
Explaining the Non-Compliance between

Templates and Agreement O�ers in

WS-Agreement*?

Carlos Müller, Manuel Resinas, Antonio Ruiz-Cortés

Dpto. Lenguajes y Sistemas Informáticos
ETS. Ingeniería Informática - Universidad de Sevilla (Spain - España)

41012 Sevilla (Spain - España)
{cmuller, resinas, aruiz}@us.es

Abstract. A common approach to the process of reaching agreements
is the publication of templates that guide parties to create agreement
o�ers that are then sent for approval to the template publisher. In such
scenario, a common issue the template publisher must address is to
check whether the agreement o�er received is compliant or not with
the template. Furthermore, in the latter case, an automated explanation
of the reasons of such non-compliance is very appealing. Unfortunately,
although there are proposals that deal with checking the compliance, the
problem of providing an automated explanation to the non-compliance
has not yet been studied in this context. In this paper, we take a subset of
the WS-Agreement recommendation as a starting point and we provide
a rigorous de�nition of the explanation for the non-compliance between
templates and agreement o�ers. Furthermore, we propose the use of con-
straint satisfaction problem (CSP) solvers to implement it and provide
a proof-of-concept implementation. The advantage of using CSPs is that
it allows expressive service level objectives inside SLAs.

Keywords: Service Level Agreement, SLA, WS-Agreement, Compliance
Checking, Debugging, Quality of Service, Explanations.

1 Introduction

A common approach to the creation of agreements is by means of templates. For
instance WS-Agreement speci�cation [5] de�nes an XML-based language and a
protocol for advertising the capabilities and preferences of services providers in
templates, and creating agreements based on them. Speci�cally, WS-Agreement
allows to specify templates that are published by a responder party, for instance
an Internet service provider could have two public templates for a �basic� and

? This work has been partially supported by the European Commission (FEDER),
Spanish Government under the CICYT projects Web-Factories (TIN2006-00472),
and SETI (TIN2009-07366); and project P07-TIC-2533 funded by the Andalusian
local Government.

2

a �premium� Internet service. A typical interaction process using templates and
o�ers could be as follows: (1) an initiator party take a public template from a
responder party, describing the agreement terms and some variability that must
be taken into account by initiator in order to achieve an agreement; (2) an agree-
ment o�er may be sent to the responder party, including several changes, or not,
into the initial template; (3) �nally, the responder party may accept or not the
agreement o�er received. To use such approach of templates and o�ers, once
established that the agreement o�er is consistent [15], the problem is to ensure
the compliance between agreement templates and o�ers. Some proposals such as
[13,19] focus on checking whether an SLA is compliant with another one, and,
hence, they could be adapted to check the compliance between agreement tem-
plates and o�ers. However, if they are not compliant, an explanation would make
it easier to solve problems between parties. This explanation may be provided as
the subset of terms of both template and agreement o�er, that causes the non-
compliance. For example, the Internet service provider could establish inside a
template the bandwidth limit, allowing the user to customise of download and
upload speeds as follows:

� Template: {t1 : downloadSpeed > 5Mb, t2 : uploadSpeed < 0.768Mb,
t3 : downloadSpeed+ uploadSpeed < 5.768Mb}

� Agreement O�er: {o1 : downloadSpeed = 10Mb, o2 : uploadSpeed = 0.7Mb}

The explanation for the non-compliance of the previous example would be the
following set of terms: {t3, o1, o2}.

Generally speaking, �nding an explanation for the non-compliance is not as
easy as in previous example. It is especially complex when a high expressiveness
of the language used to specify the service terms is needed.

Solution overview and contribution: This paper is focused on providing
explanations of the non-compliance between templates and agreement o�ers. To
this end, we take our previous work in [15], in which we detail an approach to
explain the inconsistencies in one SLA, as a starting point and we extend it to
enable the checking of the compliance between templates and agreement o�ers
and to provide explanations of the non-compliance.

Speci�cally, we extend the de�nition of the WS-Agreement subset of [15] to
provide rigorous de�nitions of templates, the compliance between templates and
o�ers and the explanation for the non-compliance. Then, we use such de�nitions
to map agreement o�ers and templates into constraint satisfaction problems
(CSPs) [21]. The CSP is sent to a constraint solver with an explanation engine
[8,20] to get the terms that are causing the non-compliance. The advantage of
using CSPs is that it allows the use of expressive assertions inside SLA terms,
including arithmetic, comparison and logic operations such as +,−, ∗,÷, >,≥, <
,≤,→, Furthermore, we have developed a proof-of-concept which is available
for testing at http://www.isa.us.es/wsag.

The remainder of the paper is organized as follows: Section 2 describes the
used subset of WS-Agreement in Section 2.1, rigorous de�nitions for agreement
o�ers and templates in Section 2.2, the compliance between WS-Agreement*
templates and o�ers in Section 2.3, and the explanation for the non-compliance

3

between templates and o�ers in Section 2.4; Section 3 describes the process of
explaining the non-compliance of WS-Agreement* templates and o�ers using
CSP; Section 4 informs about the related work; and �nally Section 5 conclude
this paper anticipating some future work.

