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Abstract—Solar activity is a space-time complex of events
which produced by the Sun magnetic fields. One of the results
of this activity is a huge plasma ejection which called solar
flares. The solar flares occurs mainly in the areas with an
especially strong magnetic fields called Active Regions (AR).
Observation phenomenology indicates that significant change
in the magnetic field topology precede the strong flares. We
investigated changes in topology by the methods of computational
topology. For this purpose the high frequency temporal sequence
of AR magnetograms containing flares has been analyzed. Such
data are available from the space observatory SDO. We seek
distinctive patterns that could be associated with the flares
through the tracking evolution of Euler characteristics and Betti
numbers. These characteristics of course do not pretend on the
comprehensive description of topological complexity but there
are simple in construction and intuitive clear. We found that the
large variations of the Betti numbers and Euler characteristics
are preceded or accompanied by a large flares. These results give
us hope that the approach based on computational topology could
be useful in the task of monitoring of magnetic field evolution
and should be developed in future.
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I. INTRODUCTION

Large solar flares are the most dramatic result of the
evolution of the magnetic fields in sunspots. Energetic flares
which are occurred near the center of the Solar disc could make
the disastrous damage of the terrestrial and space equipment.
Large flares tend to occur in the big groups of spots so
called Active Regions (AR) of the Sun. These groups may
contain more of a dozen of spots with different polarities
which are forming topological complex spatial configuration
of the magnetic field. There is a system for the numbering
of active regions. The National Oceanic and Atmospheric
Administration (NOAA) numbers active regions consecutively
as they are observed on the Sun.

The problem of early prediction of a period of high
energy releases which accompanied by big flares is important
task of solar flares. At this moment numerous approaches
were published. Roughly it could be divided on two classes
[1]. One is based on fundamental physical parameters and
second on proxy attributes or phenomenological properties of
Solar data. The list commonly used and accepted parameters
could be found at [2]. Each parameter has own context and

some physical meaning. At the most of investigations these
parameters were applied to big statistical sample of flaring and
non-flaring regions. Leka and Barnes [2] have been analyzed
and compared existing approaches to solar flares prediction
using the photospheric magnetic field and concluded that there
is no significant differences between all of them and despite
of high statistical success rate non of them could be used for
robust daily flare forecast. As a conclusion the authors advice
as one of further approaches is to consider the evolution of
magnetic field. Such approach is very demanding to the quality
of data. It should be constant-quality, high-cadence and long
time series of photospheric magnetograms. Such data at first
were available from the SOHO observatory and by now it is
improved successor the Helioseismic and Magnetic Imager [3]
of the Solar Dynamics Observatory. We present here results for
NOAA AR 11158, which were the first large flare product AR
tracked with the SDO laboratory.

The processes leading flare appearance and energy release
are still not fully understood [1]. The initial impulse phase
of the flare is generally believed to be driven by magnetic
reconnection which leads changes in topology of magnetic
fields. So called new emerging magnetic flux appeared before
the solar flare. The reasons to believe that new emergence flux
connected with the solar activity discussed in our previous
work[4]. In practice it must be seen in additional critical
points appearance, or emergence of thin structure in the ”old”
magnetic field. In other words it must be seen in changing of
topological complexity of magnetic field, but for analysis we
need to introduce a formal criteria of complexity. Our approach
mainly is based on the R. Adler [5] ideas of random fields
topological complexity description.

In our early works [4],[6] we used computation of the
Euler characteristic,and other morphological functional by
excursion set of magnetogram and concluded that Euler is
more informative . Now we apply methods of computational
topology [7] and compute persistence homology for analysis
[13]. The computation were made for more then dozen Active
Regions which produced solar flares and solar quiet regions. It
was found that there is specific dynamics preceding the solar
flares, but there are no typical scenario for all active regions.
But our work now in progress and we have many unresolved
yet questions which discussed below.

This paper is structured as follows: Section 2 describes the



Fig. 1. Typical view line of sight HMI magnetogram, here AR 11158

solar data which we use for analysis and which could be used
in future and our approach to the time evolution analysis. In
Section 3 we give several examples of our estimation. And
at the last section we summarizes the results and discuss our
problem.

