
On Using Semantic Web Query Languages for

Semantic Web Services Provisioning

José María García, Carlos Rivero, David Ruiz and Antonio Ruiz-Cortés

Dept. Lenguajes y Sistemas Informáticos, University of Seville

ETS Ingeniería Informática, Av. Reina Mercedes s/n, 41012 Sevilla, Spain

Abstract— Although there are several approaches to dis-

cover Semantic Web Services based on Description Logics

reasoning, the use of standard Semantic Web query lan-

guages for this task is not so widely spread, partly because

service discovery involves some issues that these languages

do not usually deal with, such as complex matching, results

ranking or interoperability. In this work we analyze the suit-

ability of existing query languages to perform provisioning

tasks (namely discovery, ranking and selection) within a Se-

mantic Web Services scenario. Additionally, the requirements

a Semantic Web query language has to fulfill in order to be

used within a provisioning scenario are enumerated, giving

some insights into how to extend current query languages

to do so. Furthermore, an analysis of current provisioning

proposals achievement of those requirements is presented.

Keywords: Service Discovery, Semantic Web Services, Ontology

Languages, Query Languages, Semantic Web.

1. Introduction
Once a service has been published and made available

from a repository, potential users can fetch for desired

services. This fetching, referenced as service provisioning or

procurement [1], involves different sequential tasks, namely

discovery, ranking and selection. Firstly, services that fulfill

the user requirements are discovered. Secondly, those ser-

vices are ranked with respect to user preferences. Finally,

the best ranked service is selected so it can be executed

later on.

Usually, semantic discovery is considered as a functional

filter, because at this stage the user is looking for a service

that provides a requested functionality. Current discovery

approaches present matchmaking algorithms that are highly

coupled with the service representation formalism, often

based on Descriptions Logics [2]–[7]. These proposals de-

fines matching degrees that measure the similarity between

the user requirements and the available service descriptions.

Furthermore, current proposals rely on service descriptions

and user preferences defined using OWL-S [8] and WSMO

[9] ontologies.

Ranking and selection often involves non-functional prop-

erties defined over services, e.g. cost or availability. These

properties are used to obtain a ranking of discovered ser-

vices, so the best service, in terms of user preferences which

are based on said properties, can be selected. Current propos-

als provide ontologies to express non-functional properties

about services that are used within ad-hoc ranking algo-

rithms [10]–[13]. As with discovery approaches, ranking and

selection proposals have a high coupling between preference

description formalisms and algorithms used to perform these

tasks.

The question that arise in this provisioning scenario is:

why current proposals are not using a Semantic Web query

language to perform discovery, ranking and selection? One

reason can be found at the level of maturity of these query

languages so that, until recently there has not been a standard

query language for the Semantic Web. Nevertheless, the

sometimes complex reasoning needed to match services and

user preferences conforms a key feature that current query

languages do not completely support, especially RDF-based

languages. In this paper we depict the requirements a query

language has to fulfill in order to be used to discover and

rank Semantic Web Services (SWS), thoroughly analyzing

the suitability of current query languages for provisioning

tasks, and discussing extensions that make these languages

compliant with the enumerated requirements, at least in part.

The rest of the paper is structured as follows. In Sec. 2 ex-

isting query languages for the Semantic Web are described.

Then, in Sec. 3 an analysis of the requirements for these

query languages to support SWS provisioning is presented,

along with a discussion about current proposals on the topic.

Finally, in Sec. 4 we sum up our contributions, and discuss

our conclusions.

2. Query Languages for the Semantic

Web

One of the most important features of the Semantic Web

is that it separates the data information from the schema

model to be applied to this information [14]. In the Semantic

Web field, the W3C recommends RDF (Resource Descrip-

tion Framework) [15] as the data model, and RDFS (RDF

Schema) [16] or OWL (Web Ontology Language) [17] as

the schema model.

