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ABSTRACT

Polyethylene is commonly used as an insulator for AC power cables.  However it is
known  to  undergo  chemical  and  physical  change  which  can  lead  to  dielectric
breakdown.  Despite  almost  eighty  years  of  experimental  characterization  of  its
electrical properties, very little is known about the details of the electrical behaviour of
this material  at the molecular level.  An understanding of the mechanisms of charge
trapping  and  transport  could  help  in  the  development  of  materials  with  better
insulating  properties  required  for the  next  generation  of  high  voltage  AC  and  DC
cables.  Molecular simulation  techniques  provide  a  unique tool  with  which  to  study
dielectric processes at the atomic and electronic level. Here we summarise simulation
methodologies which have been used to study the properties  of PE at the molecular
level, elucidating the role of morphology in the trapping of excess electrons.  We find
that polyethylene has localised states due to conformational trapping extending below
the mobility edge (above which the excess electrons are delocalised), at -0.1±0.1eV with
respect to the vacuum level. These trap states with localisation lengths between 0.3 and
1.2nm have energies as low as -0.4±0.1eV in the amorphous and interfacial regions of
polyethylene with more positive values in lamella structures. Crystalline regions have a
mobility edge at +0.46 ±0.1eV, so we would expect transport by electrons excited above
the mobility edge to delocalised states to be predominantly through amorphous regions
if they percolate the sample.

   Index  Terms  — Molecular  simulations,  polyethylene,  methodologies,  electron
trapping, electron transport, morphology.

1   INTRODUCTION
Polyethylene’s low electric conductivity, low dielectric loss,

high dielectric strength and outstanding mechanical  properties
[1] make it  a  common choice as  an insulator  for  AC power
cables.   However, under certain conditions, polyethylene may
suffer from chemical and electrical aging or degradation after
long-standing operation under voltage, which may finally lead
to dielectric breakdown [2]. 

A major contribution to aging and breakdown is thought to be
made by  trapped charges,  called  the  ‘space  charge’ [2].  The
accumulation of  space  charge  distorts the local  electric  field,
facilitating  phenomena such  as  treeing  as  well  as  generating
chemical  and  physical  defects  through  the  local  release  of

trapping energies (of the order of an eV), eventually leading to
the degradation of the insulation, although the exact mechanisms
operating  are  still  not  fully  understood.  The  formation  and
transportation mechanism of space charge has been the subject
of extensive experimentation [2]. For example, by monitoring
the threshold electric field for charge accumulation it has been
found that charge injection is strongly affected by the material of
the  electrode  [3-5].  Space  charge  formation  and  transport
phenomena under DC stress can be observed using the Pulsed
Electro-Acoustic (PEA) method [6-9]. This technique has been
used to show that the interfaces either between multilayers of PE
or  between  PE  and  the  electrode,  is  prone  to  space  charge
accumulation, and thus might be considered to be weak points
with respect to insulating properties [10-12].



Despite  a  vast  literature  concerned  with  the  experimental
characterization of its electrical properties, very little is known
about  the  details  of  the  electrical  behavior  of  this  material,
especially  at  the  molecular  level.  An  understanding  of  the
mechanisms of charge trapping and transport in these insulators
and how such processes are affected by local physical structures
and  chemical  impurities  could  help  in  the  development  of
materials with better insulating properties required for the next
generation of high voltage AC and DC cables. In what follows
we summarize molecular simulation methodologies which have
been used to study the properties of PE at the molecular level,
elucidating  the  role  of  morphology  as  well  as  chemical
imperfections and additives on the trapping of excess electrons.

The  paper  is  organized  as  follows:  Section  II  presents
simulation  methodologies  which  have  been  found  useful  in
understanding  PE,  including:  Molecular  Dynamics  (MD)  for
modeling  morphology,  Density  Functional  Theory  (DFT)  for
calculating  electronic  properties  using  the  generated
morphologies, the Lanczos method which can be used to predict
the density of states of   excess electrons in a given PE structure,
and the Surface Hopping method which predicts the quantum
transitions between such states. Section III reviews current work
focusing on the relationship between the electronic states and PE
morphologies. The findings are discussed and some conclusions
presented in Section IV.