II. TOPOLOGY OF SOLAR MAGNETOGRAM

Magnetogram ,which used for numerical analysis of Solar
magnetic field, is an image of Sun disc where each pixel
represents a strength of magnetic field. Some magnetograph
can measure only line of sight (LOS) from the observer compo-
nent of magnetic field, others could measure also a transverse
component from which all three components of a magnetic
field can be deduced. The first magnetograph which produced
continuous, constant-quality, high-cadence and long time series
magnetogram was MDI (Michelson doppler imager) on the
board of space observatory SOHO. It could measure only
LOS component. Its successor HMI(Helioseismic and Mag-
netic Imager) could measure also a transverse component. A
spatial resolution of MDI data ≈ 2′′/pixel or 1500 km, with
1024× 1024 for full solar disc, time cadence is 96 min. SDO
data have resolution ≈ 0.5′′/pixel and a time cadence is 12
min. Up to now we have worked only with the line of sight
component, because it is available from both instrument. But of
course in future additional component also should be analyzed.
We work with a fragment of Solar disc containing a AR.
Typical magnetogram of the AR is shown in Figure 1. The
automated system of the Active region patches which track
the location throughout lifetime developed by SDO observers
team is used [3].

To describe a topological complexity of magnetic field
we suggest to use methods of mathematical morphology and
computational topology.

A. Mathematical morphology

The ideas of mathematical morphology were introduced by
J. Serra [?] for binary sets. After that they were generalized for
physical random fields by R. Adler [5]. For two dimensional
fields the so-called excursion sets is considered. This is a set
formed by the values which exceeds the specified values. Let’s
consider an excursion set Au = {x ∈ W : B(x) ≥ u} of the
field in a compact region W , formed by the pixels x ∈ W
where the magnetic field B(x) exceeds a specified level u. We
mark these pixels black. So we translate each magnetogram
into a set of black and white images, one for each selected
level.

On the excursion set in Euclidean space Minkowski func-
tionals, such as perimeter, area and Euler characteristic (EC
or χ), could be estimated, see [5]. These functional have
clear physical interpretation [6]. Area closely linked with
unsigned flux of magnetic field. Total variation of gradient
of field connected with the functional Perimeter through the
co-area formula. And finally Euler characteristics according
to the Morse theory [9] counts the number of critical points:
χ(Au) = ](maxima + minima) − ]saddle. That is why it
could be interpret as a measure of topological complexity.
As a morphological functional Euler characteristic is just the
number of connected components minus the number of holes.
Really at the excursion set minima and maxima correspond to
connected components and holes arise only when the saddle
point appeares.

In our previous work we have been computed all three
morphological functionals, but now we are studying only the
Euler characteristics as the most informative. The drawback of
the Euler characteristics is that in this case critical points are
described integrally. So increase in Euler characteristics could
be caused as a change in maxima or minima and a saddle
point. From the physical point of view it is important to distinct
emergence of new structures in the field and changes in the
topology of existent field. Moreover it is important to track
the lifetime of critical points. All of this developments were
made within the context of computational topology and could
be find in [10].

B. Persistence homology

Recall the ideas of ”Morse filtration” of excursion sets
[10]. Obviously that for two excursion sets Au ⊆ Av ifu ≥ v.
Going from one level set to another, components of excursion
set may merge and new components arise. Also the topol-
ogy of these components may change, holes could appeared
and disappeared. For classification of shapes of objects and
structures formalism of algebraic topology is used, precisely
notion of homology. In two dimensional space X the zeros
homology H0(X) is generated by connected components of
X , the homology H1(X) generated by the holes, the numbers
of the components and the holes called β0 and β1 respectively.
Then the difference between Betti numbers β0−β1 will be the
Euler characteristics. Track the changes in the homology of the
sets as the function of levels sets calls persistence homology.
persist. The term persistence comes from that fact that changes
in homology arise only at critical points of the fields. Between
them homology stay ”persist”. The broad description of basis
of homology could be found in [7]. It is useful to describe
persistence homology via notion of barcodes. A bar for each
homology group, in our case components and holes, starts with
the birth of component and ends with the level of component.
First point will be the level of birth and the second level of
death. It is useful to draw it on the plane using the beginning
and the end of the barcode as point coordinates. As the result
we obtain a set of points which lies above the diagonal that
corresponds to barcodes of the zero length. This graph is called
a persistence diagram.