2 WS-Agreement*-Non-compliant O�ers and Templates

2.1 WS-Agreement* O�ers and Templates

Due to the �exibility and extensibility of WS-Agreement, we focus on WS-
Agreement*, which is a subset of WS-Agreement (cf. http://www.isa.us.es/
wsag, for details about these di�erences). WS-Agreement* just imposes sev-
eral restrictions on some elements of WS-Agreement but it keeps the same syn-
tax and semantics, therefore any WS-Agreement document that follows these
restrictions is a WS-Agreement* document. Furthermore, note that, although
WS-Agreement* is not as expressive as WS-Agreement, it does allow to ex-
press complex agreement documents as those in Figure 1, in which the ele-
ments of several WS-Agreement* documents in a computing services providing
scenario are depicted. The complete XML documents are available at http:

//www.isa.us.es/wsag.

� Name & Context identi�es the agreement and other information such as
a template name and identi�er, if any, referring to the speci�c name and
version of the template from which the current agreement is created. For
instance, context of Figure 1(c) refers to Template of Figure 1(a).

� Terms can be composed using the three term compositors described in [5]:
All (∧), ExactlyOne (⊕), and OneOrMore (∨). All terms in the document
must be included into a main All term compositor. Figure 1(a) includes All
and ExactlyOne term compositors. Terms can be divided into:
Service Terms including:
• Service properties must de�ne all variables that are used in the guar-
antee terms and other agreement elements, explained later. In Figure
1(a), the variables de�ned are the availability of the computing service
(Availability), the mean time between two consecutive requests of the ser-
vice (MTBR), and the initial cost for the service (InitCost). The type
and general range of values for each variable is provided in an external
document such as the ad-hoc XML document depicted in Figure 1(b).

• Service description terms provide a functional description of a ser-
vice, i.e. the information necessary to provide the service to the con-
sumer. They may set values to variables de�ned in the service properties
(e.g. InitCost=20 in Figure 1(a)) or they may set values to new variables.
Type and domains are de�ned in external �les such as XML Schemas
(e.g. CPUsType=Cluster in Figure 1(a)).

Guarantee terms describe the service level objectives (SLO) that a spe-
ci�c obligated party must ful�ll, and a qualifying condition that speci�es the
validity condition under which the SLO is applied. For instance the Lower-
Availability guarantee term included in Figure 1(a).

4

In [5], a WS-Agreement template is an agreement document with the struc-
ture of a WS-Agreement document described above, but including agreement
creation constraints that should be taken into account during the agreement cre-
ation process. These Creation Constraints describe the variability allowed by
the party who makes the template public. They include (1) general Constraints
involving the values of one or more terms, for instance the FinalCost de�nition of
�Constraint 1� of Figure 1(a); or (2) Items specifying that a particular variable
of the agreement must be present in the agreement o�er, typically as a service
description term, and its range of values. For instance, the item elements of Fig-
ure 1(a) de�ne three variables: the number of Dedicated Central Processing Units
(CPUs), the increase of the cost due to the selected MTBR (ExtraMTBRCost),
and the �nal cost for the service (FinalCost).

2.2 What's in WS-Agreement*?

To automate the explaining of the non-compliance, it is necessary to de�ne
the compliance between template and agreement o�ers and provide a rigorous
de�nition of the explaining for the non-compliance. A �rst step toward this goal is
to extend the de�nition of WS-Agreement* in [15] to provide rigorous de�nitions
of templates, the compliance between templates and o�ers and the explanation
for the non-compliance.

De�nition 1 (A WS-Agreement* agreement o�er). A WS-Agreement*
agreement o�er α is a three-tuple composed of the variables de�ned in service
properties and service description terms, their domains and a set of terms:

α = (υα, δα, Tα) , where

� υα = υαp ∪ υαd 6= ∅ is the �nite set of variables de�ned in service properties
(υαp), and in service description terms (υαd), respectively.

� δα = δαp ∪ δαd 6= ∅ is the �nite set of domains for those variables.
� Tα = {tαi }ni=1 6= ∅ is a �nite set of terms, including service description

terms, guarantee terms and terms compositors as follows:

where tαi =

λα = (υi, value(υi)) if tαi is a service description term (1)
γα = (κα(υ), σα(υ)) if tαi is a guarantee term (2)
(tαi1 ∧ . . . ∧ tαim) if tαi is an All term compositor
(tαi1 ⊕ . . .⊕ tαim) if tαi is an ExactlyOne term compositor
(tαi1 ∨ . . . ∨ tαim) if tαi is an OneOrMore term compositor

Where Clause (1) de�nes the value of variable (value(υi)), υi ∈ υα, value(υi)

∈ δi; and Clause (2) de�nes a guarantee term which includes:

κα(υ) =
{
true if there is no qualifying condition or (∀υi ∈ υα) satis�es it
false otherwise

}
σα(υ) =

{
true if (∀υi ∈ υα) satis�es the SLO
false otherwise

}

5

MetricXML
– Percentage: integer [1,100]

– MTBR: integer [1,∞]

– Cost: integer [1,∞]

(a) A WS-Agreement template with
general and item constraints.

(b) Content of the ad-hoc XML document for the
variable domains of Figures “a”, “c”, and “d”.

