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PROBABILISTIC REPRESENTATION OF SOLUTIONS FORQUASI-LINEAR PARABOLIC PDE VIA FBSDE WITHREFLECTING BOUNDARY CONDITIONSPEDRO MARÍN-RUBIO AND JOSÉ REALDpto. Euaiones Difereniales y Análisis Numério,Universidad de SevillaApdo. de Correos 1160, 41080 Sevilla (SPAIN)pmr�us.es jreal�us.esAbstratA probabilisti representation of the solution (in the visosity sense)of a quasi-linear paraboli PDE system with non-lipshitz terms anda Neumann boundary ondition is given via a fully oupled forward-bakward stohasti di�erential equation with a re�eting term in theforward equation. The extension of previous results onsists on therelaxation on the Lipshitz assumption on the drift oe�ient of theforward equation, using a previous result of the authors.Key words: Probabilisti formulae for PDE, Forward bakward stohastidi�erential equations, Skorokhod problem, Re�eted Stohasti Di�erential Equations.AMS subjet lassi�ations: 60H10, 35K55, 60J60, 60K25.IntrodutionDeeper relations between stohasti di�erential equations and systems of PDEhave been established sine [4℄ developed the theory of bakward stohastidi�erential equations. Roughly speaking, ombining a forward stohastidi�erential equation with a BSDE, the Feyman-Ka formula an be extended tononlinear PDE, and not only in a lassial sense, but also via visosity solutions.Usually, the deterministi problems treated in this way are posed in thewhole domain R

d, or in a bounded domain of R
d with Dirihlet boundaryondition. With a Neumann boundary ondition, the problem was studied byY. Hu using loal time around the boundary of the domain. This tehnique islosely related to a stohasti version of the Skorokhod problem (see e.g. [6℄,for a diret appliation in this sense). We extend these studies and relationsto the ase of fully oupled systems of FBSDER in whih the open set is notneessarily onvex but still smooth (this restrition is for ommodity and maybe removed), and the drift oe�ient of the forward equation is monotone in x,instead of Lipshitz. In this way, we generalize some results from [5℄ and [1℄.109



110 P. Marín-Rubio, J. RealIn this paper we give a probabilisti representation of the solution of a quasi-linear PDE system extending some results of those given in [5℄ and [1℄ on asystem of a fully oupled forward-bakward stohasti di�erential equationswith a re�eting term in the forward equation (FBSDER) and its relation witha system of quasi-linear partial di�erential equations, in short PDE. Preedingworks on this line were due to Y. Hu and to E. Pardoux and S. Zhang (f. [6℄).In our ase, the drift satis�es the monotoniity ondition introdued before,and the domain O is not neessarily onvex. Existene of solution under suhonditions was proved in a preedent paper by the authors (f. [3℄).In Setion 1 we start giving the suitable framework for the re�eted problemand reall a previous result whih will be used later on. In Setion 2, we statethe general framework for the study of a fully oupled FBSDER, and provide aprobabilisti interpretation for a system of quasi-linear PDE with homogeneousNeumann boundary ondition.1 Statement of the �re�eted� problemLet (Ω,F , P ) be a omplete probability spae, {Ft}t≥0 an inreasing and rightontinuous family of sub-σ-algebras of F suh that F0 ontains all the P -nullsets of F , and {Wt; t ≥ 0} an m-dimensional standard {Ft}-Wiener proess.Let O be an open onneted bounded subset of R
d given by O = {φ > 0},with φ ∈ C2(Rd), and suh that ∂O = {φ = 0}, with |∇φ(x)| = 1 for all x ∈ ∂O.Observe that in partiular φ, ∇φ and D2φ are bounded in Ō. Then there existsa onstant C0 > 0 suh that

2(x′ − x,∇φ(x)) + C0|x′ − x|2 ≥ 0, ∀x ∈ ∂O, ∀x′ ∈ Ō. (1)We are also given a �nal time T > 0, and two random funtions:
b : Ω × [0, T ]× Ō → R

d, σ : Ω × [0, T ]× Ō → R
d×m,suh that(i) b and σ are uniformly bounded;(ii) for all x ∈ Ō the proesses b(·, ·, x) and σ(·, ·, x) are {Ft}-progressivelymeasurable;(iii) for all t ∈ [0, T ] and a.s. ω, the funtion b(ω, t, ·) is ontinuous on Ō;(iv) there exist two onstants Lbx

∈ R and Lσx
≥ 0 suh that for all

t ∈ [0, T ] and all x, x′ ∈ Ō,
(x− x′, b(ω, t, x) − b(ω, t, x′)) ≤ Lbx

|x− x′|2, a.s.,

‖σ(ω, t, x) − σ(ω, t, x′)‖ ≤ Lσx
|x− x′|, a.s.,where | · | and ‖ · ‖ denote the usual Eulidean and trae norm for vetors andmatries respetively.From now on, we will omit the expliit dependene of the proesses on ω.



