduction process for this material. A
noteworthy result is that, for the range of temperature studied here, the extrinsic dissociated regime
(where it is assumed that all oxygen vacancies are free) is never reached. Finally, taking into account the
contribution of the jumps up to the second-next-nearest anionic neighbors, we obtain the value of
1.31X 10" Hz for the attempt frequency of the oxygen vacancies.
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I. INTRODUCTION

Cubic Y,0;-stabilized ZrO, is among the more impor-
tant solid electrolytes. Nevertheless, its conductivity
temperature behavior is still not understood. We think
that the main reason for this is that the normal method
used to fit experimental data is inadequate. If the ionic
conductivity of these materials is represented by a con-
ventional Arrhenius plot (Ino T versus 1/7), a small and
gradual decrease in the slope is observed when the tem-
perature is raised.! ! This effect is more pronounced in
cubic samples with the lowest concentration of yttria.% !°
The slope of a conventional Arrhenius plot yields the
process enthalpy (or activation enthalpy), which contains
the true activation enthalpy for defect formation. How-
ever, for an oxide ionic conductor in the extrinsic regime,
the carrier concentration may be regarded as independent
of temperature.!! In these materials the experimental
data are usually fitted by two straight lines. One is for
low temperatures ( <700°C), designated the extrinsic as-
sociated regime, in which it is assumed that all oxygen
vacancies are associated, forming clusters, and where the
activation enthalpy (AH ) can be written as'?

AH=E,+E,, , (1)

where E, and E,, are, respectively, the association and
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migration energies for vacancies. The other is for high
temperatures ( > 900 °C), the extrinsic dissociated regime,
in which it is assumed that all oxygen vacancies are free,
so that the activation enthalpy is'?

AH=E,, . @)

This behavior can be correlated with the idea that
there are two kinds of oxygen vacancies in the material:
those that are single and those forming clusters. At low
temperatures the change in the slope is so small that the
experimental results can be fitted by a single straight line.
However, at high temperatures the gradual decrease in
the slope is significant up to 1600°C, so that a single
straight line is not a good fit to the experimental results.
To study the conductivity-temperature behavior in these
materials, it is therefore necessary to fit all the experi-
mental temperature range with a single function.

Recently, Bates and Wang'® and Suzuki and Sugiya-
ma!# assumed a particular function of the temperature
for the activation enthalpy to fit their experimental re-
sults. Bates and Wang, in the temperature range from 25
to 450°C, found an activation enthalpy in agreement with
the one reported in the literature.! ! This concordance
is because in this temperature range there is only a very
small deviation from linear behavior. By contrast, the ac-
tivation enthalpy found by Suzuki and Sugiyama in the
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temperature range 7001600 °C is smaller than the one in
the literature.*® This discrepancy is because they inter-
pret the activation enthalpy as a parameter which is a
function of T obtained by an Arrhenius fit of the experi-
mental results, but use a temperature-independent preex-
ponential term.!4 16

In the present work, the experimental value of the ion-
ic conductivity of ZrO,—12 mol % Y,0; single crystals,
in the temperature range 200-1600°C, was fitted by a
local-fit (LF) method to Arrhenius’s law.!> At the same
time, the activation enthalpies for association and migra-
tion of the oxygen vacancies were determined, as well as
the variation with temperature of the free energy (AG),
entropy (AS), and activation enthalpy (AH ) of the ionic
conductivity process in this material.

II. EXPERIMENTAL PROCEDURE

The dc ionic conductivity of single-crystal 12 mol %
Y,0; fully stabilized ZrO, is studied in the present work.
The data were obtained using the four-probe method,
from 200 to 850°C, being results from our laboratory,
and from 700 to 1600°C taken from the work of Suzuki
and Sugiyama.'*

The samples were oriented by the Laue x-ray back-
reflection technique and cut with a diamond saw into a
parallelepiped shape (7.9 X 3.6X 3 mm?), all the faces be-
ing parallel to {100}. The faces were polished and then
finished with 3-um diamond paste. Four 0.3-mm-deep
notches separated about 1 mm were cut into lateral faces
to facilitate electrical contact, and gold-wire probes were
attached with gold paste. Subsequently, the samples were
heated to 800 °C to burn off organic residues.