It is convenient to give some simple structure at the neigh-
borhood of the maximum — so-called simplicial structure.
Without giving any formal basis we only describe an algorithm
that was used. The incremential algorithm for computing



homology which we used in our work is described in [11].
Modification for two dimensional matrices could be found in
[13]. It consists of two sequential steps: filter construction of
simplices (for two-dimensional images the simplex is a vertex,
an edge or a triangle) and computing the Betti numbers on
the created filtration. Let f(x, y) is a value at pixel (x, y).
For the filter construction we need to determine the function
value for each of simplices. In order to do this we associate
each pixel (x, y) of the image with the vertex. We define the
value for the remaining simplices by assigning the maximum
of values between their vertices. After that we iterate through
all elements of the ordered sequence and add each of them to
the filter. At the same time, attaching the new vertex to the
filter we add all edges and all triangles that can be generated
by the vertices which we already have in the filter and the new
vertex. Now Betti numbers could be computed by processing
the simplices in the filter and keeping track of changes in
connectivity of the obtaining set. If vertices of the current edge
belong to different connected components, then after merging
them into a single component we suppose that the component,
which appeared later than another one, disappears or ”dies”. In
that way we can keep track of ”birth” and ”death” of connected
components at the intensity levels. To compute the life time
of holes, i. e. for the number β1, we use the same algorithm
applying it to a dual graph. (In the dual graph to each vertex
corresponds the triangle of the initial graph, to each triangle
corresponds the vertex in the initial graph and to each edge
corresponds the dual edge). If we sum all life lengths for β0
and for β1 and take difference of them we receive the Euler
characteristic of persistence diagram [12].

III. RESULTS

We used a time sequence of magnetograms of the full solar
disk, obtained with the help of the HMI tool. A time interval
between magnetograms was 720 seconds, and the noise level
does not exceed 6 gauss. A fragment of 600 × 600 pixels
containing the AR was cut from each magnetogram. For the
specified 720 seconds time gap about 700 consecutive images
of the same active region passing across the solar disk were
available. We used FI index of flare productivity to compare
the variations to flare activity. Roughly speaking, it measures
a weighted amount of energy produced by solar flares of
various classes in the finite time interval. The flare classes
FI were converted to numeric values. The magnitudes of C
class flares were not altered, for M class flares the magnitudes
were multiplied by 10, for class X were multiplied by 100, and
for B class were divided by 10. We present here the results of
numerical experiments for two flare-active regions AR 11520
and AR 11158.

AR 11158 appeared near the center of the solar disk as a
compact β-class bipolar group on February 12, 2011. Within a
day it reached δ magnetic class and on 12 February produced
a flare of class M6.6. A day later M2.2 flare followed, and,
finally, on 15 February X2.2 flare occurred. After this activity
of this AR actually stops. The dynamics of the Euler character-
istic for the high levels of magnetic field strength is shown in
Figure 2. In Figure 3 represents a behavior of the persistence
homology difference B0 −B1. The complexity of the field in
Figure 2) is growing for the fields of north and south polarities,
anticipating an increase in flare productivity. Little depression
could be seen before the big flare. For comparison, Figure 3
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Fig. 2. The dynamics of EC for AR 11158: high levels of magnetic field
strength.

12.02.2011 14.02.2011 16.02.2011 18.02.2011

-80

-60

-40

-20

0

20

40

60

80

100

b0
-b
1

 b0-b1

0

50

100

150

200

250 Fl

Fig. 3. The dynamics of persistent homology b0-b1

shows the behavior of the Euler characteristic obtained by the
persistent homology . Here we note a depression in the EC
graph preceding the phase of flare activity. The depression is
the most obvious about a day before the X flare.

