Human Gait Recognition Using Topological Information
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Abstract This paper shows an image/video application using topological invariants in
human gait recognition. The 3D volume of a gait cycle is built stacking silhouettes extracted
using a background substraction approach. Ideally, the border cell complex is obtained
from the 3D volume with one connected component and one cavity. Then, it is necessary
to apply a topological enrichment strategy in order to obtain a robust and discriminative
representation for person recognition. Using a sliding cutter plane normal to some direction
of view it is possible to divide the border cell complex in different parts. The incremental
algorithm is used to compute the homology on each part. A vectorial representation is
built ordering the number of connected components and tunnels obtained for each cut. In
order to evaluate the robustness of this representation the silhouettes were diminished to a
quarter of the original size. At the same time, this is considered a simulation of a human
gait captured at long distance. Even, under these difficult conditions it was possible to get
a 74% of correct classification rates on CASIA-B database.

Keyworks gait recognition, topology, cell complex, homology.

1 Introduction

Gait recognition is a challenging problem that gives the possibility to identify persons at a distance,
without any interaction from the subjects, which is very important in real surveillance scenario
[4, 7]. Methods based on feature extraction using contour of silhouettes have been usually used
[2]. However, many silhouettes obtained are incomplete due to illumination changes, occlusions,
and others. These factors severely affect recognition accuracy. Even though, a recent study [2] is
aimed at suppressing the effect of silhouettes incompleteness to improve performance on previous
approach, we do not pre process the silhouettes in this paper.

Topology has been previously used to match nonrigid shapes [5, 1]. In this paper, the changes
of silhouettes induced by gait are considered as a moving nonrigid object. To the best of the
authors knowledge this approach has never been applied to gait recognition.

The aim of this paper is to propose a novel topological representation for gait recognition built
on the 3D volume gait and tested on CASIA-B database using a similar experiment set up for
the Set A [7]. Furthermore, we reduce the sizes of silhouettes to simulate images obtained at long
distance and to alleviate computational cost of the homological algorithm.
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The rest of the paper is organized as follows. In section 2, we describe the new methods in
detail. Experimental results are then reported in section 3. We conclude this paper and discuss
some future works in section 4.

2 The new method

Fig. 1 shows the chain of processing to obtain the gait signature to carry out lateral view gait
recognition. First, the moving object (person) is segmented for each frame applying background
modeling and substraction [6]. The sequence of silhouettes is analyzed to extract the gait cycle.
The 3D volume of a gait cycle is built stacking silhouettes aligned by the gravity centers. The
border cell complex is created by triangles (2-cells) on surface of the 3D gait volume. Finally,
the gait signature is obtained based on the topological invariants extracted from the border cell

complex.
Input Backgrognd N Gait cylcle N 3D gait _’Border cell _’Topolggif:al
video subtraction extraction volume complex description

Figure 1: Extracting the gait topological signature.

In the gait cycle extraction the silhouette with the maximum length of the step is the one
selected as the first image (with foot right or left) and the next silhouette of maximum length of
the step with the same foot (right or left) is the last image (Fig. 2).

AALARLA

MaX|mum length MaX|mum length Maxmum length
withright foot with left foot with right foot

Figure 2: Gait cycle.

3D gait volume belonging to one gait cycle is built by aligning temporal silhouettes by its
gravity center (gc) (Fig. 3(a)) and may be viewed as a 3D image (Fig. 3(b)), where each vertex
can have at most 26 neighbors. Hereafter, we will use GC' when we refer to the gravity center on
3D gait volume and border cell complex. In the 3D space t is defined as the frame number in the
gait cycle, x and y are coordinates of the pixels on the image referred to gc of each silhouette.

Border cell complex is formed by triangles (2-cells) on bordered surface of the 3D gait volume.
Triangles can only be built between vertexes of the same t, t and t4+1 or £ and ¢t —1, i.e, vertexes of
the same silhouette or between neighbor silhouettes. In this complex all 0-cell (vertex) and 1-cell
(edges) belong, at least, to a 2-cell (triangle), which is the maximum dimension of the border cell
complex, so we may store triangles and infer the existence of lower dimension simplices (0-cells
and 1-cells). The border cell complex is not a manifold , that is, there are 1-cells (edges) that do
not have only two 2-cells (triangles) as neighbors. An example of border cell complex is showed in
Fig. 4. After having built the border cell complex belonging to one gait cycle, coordinates (z,y, t)
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Figure 3: 3D space (x,y,t).

are normalized according to [4]. This defines a cube C, where axes z and y are between 0 and 1
and T is defined as the percentage of gait cycle (between 0 and 100) (Eq. 1).

100 100 100
G2 g (= D) g, 100] (1)

T =][0,1%

Where G is the number of silhouettes in a cycle and ¢ is the number of the silhouette.

Figure 4: Border cell complex.

2.1 Topology enrichment

The topology of the border cell complex of a gait cycle, in general, is very poor, because it has
one connected component and one cavity. In this section we present a strategy to increase the
topological information of the border cell complex. The relations among the parts of the human
body when walking are characterized by the number of connected components and tunnels, these
are created by cuts of normal planes to the line defined by a viewing angle that goes through GC
of the border cell complex. The intersection of the line with the cube (C) are two points a and
b, which are the beginning of the cuts, i.e, n cuts from point a to GC and n cuts from point b to
GC'. The distance between two continuous planes for [a GC] and [b GC] is computed according
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to Eq. 2 and Eq. 3 respectively.