Template “id:Template v1.0”

(c) A Compliant offer with template “a”.

AgreementOffer “id:CompliantOffer”

(d) A Non-Compliant offer with template “a”,
demanding more dedicated CPUs.

Name 5CPUsAllowed

Context – AgInitiator: INeedComputing Corp.
– ServiceProvider: AgreementResponder

CreationConstraints

Item 1

Constraint 1
FinalCost = InitCost + ExtraMTBRCost + CPUs x 10

A
ll

(a
n

d
)

ServiceDescriptionTerm
– InitCost = 20 …
– CPUsType = Cluster

ServiceProperties
– Availability “metricXML:Percentage”
– MTBR “metricXML:MTBR”
– InitCost “metricXML:Cost”

GuaranteeTerm “GuaranteedMTBR”
– SLO: MTBR >= 5 & MTBR <= 60

Name I Agree

Context
– AgInitiator & ServiceProvider same as in template
– TemplateID: Template v1.0
– TemplateName: 5CPUsAllowed

A
ll

(a
n

d
)

ServiceProperties same as in template

AgreementOffer “id:Non-CompliantOffer”

Name More CPUs Demanded

Context
– AgInitiator & ServiceProvider same as in template
– TemplateID: Template v1.0
– TemplateName: 5CPUsAllowed

A
ll

(a
n

d
)

Ex
a

ct
ly

O
n

e
(x

o
r) GuaranteeTerm “LowerAvailability”

–QualifCondition: MTBR >= 10
– SLO: Availability >= 90 & <= 100

GuaranteeTerm “HigherAvailability”

–QualifCondition: MTBR < 10
– SLO: Availability >= 95 & <= 100

ServiceDescriptionTerm
– InitCost = 20
– MTBR = 5
– CPUs = 3
– ExtraMTBRCost = 15
– FinalCost = 65 (20 + 15 + 3 x 10)
– CPUsType = Cluster

GuaranteeTerm “GuaranteedMTBR”

– SLO: MTBR >= 5 & MTBR <= 60

ServiceProperties same as in template

ServiceDescriptionTerm
– InitCost = 20
– MTBR = 50
– CPUs = 10
– ExtraMTBRCost = 0
– FinalCost = 120 (20 + 0 + 10 x 10)
– CPUsType = Cluster

Constraint 2
MTBR < 10 ExtraMTBRCost = 15

Constraint 3
MTBR >= 10 ExtraMTBRCost = 0

GuaranteeTerm “HigherAvailability”

–QualifCondition: MTBR < 10
– SLO: Availability >= 95 & <= 100

GuaranteeTerm “GuaranteedMTBR”

– SLO: MTBR >= 5 & MTBR <= 60

GuaranteeTerm “LowerAvailability”

–QualifCondition: MTBR >= 10
– SLO: Availability >= 90 & <= 100

Item 2

Item 3

– CPUs: integer [1,5]

– ExtraMTBRCost: integer [1, ∞]

– FinalCost: integer [1, ∞]

Fig. 1. Template and O�ers WS-Agreement* documents.

6

For the scenario of Figure 1(c), υαp = { Availability, MTBR, InitCost },
with theirs domains δαp de�ned in Figure 1(b); υαd = { CPUsType } with a domain
δαd de�ned in an XML-Schema (cf. Section 2.1); and Tα = { λα1 :InitCost=20
∧ λα2 :MTBR=5 ∧ λα3 :CPUs=3 ∧ λα4 :ExtraMTBRCost=15 ∧ λα5 :FinalCost=65 ∧
λα6 :CPUsType=Cluster ∧ γα1 :(κα1 = ∅) ⇒ (σα1 = MTBR >= 5 & MTBR <=
60) ∧ γα2 :(κα2 = MTBR < 10)⇒ (σα2 = Availability >= 95 & Availability <=
100) }.

Following de�nition 1, we can de�ne a WS-Agreement* template, excluding
name and context elements, as follows:

De�nition 2 (A WS-Agreement* template). A WS-Agreement* template
θ is a four-tuple of the form:

θ =
(
υθ, δθ, T θ, φθ(υθ)

)
, where

� υθ = υθp ∪ υθd ∪ υθc 6= ∅ is the �nite set of variables de�ned in service prop-
erties (υαp), and in service description terms (υαd), and in items of creation

constraints (υθc), respectively.
� δθ = δθp ∪ δθd ∪ δθc 6= ∅ is the �nite set of domains for those variables.

� T θ = {tθi }ni=1 6= ∅ is a �nite set of terms ≡ Tα but applied to templates
instead of agreement o�ers.