AR 11520. This active region appeared on the Sun at
July 8, 2012. It was immediately assigned to the class of
complex large groups of δ-configuration with a possible high
flare productivity. Initially, the region was a single large
penumbra which contained many small spots of the opposite
polarity. In the course of evolution it began quickly disintegrate
into several compact regions. Against all expectations, the
AR 11520 produced only four flares of M class and one flare
X1.4 on 12 July. The last flare approximately corresponded to
the localization of the group near the center of the solar disk.
After that the AR 11520 flare activity stopped. In Figure 4
dynamics of EC at high levels of magnetic field is shown,
before the X flare strong depression could be seen. Figure 5
represents the evaluations of the Euler characteristic for the AR
11520 obtained by the persistent homology are shown. Again
we can see well marked variations in topological complexity
of the field before the X flare.

IV. CONCLUSION

The main purpose of the present work was to develop some
topological approaches for the analysis of the dynamics of
magnetic field of the Sun which are focused to the search of
pre-flare scenarios. Approach is shown on an example of AR
11520 and AR 11158. For these active regions the strongest
flares of the class X far from the limb of the disk were
observed. Using the corresponding sequence of magnetograms
we obtained time variations of the Euler characteristic (EC)
at the excursion sets and the EC of persistence diagram. In
case when the EC is computed for each of the excursion set,
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Fig. 4. The dynamics of EC for AR 11520: high levels of magnetic field
strength.
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Fig. 5. The dynamics of persistent homology b0-b1

we need to specify some level of magnetic field and track
evolution of chosen EC. Empirically as such level we took the
rather big level of magnetic field near 500 Gs.

The AR under the study shows different dynamics which
are tracked by changes in topological characteristics. Typically
significant variations of the EC at the excursion sets and
EC of persistence diagram often precede the flares. Note
that the results presented in this paper confirm our earlier
works obtained from the MDI/SOHO magnetograms. This
fact slightly compensates for a lack of the adequate statistical
sample restricted by the low level of the solar activity at the
present time. Nevertheless, topological approaches satisfy the
empirical considerations of the primary role of topological
changes in the magnetic fields of active regions.

V. PROBLEMS FOR DISCUSSION

With a modern instrument for each active region thou-
sands of magnetograms are available. Each magnetogram
represents high variable data with the size of 600 × 600
px or higher. The differences between two successor mag-
netogram are very small. Even the expert observer couldn’t
tell authentically looking at the evolution of magnetograms
was the AR flare active or not, and especially couldn’t tell
when the flare was. But it is believed that there are pre-
cursors in photospheric field. That’s why it was created the
system of Spaceweather HMI Active Region Patch (SHARP)
(http://jsoc.stanford.edu/doc/data/hmi/sharp/sharp.htm). Each
AR is tracked during crossing the face of the solar disk with
this system. Data of the vector field in several projections are
available online. More then twenty parameters of the field
calculated by the magnetogram are also available. But the
evolutional curve of these parameters rather complicated as
for flare active as for flare quiet AR without obvious relation

with the flares. We believe that for each magnetogram with the
methods of computational topology we could fully describe
topological structure of photospheric fields. But for time
evolution analysis we need to extract simple characteristics
from them and do not loss the information. Namely, during
the analysis of EC by level sets we need to choose specific
set. We take this level by the empirical way, and really there
is not any grounding which level for each AR should be taken.
After the computing persistence diagram we take for analysis
EC of persistence diagram and loose a lot of information
about structure of persistence diagram, about behavior of Betti
numbers curve for each magnetogram. We need an effective
measure for persistence diagram comparing. Also we work
under the form of Betti number curves comparing. In addition
up to now we work with only one component of magnetic field.
With SDO/HMI there are available all three components, so
we are waiting big progress in studding of vector magnetic
field of the Sun because of high cadence date with good
resolution. But it is not clear for us how to apply methods
of algebraic topology for a vector field. At this moment we
are working separately with all the components and after that
try to extract independent characteristics. Another one problem
is that magnetic field of AR is bipolar. Each polarity has its
own structure of maxima and minima. But now we didn’t take
it into account, and it is open question how to generalize the
idea of persistence in the case of a bipolar field.
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