D¢,

for interval [a GC)| Apge) = % )
D

for interval [b GC] Apco) = % 3)

where A[, g¢) is the distance between contiguous planes in the interval from point a to GC,
A gy is the distance between contiguous planes in the interval from point b to GC, D4 qc) is
the distance from point a to GC, D, g¢) is the distance from point b to GC, n is the number of
cuts, the same to both intervals [a GC| and [b GC]). At the same time 2 cuts are made, one in the
interval [a GC| and other [b GC|], where we get two features by cut (amount of connected com-
ponents and tunnels) on two new cell complex generated between cut planes and points a and b.
These features can be stored in a matrix (nxm), where n is the number of cuts and m is the number
of topological features. An incremental algorithm [3] is used to determine connected components
and tunnels. This allows to obtain topological invariants using the information of the previous cut.

Let us now use an example according to Fig. 5. The border cell complex had been cut using
normal planes to the line defined by points a and b. We made n x 2 cuts (n = 5) of plane, five in
the interval [a GC] and five in the interval [b GC]. Topological information for each cut is showed
in the table.

Where Vo, g, is the vector of numbers of connected components for interval [a GC], Vr,,
is the vector of numbers of tunnels for interval [a GC], Veey goy 18 the vector of numbers of
connected components for interval [b GC], Vz,, ., is the vector of numbers of tunnels for interval
[b GCJ.

The similarity between two vectors may be calculated using Eq. 4. In this approach, a vector
is formed by the number of connected components or tunnels in each cut plane defined by a
viewing angle for one of the intervals [a GC] or [b GC]. In the above example, we have four
5-dimensional vectors (Vcc[a co1r VT coyr Vocy, cepr Vi, Gc]) (see table (Fig. 5)), and the angle is
computed as:

b GC

» i Uil
a = cos <(Zﬂ1 v?)l/2 o, T?)1/2> (4)

Where n is the number of cut numbers for one of the intervals [a GC] or [b GC| according to
a viewing angle, v is a column of the table in Fig. 5 for a person and r is the same column v for
another person. We computed four similarity measures s;, i.e, four angles, between two persons.
The total similarity value S(P;, P;) is the weighted sum of these similarities (Eq. 5).

S(Py, Py) = w181 + wasa + w3s3 + wass (5)
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Figure 5: Cuts plane on a border cell complex.

3 Experimental results

In this section, we demonstrate the performance of the proposed method on the lateral view of
the CASTA-B database, which contains 124 subjects. There are six normal walking sequences for
each person. CASIA-B database provides image’s sequences with background subtraction for each
person as proposed in [6]. The cycle’s silhouettes are scaled with factor 0.25 to simulate images
obtained from a long distance (Fig. 6).

For topologically enriching the border cell complex, we used 4 viewing angles, with n cuts from
the point a to GC' and from the point b to GC. Each viewing angle has 4 feature vectors, then we
have 16 feature vectors. The first viewing angle is the same as in the above example for n = 30,
i.e, 30 cuts for [a GC] and 30 cuts [b GC], these cut planes can be called P, (Fig. 7a). The second
viewing angle is orthogonal to the first viewing angle with n = 30 too and it is called P, (Fig. 7b).
The third viewing angle (line (a,b)) forms a 45° angle with the axes z and y, 90° with ¢ and goes
through GC' (Fig. 7c¢). We performed 60 cuts from point a to GC and 60 cuts from b to GC. We
called this set of planes P,;;. The planes generated by the fourth viewing angle are orthogonal to
the planes of the third viewing angle and n = 60 too. We called this set of planes P, (Fig. 7d).
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Figure 6: (a) size of the frame from the CASIA-B database (320x240), (b) scaled frame using
factor 0.25 (80x60).

The features matrix for this experiment is showed in Fig. 8. The weights according to Eq. 5 are
in value 1.

S © @

Figure 7: Viewing angles used in the experiments.

The experiment was carried out using the first four sequences for training, and the last two as
testing set. Topological information is computed in each plane cut by incremental algorithms [3]
using matlab 1. The results are compared with paper [2]. Table 1 shows the correct classification
rates at rank 1 (CCR), it is also considered the correct classification rates when at least one
subject, of the two used as test is correctly classified (ALS). The results from paper [2] mentioned
in table 1 were obtained using the original images without scaling to factor 0.25, therefore we
cannot compare directly these values with our method.

Lhttp://comptop.stanford.edu/programs/plex-2.0.1-windows.zip
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Figure 8: Matrix of features.

Table 1: The average recognition rates.

Method CCR  ALS
Frieze(BI) C. H. Chen (2009) [2] 79.8
Frieze(FD) C. H. Chen (2009) [2] 91.1
Wavelet(BI) C. H. Chen (2009) [2] 77.4
Wavelet(FD) C. H. Chen (2009) [2] 90.3

Our method (silhouettes reduced (Fig. 6b)) 74.0 90

4 Conclusion and future works

In this paper, we propose a new representation based on topological invariants for human gait
recognition. A new approach called topological enrichment is proposed to improve the discrimi-
native capacity of the representation. The experimental results demonstrate that it is possible to
obtain good classification rates even though the silhouettes are reduced to factor 0.25, simulating
a video sequence captured at a long distance. It is important to notice that silhouettes incom-
pleteness was not taken into account in this moment. In future works we will use other cut planes
and we will study the influence of different weights to be used in Eq. 5.
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