OWL is divided in three increasingly expressive sub-

languages: Lite, DL and Full. DL stands for Description

Logics, which is a logical formalism that provides the

theoretical foundations for Semantic Web ontologies [18],



TBox

ServiceProfile

Profile

subclass of

RBox

hasParameter

hasInput hasOutput

subproperty of

ABox

<<Profile>>

:amazonService

<<Input>>

:keyWordAuthor

<<Output>>

:bookResults

hasInput

hasOutput

Fig. 1: DL ontology components

[19]. A DL ontology has three conceptual components:

assertions about classes (TBox), assertions about properties

and property hierarchies (RBox), and property assertions

between individuals and membership assertions (ABox). An

example of this three conceptual components is presented in

Fig. 1, where some parts of the profile ontology of OWL-

S specification [8] are shown. Thus, in the TBox, there

are two classes, Profile and ServiceProvile and a subclass

of assertion between them. In the RBox, two subproperty

of assertions are shown, between hasInput, hasOutput and

hasParameter properties. Then, in the ABox example, there

are three membership assertions (keyWordAuthor typeOf

Input, amazonService typeOf Profile, and bookResults typeOf

Output, represented by the word in double angle brackets),

and two property assertions (hasInput(amazonService, key-

WordAuthor) and hasOutput(amazonService, bookResults)).

There exists two main approaches in Semantic Web query

languages: RDF-based and DL-based query languages [20],

[21]. On the one hand, RDF-based query languages allow

to fetch RDF triples based on matching triple patterns with

RDF graphs. On the other hand, DL-based query languages

allow to query OWL-DL ontologies with TBox queries,

RBox queries, ABox queries or any combination of them.

Concerning RDF-based query languages, there are several

approaches with different features. In [20], Bailet et al.

survey 26 different query languages such as SeRQL [22],

RQL [23] or RDQL [24]. At present, the great majority

of these languages have neither any implementation nor an

updated implementation. This is caused by the fact that

SPARQL is the only language that is a W3C recommen-

dation [25]. In fact, SPARQL is fully supported in several

implementations1. Other surveys of pre-SPARQL languages

can be found at [22], [26].

SPARQL has four different types of queries: SELECT,

CONSTRUCT, DESCRIBE and ASK. Each type serves for a

different purpose: SELECT queries return variables and their

1http://www.w3.org/2001/sw/DataAccess/tests/implementations

bindings directly; CONSTRUCT queries build an RDF graph

based on a template defined in the query; ASK queries test

whether or not a pattern has any solution; and DESCRIBE

queries return an RDF graph not based on a template in the

query (as in CONSTRUCT queries) but on a pre-configured

graph.

The SPARQL Working Group has already detected some

extensions to be applied to the current specification2. Some

of these extensions are: insert/update/delete queries, access

to collection members, or aggregate functions (COUNT, SUM,

GROUP BY, etc).

Besides these extensions, others have already been pro-

posed in the Semantic Web research field. For instance,

Kiefer et al. present iSPARQL [27] which supports cus-

tomized similarity functions to query RDF graphs. These

functions are used in different Semantic Web research fields

such as semantic data integration or ontology matching.

PSPARQL [28] extends the original recommendation allow-

ing regular expressions in the predicates of the graph pat-

terns, while CPSPARQL [29] is an extension of PSPARQL

that introduces constraints on paths. Moreover, SPARQL2L

[30] and SPARQLeR [31] are very related to PSPARQL and

support the discovery of semantic associations which are

undirected paths connecting two entities of an ontology.

The SPARQL standard is designed to query RDF data

only, not including RDFS vocabulary. Although RDF is a

data format representing a directed labeled graph, SPARQL

only provides limited navigational functionalities. nSPARQL

[32] is another extension of SPARQL which allows to

query RDF data according to the semantics of RDFS. This

extension uses recursive graph paths to achieve its goal.

Finally, Siberski et al. [33] present an extension which

supports the expression of preferences and ranking that is

further discussed in Sec. 3.2.

Regarding DL-based query languages, SPARQL-DL [21]

is aligned with SPARQL to improve the interoperability of

applications on the Semantic Web, and can be implemented

on top of existing OWL-DL reasoners because of its sim-

plicity. A preliminary prototype of SPARQL-DL has been

implemented on top of the OWL-DL Pellet reasoner [34].

OWL-QL [35] is a language and protocol for

query/answer dialogues in which Semantic Web

computational agents are involved. These agents use

OWL ontologies to make the dialogues possible. OWL-QL

is designed to be easily adaptable to other declarative

formal logic representations such as RDF or RDFS. Other

DL-based query languages are OWL SAIQL [36] or SWQL

[37].