The direct-current electrical conductivity was mea-
sured, by the four-probe method, using an electrometer
(Keithley model 617) and a current source (1 pA-100
mA, Keithley model 220), both programmable. The two
extreme probes were connected to a constant-current
source and the potential difference between the two cen-
tral probes was determined. For a given temperature, the
current was adjusted to give a 1-V potential drop between
the central probes. The temperature was controlled to
within +1°C in all cases.

III. LOCAL FIT OF ARRHENIUS’S LAW

The usual way to write the ionic conductivity for a
doped oxide conductor is

oT= A exp(—AH /kT) , (3)

where o is the ionic conductivity, 7" the absolute temper-
ature, k the Boltzmann constant, 4 a preexponential
term, and AH the process-activation enthalpy, 4 and AH
being independent of T. If we plot In(o T) versus 1/T, we
obtain a straight line with slope AH /k (linear Arrhenius
behavior). However, there are ceramic materials for
which this behavior is nonlinear. If we plot In(oT)
versus 1/7T in the temperature range from 200 to 1600 °C
for single-crystal 12 mol % Y,03;-ZrO, (see Fig. 1), a
small and gradual decrease in the slope is observed as the
temperature rises. The slope in this plot is temperature

3705
Temp. ('C)
1600 800600 400 200
8
4
—_ 0
=
< -
-12
o this work
16 o Ref. 14
-20

4 8 12 16 20 24
10000/7 (K™t)

FIG. 1. Arrhenius plot of electrical conductivity of ZrO,-12
mol % Y,0;, with our data and data of Suzuki and Sugiyama
(Ref. 14).

dependent, and the physical meaning is not clear.'®

The LF of the experimental data to an Arrhenius ex-
pression allows us to analyze the conductivity over the
whole temperature range, maintaining a physical mean-
ing for all the parameters. Because the decrease of the
slope with temperature is small, it is possible to divide the
plot into small temperature intervals in each of which
there is linear Arrhenius behavior. The 4 and AH values
calculated for each interval will be assigned to the mean
temperature of the interval and will be denoted by ALFi

and AH LE,» SO that we can write
oT;= Ayrg,exp( _AHLFi /kT) . @)

The subscript indicates the interval in which the parame-
ters were obtained. These values are plotted in Fig. 2.
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FIG. 2. Values of AH; g and Ay obtained by the LF method
vs absolute temperature.
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The two plots have the same shape because, in the LF
method, for a given temperature interval, AH LF, is ob-
tained from the tangent to the experimental data and the
preexponential term ALF,. from the intersection with the

conductivity axis. Hence A4;p has to follow the varia-

tion of the tangent over whole temperature range. This
method can be applied only if changes in the slope are
gradual.

By least-squares fitting the calculated AH LE,» it is pos-

sible to determine a temperature-dependence function of
the activation enthalpy, AH(T). The best fit can be ob-
tained using the function

Here E;, E,, B, and T, are adjustable temperature-
independent parameters for which, in our case, the values
are E,=1.01 eV, E,=0.29 eV, B=3278 K, and
T,=1328 K. The fit of Eq. (5) to the experimental values
for AHy g is shown in Fig. 3. It can be seen that AH(T)

evolves from one steady state at low temperature
(AH=1.3 eV for T <400 °C) asymptotically to another at
high temperature with an activation enthalpy that is not
well defined. Such behavior has been reported for many
ceramic materials.>~ 14

From the activation enthalpy AH(T) [Eq. (5)], it is pos-
sible to deduce the variations of the entropy AS(T) and
Gibbs energy AG(T) as!’>~ 17

AH(T) AH(T)
+f T2

AS(T)=AS,+ dT , 6)

T
AG(T)=AH(T)—T AS(T) , (7)

with AS, an integration constant. Substituting Eq. (5)
into Egs. (6) and (7), we obtain

AS(T)=(E, /T)tanh[B(1/T —1/T;)]
—(E, /B)In[coshB(1/T —1/T;)]+AS, (8)

and
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FIG. 3. AHy data and the empirical function AH(T) vs ab-
solute temperature. The most important parameters of the
best-fit function AH(T) are shown in the figure.
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AG(T)=E;+E,(T/B)ln[coshB(1/T—1/T;)]—T AS,, .
9

The integration constant AS, may be easily calculated
from Eq. (8) by setting the temperature to Tf, so that
AS) is given by AS(T).

