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Abstract Metaheuristics are algorithmic schemes that ease the deriva-
tion of novel algorithms to solve optimization problems. These algorithms
are typically approximated and stochastic, leading to the preeminence
of experimentation as the mean of supporting claims in research and
applications. However, the huge number of variants and parameters of
most metaheuristics, the ambiguity of natural language used in papers,
and the lack of widely accepted reporting standards threatens the repli-
cability of those experiments. This problem, that has been identified in
the literature by several authors, significantly hinders the construction
of a complete and cohesive body of knowledge on the behavior of meta-
heuristics. This paper proposes a set of minimum information guidelines
for reporting metaheuristic experiments, and an experiment description
language that supports the meeting of those guidelines. By using this lan-
guage, metaheuristic optimization experiments are described in a tool-
independent and unambiguous way, while maintaining readability and
succinctness. Those contributions pave the way for replication using dif-
ferent problem instances and parameters, bringing a new life to meta-
heuristic experiments after publication.

1 Introduction

An experiment is replicable when its results can be verified and/or clarified
through conducting another experiment. This process can be preformed either
following the same experimental procedure in similar conditions (named repe-
titions when the conditions are exactly the same and replications when they
are slightly different), or through a different procedure aimed to verify similar
hypotheses about the same phenomenon (named conceptual replications).

The quote of [1]: “The use of precise, repeatable experiments is the hallmark
of a mature scientific or engineering discipline”, clashes violently with the state-
ments of some authors in the area of metaheuristic optimization[2]: “Verifying
results found in the literature is in practice almost impossible”, “running a re-
portedly good algorithm on your own data is an extremely difficult task”, “the
details presented in a typical paper are insufficient to ensure that one would
implement the same algorithm”.
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The replicability of experiments using metaheurisitcs is therefore a problem.
Since most of the research on metaheuristics relies on empirical validation and
experimentation[3], this problem becomes of paramount importance in our area.
It is therfore and important problem that significantly hinders the construction
of a solid and cohesive body of knowledge on the behavior of metaheuristics.

Experimental replicability is a problem due huge number of variants, param-
eters and possible customizations of the algorithms, its own stochastic nature,
and the lack of an widely accepted scheme of experimental reporting (in contrast
to those used in the natural sciences [4]).

Minimum information guidelines have enabled the reuse of existing work
and reproducibility of the experimental process in different research areas such
as biology and simulation. However, guidelines are not enough. Several set of
guidelines has been published by different authors (see for instance [5,6,7,8]),
but standard experimental reporting in the area has not improved to the levels
of other scientific disciplines [9]. The proposal of this paper for this issue is
the creation of: i) experiment description languages (EDLs) that vertebrate the
description and reporting of experiments according to the guidelines; and ii)
tools that automatically check that the experiment descriptions expressed on
those languages are following the guidelines actually.

The remainder of this paper is structured as follows: Section 2 describes our
guidelines of minimum information to be reported about metaheuritic optimiz-
tation experiments. Next, 3 describes an experiment description language whose
use guarantees the meeting of most of the guidelines defined in previous section.
Section 4 presents the tools developed to ease the creation and manipulation
of experimental descriptions with the language. Section 5 reports some valida-
tion performed on our proposal to ensuer its suitability. Finally, 7 provides some
conclusions and points out future work.

2 Minimum Information about Metaheuristic
Optimization Experiments

Minimum Information guidelines have enabled the reuse of existing work and
reproducibility of the experimental process in different research areas such as bi-
ology and simulation. Authors propose a set of guidelines about Minimum Infor-
mation about Metaheuristic Optimization Experiments (MIaMOE). In so doing,
the guidelines defined for simulation experiments in [10] have been adapted and
extended to the specific context and characteristics of metaheuristic optimization
experiments.

MIaMOE describes the minimum information that should be provided in or-
der to properly the describe metaheuristic optimization experiments. The goal
of MIaMOE is to enable experimental replicability. In order to achieve this goal,
MIaMOE defines a set of requirements of the reported information. Thus, MI-
aMOE does not define neither operation procedures, nor specific experimental
description formats, but a set of rules for describing experiments. The descrip-
tion of an experiment is MIaMOE-compliant if it meets all the rules defined by
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MIaMOE. Specifically, MIaMOE defines the following rule: For an experiement
witn metaheuristic optimization techniques

1. Each optimization algorithm used in the experiment must be iden-
tified, fully described and accessible.
(a) Either the description of each optimization algorithm is complete and

unambiguous, or their implementation is provided.
(b) All parameter values, configuration settings, and governing conditions of

the optimization algorithms used in the experiment are unambiguously
described. Specifically, it should be described:
i. The set of parameters, their domain, and the specific value used for

experimentation.
ii. Specific operators and variants of the optimization technique used.
iii. The optimization process termination criteria
iv. The random number generation algorithms used and the seeds used

for experimentation.
(c) If an algorithm is not implemented using a common implementation lan-

guage and runtime, then the implementation should be provided and the
implementation language and required run-times used must be clearly
specified.