2   MOLECULAR METHODOLOGIES
In  many  branches  of  science  and  engineering,  molecular

simulation techniques (including MD, DFT, etc.) are an integral
part  of  modern  research  programs.  They  can  provide  a
theoretical basis upon which to interpret experimental results as
well as a tool for discovery in their own right. For example,
computer  simulations  can  explore  the  properties  of  ‘perfect’
materials free from chemical and morphological contamination
[13].  Once  the  relationship  between  the  simulated  and
experimental systems is established, the simulation can be used
to explore the effects of systematically changing both external
(pressure, temperature, density, etc.) and internal (composition,
morphology, defect structure, etc.) variables.  In this section, we
provide a brief introduction to simulation techniques which have
been found to be useful for polymeric materials.

2.1 MOLECULAR DYNAMICS METHODS

  Molecular  dynamics  (MD)  [13,  14]  is  widely  used  to
simulate the trajectories  of molecules  or atoms in a  classical
many-body system by solving Newton’s equations of motion.
The thermodynamic, structural  and transport  properties of the
system can then be obtained by taking time averages over the
trajectories. 

  This method is widely used for almost any molecular system
at moderate or high temperatures (such as at normal conditions,
300K),  so that  quantum effects  in the dynamics of atoms or
molecules can be safely neglected.

  The interactions between the molecules are described using a
force-field,  that  is,  a  set  of potential  energy functions.  These

functions  are  usually  empirical,  consisting  of  intra-molecular
terms  representing  the  energy  associated  with  for  example
atom-atom  bonds,  and  orientation  (valence  and  dihedral
angles)  and  intermolecular  terms  representing  the  van  der
Waals  or  dispersion  interactions,  Coulomb  interactions
between  charges,  directional  bonds  such  as  H-bonds  and,
where necessary, three or many-body terms. 

  Given the force-field and a set of initial conditions, the
trajectory  of  the  whole  system  is  usually  integrated  as  a
function of time using a simple time-step algorithm such as
the velocity Verlet method [14, 15]. Clearly, it is important to
choose  a  time-step  small  enough  so  that  the  generated
trajectories  are realistic.  Typical  time-steps for  a polymeric
system are of the order of a few femtoseconds and averages
are  taken  over  thousands  to  hundreds  of  thousands  of
configurations (time-steps) of the system. 

  The standard MD simulation generates a micro-canonical
ensemble, with constant number of particles (N), volume (V)
and energy  (E).  The instantaneous  temperature  T is  obtained
from  the  total  kinetic  energy  as  given  by  the  equipartition
theorem.

By  introducing  to  the  simulation  a  thermostat to  fix  the
system  temperature  (popular  choices  are  those  given  by
Berenson, Andersen or Nose-Hoover) or a barostat to fix the
pressure,  MD  simulations  can  be  also  carried  out  in  a
canonical ensemble (NVT) or an isothermal-isobaric ensemble
(NPT) [14, 15]. 

  When only equilibrium properties are required, Monte Carlo
(MC) simulation [14] provides an alternative methodology. MC
does not generate realistic trajectories but samples configuration
space  using  Metropolis  sampling  to  generate  a  set  of
configurations  consistent  with  the  statistical  mechanical
probability distribution for the given ensemble (i.e. isothermal-
isobaric corresponding to constant number of atoms N, pressure
P,  and  temperature  T  or  grand  canonical  corresponding  to
constant chemical potential  , volume V, and temperature T.).
The fictitious trajectories are generated by randomly changing
the microscopic degrees of freedom (atom coordinates, etc). The
name of the method comes from the famous Monte Carlo casino,
due  to  the  extensive  use  of  random  numbers.  Thermal
equilibrium is usually guaranteed by implementing an ergodic
sampling that also complies with detailed balance. 

Thus far we have only considered classical methods where
the electronic degrees of freedom are incorporated into the
potential function describing the inter-atomic interaction. For
explicit electronic properties, such as the density of electron
states, or  excess  electron dynamics, a quantum mechanical
simulation method is required.  

2.2 DENSITY FUNCTIONAL THEORY

Density Functional Theory (DFT) (see book eg. reference
[16])  is  a  very  powerful  and  successful  method  for
investigating the electronic structure of a many-body system
(i.e.  a  multi-electron  system). In  many cases  the results  of
DFT calculations for solid-state systems agree very well with
experimental  data.  For  covalent,  metallic  and  ionic  bonds
DFT will  usually  be  within  2-3% for  the  geometry  (bond



lengths, cell parameters), and 0.2 eV for the bonding energies
(GGA, see below) [17]. 