Although DL-based query languages provide more rea-

soning mechanisms than RDF-based ones, the former are not

mature enough and they are in early stages of development

[20]. In this field, SPARQL-DL is the most promising one

2http://www.w3.org/2009/01/sparql-charter



because, as stated before, it is included in the well-known

Pellet reasoner, which is in continuous development.

From the presented survey we conclude that, though there

are several Semantic Web query languages, SPARQL is the

most widely used, partly because it is a W3C recommenda-

tion. In fact, it seems to be the chosen query language to be

applied to SWS provisioning processes. However, its lack

of reasoning mechanisms per se makes necessary to extend

it in order to allow flexible matchmaking of services. The

needed extensions to support this provisioning scenario are

introduced in the next section.

3. SWS Provisioning Using Query Lan-

guages
As introduced in Sec. 1, SWS are usually discovered in

terms of a requested functionality. This process basically

applies a functional filter to a service repository, so a set of

compliant services are returned to the user. Although service

discovery could make use of Semantic Web query languages

to define the filter applied, only a few proposals actually use

them [33], [38], [39]. Additionally, once services have been

discovered, they have to be ranked so the user can select

the best one in term of stated preferences. These tasks could

be also performed using a query language, separately from

discovery [40], or in the same query [38].

In the following, we analyze what are the requirements

a Semantic Web query language has to satisfy in order to

support SWS provisioning tasks, and then discuss to what

extent current proposals that use query languages to perform

these tasks fulfill the identified requirements.

3.1 Requirements Analysis

Considering the SWS provisioning scenario, where a user

wants to fetch the best service from a repository in terms of

his or her preferences, the query language chosen to support

it has to be able to describe queries for service discovery

and ranking. In order to do so, we have identified seven

requirements that are enumerated in the following:

(R1) Based on standards. Currently, SPARQL is the pro-

posed standard query language for the Semantic Web,

so any provisioning approach that wants to use query

languages in its process should be based on SPARQL,

possibly extending it or using one of its currently

published extensions.

(R2) Compatible with SWS frameworks. There are three

main frameworks and ontologies to define SWS: OWL-

S [8], WSMO [9], and SAWSDL [41]. Any query

language used in a provisioning scenario has to be

capable to handle SWS descriptions from any of the

enumerated frameworks.

(R3) Support for complex matching and similarity degrees.

Services are not always described using exactly the

same domain as user requests, so there is a need

for some reasoning about equivalences and similarity

degrees between concepts, especially useful in discov-

ery where soft matching is needed [7]. For instance,

iSPARQL supports this kind of flexible matching [27].

(R4) Reasoning mechanisms. Related to the previous re-

quirement, reasoning is a key feature to support inter-

operability and soft matching between concepts being

used in queries. DL-based query languages offer some

facilities to fulfill this requirement, such as SPARQL-

DL which is evaluated by Pellet reasoner. Some pro-

posals perform the reasoning before the query execu-

tion, updating the knowledge base and then executing

the query.

(R5) Evaluation mechanisms. Especially in the ranking pro-

cess, evaluation mechanisms are needed in order to

compute preference values used to rank discovered

services. Again, DL-based query languages offer lim-

ited support for this requirement, but some preferences

can be computed easier using different evaluation

mechanisms within a hybrid approach [40], especially

when continuous domains are involved.

(R6) Facilities to order results by computed values. After

discovering, services have to be ranked in terms of

user preferences, so a query language should provide

facilities not only to evaluate those preferences, but

to order the resulting values using different ordering

policies. Standard SPARQL offers a basic ordering

support in its ORDER BY clause.

(R7) Decoupled from formalism. Queries have to be generic

and not coupled with the actual techniques used to

evaluate them. Thus, different implementations of the

reasoning and evaluation mechanisms can be used and

changed dynamically, depending on the expressiveness

of user preferences.

The discussed requirements list make a convenient frame-

work to compare different proposals which use query lan-

guages to perform provisioning task. This list is used in the

next section for that purpose.

3.2 Discussion of Current Proposals

There are some proposals that use a Semantic Web query

language to perform discovery, ranking and selection of

services. They choose SPARQL as their base language,

though some extensions have to be added to fully support

provisioning tasks, i.e. to fulfill some of the requirements

we have identified before.