In order to test whether the LF method gives a good
representation of the problem, we can test the behavior of
InA g with respect to AS(T). Since'>'>!8

Ay p= Agexp ASk(T) > (10)
by plotting lnALFi versus AS'(T)/k  [AS'(T)

=AS(T)—AS,], we should have a straight line of slope
1. In Fig. 4 we show this plot for the 12 mol %
Y,0;-Zr0, single crystals: The slope is 0.996, showing
that our LF is a very good method for fitting the ionic
conductivity in this compound.

IV. THEORETICAL MODEL
FOR EQUALLY PROBABLE JUMPS

Let us now develop a microscopic model that allows us
to interpret the results and to understand the physical
meaning of the parameters in the empirical function Eq.
(5).

The conductivity (o) and the diffusion coefficient (D)
of the vacancies are related by the Nernst-Einstein equa-
tion, which for weak electrical fields can be written as

_ng’D
o T (11)
where n is the carrier density and q is the charge.

We shall determine n and D for a cubic lattice by as-
suming that (i) the successive anionic jumps are not
correlated, (ii) the diffusion takes place through nearest-
neighbor (NN) oxygen vacancies, (iii) all the jumps have
the same frequency, and (iv) the oxygen vacancies are
randomly distributed.

With these assumptions, n (in our case, the number of
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FIG. 4. Test of the LF method:
[AS(T)=AS(T)—AS,].
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oxygen vacancies) can be written as
NN,

n= 3U, , (12)
a°N

where N is the number of anionic sites in the crystal, N,
is the volume fraction of vacancies, N’ the number of unit
cells, and a the lattice parameter. Since N/N’'=8, Eq.
(12) can be rewritten as

n =8N, /a* . (13)

The diffusion coefficient D is given by'’
6
D=% E I';Ax?=Ta%/4, (14)

where I'; is the frequency of jump i, I" the average jump
frequency, and Ax; (Ax; =a /2) the effective distance of a
jump. To determine I' at any temperature, we need to
know the number of vacancies which participate in the
conduction (N,) and the average number per unit time
able to overcome the potential barrier AG,, between two
NN anionic sites ({n5g_)).

The probability that NN anionic positions are occu-
pied by j oxygen vacancies (0=j <6) is

P;=(8Nj(1—N,)57/ . (15)
With (N,/) the fraction of the total vacancies free, the
number of free vacancies will be nN,,. If we now multi-

ply this number by zfzon, we obtain the number of free
vacancies (N, ),

5
N,=nN,; _zopj . (16)
=

The term j =6 is excluded because it represents a vacan-
cy with six NN vacancies. As 37_,P;=1—Pg, Eq. (16)
can be written as

N.=nN,;(1—-Nf) . (17)
The jump frequency (o) is given by'®

AG,,
kT

© =VexXp R (18)

where v is the attempt frequency of the vacancy. If now
we multiply N, by w and divide by n, we have

(nag, Y =Ny, (1 —N8)voexp(—AG,, /kT) . (19)

Dividing Eq. (19) by the anionic vacancy coordination
number!® (6), we obtain

voN,(1—NE)
r=—°N~f—6—exp( —AG,, /kT) , (20)
and from Egs. (11), (13), (14), and (20), we have
_ 4ve®N, N,(1—N?)
3ka

where e is the electron charge.
In order to deduce the degree of dissociation® (N, ,),

oT exp(—AG,, /kT) , (21)
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we cannot use the mass action law because the structure
and types of clusters are unknown in this sample. To
determine the concentration of defects, a more general
method is necessary such as the minimum-energy condi-
tion.!”2% So the free energy of the dissociation process as
a function of n,, (free-vacancy number) has been ob-
tained by using the Maxwell-Boltzmann statistic. Then,
by imposing the minimum-energy condition with regard
to n,, and considering that n,, is not negligible in rela-
tion to n, N, has been calculated (see Appendix A) as

exp[(—AG,/kT)—InZ_]

o/~ T+exp[(—AG, /kT)—InZ,] ’ 22

where AG, is the Gibbs free energy for vacancy associa-
tion and Z, the number of equivalent configurations of
clusters. By substituting Eq. (22) into Eq. (21), we obtain
_ 4ve?N,(1—Ny)
- 3ka
exp{ —[(AG,+AG,,)/kT]—InZ_}
1+exp[ —(AG,/kT)—InZ_]

oT

(23)