The starting point of the theory is the Born-Oppenheimer
adiabatic approximation, in which the nuclear and electronic
degrees  of  freedom  are  separated.  The  electrons  are
considered  to  adjust  almost  instantaneously  to  a  change  in
nuclear coordinates which can be considered fixed whilst the
system is solved for the electronic states.

DFT is based on the Hohenberg–Kohn (HK) theorems [16,
18]. The first one states that “The ground-state energy from
the  Schrödinger  equation  is  a  unique  functional  of  the
electron  density”,  which  implies  that  the  ground-state
electron  density  n(r)  uniquely  determines  all  properties,
including the energy and wave function, of the ground state.
The second HK theorem defines an important property of the
functional: “The electron density that minimizes the energy
of  the  overall  functional  is  the  true  electron  density
corresponding  to  the  full  solution  of  the  Schrödinger
equation”.  Therefore,  by  minimizing  the  functional  of  the
electron density, the electronic structure of the system can be
then calculated.

The Schrödinger equation of the many electron system can
be  rewritten  as  a  set  of  single-particle  equations  for  an
auxiliary  non-interacting  system,  the  Kohn-Sham  (KS)
equation [19],
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 The terms on the left-hand side of this equation are, in order,
the  kinetic  energy;  the  Coulomb  interactions  between  the
electron  and  the  nuclei;  the  Hartree  term  describing  the
electron-electron  Coulomb  repulsion;  and  the  exchange-
correlation  potential  which  includes  all  the  many-particle
interactions. This latter term can be defined as a functional
derivative of the exchange-correlation energy as,
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where  n(r)  refers  to  the  electron  density.  If  the  exchange-
correlation energy is known as a functional of the density, we
have  a  closed  set  of  self-consistent  equations  yielding  a
solution to the electronic structure problem.

Since the Hartree  term Vh(r)  and Vxc(R) depend on n(r),
which depends on the KS wave-functions ψi(r) which in turn
depend on the total effective potential V(r) + Vh(r) + Vxc(R),
the problem of solving the Kohn–Sham equation has to be
done in a self-consistent way. Starting with an initial guess
for  n(r),  the  corresponding  effective  potential  can  be
calculated  and  the  Kohn-Sham  equations  solved  for  ψi(r).
From these a new density is calculated and the process starts
again.  This procedure is  then repeated until convergence is
reached.

The  exact  form  of  the  exchange-correlation  energy
functional is only known for the free electron gas. Thus, in

practice, Exc is calculated using approximations, such as local
density  approximation (LDA)  [19],  or  generalized  gradient
approximations (GGA) [17],  or B3LYP [20],  see also [21].
Finding the right functional can be considered the equivalent
problem  to  finding  the  potential  function  in  a  classical
simulation.

The  Kohn-Sham  wave  functions  are  also  sometimes
identified  with  electronic  states,  and  the  KS  energies  are
taken as estimates of single-particle energies,  including that
of an excess electron or a hole in the system. While this is not
a  rigorous  procedure,  this  identification  provides  a  simple
method to obtain estimates in many systems that would be
very  difficult  to  obtain  otherwise.  Note  however  that  the
results of this uncontrolled approximation are not expected to
be  as  accurate  as  the  standard  results  (total  energy,  total
electronic density,  plus the atomic positions obtained when
used for equilibration or dynamics) of DFT. 

   Within the framework of the Born-Oppenheimer adiabatic
approximation,  an ab  initio  Molecular  Dynamics technique
can be obtained when the forces exerted by the electrons on
the nuclei are computed using DFT at every time-step. The
nuclei are then moved using Newton’s laws as in the standard
MD method. One of such approaches is  the so-called Car-
Parrinello  method  [22]. As  an  artefact  to  speed  up  the
calculations, the Car-Parrinello method explicitly introduces
the electronic degrees of freedom as fictitious variables. The
resulting  fictitious  dynamics  keeps  the  electrons  on  the
electronic ground state,  thus avoiding an explicit  electronic
minimization  at  each  time-step.  From  among  all  ab-initio
Molecular Dynamics techniques, the Car-Parrinello method is
perhaps the most widely used.

Finally,  let us note that DFT calculations do not provide
fully  ab  initio  solutions  of  the  full  Schrödinger  equation
because  the  exact  functional  is  not  known,  however,
approximate functionals can be tuned to experimental data if
sufficient information is available for the system of interest.
Among the shortcomings of DFT is its inability to account
accurately for the weak van der Waals attractions that exist
between  atoms and molecules  (see  [23]  for  a  summary  of
current  progress).  In  addition, being strictly a  ground state
theory standard DFT cannot predict excited states (however
Time-dependent density functional theory [24] can predict the
properties of excited states of a multi-electron system) and is
not  capable  of  predicting  accurate  band  gaps  for
semiconducting  and  insulating  materials.  However  many
variations and elaborations of density functional theory codes
exist which address these problems (see for example [25, 26]
for the successful prediction of band gaps), and in general the
method is extremely powerful.