� φθ : (δθ1 × . . .× δθn)→ {true, false} is a function de�ned as follows:

φθ(υ1, . . . , υn) =
{
true if (υ1, . . . , υn) satis�es all constraints
false otherwise

}
For the scenario of Figure 1(a), υθp = { Availability, MTBR, InitCost },

with theirs domains δθp de�ned in Figure 1(b); υθd = { CPUsType } with a domain

δθd de�ned in an XML-Schema; υθc = { CPUs, ExtraMTBRCost, FinalCost } with
its domain δθc de�ned in each item; T θ = { λθ1:InitCost=20 ∧ λθ2 :CPUsType =

Cluster ∧ γθ1 :(κθ1 = ∅)⇒ (σθ1 = MTBR >= 5 & MTBR <= 60) ∧ (γθ2 :(κθ2 =
MTBR >= 10) ⇒ (σθ2 = Availability >= 90 & Availability <= 100) ⊕
γθ3 :(κθ3 = MTBR < 10) ⇒ (σθ3 = Availability >= 95 & Availability <= 100)
)}; and φθ(υθ) = Constraint1 ∧ Constraint2 ∧ Constraint3 = (FinalCost =
InitCost+ExtraMTBRCost+CPUs×10)∧(MTBR < 10⇒ ExtraMTBRCost
= 15) ∧ (MTBR >= 10⇒ ExtraMTBRCost = 0).

2.3 Compliance between Templates and Agreement O�ers

In WS-Agreement [5] the compliance of o�ers with templates is de�ned as follows:
�Agreement template compliance: An agreement o�er is compliant with

a template advertised by an agreement responder if and only if each term of ser-
vice described in the Terms section of the agreement o�er complies with the term
constraints expressed in the CreationConstraints section of the agreement tem-
plate. In addition, in the Context of the o�er, the Agreement Responder value
must match the value speci�ed in the template; and the Template Id must ex-
actly match the name provided in the template document against which compli-
ance is being checked.�

7

This compliance is summarised with discontinuous arrows in Figure 2. Note
that this de�nition of compliance does not state anything about the terms of
the template. In other words, the party that creates the agreement o�er may
ignore the terms speci�ed in the template. The problem with this de�nition is
that the template creator can specify terms in the template, but the party that
creates the agreement o�er cannot do anything with them because the de�nition
of compliance does not provide any semantics with regard to them. Thus, it is
unknown for the party that creates the agreement o�er whether the terms of the
template specify default values, or preferred values, or mandatory values that
could not be expressed by means of creation constraints, or any other meaning.

To solve this issue, we provide an extended de�nition of compliance, the
so-called t-compliance, that extends the previous de�nition of compliance with
the requirement that the terms of the agreement o�er must be compliant with
the terms of the template. This is depicted in Figure 2 by means of continuous
arrows.

This new notion of compliance raises another issue: does the compliance be-
tween the terms of the agreement o�er and the terms of the template implies
that agreement o�er terms must syntactically match with template terms or they
must match semantically?

A syntactic match means that terms that appear in the template must appear
as is in the agreement o�er, perhaps after selecting some of the alternatives
provided by the term compositors. For instance, the guarantee terms of the
agreement o�er of Figure 1(c) syntactically matches the guarantee terms of the
template of Figure 1(a).

A semantic match means that all possible assignment of values to the vari-
ables that satis�es the terms of the template must satisfy the terms of the
agreement o�er. as well. For instance, the guarantee term MTBR >= 3 &

MTBR <= 60 semantically matches the guarantee term GuaranteedMTBR of
the template. In this paper we choose the semantic match because syntactic
match is just a particular case of semantic match.

Then, assuming the context compliance between documents, we can de�ne
the compliance and t-compliance between WS-Agreement* o�ers and templates.
But previously we de�ne an auxiliary operation to represent if a vector of value
assignments to all variables satisfies a concrete term.

De�nition 3 (Satis�es Operation: satisfies(ti, υ)).
We de�ne operation satisfies(ti, υ), as a function such that, given a term ti
and a vector (υ1, . . . , υn) of value assignments to all variables, it returns true if
(υ1, . . . , υn) satis�es the term and false, otherwise:

satisfies : T × (δ1 × . . .× δn)→ {true, false}, where

satisfies(ti, υ)⇔

υi = value(υi) (1)
σ(υ) (2)
κ(υ)⇒ σ(υ) (3)∧n
i=1 satisfies(ti, υ) (4)∧n
i=1 satisfies(ti, υ)⇔ (

∧k
j=1\j 6=i ¬satisfies(ti, υ)) (5)∨n

i=1 satisfies(ti, υ) (6)

8

WS-Agreement
template compliance
definition

Extending
WS-Agreement
template compliance
definition

Fig. 2. Summary of Compliance between WS-Agreement templates and o�ers.

Clause (1) is applied when ti is a service description term λ = (υi, value(υi)).
Clause (2) is applied if ti is a guarantee term without qualifying condition γ =
(∅, σ). Clause (3) is applied if ti is a guarantee term with qualifying condition γ =
(κ, σ). And Clauses (4, 5, and 6) are applied if ti is an All(∧), ExactlyOne(⊕),
and OneOrMore(∨) term compositor, respectively.