Let us now determine the theoretical function AH(T).
From Arrhenius’s law, we can define AH(T) as

dlnoT
da
with a=1/kT. By comparison with Eq. (21), we have
B dInN,, N da AG,,
da da
If we assume that AH,, AH,,, AS,, and AS,, (enthalpy
and entropy variations for the association and migration

of the vacancies, respectively) are temperature indepen-
dent, by means of Eq. (25) it is easy to calculate AH (T):

AH(T)=— (24)

AH(T)=

(25)

a

A
AH(T)=AH,, +—

AH,
+ Ttanh

H, _AS,  InZ,
2kT 2k 2

(26)

This equation has the same form as Eq. (5) obtained from
the LF method.

We can also evaluate from Eq. (21) the preexponential
factor of Arrhenius’s law. The empirical form of this law
for nonlinear behavior is

oT=A(Texp | — —A%:Q s (27)
with
A(T)= Ayexp —A%i—T—) (28)

and A, a constant dependent on the microscopic charac-
teristics of the sample. By comparison of (21) and (27),
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we obtain and by Badwal and Swain® for samples of
42N (1— N6 [(ZrOy)p.55-(Y,03)0.12] using two exponentials to fit the
In4d(T)=ln——2 0770 experimental resistivity between 400 and 1000°C.
3ka Bauerle and Hrizo obtained AH,=0.49 eV and

AG,, AH(T) AH,,=0.68 eV, in agreement with our results (it is neces-

+InN,,— xT + kT (29)  sary to point out that the range of temperature they used

Taking into account Eq. (25) and substituting Eq. (26)
into Eq. (6), we have

AS(T) _aAH, a AG, N InZ,
ko2 2 2
) b a AG, N InZ, AS, 30
n | cos 2 5 X (30)

Substituting Eqgs. (22) and (26) into (29), and taking into
account Eq. (30), we can write

InA(T

)=In ) (31)

4vye’N,(1—NY) ] L AS(T)
3ka k

if we assume that

AS, AS, AS InZ

kK 2k kK 2

By comparison of Egs. (28) and (31), we obtain

4ve®N,(1—N$)

Y

as a function of the microscopic parameters v, and a.

 —In2 . (32)

(33)

V. RESULTS AND DISCUSSION

This model allows us to determine the enthalpy for mi-
gration and association of the oxygen vacancies in clus-
ters. Comparing Eqgs. (5) and (26), we have

AH,=2E, , (34)

A}Im :Ef"Eb ’ (35)
__AH,

B= % (36)

(37

From Eqgs. (34)-(37), we can identify E, with half of the
enthalpy for clusters and E, with the migration enthalpy
for free vacancies plus half of the association enthalpy of
the vacancies in clusters. Because E,, E,, and T, are
known, we can determine AH,=0.57 eV and
AH, =0.73 eV (AH,+AH, =1.30 eV, which corre-
sponds to the energy for the extrinsic associated state).
There is a lack of published experimental data for these
two magnitudes, because, although Arrhenius’s law has a
linear behavior at low temperatures (extrinsic associated
range), this is not true’® at high temperatures
(800<T <1600°C). It is therefore not possible to deter-
mine AH,, with accuracy, and hence neither AH,. How-
ever, these two enthalpies have been calculated by
Bauerle and Hrizo! for samples of [(ZrO, ) ¢0-(Y,03)0.10)>

is very narrow, and this is probably the origin of the
small difference). Badwal and Swain, however, found
AH,=0.36 eV and AH,,=0.91 eV, in disagreement with
our results. Using the same two-exponential method for
our work (200°C<T=<1600°C), we obtain AH,
=0.61 eV and AH,, =0.69 eV, similar to the values ob-
tained with our LF method and in agreement with the
values of Bauerle and Hrizo.

With respect to the published theoretical values
for AH,,, when ZrO, is doped with Y,0O; they range from
0.8 eV (Ref. 23) to 0.9 eV,?* being significantly larger than
the one obtained with our fit. With respect to AH,, the
theoretical value obtained by Bingham, Tasker, and Cor-
mack,?* 0.6 eV for clusters of type [V, Yér Jnne and by

22—24

Butler, Catlow, and Fender,?? 0.63 eV for clusters of type
[YZ VOYQ, 1%, are both in agreement with the one ob-

tained from our model.