In the following, we conclude this section by discussing
two methods which allow quantum calculations of a single
electron in the system.  These calculations are appropriate for
the  study  of  excess  electrons  in  the  dielectric,  when  the
number  of  them is  not  too  large,  so  that  we can  treat  the
excess electrons as independent particles. These methods are
more amenable when compared to DFT, requiring much less



computer power and without many of the typical difficulties
of the DFT techniques.

2.3 LANCZOS METHOD

   The  Lanczos  algorithm  is  a  numerical  method  for
diagonalising (i.e. finding the eigenstates and eigenfunctions)
for  a  given  matrix  A.  Here  the  matrix  of  interest  is  the
Hamitonian  He describing  the  interaction  of  an  excess
electron with PE through a pseudopotential V(x,y,z), which is
an input to the calculation (for details see [27] and references
therein).  The  Schrodinger  equation  is  then  solved  for  the
ground  and  excited  states  of  the  excess  electron  (a  single
electron)  for  given  configurations  of  atoms,  these
corresponding  to  different  morphologies.  The  Lanczos
method is particularly useful for the purpose of solving the
Schrodinger  equation  for  a  single  electron  on  a  three
dimensional grid of points in real space (x,y,z), because the
Hamiltonian  is  sparse,  having  many negligible  terms.  It  is
based on the generation of a set (or a set of blocks) of basis
functions  which  are  designed  to  allow  the  efficient
diagonalisation  of  He,  so  that  the  ground  and  low  lying
excited  states  of  the  excess  electron  are  found.  This
calculation  directly  provides  the  information  required  to
estimate the density of excess electron states of our system.
This  information  can  then  be  used  to  calculate  transport
properties such as excess electron mobilities due to extended
states.

We  briefly  describe  here  the  Block  Lanczos  method
proposed by Webster, Rossky and Friesner [28, 29]. We start
from a  trial  set  of  n  basis  functions  {ψn

1}  comprising  the
vectors ψi (for example sine or cosine functions of position).
The operator W = exp(−βHe ), where β is a positive constant,
is  applied to  this  set  to  get  a  second set  of  eigenfunctions
{ψn

2}. In each step the Gram-Schmidt method [30] is used to
guarantee that this new set is orthogonal to the first set and
the basis functions in a given set are kept orthogonal between
themselves. The first set {ψn

1} is the first ‘block’ of our space,
(called the Krylov space), with which we diagonalise W. The
set  {ψn

2}  is  the  second  block,  and  so  on.  By  repeated
application  of  the  operator  W,  we  can  obtain  NB blocks,
which constitute the space within which the operator  W is
diagonalised. W has the same eigenvalues and eigenfunctions
as He and is used because it increases the convergence of the
solution towards the ground and lower excited states of the
system, which are our primary interest. The results depend on
the parameter β, which is varied until the solutions converge.

2.4 SURFACE HOPPING

   The  Lanczos  method  provides  the  excess  electron
properties  for  a  single  atomic  configuration.  The  surface
hopping  technique  (see  reference  [31])  is  a  method  to
simulate  the  dynamics  of  a  quantum  particle  (here  to  be
identified with an excess electron) in interaction with a larger
classical system (such as PE), which allows us to go beyond
the Born-Oppenheimer adiabatic approximation. We describe
here  the  algorithm  proposed  by  Tully  [32,  33],  which
accounts approximately for the quantum transitions between
energy  levels  (surfaces)  and  the  way  these  transitions
(hopping) affect the dynamics of atoms in the system, which

are treated classically.  The term ‘surface’ here refers to the
single electron energy eigenstates of the system.