De�nition 4 (WS-Agreement* template compliance).
A WS-Agreement* o�er α = (υα, δα, Tα) is compliant with a WS-Agreement*
template θ =

(
υθ, δθ, T θ, φθ(υθ)

)
, i� the following operation is true:

compliance(α, θ)⇔

υθp = υαp ∧ δθp = δαp ∧ (1)
∧ υαd = υθc ∪ υθd ∧ δαd = δθc ∪ δθd ∧ (2)
∧ matches(Tα, φθ) (3)

where matches(Tα, φθ) ⇔ ∀v ∈ (δ1 × . . .× δn), φθ(v) = true⇒ (∀ti ∈ Tα,

matches(ti, υ)).
Clause (1) means that variables and domains de�ned inside service proper-

ties of a compliant agreement o�er must be the same as de�ned inside template.
Clause (2) ensures that all variables and domains de�ned inside service descrip-
tion term of a compliant agreement o�er are de�ned inside service description
term of template or inside item element of template creation constraints. This
does not allow to add any more variables and domains inside service description
terms of a compliant agreement o�er to such de�ned in template. Finally, Clause
(3) means that each terms of a compliant agreement o�er must match general
constraints of template creation constraints.

9

De�nition 5 (WS-Agreement* template t-compliance).
A WS-Agreement* o�er α = (υα, δα, Tα) is t-compliant with a WS-Agreement*
template θ =

(
υθ, δθ, T θ, φθ(υθ)

)
, i� the following operation is true:

t-compliance(α, θ)⇔ compliance(α, θ) AND matches(Tα, T θ)

where matches(Tα, T θ) ⇔ ∀ v ∈ (δ1 × . . . × δn), (∀tj ∈ T θ, matches(tj , υ)
) ⇒ (∀ti ∈ Tα, matches(ti, υ)). In other words, each term of a compliant
agreement o�er must match template terms.

Figure 1(c) and 1(d) depict two possible responses for the agreement tem-
plate of Figure 1(a). Figure 1(c) is a compliant agreement o�er because all tem-
plate general constraints are taken into account for the agreement o�er service
description term speci�cation (clause (3) of compliance de�nition); and it is a
t-compliant o�er because it does not include neither di�erent value de�nitions
for variables, nor any term which were not semantically matched with template
terms (t-compliance de�nition). However, Figure 1(d) depicts a non-compliant
agreement o�er, and the explanation for such non-compliance must be provided.
Note that we do not detail yet the explanation for the non-compliance to high-
light the advantages of having a system capable of providing them.

2.4 Explaining the Non-Compliance

We consider an explanation for a non-compliance between agreement o�ers and
templates as a minimum set of terms of both agreement o�er and template that
makes them not compliant. However, before de�ning rigorously the explanation,
we must de�ne two auxiliary operations.

De�nition 6 (Closure of a set of terms: T ∗).
The closure of a terms set (T ∗) is the set of all possible agreements that can
be obtained after selecting all the alternatives provided by the term compositors
(All, ExactlyOne, and OneOrMore). T ∗ can be obtained by appliying the closure
to non-composite terms (t∗i), All term compositor (AND∗), ExactlyOne term
compositor (XOR∗), and OneOrMore term compositor (OR∗) as follows:

T ∗ ⇔

t∗i = {{ti}}
AND∗(t1, . . . , tn) = {{i1 ∪ . . . ∪ in}|i1 ∈ t∗1 ∧ . . . ∧ in ∈ t∗n}
XOR∗(t1, . . . , tn) =

⋃n
i=1 t

∗
i

OR∗(t1, . . . , tn) =
⋃
p∈P ({t1,...,tn})−∅{{i1 ∪ . . . ∪ in}|
|i1 ∈ p∗1 ∧ in ∈ p∗n ∧ p = {p1, . . . pn}}

Where P(S) is the power set of S.

For example, the closure of template of Figure 1(a) is: T θ∗ = {{ Init-
Cost=20, CPUsType=Cluster, GuaranteedMTBR, LowerAvailability }{ Init-
Cost=20, CPUsType=Cluster, GuaranteedMTBR, HigherAvailability }}.

10

De�nition 7 (Terms Extraction Operation: terms(T)).
We de�ne operation terms(T), where T is a set of terms including service de-
scription terms, guarantee terms, and term compositors; as an operation which
obtain the set of service descriptions and guarantee terms of T .

This operation applied to template of Figure 1(a) is: terms(T θ) = { InitCost=20,
CPUsType=Cluster, GuaranteedMTBR, LowerAvailability, HigherAvailability}.

Finally, the explanation could be rigorously de�ned, using the closure de�-
nition and terms(T) operation, as follows:

De�nition 8 (Explanation for WS-Agreement* template non-compliance).
Given a WS-Agreement* o�er α = (υα, δα, Tα) which is non-compliant with a
WS-Agreement* template θ =

(
υθ, δθ, T θ, φθ(υθ)

)
(i.e. ¬compliance(α, θ)), the

explanation (E) is a minimal subset of terms de�ned as follows:
E = εα ∪ εθ ∪ εφ, where εα ∈ P (terms(Tα) − ∅), εα ⊆ n ∈ Tα∗, and εθ ∈

P (terms(T θ)− ∅), εθ ⊆ n ∈ T θ∗, and εφ ∈ P (φθ). Where P(S) is the power set
of S.

In other words, E is a minimal subset of con�ictive terms extracted from the
agreement o�er terms, template terms and template creation constraints.

In the non-compliance between Figures 1(a) and 1(d), the resulting explana-
tion would be: εφ = {Item 1}, and εα = {CPUs=10}. In such term the consumer
is demanding more dedicated CPUs than the allowed by the provider template.
Such underlined terms and the domain de�ned inside �Item 1� are the origin for
the non-compliance situation and they are considered as the explanation for
the non-compliance between such o�er and template.