An apparently surprising result of the theoretical mod-
el is that it seems to show that ionic defects behave as fer-
mions, because the free-energy dependence of N,, [Eq.
(22)] is similar to a Fermi-Dirac distribution function.
However, this equation is a free-energy function, but it is
not function of the energy of the particle state, and there-
fore it is not a distribution function. There is a classical
system with a similar Fermi-Dirac behavior: the two-
state system of N independent particles.?! If €, and ¢, are
the energies of the two states, the distribution function is
given by

n-=—i dInZ
v Og

’ (38)

1

with Z =[exp(—y¢e,)+exp(—ye,)]" the partition func-
tion for this system and y=1/kT. As Ae=¢,—¢,, we
obtain

exp(—y Ag)

N=—SXPL Y A&)
"/ 1+exp(—y Ae) ’

(39)

which is similar to the Fermi-Dirac distribution function.
The vacancy-dissociation process can be considered as a
two-state system in this model if €; and &, are taken as
the energies of the dissociate and associate states of the
vacancies, respectively.

On the other hand, the same expression for N,, [Eq.
(22)] is obtained with an alternate classical statistical pro-
cedure (classic approximation). Let us consider the
anionic lattice in the crystal with N anionic sites and n
vacancies. The partition function can be factorized as?0

Z=Z xZ, , (40)

where Z_  is the configurational term and Z, is the vi-
brational factor. If n,, of this vacancy has an energy g,
and n —n,, an energy €4, (n 2 n,,), Z ¢ is given by

con;
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N! n=nye_n,.
n—n,)n, (N —n) Ze Zs “D

Z

conf (

where Z. and Z, are the number of energy-equivalent
configurations that one vacancy has due to the presence
of dopant cations in the cationic lattice.

In the high-temperature approximation, Z, can be
written as?

kT

—, (42)
I,

9

Z,=exp XT

(kT)*Nexp(—¢' /kT)
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where ¢’ is the cohesive energy for the defective crystal
and v; the modified normal-mode frequencies. If the in-
teractions among defects are ignored, then

¢'=¢+n, et (n—ny ey, (43)

and if the Einstein approximation is assumed and it is as-
sumed that the vacancies modify the vibrational frequen-
cy of only a few neighboring atoms, e.g., the p; and p,
nearest neighbors for the vacancies in £;; and €,, respec-
tively, then

Z,(n,n,)=

n (n—n ) 3N—n ,p,—(n—n _,)p
(hvl) ufpl(hvn) vaZ(V) vff1 vf 'F2

=Z,(0,0)[exp( —eg4, /kT)(v/v' ' 1" [exp(—egp /KT v /v 21" ", (44)

with Z,(0,0) the partition function in the absence of va-
cancies.

The thermodynamic potentials for the defective crystal
can be obtained from the partition function?® and can be
written as

Gv(n,nvf):Go+nUfEd1+(n _nuf)sdz

—n, kT In[(v/v')']

—(n —n, kT In[(v/v")?] , (452)
S, (n,n,)=8o+n, kT In[(v/v')]

—(n—n, kT In[(v/v'")*] , (45b)
Hv(n,nvf)=H0+nufed1+(n —nyplEgs , (45¢)

Gy, Hy, and S, being the thermodynamic potentials of
the perfect crystal.

The full thermodynamic potentials are obtained by
adding the vibrational part to the configurational poten-
tial derived from Eq. (41),

_ N!
Gconf(n,n,,f)——len m’"
1 -
—kT1In Rt nThy
(n—n,)n,!
—kTIn[Z;*] . (46)

Assuming that n is independent of the temperature, the
total free energy can be written as

GT(nUf):G0T+nvf(AHa _TASH )_TAS

conf

:GOT+nquGa —AS onf > 47)
where
!
GOT=G()—'kT In ﬁ (48a)
AH,=¢ey —¢y4,, (48b)

[
AS,=kIn[(v/v'}']—k In[(v/v")*]+k InZ, ,
(48c)

n! n=n,.