Let  r=(x,y,z)  refer  to  the  coordinates  of  the  quantum
particle  and  R(t)={Ri(t)}  those  of  the  classical  molecules,
then the total Hamiltonian describing the electronic motion,
He(r,R), will be a time-dependent operator. The wave function
of our quantum particle ψ(r,t) can be solved using the time-
dependent Schrödinger equation, 
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It is helpful to use a set of adiabatic basis functions Фn(r,
R),  which  can  be  computed  using  the  Lanczos  algorithm
described in the previous Section, 
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into (3), multiplying from the left by Фm and integrating over
r gives
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By  rewriting  Eq.  (5)  in  the  equivalent  density  matrix
notation,  we  define  ρnm  = am

* an ,  so  that  the  Schrödinger
equation can be written as

 2Re (9)mn
mn mn

m

dρ
= dρ

dt
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The diagonal elements ρnn are the electronic state population
and the off-diagonal elements ρnm define the coherence.  Each
term  in  the  sum  can  be  interpreted  as  the  number  of
transitions  from  the  state  n  to  the  state  m  per  unit  time.
Therefore,  during a  small  time step δ we can  express  this
quantity  as  the  probability  that  the  electron  is  in  state  n
multiplied to the probability of the transition to other state: 



 2Re (10)mn mn nn n mdρδ=ρg 

Once a transition to other  state has been decided by using
Monte Carlo transition probability [14], we must change the
kinetic energy of the classical subsystem in order to conserve
energy. This is usually done by scaling the velocities v j of the
classical particles in the direction of the corresponding non-
adiabatic coupling vector Dj

mn(t).
In this implementation of the surface hopping method, the

classical  particles are moved at fixed intervals according to
MD. Whether there is a quantum transition is decided during
the  last  time  step  (i.e.  if  t  is  the  current  time  step,  the
transition is decided in the interval from t − ∆ to t.). If the hop
is accepted we scale the atom’s velocities at t. The quantum
force  over  the  atom  j  can  be  derived  from  the  Helman-
Feyman theorem as

| | (11)j n j e nF H     

This  implementation  of  surface  hopping  method  makes  it
possible  to  study  the  non-adiabatic  dynamics  of  a  small
quantum system in contact with a larger classical system in
an approximate way. As such, it goes beyond the scope of
DFT  or  the  Car-Parrinello  method,  since  these  latter
techniques assume that the whole system always remains
in the ground-state.  
 

3 MOLECULAR MODELLING OF POLYETHYLENE

3.1 PE MORPHOLOGIES AND ITS
CONFORMATIONAL DISORDERS

Early simulation studies  on bulk PE used n-alkane short
chains  to  mimic long chain PE.  Simulations of  PE chains,
each with 50 CH2 units, below and above the glass transition
temperature,  was  performed  to  study  PE  physical  and
conformational properties such as chain conformation, glass
transition or free-volume distribution [34-37]. The transition
between rotational isomers in PE chains of 100 CH2 units was
analyzed  in [38].  All-trans  PE chains  of  60 CH2 units was
studied  [39]  around  the  melting  point.  However,  none  of
those  simulations  observed  the  chain  folding  phenomenon
widely seen in experiments,  and believed to be one of the
basic motifs of the PE bulk sample.

Quantum  effects  on  an  assumed  orthorhombic  phase  of
crystalline  PE were  studied  in  reference  [40]  by  means  of
path-integral  Monte  Carlo  (PIMC)  simulations.  The  low
temperature range, from 25K to 300K, was explored in the
NPT ensemble by looking at PE chains of two lengths, C12

and  C24 (with  a  total  number  of  atoms  of  432  and  864).
Structural  parameters  such  as  the  lattice  constants,  bond
lengths,  and  bond  angles  and  their  dependence  with
temperature  were  analyzed,  showing their  reduction  as  the
temperature is decreased. 

By performing MD simulations of  PE chains  of  various
lengths, using a united-atom model with torsional barriers of
2,  3 and 6 Kcal/mol,  with the remaining parameters  being
taken directly from the Dreiding forcefield, the chain folding

phenomenon was observed [41, 42]. They found that during
simulations with a torsional barrier  of  2kcal/mol,  PE chain
folding  occurs  when  the  chains  have  more  than  150  CH2

units, long enough that the average inter-molecular van der
Waals energy is low enough to compensate the increase in
energy owing to torsion angle and bond angle deformation in
the  folds.  The  reported  behaviour  was  in  good  agreement
with the experimental observations [43].

