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Abstract. We give some considerations about the use of geometric algebras in
the context of visibility, showing some advantages and disadvantages for their use
as the underlying framework. We emphasize the use of conformal geometric algebra
since, among other reasons, it allows us to study easily the visibility for flat varieties
and, due to the same algebraic expression of hyper-spheres and linear varieties, the
results might be generalized to non-flat objects.

1 Clifford or geometric algebras

Clifford algebras or, as they are usually known, geometric algebras (GA from here on)
appear with the introduction of a new geometric product between vectors generalizing
and combining both the scalar product and the wedge product.

The first GA dates from the middle of 19th century, when Grassmann [6] defined
the exterior algebra via the wedge product and Hamilton [7] introduced the quaternion
algebra as a generalization of his algebraic notation of complex numbers. Later, Clifford
[4] gave the definition of GA, generalizing them by modification of the wedge product
into the geometric product. From a naive approach, the idea behind GA is to generalize
the algebraic notation of quaternions over R by defining abstract vector roots for −1
and +1, satisfying anti-commutativity for the geometric product of two roots.

However, GA was not used until the 1960s when Hestenes [8] attempted to unify
the mathematical language in Physics and Geometry, taking advantage of geometric
product. Some years later, Hestenes [9] introduced the conformal geometric algebra
(CGA from here on) for the n-dimensional Euclidean space. This algebraic framework
has been usefully applied to several scientific fields, as robotics and computer vision.

GA can be axiomatically defined in many ways, but we use here the following
naive formulation: a geometric algebra consists of endowing a vector space Rm with an
associative inner law being distributive over vector addition, as well as obtaining a real
number as result of the square for vectors (i.e. a2 ∈ R, ∀a ∈ Rn). This inner product,
named geometric or Clifford product, corresponds to a bilinear form over Rm.

The square of a vector via the geometric product is not necessarily positive: this
product admits vectors with negative square, contrary to what happens with the usual
scalar product (only with positive squares). Thus, GA can be of mixed signature,
including Grassmann algebra and quaternion algebra.

From geometric product, both scalar (·) product and exterior (∧) product can be
retrieved as a ·b = 1

2 (ab+ba) and a∧b = 1
2 (ab−ba), for all a, b ∈ Rm. Consequently,

geometric product can be expressed as ab = a · b+ a ∧ b.
Wedging k vectors together, a k-blade is obtained. Hence, 0-blades are scalars; 1-

blades are vectors; 2-blades are wedges of two vectors; and so on. The number of vectors
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in the blade is called grade, being less or equal to the dimension of the vector space
Rm in virtue of the skew-symmetry of the wedge.

Linear combinations of k-blades are named k-vectors. The set
∧k (Rm) of k-vectors

is a R-vector space with basis
{
∧k

h=1eih
}
1≤i1<···<ik≤m

, where {ei}mi=1 is a basis of Rm.

Analogously, linear combinations of blades (not necessarily of the same grade) are called
multivectors. These latter form the graded R-vector space

∧
(Rm), named Grassmann

algebra (since it is endowed with the wedge product) and spanned by blades of grade
0 ≤ k ≤ m as

∧
(Rm) =

⊕m
k=0

∧k (Rm). Naturally, the geometric product can be
extended from vectors to multivectors, providing generalizations for inner and wedge
products of multivectors: if M,N ∈

∧
(Rm), the geometric product MN is another

multivector, with its blades split according to the grade. The inner product M · N
corresponds to minimal grade, and the wedge M ∧N to the maximal one.

GA is used as framework of projective geometry in robotics and computer vision
because linear dependency can be expressed using the wedge operator, without using
coordinates. For a general review on GA, the reader can consult [5, Chapters 2 & 4].

2 Conformal geometric algebra

Next, we must recall that, using Grassman algebra as framework, the distance can-
not be appropriately retrieved from vectors involved without using coordinates. On
the contrary, CGA allows to retrieve the distance between two geometric points as
the scalar product of their vector representations. Hence, CGA is nowadays used in
mechanics and computer vision. Chapter 10 in [5] gives a general overview on CGA.

Let Gm = Rm denote the m-dimensional geometrical space, being identified with
its underlying vector space. Any point p ∈ Gm is faithfully represented as a unitary
vector in the unit hyper-sphere Sm ⊂ Rm+1 via stereographic projection from south
pole s and with Gm as the equatorial hyperplane:

S : Gm → Sm : x → S(x) =
2x

1 + x2
−

1 − x2

1 + x2
e0,

where e0 is the unitary vector from origin o ∈ Gm to pole s, and orthogonal to Rm.
Thus, s represents the point at infinity of Rm, whereas the north pole represents origin
o. Since S(x) is not homogeneous, wedge product cannot express linear dependence
contrary to Grassmann algebra in projective framework.

Fig. 1. Example of stereographic projection for R2.

Homogeneity is obtained by introducing an additional vector em+1 /∈ Rm+1, or-
thogonal to Gm⊕e0 and with negative signature (i.e. e2m+1 =−1). Hence, these rep-
resentations belong to the vector space Rm+1,1 of dimension m+ 2, with m+ 1 basis
vectors of positive signature and one of negative signature.