—_— (484)
(n—n,o)n, ¢

AS, =k In

If we consider AG(T)=Gr(n,;)— G, , we obtain our Eq.
(A2), and imposing the minimum-energy condition

9Gr(n,y) _ dAG(T) _
anvf

0,
anv f
we obtain the Eq. (A4). Therefore Eq. (22) represents a
classical statistical behavior. '
With the proposed model, it is possible to determine
N,s. Thus, from Egs. (36) and (37), we have

89 jnz,=2p| L1 49)
kT e T, T
so that Eq. (22) can be rewritten as
2B(1/T,—1/T)
_exp[2B(1/T, ] (50)

U 1+exp[2B(1/T,~1/T)]

Figure 5 shows a plot of N,, versus T for temperatures

O N @® 0o o

Nvf

T

O O OO0 OO0 OO0 O O »
a

O » N W »

o 500 1000 1500 2000

T (K)

FIG. 5. Degree of dissociation of vacancies (N,;) vs absolute
temperature.
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ranging from O to 2273 K. One can see that the extrinsic
dissociation state goes up to approximately 673 K, where
all the vacancies form clusters (N,,~0). The parameter
T is defined as the temperature at which half the vacan-
cies are free (N,,=0.5). At a temperature of 1873 K
(maximum in this work), N,,=0.81, so that the extrinsic
dissociated stage has not been reached. This theoretical
result is in agreement with the non-Arrhenius behavior
found experimentally in these systems.>

To make an estimation of AS(7T) and AG(T), we need
to know AS, [Eq. (6)]. This can be done by using the
boundary condition'® AS(7 = )=0, which together
with Eq. (8) yields AS,/k =1.810. To see if this value is
physically acceptable, we shall calculate the attempt fre-
quency v, from A’ given by Arrhenius’s law:

A'= Ayexp(AS,/k) , (51)

A’ being the ordinate at the origin in Fig. 4. From Egs.
(33) and (51), we obtain v,=7.83X 10'* Hz, about 4 times
larger than the maximum frequency for the lattice vibra-
tional modes in zirconia, 2.07 X 103 Hz (v¢ in Fig. 6), ob-
tained from hyper-Raman-scattering experiments by Shin
and Ishigame.?® This discrepancy may be because our
model considered only jumps between nearest neighbors
[we shall denote them by first neighbors (1N)]. If we con-
sider jumps between next-nearest neighbors (NNN) too
[second neighbors (2N)] or between NN, NNN, and
second-next-nearest neighbor [third neighbors (3N)], the
preexponential factors will be (Appendix B)

4¢2N v,
AN =20 52
0 ka (52)
and
8e2N, v,
AP =—T22 53
0 Xa (53)

respectively. In Fig. 6 we represent AS/k for T= o0
versus the attempt frequency running from 10" to 10'*
Hz. The entropy variation was calculated from Eq. (51)

3

2

1
h'4
N

= o]
8
[}

< -1

-2

-3

1 2 3 4 S] 6 7 8 =] 10

v (10%%s™

o

FIG. 6. Values of AS(T) for T= o obtained with the first
(AS'N), second (AS2)N), and third (AS3N) anionic neighbors
with the attempt frequency running from 10'3 to 10'* Hz. v§ is
the maximum frequency for the lattice vibrational modes in zir-
conia from Ref. 26.
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using Eqgs. (33), (52), and (53), giving, in obvious notation,
ASN, AS™N and AS3N, respectively. In Fig. 6 we also
show  the  frequencies v)N=7.83X10"  Hz,
viN=2.62X10" Hz, and v3¥=1.31X10" Hz, which
satisfied the condition AS(« )=0 for each approxima-
tion. The solid line is v{. One observes that viN lies in
the range of the lattice vibrational modes in zirconia®®
and is in agreement with the accepted value of the at-
tempt frequency.'> We shall therefore regard viN (con-
tribution of jumps 1IN, 2N, and 3N) as the attempt fre-
quency for the oxygen vacancies (v,=1.31X 10" Hz).

We can now represent the behavior of AS(T) and
AG(T) in the ionic conductivity process for our samples
(Fig. 7). This behavior is similar to that found by Wang
in Na B”-alumina,'® who suggested a steady state (extrin-
sic associated domain) at low temperatures and asymptot-
ic behavior at high temperatures, as in our model.