More  recently,  multi-phase  polyethylene  morphologies
including  crystalline,  amorphous,  lamellae  and  interfacial
regions have been studied using MD [44, 45]. As discussed in
reference [2], a polyethylene sample may contain amorphous,
lamellae and crystalline regions of various sizes depending on
the  material  processing  details.  In  reference  [44],  model
crystalline  and  lamellae  regions  were  created  by  geometry
optimization  using  the  all-atom  COMPASS  forcefield  in
Materials Studio 5.5 [46]. For the lamellae regions, gauche
and anti-gauche defects were introduced into ten all-trans PE
chains with 552 CH2 units in order  to enable them to fold
back  and  forth  upon  themselves,  resulting  in  a  lamellar
thickness  of  around  5.0  nm.  The  structures  were  then
imported  into  LAMMPS  simulation  package  [47],  and
equilibrated  using a united-atom force  field [48]  optimized
for  long  chain  n-alkanes.  The  amorphous  and  interfacial
regions were prepared by melting the corresponding lamellae
blocks either in NPT or NμT ensembles with a time-varying
thermostat in LAMMPS. The resulting morphologies were in
good agreement with experiment.

As observed experimentally [49], polyethylene contains a
significant  number  of  nanometre  sized  voids.  In  order  to
explore their influence on excess electrons, nanometre sized
voids were produced in the simulated amorphous phase by
expanding a test particle [44]. By calculating the Gibbs free
energy  to  create  different  radius  of  spherical  voids  in
amorphous PE, a surface tension of 36 mN/M was obtained,
in good agreement with the experimental value of 35.7 mN/M
at 20 oC for linear HDPE [50].

3.2 ELECTRONIC PROPERTIES OF PE

Surface trapping states of PE was studied [51] using DFT
in the gradient-corrected local density approximation (LDA),
supplemented  with  empirical  long-range  tails  in  order  to
properly account for van der Waals forces. Two PE surfaces
were  considered,  representative  of  two  classes  of  surfaces
that differ in the orientation of the PE chains with respect to
the planar surface i.e. with the chains oriented either parallel
or perpendicular  to the surface vector.  A negative electron-
affinity was found, with values of -0.17eV and -0.10 eV for
surfaces with chains perpendicular and parallel to the surface,
respectively.  Negative  electron-affinities  are  in  agreement
with  experiment  and  other  simulation  results  (see  below),
though  in  this  DFT  study  the  analysis  is  based  on  the
identification  of  KS  eigenvalues  (section  2)  with  single-
particle energy levels.  

Dynamical DFT simulations have also been performed [52]
within the framework of the Car-Parrinello (CP) technique.
Calculations  were  carried  out  with  an  injected  electron
neutralized by a background charge in a crystalline cell with
four PE chains (each of them with 7 CH2 units), starting from
an equilibrium configuration. A similar calculation was also



performed with an injected hole. A self-trapped state for the
injected  electron  was  found,  localizing  near  an  inter-chain
area which involved a pair of trans-gauche defects. The hole
was observed to remain delocalized throughout the simulation
cell, being of an intra-chain nature. 
   In reference [53],  an electron-hole pair,  an exciton, was
injected  in  a  similar  crystalline  cell,  being  observed  to  be
long-lived,  displaying  no  apparent  direct  channel  for  non-
radiactive  recombination. In  contrast,  very  recent  DFT
calculations  [54]  have  found  a  direct  channel  for  the
recombination of the exciton via the breaking of a C-H bond.
The discrepancy with the results in [53] might be due to the
exchange-correlation  functional  employed  or  the  different
methods chosen to improve the deficiencies of standard DFT.
However,  reference  [54]  presents  a  convincing  scenario  in
which  the  recombination  of  an  electron-hole  pair  under
electrical stress could lead to degradation of PE.

Research focused on the electron trapping density of states
identifying  both  physical  and  chemical  defects  were  also
carried  out.  To  model  the  physical  defects  [55],  MD
simulations of amorphous tridecane (n-C13H28) were used as a
model  of  short  sections  of  PE  to  generate  localized
conformational defects. The trap energy was defined as the
difference between the electron affinity of the wax molecule
with and without conformational defects (i.e. not all trans) as
Et= EA(C13H28)-EA(n-C13H28)all-trans. The electron affinity was
obtained from DFT as implemented in the code DMol [56]. A
similar methodology was used to estimate trapping energies
for  chemical  defects  and  an  approximate  excess  electron
density of states obtained. Other workers have used similar
methods [57-59]. Some results for chemical defects are given
in table 1, clearly there are some very deep traps  (>0.5 eV)
but  also  some  shallow  traps  (<0.5eV)  which  overlap  in
energy with those caused by conformational defects.