This faithful representation Φ :Gm →Rm+1,1 is given by Φ(x)=X =S(x)+em+1,
where X ∈ Rm+1,1 is a non-zero null vector (i.e. X (= 0 and X2 = 0). Hence, Φ is an
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homogeneous representation not depending on scalar multiplication. This allows to re-
scale the vector as X=2x−(1−x2)e0+(1+x2)em+1. However, neither e0 nor em+1 have
geometrical meaning and, hence, null vectors n = e0 + em+1 and n̄ = e0 − em+1 are
defined because they respectively represent the point at infinity and the origin o of Gm.
Using them, the standard conformal representation of the geometrical point x ∈ Gm is
obtained as X = F (x) = 1

2 (2x+ x2n− n̄), providing the condition X · n = −1.

3 Visibility using (conformal) geometric algebras

A very common problem in robotics and computer graphics consists in characteriz-
ing (and computing) the visibility between geometrical objects. This problem can be
reduced to study if two given points are visible from each other or not; which can
be geometrically translated into knowing if the line segment relying them stabs other
geometrical objects or not. Most of papers deal with this problem only in particular
cases, but very few consider an arbitrary dimension and continuous groups of points.

There are several tools for the theoretical study of visibility. The visibility complex
is one of the most usual constructs; though it is only defined for dimension 2 [11] and
3 [2]. Despite its theoretical applicability, many problems appear to implement the
3-dimensional visibility complex, becoming impracticable even for simple geometries.

Visibility in dimension 3 can be computed using line spaces as in [1, 10], via working
with Plücker coordinates, which involves to consider lines as points in a 5-dimensional
projective space. These coordinates are quite difficult to use in proofs. Anyway, visibility
calculus using line spaces provides efficient methods but with two serious drawbacks:
a) only low-complexity geometrical models can be used due to memory usage and b)
heuristics must be applied in practice due to theoretical background lacks.

These problems can be avoided with an appropriate definition of line space. Thus,
Charneau et al. [3] gave such a definition via GA, getting essential improvements in
visibility calculation and formalizing previous heuristics as theorems in [1]. Hence,
visibility for flats can be calculated in the geometrical space Gm with m ≥ 2.

Using GA in this context is due to its availability to handle geometrical objects:
any linear (affine) variety in Gm can be identified with a wedge of vectors in Gm. More-
over, passing from a dimension to other is quite easy via the inner and outer products,
the first to loose information and the second to gain. Indeed, the inner product checks
orthogonality and the outer one encodes linear dependency, which makes possible to
span a well-defined vector space with all projective lines. However, to study Euclidean
geometry, CGA is more appropriate, because previous properties are preserved after
adaptation; the inner product retrieves the distance between points; the wedge product
represents both linear (affine) varieties and hyper-spheres (including circles); and Eu-
clidean transformations (rotations, translations, reflections, homotheties or inversions)
are expressed using rotors (i.e. conformal rotations).

To study visibility using CGA as framework, Tenorio et al. [12] have extended the
notion of line space to CGA, which should make possible to determine the visibility
between flat and non-flat geometrical objects. Using the richness of conformal rotations,
visibility might be computed for objects, which are rotated, translated or even re-scaled.
Besides of the line space in CGA, the authors looked for how to generalize previous
works on Grassmann Algebra. Thus, they showed that the Grassmannian (i.e. the
smallest linear variety containing all Euclidean lines) in CGA was a vector subspace
of

∧3 (Rm+1,1
)
, but containing also circles since they are expressed as 3-vectors of

three points in CGA and lines are degenerate circles in with one of the points being
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the point n at infinity. Hence, CGA might be used to calculate visibility between lines
and spherical objects. Finally, they also characterized relative position of lines and
affine linear varieties using two GA operations (wedge and left-contraction) as well as
characterizing lines stabbing convex faces. Next, we reproduce the main results:

Theorem 1 (Relative Position [12]). Let L and H be respectively an Euclidean
line and an affine linear variety of Gm, both embedded in Rm+1,1, with m ≥ 2, and let
L̄ and H̄ be such that L̄ = e0"L and H̄ = e0"H .

1. ((e0 ∧ em+1)"L) ∧H = 0 =⇒ L and H are parallel.
2. ((e0 ∧ em+1)"L) ∧H %= 0:

(a) L̄ ∧ H̄ ∧ n = 0 =⇒ L and H intersect in a singleton.
(b) L̄ ∧ H̄ ∧ n %= 0 =⇒ L and H are skew varieties.

Proposition 1 (Lines stabbing convex faces [12]). Let F be a convex (m−1)-face
of Gm, supported by the hyperplaneHF of Gm and bounded by the (m−2)-dimensional
affine linear varieties {fi}ri=1. The varieties {fi}ri=1 only have two orientations such
that, for any Euclidean line L, L ∩ F is a singleton (i.e. L stabs F ) if and only if the
following three conditions hold:

1. L̄ ∧HF ∧ n = 0, where L̄ = e0"L and HF = e0"HF .
2. ((e0 ∧ em+1)"L) ∧HF %= 0.
3. (L̄ ∧ fi ≥ 0, ∀i = 1, . . . , r) or (L̄ ∧ fi ≤ 0, ∀i = 1, . . . , r).
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