VI. CONCLUSION

The ionic conductivity of a ZrO,-12 mol % Y,0; sin-
gle crystal was described with an empirical function in
the temperature range from 200 to 1600°C. This func-
tion was determined by using a local-fit method to fit the
experimental data to the Arrhenius law. In order to un-
derstand the physical meaning of the fitted parameters, a
microscopic two-state theoretical model was developed,
from which the enthalpies of migration (0.73 eV) and as-
sociation in clusters (0.57 eV) of the vacancies were calcu-
lated. Moreover, we can determine the fraction of free
vacancies to a given temperature, which shows a func-
tional form similar to a Fermi-Dirac distribution func-
tion, although it was deduced using the classical approxi-
mation. On the other hand, the attempt frequency value
of 1.31 X 10!* Hz for oxygen-vacancy hopping was deter-
mined as well. Finally, the behavior of the free energy
and entropy of the conduction process was analyzed. It
was found that the temperature-dependence behavior is
similar to what was pointed out by Wang in Na -
alumina samples.!® Therefore the proposed microscopic
model not only allow us to represent the ionic
conductivity-temperature dependence, but also to know
some important physical parameters such as the enthal-
pies of the vacancies in each state (free or bound) and to

1.1 5
AS (T) /k a
>
1.0
K 3
AG (T) N
Eo.a} N \..A8Ses/k 2 F
o E
)
< 1
0.8
o
Te
0.7 -1
o 500 1000 1500 2000
T (K)

FIG. 7. Temperature dependence of the functions AS(7T) and
AG(T) obtained from the function AH(T), with the condition
AS (00 )=0.
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understand in a very intuitive way the dynamic of ionic
defects in these crystals.
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APPENDIX A

In order to determine N, ., we shall use the Maxwell-
Boltzmann statistic. Let us assume that there are n va-
cancies, of which n,, are free (not forming clusters). If
AG, is the energy necessary to set a vacancy free,

AG,=AH,—TAS, , (A1)
the energy to set n,, free will be
AG(T)=n,AG, —T AS ¢ » (A2)

where AS ¢ (configurational entropy) can be written as

AS —kln[(;’,vf)Z("_"vf)].

conf c

(A3)
Imposing the minimum-energy condition with regard

to n,, with Stirling’s approximation®! and considering
that n,, is not negligible in relation to n, we obtain

(A4)

or, as a function of N, r =n,s/n (degree of dissociation?°),

exp(—AG,/kT—InZ,)

= ) (A5)
o/ 1+exp(—AG,/kT—InZ,)

APPENDIX B

In the model developed in this article, we considered
jumps between nearest neighbors (IN). In this appendix
we shall evaluate the contribution of next-nearest neigh-
bors (2N) and of the second-next-nearest neighbors (3N).

In the fluorite structure, we have 6 (IN) positions, 12
(2N), and 8 (3N). First, consider jumps between 1N and
2N. In this case, Eq. (14) (see Sec. IV) is modified to

_a’

b=

Iin+a’ Ty, (B1)

where I' |y and I',y are the frequencies for jumps 1N and
2N, respectively. These frequencies can be calculated as
in Eq. (20) (Sec. IV):

vo(l=NS)N, AGN
I'n= 046u—iexp — k]'," , (B2)
voll=N3N, AG2N
FZN:—O—I_z’“—Uf X - kT > (B3)

with AG,N and AG2N the potential barriers for jumps 1N
and 2N. If we keep all the hypotheses of the model ex-
cept the second (see Sec. IV) and we assume that
AGN~AGXN~AG,,, then D can be written as

AG,,
kT

1-Nf 1—N§
+
24 12

D=vg 2Nl,fexp

’ . (B4

If C, is the mole fraction of Y,0; and because a V, is
created from each pair of Y**, we can write
A B
o214 Cy) B3
In our case, C;=0.12, and so N,=0.053. Then, if we
put 1—NS~1—N8&~1 in Eq. (B4) and substitute it into
Eq. (11) (Sec. IV),

_ 4e?vyN,

AG,,
ak Nufexp

kT

oT s (B6)

from which the preexponential factor 42N can be written
as

2
4N 4e“vyN, .
0 ak

If now we consider the three types of jump (1IN, 2N,
and 3N), we should add the contribution of jump 3N to
Eq. (B1). For that, we have to consider only four of the
eight 3N positions, because the other four involve over-
coming a cation. Hence

(B7)

a 2 2 a 2
D:TF1N+0 F2N+7F3N , (B8)
I';y being given by
_ v(1=N)N,, AGN
INT 2 exp T . (B9)
With the same simplification as before,
8e2vyN, AG,,
T=—F7"-— -
o ka N,sexp T (B10)
and
8e2voN
APN_=——" .
0 ka (B11)
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