Table 1.  Trap depths of some chemical impurities and docomposition
products in PE [57]

Molecule
Trap depth

(eV)
5-decanone   

(C10H20O)
-0.453

5-vinyl 
(C10H20)

-0.122

5-decanol
(C10H21O)

-0.186

5-decanal 
(C10H20O)

-0.445

Cumylalchohol
(C9H12O)

-0.28

Acetophenone
(C8H8O)

-0.9

Alpha-methylstyrene
C9H10

-1.53

Cumene
(C9H12)

-0.04

A more detailed study of the physical defects in amorphous
and crystalline PE and their effect  on excess electrons was
carried  out [27, 60] using Lanczos method to compute the
excess  electronic  states  of  static  configurations  taken  from

MD simulations  (for  ethane,  methane,  propane,  crystalline
PE, and amorphous PE using a single chain with 300 CH2

units). The pseudo-potential, describing the interaction of the
excess  electron  with  the  atoms,  was  adjusted  to  fit  the
experimental  data  for  the  threshold  of  conduction  in  fluid
ethane  and  propane.  It  contained  short-range  repulsive
potentials,  and  an  attractive  part,  which  accounts  for  the
polarization interaction between the excess electron and the
dielectric, based on multi-centre polarizabilities obtained by
fully ab initio methods. The amorphous PE samples showed
Anderson localization [61], with a mobility edge, separating
localized  and  delocalized  states.  The  electronic  density  of
states  (DoS)  and  the  electron  mobility  at  the  amorphous
phase  was  calculated  using the Kubo–Greenwood  equation
[62]. Further work [63], using non-adiabatic simulations of an
excess electron in amorphous PE, permitting the deformation
of the material due to the presence of the electron, showed the
spontaneous  formation  of  localized  small  polaron  states  in
which  the  electron  is  confined.  Despite  allowing  non-
adiabatic  transitions  by  using  Tully’s  surface  hopping
algorithm  [64],  the  simulations  showed  mainly  adiabatic
dynamics.

Very recently, the analysis of references [27, 60] has been
extended to larger systems and more representative regions of
PE, including lamellae and interfaces between lamellae and
amorphous [44, 45]. A clear correlation between local atomic
density (calculated as the number of CH2 united atoms per
unit volume in a cube of side 0.5nm at a given position) and
electron probability has been found in all PE phases, showing
that the electron is more likely to localize in lower density
regions. 

Simple visual inspection of the localized states showed that
the electron is sitting at regions with a reduced local atomic
density, as illustrated in Figure 1. In the interfaces between
lamellae  and  amorphous  phases,  the  lowest  atomic  density
values are found either in the amorphous regions or near the
interface [45]. Figure 2 shows a typical ground state localized
in that area.

In  order  to  make  this  association  more  quantitative,  we
have calculated the Pearson correlation coefficient  between
the probability density of the excess electron and the local PE
atomic density [45]. This dimensionless coefficient is usually
defined as 
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where  X  and  Y are  the  variables  of  interest,  here  to  be
identified with the electronic probability density (the square
of the wave function)  in a given electronic state and the local
atomic density. The index i in (12) runs through the 3D grid
points in the system. The coefficient r measures the strength
of the linear association between both variables:  a value of
zero  indicates  no  correlation,  while  nonzero  values  show
correlation  or  anti-correlation.  In  the  amorphous  phase,
starting with the ground state, the Pearson correlation shows a
significant anti-correlation value of about -0.4 in regions of
the material where the electron has a probability of 90% . The



next  first  10  excited  states,  still  below  the  mobility  edge,
show a correlation of about -0.2, while for the first 10 states
above the mobility  edge the correlation  is reduced  to  -0.1,
which is still significant, especially taking into account that
these latter states are extended.

(a) Atomic Density

(b) Electronic Probability Density for Ground State

Figure 1. Slab sections showing the atomic density (upside) and the
electronic  probability  density  (downside)  in  the  ground  state  for
amorphous PE [45].

  Another  way  to  look  at  this  correlation  is  presented  in
reference  [44].  First,  the  free  volume  or  cavity  number
distribution  in  the  system  is  computed  after  identifying
cavities with local minima of the atomic density. A radius is
assigned  to  each  cavity  based  on  the  radial  distribution
function from the centre of the cavity. Then, each localized
state is associated with a cavity, providing an average energy

and localization length as a function of the cavity radius. The
cavity number distribution can be then mapped to produce a
prediction of  the density of states (DoS) based on the free
volume  distribution.  This  prediction  is  shown  [44]  to
accurately  predict  the  observed  DoS  in  the  three  PE  bulk

Figure 2. Typical interface configuration with lamellar and amorphous
regions  at  room  temperature  and  the  corresponding  excess-electron
ground state.  The lamellar structure can be seen in the first 3/4 part of
the simulation cell. The electronic probability density is represented as a
source of light, the lighter the point, the higher the probability.

phases studied- amorphous, lamellae and crystalline, when a
correction based on the localization length is carried out. The
correction  is  needed  because  localized  states  with  higher
energy  values  are  not  restricted  to  single  cavities,  instead
extending through adjacent ones. 