Other examples of non-compliance in the example of Figure 1(a) and 1(d),
would be the following: (a) if we change the value of CPUsType inside the agree-
ment o�er there will be two di�erent values for the same variable; (b) if we
change the value of ExtraMTBRCost inside service description term of the agree-
ment o�er, it there will be in con�ict with the Constraint 3 of template; if we
change the guarantee term MTBRDomain in the agreement o�er, there will be in
con�ict with such guarantee term de�nition inside template.

The complexity of automating the search for explanations depends on the
expressiveness of the language used to specify the agreement terms. An approach
to automate this search is by means of constraint satisfaction problems (CSPs)
and it is detailed in the following section.

3 Explaining The Non-Compliance using CSPs

3.1 Preliminaries

Constraint Satisfaction Problems Constraint Satisfaction Problems (CSP)
[21] have been an object of research in Arti�cial Intelligence over the last few
decades. A CSP is a three�tuple of the form (V,D,C) where V 6= ∅ is a �-
nite set of variables, D 6= ∅ is a �nite set of domains (one for each vari-
able) and C is a constraint de�ned on V . Consider, for instance, the CSP:

11

({a, b}, {[0, 2], [0, 2]}, {a + b < 4}). The solution of such CSP is whatever valid
assignment of all elements in V that satis�es C. (2, 0) is a possible solution of
previous example since it veri�es that 2 + 0 < 4.

3.2 Mapping WS-Agreement* templates onto CSP

In [15] we de�ne the mapping (µ) of a WS-Agreement* o�er document (α) onto
an equivalent CSP, (ψα). The variables (υ) de�ned inside the service properties
are the CSP variables; the variable domains (δ) included in the document spec-
i�ed by the metric attribute are the CSP variable domains; and the constraints
from the service description terms (λυ), guarantee terms (γ) and term compos-
itors (∧ as a logic �AND�, ⊕ as logic �XOR�, and ∨ as logic �OR�) are the CSP
constraints.

Then, we have to study now how the creation constraints mapping should be
included in order to get a complete WS-Agreement* template to CSP mapping.
Figure 3 summarizes how the creation constraints, expressed as items are mapped
as CSP variables (υc) and domains (δc); and expressed as general constraints (φ)
are mapped as CSP constraints.

Ψ

CSP
variables

= (Equivalent CSP)

CSP
variable
domains

CSP
constraints

υ1,
…,
υn,

δ1,
…,
δn,

Τ1,
…,
Τs

{{

{{

{

(

(

{

MetricXML

WS‐Agreement* Template

Item – υc: δc

Constraint
– φ

CreationConstraints

The same mapping
as in WS‐Ag* offers

μ φ ≡ φ

ServiceDescriptionTerm (Τ1)

ServiceProperties

GuaranteeTerm “γ1” (Τ2)

GuaranteeTerm “γm” (Τs)

A
ll

Λ
or
⊕

or
V

δc≡ δn+1

υc≡ υn+1

Fig. 3. Summary of WS-Agreement* template to CSP mapping.

Thus, in general, our WS-Agreement* template to CSP mapping can be
de�ned as follows:

De�nition 9 (Mapping an WS-Agreement* template to CSP). The
mapping (µ : θ → ψ) of a WS-Agreement* template (θ) to a CSP (ψ) can

12

be de�ned as follows:

µ(θ) = µ (υi, δi, Ti, φi) = ({υi} , {δi} , {µT (Ti)} , {µφ(φi)}) = ψθ

where µφ : φ → C is a direct mapping function of WS-Agreement* general
constraints into constraints, de�ned as follows: µφ ≡ {φ}, and where µT : T → C
is a mapping function of terms into constraints de�ned in [15].

Using the previous mapping, the ψθ for the template of Figure 1(a) is mapped
as follows: (1) a set of variables where the three last are mapped from the cre-
ation constraints { Availability, MTBR, InitCost, CPUsType, CPUs, ExtraMT-
BRCost, FinalCost }; (2) a set of domains for such variables { [1 . . . 100], [1
. . . ∞), [1 . . . ∞), [Cluster, Multicore, Distributed], [1 . . . 5], [1 . . . ∞),
[1 . . . ∞) }; and (3) a set of constraint where the three last are mapped from
the creation constraints { InitCost = 20, CPUsType = Cluster, MTBR ≥ 5 ∧
MTBR ≤ 60, ((MTBR ≥ 10) ⇒ (Availability ≥ 90 ∧ Availability ≤ 100)) ⇔
¬ ((MTBR < 10) ⇒ (Availability ≥ 95 ∧ Availability ≤ 100)) ∧ ((MTBR <
10) ⇒ (Availability ≥ 95 ∧ Availability ≤ 100)) ⇔ ¬ ((MTBR ≥ 10) ⇒ (Avail-
ability ≥ 90 ∧ Availability ≤ 100)), FinalCost = InitCost + ExtraMTBRCost
+ CPUs × 10, (MTBR < 10) ⇒ (ExtraMTBRCost = 15), (MTBR ≥ 10) ⇒
(ExtraMTBRCost = 0) }

3.3 Explaining The Non-Compliance between WS-Agreements*
Documents

To perform the explaining of the Non-Compliance between templates and agree-
ment o�ers, we have developed aa proof-of-concept implementation which is
available at http:\\www.isa.us.es\wsag. The input to the system is threefold:
the WS-Agreement* o�er, the WS-Agreement* template, and the XML docu-
ment with the metrics of service properties. The whole process implemented by
the proof-of-concept involves four parts:

1. A simple checking of the document contexts is carried out to ensure that the
o�er refers to the template that has been provided. If an error is returned,
it must be reported to user.