(d) Any preprocessing step required before the execution of the optimization
algorithm must be fully and unambiguously described.

2. All information used to obtain the results and draw conclusions of
the experiment must be provided.
(a) All the information used as input by the optimization algorithms must be

provided, including problem instances data. If standard benchmarks of
problem instances are used, the specific reference where the benchmark
was proposed, the specific version (or year) of the benchmark used, and
a download address must be provided.

(b) The variables of each algorithm used to obtain results reported must be
identified, including the specific step of algorithms in which results data
are collected.

(c) All the results datasets (raw numerical data and post-processing results)
generated by the experiment must be described unambiguously, and a
copy of the actual results should be provided.

(d) If conclusions drawn from the experiment depend on the relation between
different results datasets, the specific results datasets to be compared and
the equations of the relation must be described unambiguously.

3. A precise description of the experimentation procedure, its execu-
tion context, and other procedures used in the experiment must
be provided.
(a) All the steps of the experimentation procedure must be clearly described,

including:
i. The total number and order of execution of algorithms on problem

instances, or the criteria used to determine such executions and its
order (for instance the experimental design).
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ii. Information used by algorithms that is produced during the own
experimentation process and its processing.

iii. All post-processing steps applied on the raw numerical data used to
obtain each result dataset must be described in detail.

(b) The physical and computational equipment used during the experimen-
tation process must be described. Those elements that are required for
a replication should be specified explicitly, defining the minimum equip-
ment requirements for replication.

Evaluating if the description of an experiment is MIaMOE-compliant just
from a paper is a time-consuming task that must be performed manually. For in-
stance, in a optimization technique comparison experiment, if authors do not pro-
vide the source code of the implementation of the techniques and the experimen-
tal procedure followed for conducting the experiment, then the description of the
experimental procedure, the algorithms used in the paper, and the parametriza-
tion used in each experiment must be carefully scrutinized in order to determine
MIaMOE-compliance. Moreover, if some optimization techniques compared in
the experiment are described using references, the MIaMOE-compliance of the
descriptions of those techniques in the referenced papers should be evaluated.
Laboratory packages (also named lab-pack), are detailed reports with attached
materials used by experimenters to provide all the relevant details about an
study. Providing the source code, binaries and the input/output files of the ex-
periments, along with the description of the computation environment in a lab-
pack is the most straightforward way to achieve MIaMOE-compliance. However,
providing source code and input files does imply being MIaMOE-compliant. For
instance, if the algorithms are implemented in JAVA using the standard random
number generator provided by the language and the seed, but the specific version
of the Java Virtual Machine used for experiment conduction is not specified, then
rule 1(b)iv is violated, since the random number generation algorithm is unde-
termined (it depends on the version of JAVA). Given the previous definitions, a
MIaMOE-compliant experiment should be reproducible. However depending on
the way researchers follow the guidelines, the investment and effort required for
reproducing the experiments can vary dramatically. For instance, we suppose a
MIaMOE-compliant a metaheuristics comparison experiment where researchers
provide just the pseudo-code of their proposals and references to the publica-
tions where the alternative approaches are defined. The reproduction of such
an experiment requires to implement each optimization technique based on the
descriptions provided in the corresponding papers, which implies a significant
amount of effort. Even when researchers provide the full source code, input files
and specification of the environmental requirements of their experiments (such
as libraries, run-times, specific platform for execution, etc.), the effort required
to replicate an environment that meets those requirements and launch the ex-
periment may be non-negligible. For instance, in [11] this effort is described as
“considerable agony” even when performed by the own researchers in their lab.
On the other hand, using the source code as a description of the experiments
has some drawbacks. First, it makes experiment descriptions dependent on the
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implementation technologies. Second it penalizes descriptions readability and
understandability by non-programmers. Third it lowers the abstraction level at
which the experiment is described, forcing to read and understand the specific
implementation details of the experiment source in order to gather the infor-
mation about the experiment. The need of language at an intermediate level
of abstraction between natural-language descriptions found in papers and im-
plementations could mitigate such problems is proposed in this paper. Such a
language should be both human readable and machine processable. Having an
experiment described using such a language in companion with the source code
or binaries used in metaheuristic optimization experiments, could enable and
ease experiment reproducitiblity, and even automate its replication with proper
tools.