Thus, Lamparter et al. [38] provide an ontology to repre-

sent service offers and requests that conforms the founda-

tions for a discovery and selection process performed using

rules in SWRL [42] and SPARQL queries. These queries

includes predicates that have to be evaluated at run-time, so

they include an extension to SPARQL that is implemented

using different proposed algorithms. Thus, a generic query



Table 1: Requirements satisfied by discussed proposals

Lamparter et al. [38] Iqbal et al. [39] Siberski et al. [33]

R1
√ √ √

R2
√ √

∼

R3 ∼ × ×

R4 ∼ × ×

R5
√

× ∼

R6
√

×
√

R7 × × ×

for a user request is provided, though this query depends

on rules that change the matchmaking policy, e.g. allowing

matching degrees as in [7].

Another discovery approach that uses SPARQL to actually

perform semantic service discovery is proposed by Iqbal

et al. in [39]. In this case, the authors embed semantic

information about services using SAWSDL, which is an

extension to add semantics to WSDL descriptions [41].

Thus, they define pre and post-conditions of services using

SPARQL CONSTRUCT queries so that depending on each

service functionality, they add corresponding RDF tuples

representing that functionality to the knowledge base. Then,

their discovery algorithm use an ASK query to check whether

a service fulfills a user request or not, returning the results.

Finally, concerning ranking, there is another approach

presented in [33], where Siberski et al. propose an exten-

sion to SPARQL so that preferences are described directly

using the query language, without basing on existing prefer-

ences and non-functional properties ontologies, as in other

semantic ranking approaches [12], [43]. They provide a

PREFERRING clause that states preferences among values

of variables, similar to FILTER expressions. However, this

approach does not have the flexibility and reasoning facilities

that provides a solution based on an external ontology.

Table 1 shows how well previously discussed proposals

match the requirements enumerated in Sec. 3.1. In this table,
√

means a full support of the requirement; ∼ indicates that

the proposal provides a partial or incomplete materialization

of the corresponding requirement; and × is used when the

requirement is not sufficiently supported.

From this comparison, several conclusions can be ob-

tained. Firstly, the most complete proposal is the one pre-

sented by Lamparter et al. [38]. Its main drawback is that its

matching (R3) and reasoning mechanisms (R4) depends on

logic rules that the user must provide. In addition, though

it is able to rank services in terms of complex preferences

that are evaluated at run-time, the formalism and algorithms

used for that evaluation are explicitly expressed using rules,

causing a not desired coupling (R7).In the case of Iqbal

et al. [39], they use standard SPARQL without extensions

in a SAWSDL description, so only the first and second

requirements are met. Finally, Siberski et al. [33] offer an

interesting approach to fulfill requirement R6 by extending

SPARQL both syntactically and semantically, but the rest of

the requirement are not completely supported.

In general, we conclude that the main limitations of

current approaches are, on the one hand, their lack of

mechanisms to perform complex matchings and reasoning

tasks (requirements R3, R4, and to a lesser extent R5), and

on the other hand, their high coupling between description

formalisms and algorithms used to evaluate the queries (R7).

4. Conclusions

Semantic Web query languages have not been used for

SWS provisioning until recently. However, some proposals

are emerging in the field, which are mainly based on

SPARQL. There are also several extensions to SPARQL that

can be adopted by SWS provisioning proposals which have

been discussed thoroughly in this paper. Furthermore, we

have provided a list of requirements that query languages

and their extensions have to meet in order to be useful

within a provisioning scenario. This requirements analysis

also provides a convenient framework to compare current

and ongoing researches on query languages to discover and

rank SWS.

Additionally, in this work we have discussed some propos-

als, concluding that they partly fulfill those requirements, but

there are some areas that need further research. In particular,

matching, reasoning and evaluation mechanisms have to be

worked out, but taking care of the level of coupling these

mechanisms have with respect to definition formalisms.

Acknowledgment

This work has been partially supported by the European

Commission (FEDER) and Spanish Government under CI-

CYT project Web-Factories (TIN2006-00472) and by the

Andalusian Government under project ISABEL (TIC-2533).

References

[1] A. Ruiz-Cortés, O. Martín-Díaz, A. Durán-Toro, and M. Toro, “Im-
proving the automatic procurement of web services using constraint
programming,” Int. J. Cooperative Inf. Syst, vol. 14, no. 4, pp. 439–
468, 2005.