2. Each WS-Agreement* documents are mapped into a CSP: (1) the CSP
mapped from the WS-Agreement* o�er (V α, Dα, Cα), as de�ned in [15];
and (2) the CSP mapped from the WS-Agreement* template (V θ, Dθ, Cθ),
as de�ned in Section 3.2. To explain the non-compliance between both CSPs
we have to join them in an unique CSP as it is described in [19]: (V α ∪
V θ, Dα ∪Dθ, Cθ → Cα). Once the joined CSP is generated, we can check if
it can be solved or not using CSP solvers. In the former case both documents
are compliant.

3. An explanation engine obtains the explanations for the unsolved CSP and
they are sent to the last part of our process.

4. Finally, a tracing component converts the explanations into the equivalent
original agreement terms in order to classify the error to be reported to the
user. The possible types of errors returned are:

13

� If the explanations involve terms from both documents, then there is a
non-compliance between them.

� If the explanations involve terms from only one document, then this
document is inconsistent.

For instance, if we check the disagreement between the non-compliant agree-
ment o�er of Figure 1(d) and the template of Figure 1(a), the �rst part would be
passed due to the correct o�er context. However, the explainer part will return,
a minimal subset of the con�icting elements. Such elements are the underlined
service description term of the o�er against the item element of template cre-
ation constraint which detail the possible values for the dedicated CPUs. Then,
the minimal subset of the example would be �CPUs = 10� and �CPUs >= 1 and
CPUs <= 5�. Each previous constraint would be traced back to its respective
agreement element. In this case the constraints are traced back to the CPUs
service description term inside o�er and the CPUs item element inside template.
Since the two con�ictive elements come from the two agreement documents, the
type of error occurred is a non-compliance between them.

4 Related Work

As far as we know, there are no proposals that deal with providing explanations
for the non-compliance between agreement documents. This paper extends with
template elements the de�nition of the WS-Agreement subset of [15] in which
a �rst approach to explaining SLA inconsistencies was proposed. Previously, in
[19], we studied mapping SLAs to CSPs, aimed at checking their consistency
and conformance, which is a synonym of compliance. However, in that paper no
explanation about the inconsistency or non-conformance of the documents was
provided. In addition, [19] dealt with its own SLA speci�cation instead of using
a proposed standard format such as WS-Agreement.

Some proposals with similarities with our paper in their problem domain
are the following ones: (1) The closest problem tackled in a research work is
[16], in which Oldham et al. create a description logic-based ontology of WS-
Agreement that could be used to check consistency and conformance of SLAs
using a description logic reasoner. However, the authors do not detail what
the consistency or conformance checking process is. Furthermore, they do not
support the explanations for the inconsistent or non-conform terms. (2) A second
group of proposals with some similarities in their problem domain deal with
web service monitoring. For instance [22] checks the SLA compliance of web
services compositions at a design time, but only for concrete types of SLOs
and without providing any explanation for the non-compliance; [7] proposes a
framework to audit if the execution of a web service is compliant with an unique
SLA; [4] proposes the use of aspect oriented programming to monitor a concrete
type of variables of an SLA; and [12] proposes a solution for managing SLAs
in composite services. However, neither of them provide any explanation for the
non-compliance. (3) Finally, [18] deals with the problem of compliance between
SLOs and penalty clauses of an SLA, classifying the possible situations and using

14

WS-Agreement as case study, but again without providing any explanations for
the non-compliance.

Other proposals with similarities with our paper but in their solution do-
mains are the following: (1) The closest solution used in a research work is [1],
in which Aiello et al. uses rigorous de�nitions about WS-Agreement element
such as terms, agreement, and several states because they study the di�erent
agreement states of an agreement process. (2) There are many authors that deal
with constraint-based paradigms to tackle di�erent SLA aspects as for instance:
in [9,10] constraint-based problem are used to solve web services requests in a
web services interaction process; in [3] a constraint-based language is proposed
to specify SLAs; in [2] constraints are used to optimize web services composi-
tion taking into account quality of service. However the scope of these works is
completely di�erent in comparison with this paper because they do not provide
any explanation for the non-compliance between agreement documents. (3) A
third group of proposals deal with explanation-based solution for the following
problems: [17] proposes an explanation-based tool to be integrated into solvers
and make the detection of con�icts more user-friendly, and [6,11] improves the
use of explanations to perform the solution of CSPs more e�cient.