3 Metaheuristic Optimization Experiments Description
Language (MOEDL)

MOEDL defines a set of elements for describing metaheuristic experiments that
are of major relevance for ensuring MIaMOE compliance, such as the objective
functions and problem instances used in the experiment, termination criteria
used by each technique, the random number generation algorithm and seeds
used, etc.

The structure of MOEDL is the result of an extensive analysis of a variety of
experiments developed by authors [12,13,14], a careful study of the related liter-
ature and a process of successive refinements of the meta-model after applying
it to different scenarios. Specifically, we have taken [4] as the main reference for
general experiment descriptions and [9,8] for the specific details of metaheuris-
tic optimization experiments. Additionally, we have evaluated other approaches
(Section 6) for experiment description and the proprietary formats and classes
used by the set of metaheuristic optimization frameworks assessed in [13].

MOEDL supports the succinct description of some common types of experi-
ments in the area. Those experiment types are described below.

Figure 1 depicts the general structure of a MOEDL document. The schema
depicted in Fig. 1 is informal and only provides a snapshot of the general stucture
of MOEDL documents. In order to accurately describe the abstract syntax of
MOEDL, its meta-model is described in [15]. That description is independent of
the specific concrete syntax and serialization used for such as xml schemas and
documents, plain text files, or graphical notations. For the purpose of this paper,
due to space limitations the general structure of such documents in described,
without diving deep in the details.

A MetaheuristicOptimizationExperiment in MOEDL contains the de-
scription of one or more problem types (with their corresponding set of problem
instances), and one or more optimization techniques. Each problem instance
and optimization technique, has a unique identifier in the context of the docu-
ment, and their descriptions contains all the details about its parameters and
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Figure 1. General Structure of MOEDL experimental descriptions

configuration (such as the specific objective function or its concrete parame-
ter values in problem instances, and the specific variant used, the source file
where it is implemented, and the parameter values used in the experiment for
each metaheuristic). The detailed description of each optimization technique is
performed through its Configuration, this element supports the description of
simple parameters (such as the population size, or the probability of application
of the mutation operator in Evolutionary Algorithms) and complex algorithmic
variants. However, given a Technique and a Configuration, there is not guar-
antee that the technique configuration describes all the relevant parameter of
the technique. As a consequence, in order to meet MIaMOE rules 1a and 1b,
the provision of a lab-pack containing the source code of the technique and ex-
perimental procedure is mandatory. The single exception to this rule is the case
when a software framework (such as ECJ or HeuristicLab) is used and the exact
replications of the executions of the experiment can be performed automatically
using the experiment description. Under those circumstances, the framework
is able to enact the optimization technique based on the description provided,
and consequently, the source code of the own framework and the experiment
description fully describe the optimization techniques applied1.

Additionally, a MOEDL description can contain a set of global configurations,
that are used to specify configuration settings for the experiment as a whole.
1 If custom variants are described in the framework-specific configuration of the tech-
nique and its binaries are provided in the experiment lab-pack. Then the source code
of such custom variants should be provided also in the lab-pack
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For instance, the termination criterion used for optimization can be specified
for the whole experiment or for an specific optimization technique. In order to
support the automation of the experiment, and ease replication using different
termination criteria, this element defines an extension point in MOEDL, since its
description could depend on the software used for implementing the metaheuris-
tic. Either a global termination criterion is specified for the experiment, or each
optimization technique should define its own termination criterion. It is worth
noting that the use of different termination criteria in this kind of experiments
could lead to bias in the comparison and wrong conclusions in the experiments.

The random number generation algorithm, seeds used for the experiment,
and termination criterions can also be specified either for the whole experiment
or for each specific optimization technique in particular in the configuration.
This constraint enforces the fulfillment of the points in MIaMOE rule 1b.

In a techniques comparison experiment, the objective functions values of
solutions obtained with several optimization techniques are compared for an
specific set of problem instances.

In a Tuning experiment, the objective functions values of solutions obtained
with several configurations of one single technique are compared for an specific
set of problem instances.

Thus a TechniqueParametrizationExperiment contains a single metaheuris-
tic optimization technique and a set of ComplexParameter definitions. These
definitions specify the space of possible values of the parameter using a Domain,
since finding its optimal value is the purpose of the experiment. This Domain is
specified either by extension, i.e. providing the the whole set of possible values
(e.g. 100, 200, and 300), or by intension, i.e. specifying a range for its the value
and an algorithm or iteration mechanism to generate successive values of the
parameter.