[2] J. González-Castillo, D. Trastour, and C. Bartolini, “Description logics
for matchmaking of services,” Hewlett Packard Labs, Tech. Rep. HPL-
2001-265, 2001.

[3] L. Li and I. Horrocks, “A software framework for matchmaking based
on semantic web technology,” in Int. World Wide Web Conference,
2003, pp. 331–339.

[4] C. Lutz and U. Sattler, “A proposal for describing services with DLs,”
in Int. Workshop on Description Logics, 2002.

[5] E. Motta, J. Domingue, L. Cabral, and M. Gaspari, “IRS-II: A
framework and infrastructure for semantic web services,” in Int.

Semantic Web Conference, 2003, pp. 306–318.



[6] N. Srinivasan, M. Paolucci, and K. Sycara, “Semantic web service
discovery in the OWL-S IDE.” in Hawaii International Conference

on Systems Science, 2006.
[7] K. Sycara, M. Paolucci, A. Ankolekar, and N. Srinivasan, “Automated

discovery, interaction and composition of semantic web services.” J.
Web Sem., vol. 1, no. 1, pp. 27–46, 2003.

[8] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, et al.,
“OWL-S: Semantic markup for web services,” DAML, Tech. Rep.
1.1, 2004.

[9] D. Roman, H. Lausen, and U. Keller, “Web service modeling ontology
(WSMO),” WSMO, Tech. Rep. D2 v1.3 Final Draft, 2006.

[10] J. Pathak, N. Koul, D. Caragea, and V. G. Honavar, “A framework for
semantic web services discovery,” in WIDM ’05: Proceedings of the

7th annual ACM international workshop on Web information and data

management. New York, NY, USA: ACM Press, 2005, pp. 45–50.
[11] E. M. Maximilien and M. P. Singh, “A framework and ontology for

dynamic web services selection,” Internet Computing, IEEE, vol. 8,
no. 5, pp. 84–93, 2004.

[12] X. Wang, T. Vitvar, M. Kerrigan, and I. Toma, “A QoS-aware selection
model for semantic web services.” in ICSOC 2006, ser. LNCS, A. Dan
and W. Lamersdorf, Eds., vol. 4294. Springer, 2006, pp. 390–401.

[13] C. Zhou, L. Chia, and B. Lee, “DAML-QoS ontology for web
services,” in IEEE International Conference on Web Services, 2004,
pp. 472–479.

[14] G. Antoniou and F. vanHarmelen, A Semantic Web Primer, 2nd ed.
Cambridge, MA, USA: MIT Press, 2008.

[15] D. Beckett, “RDF/XML Syntax Specification,” W3C, Tech.
Rep., 2004. [Online]. Available: http://www.w3.org/TR/rdf-syntax-
grammar/

[16] D. Brickley and R. Guha, “RDF Vocabulary Description Language
1.0: RDF Schema,” W3C, Tech. Rep., 2004. [Online]. Available:
http://www.w3.org/TR/rdf-schema/

[17] D. L. McGuinness and F. van Harmelen, “OWL Web
Ontology Language,” W3C, Tech. Rep., 2004. [Online]. Available:
http://www.w3.org/TR/owl-features/

[18] A. Fokoue, A. Kershenbaum, L. Ma, E. Schonberg, and K. Srinivas,
“The Summary Abox: Cutting Ontologies Down to Size,” in Interna-
tional Semantic Web Conference, 2006, pp. 343–356.

[19] G. D. Giacomo and M. Lenzerini, “TBox and ABox Reasoning in
Expressive Description Logics,” in Description Logics, 1996, pp. 37–
48.

[20] J. Bailey, F. Bry, T. Furche, and S. Schaffert, “Web and Semantic Web
Query Languages: A Survey,” in Reasoning Web, 2005, pp. 35–133.

[21] E. Sirin and B. Parsia, “SPARQL-DL: SPARQL Query for OWL-DL,”
in OWLED, 2007.

[22] P. Haase, J. Broekstra, A. Eberhart, and R. Volz, “A Comparison of
RDF Query Languages,” in International Semantic Web Conference,
2004, pp. 502–517.

[23] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and
M. Scholl, “RQL: a declarative query language for RDF,” in WWW,
2002, pp. 592–603.