5 Conclusions and Future Work

In this paper we have motivated the need for explaining the non-compliance
between WS-Agreement documents and we have presented a �rst approach to
reach this goal in an automated manner. More speci�cally, we present the prob-
lem of explaining the non-compliance in an implementation-independent manner
using rigorous de�nitions for agreement o�ers, templates, their compliance, and
the explanation for their non-compliance. Then we propose to map templates
and agreement o�ers into a constraint satisfaction problem (CSP), in order to
use a CSP solver together with an explanation engine to perform the compliance
checking and return the non-compliant terms in an automated manner.

In summary, this paper provides the following contributions:

1. A rigorous de�nition of compliance between WS-Agreement* templates and
o�ers. Additionally, the rigorous de�nition of compliance has allowed us to
extend template compliance de�nition of WS-Agreement.

2. A rigorous de�nition of explanations for the non-compliance between WS-
Agreement* templates and o�ers.

3. A description of a process that materialises the previous de�nitions by means
of a constraint satisfaction problem (CSP) solver combined with an expla-
nation engine.

Finally, we have developed a proof-of-concept implementation that is avail-
able at http://www.isa.us.es/wsag.

However, there are still some open issues that require further research: �rst,
extending the rigorous de�nitions and the mapping to CSPs to full WS-Agreement
speci�cation; second, checking the consistency and compliance of WS-Agreement
documents with the temporal extension we detailed in [14].

15

References

1. M. Aiello, G. Frankova, and D. Malfatti. What's in an Agreement? An Analysis
and an Extension of WS-Agreement. In ICSOC, pages 424�436. Springer, 2005.

2. M. Alrifai and T. Risse. Combining global optimization with local selection for
e�cient qos-aware service composition. In 18th WWW Conf., pages 881�881, 2009.

3. M. G. Buscemi and U. Montanari. Cc-pi: A constraint-based language for specify-
ing service level agreements. In ESOP, 4421 of LNCS, pages 18�32, 2007.

4. Congwu Chen, Lei Li, and Jun Wei. Aop based trustable sla compliance monitoring
for web services. pages 225�230, Oct. 2007.

5. Andrieux et al. of the OGF Grid Resource Allocation Agreement Protocol WG.
Web Services Agreement Speci�cation (WS-Agreement) (v. gfd.107), 2007.

6. D. Grimes. Automated within-problem learning for constraint satisfaction prob-
lems. 2008.

7. Hasan and Burkhard Stiller. Auric: A scalable and highly reusable sla compliance
auditing framework. pages 203�215, 2007.

8. N. Jussien and V. Barichard. The PaLM system: explanation-based constraint
programming. In Proceedings of TRICS, pages = 118�133, year = 2000.

9. A. Lazovik, M. Aiello, and R. Gennari. Encoding requests to web service compo-
sitions as constraints. In In Constraint Programming, pages 05�40, 2005.

10. A. Lazovik, M. Aiello, and R. Gennari. Choreographies: using constraints to satisfy
service requests. pages 150�150, Feb. 2006.

11. Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal. Record-
ing and minimizing nogoods from restarts. JSAT, 1(3-4):147�167, 2007.

12. A. Ludwig and B. Francyk. COSMA - An Approach for Managing SLAs in Com-
posite Services. In Proc. of the 6th ICSOC. Springer Verlag, 2008.

13. O. Martín-Díaz, A. Ruiz-Cortés, A. Durán, and C. Müller. An approach to
temporal-aware procurement of web services. In 3rd ICSOC, pages 170�184, 2005.

14. C. Müller, O. Martín-Díaz, A. Ruiz-Cortés, M. Resinas, and P. Fernández. Im-
proving Temporal-Awareness of WS-Agreement. In Proc. of the 5th ICSOC, pages
193�206. Springer Verlag, 2007.

15. C. Müller, A. Ruiz-Cortés, and M. Resinas. An Initial Approach to Explaining
SLA Inconsistencies. In Proc. of the 6th ICSOC. Springer Verlag, 2008.

16. N. Oldham, K. Verma, A. Sheth, and F. Hakimpour. Semantic WS-Agreement
Partner Selection. In 15th International WWW Conf., 697�706. ACM Press, 2006.

17. S. Ouis and M. Tounsi. An explanation-based tools for debugging constraint sat-
isfaction problems. Applied Soft Computing, 8(4):1400 � 1406, 2008.

18. O. F. Rana, M. Warnier, T. B. Quillinan, F. Brazier, and D. Cojocarasu. Managing
violations in service level agreements. pages 349�358, 2008.

19. A. Ruiz-Cortés, O. Martín-Díaz, A. Durán, and M. Toro. Improving the Automatic
Procurement of Web Services using Constraint Programming. Int. Journal on

Cooperative Information Systems, 14(4), 2005.
20. T. Schiex and G. Verfaillie. Nogood recording for static and dynamic constraint

satisfaction problems. Tools with Arti�cial Intelligence, 1993. TAI '93. Proceed-

ings., Fifth International Conference on, pages 48�55, 8-11 Nov 1993.
21. E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1995.
22. Hua Xiao, B. Chan, Ying Zou, J.W. Benayon, B. O'Farrell, E. Litani, and

J. Hawkins. A framework for verifying sla compliance in composed services. pages
457�464, Sept. 2008.