4 Supporting Tools & Libraries

An XML-schema encoding the language structure described in the previous sec-
tion has been created. This schema provides an xml-based syntax for the lan-
guage, which support the objectives of while maintaining human readability.2
Moreover, a JAVA library for manipulating this kind of documents has been
created. This library is named JLibMOEDL, and provides features such as the val-
idation of MOEDL documents against the XML-schema and the semantic con-
straints exposed above, proving a detailed validation report, the load and saving
of experiental descriptons as XML-files, and the representation of all the ele-
ments of the experimental description as Java objects. In this sense, JLibMOEDL
eases the manipulation and automated generation of experimental descriptions
with MOEDL.

2 The XML schemas are available at http://moses.us.es/schemas/moedl/v1/.
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5 Validation of the proposals

The suitabilty of the proposed language for describing metaheuristic optimiza-
tion experiments has been validated using a case study. Specifically, two tech-
nique comparison experiments, and two parameter tuning experiments support-
ing the main conclusions of [16] has been described using MOEDL with its xml-
based syntax. The language has been expressive enough to accurately describe
all those experiments3.

6 Related Work

Related work of the proposals made in this chapter present in the literature can
be divided into two categories: (i) guidelines for reporting and support of the
experimental replication, and (ii) languages for describing experiments.

Although recognized as an issue of paramount importance for progress of sci-
ence and engineering, replication of experiments has been an extremely difficult
task in our context [2,11,17].

In the context of experimentation with metaheuristics, specific guidelines has
been proposed [18,6,19,7], and the didactic effort of the research community is
still going on [17]. However, those proposals focus mainly on aiding the correct
conduction of the experiments, on the use of appropriate of experimental de-
signs for the hypothesis and populations addressed [8,20,21], and on the use of
the correct statistical analysis tools for such designs [22]. These efforts have been
successful, given the current widespread use of statistical tests for validating con-
clusions and of standard experiment designs in the area. Most of those proposals
focus on specifying how researchers must do experimental research, but not how
they must report and publish the materials in order to improve experimental
replicability. Only a small subset those proposals described guidelines about re-
porting of experiments, with the aim of enabling experimental replicability (see
for instance [6,7]). The main difference between the proposals in this paper and
previous work is that our proposal of reporting guidelines (MIaMOE), focuses
on what should be described (the minimum information required for replication)
from an abstract perspective, and it delegates the tasks of specifying how to
describe such information in the experimental description language (MOEDL),
while providing means for checking that all required information is provided
through software tooling.

Regarding experiment description languages, we can classify previous pro-
posals in two categories. On the one hand, Descriptive languages support the
description of the experiment but do not specify how to use such description,
delegating the tasks of interpreting the description and using it for replication
on researchers. An example of this kind of proposals is EDL [23], that provides
a basic xml syntax to organize the description of the experiment. On the other
hand, operational languages provide an description of the experiments at such an
3 The XML files describing the experiments described using MOEDL are available at
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abstraction level that enables its automated replication, an example of this kind
of experimental description language SED-ML [24]. The problem of operational
languages is that they need to support very specific structures in order support
the required details for replicability, as a consequence, the roposals for opera-
tional languages are specific of certains areas, for instance SED-ML is specific for
simulation experiments. Another consequence of this need for specificity is that
some languages have been created for support the specification of specific exper-
imental artifacts and experimental protocols that of the whole experiment for
ceitan areas, such as PEBL [25] that is intended for the creation of experiments
in psychology.

Our proposal is operational, in the sense that enables the replication of exper-
iment based on the description of experiments, but also contains some elements
whose purpose is merely descriptive, such as the Context. Our proposal follows
the general approach of SED-ML [24], but it adapts most of its concepts and
introduce elements specific for describing experiments with metaheuristics that
are MIaMOE-compliant.

7 Conclusions

In this paper, the problem of experimental replicability in the specific context of
metaheuristic optimization experiments has been pointed out. Two contributions
has been proposed to tacke this problem: (i) a set of guidelines about the infor-
mation to, and (ii) an experiment description language that supports the meeting
of those guidelines. Our proposals provide a balance, where metaheuristic op-
timization experiments are described in a tool-independent and unambiguous
way, while maintaining readability and succinctness. Those contributions pave
the way for replication using different problem instances and parameters, bring-
ing a new life to metaheuristic experiments after publication.
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