[24] A. Seaborne, “RDQL - A Query Language for RDF,”
HP Labs Bristol, Tech. Rep., 2004. [Online]. Available:
http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/

[25] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language
for RDF,” W3C, Tech. Rep., 2006. [Online]. Available:
http://www.w3.org/TR/rdf-sparql-query/

[26] R. Angles and C. Gutiérrez, “Querying RDF Data from a Graph
Database Perspective,” in ESWC, 2005, pp. 346–360.

[27] C. Kiefer, A. Bernstein, and M. Stocker, “The Fundamentals of
iSPARQL: A Virtual Triple Approach for Similarity-Based Semantic
Web Tasks,” in ISWC/ASWC, 2007, pp. 295–309.

[28] J.-F. Baget, F. Alkhateeb, and J. Euzenat, “RDF with regular
expressions,” INRIA, Tech. Rep., 2007. [Online]. Available:
http://hal.inria.fr/docs/00/14/85/17/PDF/RR-6191.pdf

[29] F. Alkhateeb, J.-F. Baget, and J. Euzenat, “Constrained Regular
Expressions in SPARQL,” in The 2008 International Conference on

Semantic Web and Web Services (SWWS). Las Vegas, NV: CSREA
Press, Jul 2008, pp. 91–99.

[30] K. Anyanwu, A. Maduko, and A. P. Sheth, “SPARQ2L: towards
support for subgraph extraction queries in rdf databases,” in WWW,
2007, pp. 797–806.

[31] K. Kochut and M. Janik, “SPARQLeR: Extended Sparql for Semantic
Association Discovery,” in ESWC, 2007, pp. 145–159.

[32] J. Pérez, M. Arenas, and C. Gutierrez, “nSPARQL: A Navigational
Language for RDF,” in International Semantic Web Conference, 2008,
pp. 66–81.

[33] W. Siberski, J. Z. Pan, and U. Thaden, “Querying the Semantic Web
with Preferences,” in International Semantic Web Conference, 2006,
pp. 612–624.

[34] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical OWL-DL reasoner,” J. Web Sem., vol. 5, no. 2, pp. 51–53,
2007.

[35] R. Fikes, P. J. Hayes, and I. Horrocks, “OWL-QL - a language for
deductive query answering on the Semantic Web,” J. Web Sem., vol. 2,
no. 1, pp. 19–29, 2004.

[36] A. Kubias, S. Schenk, S. Staab, and J. Z. Pan, “OWL SAIQL - An
OWL DL Query Language for Ontology Extraction,” in OWLED,
2007.

[37] P. Lehti and P. Fankhauser, “SWQL - A Query Language for Data
Integration Based on OWL,” in OTM Workshops, 2005, pp. 926–935.

[38] S. Lamparter, A. Ankolekar, R. Studer, and S. Grimm, “Preference-
based selection of highly configurable web services,” in WWW ’07:

Proceedings of the 16th international conference on World Wide Web.
New York, NY, USA: ACM, 2007, pp. 1013–1022.

[39] K. Iqbal, M. L. Sbodio, V. Peristeras, and G. Giuliani, “Semantic
service discovery using SAWSDL and SPARQL,” in Semantics,
Knowledge and Grid, 2008. SKG ’08. Fourth International Conference

on, 2008, pp. 205–212.
[40] J. M. García, D. Ruiz, and A. Ruiz-Cortés, “Semantic discovery and

selection: A qos-aware, hybrid model,” in The 2008 International
Conference on Semantic Web and Web Services (SWWS). Las Vegas,
NV: CSREA Press, Jul 2008, pp. 3–9.

[41] J. Farrell and H. Lausen, “Semantic annotations for WSDL
and XML Schema,” W3C Recommendation, World Wide Web
Consortium, Tech. Rep., August 2007. [Online]. Available:
http://www.w3.org/TR/sawsdl/

[42] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, “SWRL: A semantic web rule language combining OWL
and RuleML,” W3C Member Submission, Tech. Rep., 2004.

[43] J. M. García, I. Toma, D. Ruiz, and A. Ruiz-Cortés, “A service ranker
based on logic rules evaluation and constraint programming,” in 2nd

ECOWS Non-Functional Properties and Service Level Agreements

in Service Oriented Computing Workshop, ser. CEUR Workshop
Proceedings, vol. 411, Dublin, Ireland, Nov 2008.