4 DISCUSSION AND CONCLUSIONS
As  we  have  seen,  molecular  modeling  techniques  have

enabled  some  progress  to  be  made  in  understanding  the
fundamentals  of  charge  trapping  and  electron  transport  in
polyethylene.  Previous  work  has  identified  physical,
(conformational)  [52,  55]  and  chemical  (impurities  and
decomposition products) [57-59] electron traps in models of
polyethylene and characterized them using ab initio methods.
Some of this information was used to create a preliminary
distribution function  representing  the  density  of  trap  states
(DoS) as  a  function of  electron energy  and employed in a
Monte  Carlo  simulation  to  predict  the  current-voltage  [65]
characteristics of model polyethylene, showing how once the
DoS is known the electrical properties can be estimated.  A
more  complete  treatment  of  conformational  trapping  using
the  fast  Fourier  transform  block  Lanczos  diagonalization
algorithm, described in section 2, has resulted in densities of
states  for  the different  morphologies found in polyethylene
[44, 45]. A simple theory based on this work now links the
physical  traps in polyethylene to nanovoids associated with
regions of low density in the material. 

Our  current  understanding  of  conformational  excess
electron  trapping  based  on  molecular  modeling  [44]  has
localized  states  extending  below the  mobility  edge  (above
which  the  electrons  are  delocalized),  at  -0.1±0.1eV  with
respect  to  the  vacuum  level.  These  trap  states  with
localization lengths between 0.3 and 1.2nm have energies as
low as -0.4±0.1eV in the amorphous and interfacial regions of
polyethylene with more positive values in lamella structures.
Note  crystalline  regions  have  a  mobility  edge  at  +0.46
±0.1eV,  so  we  would  expect  transport  by  excess  electrons
excited above the mobility edge to delocalized states to be
predominantly through amorphous regions if they percolate
the sample.



At  low  electron  concentrations,  transport  above  the
mobility edge will be dominated by the filling of the deepest
traps  which are likely to be chemical  traps ~ -1eV. As the
deepest  traps  are  filled  the  excess  electron  mobility  will
increase  dramatically  towards  a  value  that  corresponds  to
multiple trapping between more shallow conformational traps
[65].

Nonadiabatic simulations (Section 2) of an excess electron
in  amorphous  PE  at  room  temperature  showed  the
spontaneous  formation  of  localized  small  polaron  states  in
which  the  electron  was  confined  in  a  spherically  shaped
region with a typical localization length of 0.5nm. The self-
trapping energy was ~-0.06 ±0.03eV, with a lifetime on the
time scale of a few tens of picoseconds. The smallness of the
self-trapping energy is consistent with an adiabatic hopping
mechanism  assisted  by  phonons,  as  observed  in  the
simulations.  The contribution to the mobility due to hopping
between these self-trapped states may well be of same order
of magnitude as the mobility due to excited electrons above
the mobility edge.

The model studies  confirm the picture of  deep  chemical
and  shallow  conformational  electron  traps  current  in  [2].
They also however provide the means to go further and begin
to investigate  the influence  of  trapped electrons,  the space
charge, on the surrounding material.  For example there has
been very little work on the fate of the energy given up by
trapped electrons in polyethylene (but  see [58] for  trapped
excitons) which may alter the environment leading to local
damage  and  ageing.  The  very  recent  DFT  results  [54]
suggesting PE degradation by exciton recombination provide
an  interesting  scenario  that  needs  to  be  confirmed.  In  this
regard,  though molecular  modeling  studies  provide  a  great
insight  in  the understanding  of  polymeric  dielectrics,  these
studies  need  to  be  assisted  by  experiments  on  very  pure
polymeric  materials  (including  polyethylene)  in  which  the
effects  of  chemical  traps  from  additive  chemicals  and/or
radiation  damage  on  electrical  properties  can  be  separated
from those of physical traps related to the various polymer
morphologies present in real materials. 
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