Probabilisti representation of PDE via FBSDER 111Consider the following problem:
Xt = x0 +

∫ t

0

b(s,Xs) ds+

∫ t

0

σ(s,Xs) dWs − kt, (2)
kt = −

∫ t

0

∇φ(Xs) d|k|s, |k|t =

∫ t

0

1{Xs∈∂O} d|k|s, t ∈ [0, T ], (3)where x0 ∈ Ō is given, and |k|t stands for the total variation of k on [0, t].De�nition 1 A strong solution to the above problem is a pair of {Ft}-adaptedand ontinuous proesses (X, k) de�ned on Ω × [0, T ], the �rst one with valuesin Ō, the seond one with values in R
d and paths of bounded variation in [0, T ],satisfying the equations (2)-(3) a.s. for all t ∈ [0, T ].Main result stated in [3℄, whih generalizes a result by Lions and Sznitman when

b is Lipshitz, is the following:Theorem 1 Under the assumptions (i)-(iv), for eah x0 ∈ Ō given thereexists a unique pair (X, k), strong solution of (2)-(3).2 Forward-Bakward Stohasti Di�erential Equations with Re�e-tion and representation of a PDE systemWe ontinue onsidering the omplete probability spae (Ω,F , P ), and the m-dimensional standard {Ft}-Wiener proess {Wt; t ≥ 0} given in Setion 1,but now we suppose that, for eah t ≥ 0, Ft oinides with the σ-algebra
σ(Ws; 0 ≤ s ≤ t) augmented with all the P -null sets of F .Let T > 0 be �xed, and onsider the open set O introdued in Setion 1.For eah integer l ≥ 1, we shall denote byM2

Ft
(0, T ; Rl) the Hilbert subspaeof L2(Ω × (0, T ); Rl) formed by those elements that are {Ft}-progressivelymeasurable, and we will write L2

Ft
(Ω;C([0, T ]; Rl)) to denote the spae of theelements of L2(Ω;C([0, T ]; Rl)) that are {Ft}-progressively measurable. Thus,

L2
Ft

(Ω;C([0, T ]; Rl)) is a Banah subspae of L2(Ω;C([0, T ]; Rl)).Similarly, we denote by M2
Ft

(0, T ; Ō) the omplete metri subspae of thespae M2
Ft

(0, T ; Rd) onstituted by the elements X ∈ M2
Ft

(0, T ; Rd) suh thata.e. t ∈ (0, T ), Xt ∈ Ō a.s.; we shall also use L2
Ft

(Ω;C([0, T ]; Ō)) to denote theomplete metri subspae of L2
Ft

(Ω;C([0, T ]; Rl)) formed by those elements Xin the last spae suh that a.s. Xt ∈ Ō for all t ∈ [0, T ]. Finally, we shall denoteby L2(Ω,FT ; Ō) the omplete metri subspae of L2(Ω,FT ; Rd) formed by the
FT -measurable random variables ξ ∈ L2(Ω; Rd) suh that a.s. ξ ∈ Ō.We are given four random funtions:
b : Ω × [0, T ]× Ō × R

n × R
n×m → R

d, f : Ω × [0, T ]× Ō × R
n × R

n×m → R
n,

σ : Ω × [0, T ]× Ō × R
n × R

n×m → R
d×m, h : Ω × Ō → R

n,suh that



112 P. Marín-Rubio, J. Real(i') b and σ are uniformly bounded;(ii') for all (x, y, z) ∈ Ō×R
n ×R

n×m the proesses b(·, x, y, z), f(·, x, y, z)and σ(·, x, y, z) are {Ft}-progressively measurable, and the random variable
h(·, x) is FT -measurable;(iii') for all (t, x, y, z) ∈ [0, T ] × Ō × R

n × R
n×m the funtions b(t, ·, y, z)and f(t, x, ·, z) are a.s. ontinuous on Ō and R

n respetively;(iv') there exist real onstants Lbx
and Lfy

, and nonnegative onstants
Lby

, Lbz
, Lfx

, Lfz
, Lσx

, Lσy
, Lσz

, Lh and l0 suh that for all t ∈ [0, T ], all
x, x′ ∈ Ō, all y, y′ ∈ R

n, all z, z′ ∈ R
n×m, and a.s.,

(x− x′, b(t, x, y, z) − b(t, x′, y, z)) ≤ Lbx
|x− x′|2,

|b(t, x, y, z) − b(t, x, y′, z′)| ≤ Lby
|y − y′| + Lbz

‖z − z′‖,

‖σ(t, x, y, z) − σ(t, x′, y′, z′)‖2 ≤ L2
σx
|x− x′|2 + L2

σy
|y − y′|2 + L2

σz
‖z − z′‖2,

(y − y′, f(t, x, y, z) − f(t, x, y′, z)) ≤ Lfy
|y − y′|2,

|f(t, x, y, z) − f(t, x′, y, z′)| ≤ Lfx
|x− x′| + Lfz

‖z − z′‖,
|f(t, x, y, z)| ≤ |f(t, x, 0, z)|+ l0(1 + |y|),

|h(x) − h(x′)| ≤ Lh|x− x′|;(v') E

∫ T

0

|f(t, 0, 0, 0)|2 dt+ E|h(0)|2 <∞.We want to study the following problem:
Xt = x0 +

∫ t

0

b(s,Xs, Ys, Zs) ds+

∫ t

0

σ(s,Xs, Ys, Zs) dWs − kt, (4)
Yt = h(XT ) +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

Zs dWs, (5)
kt = −

∫ t

0

∇φ(Xs) d|k|s, |k|t =

∫ t

0

1{Xs∈∂O} d|k|s, t ∈ [0, T ], (6)where x0 ∈ Ō is given.De�nition 2 A solution to the problem (4)-(6) is a set (X,Y, Z, k) of four
{Ft}-progressively measurable proesses de�ned on Ω × [0, T ], suh that X isontinuous with values in Ō, k is ontinuous with values in R

d and paths ofbounded variation in [0, T ], (Y, Z) ∈M2
Ft

(0, T ; Rn)×M2
Ft

(0, T ; Rn×m), and theequations (4)-(6) are satis�ed a.s. for all t ∈ [0, T ].For the resolution of the above fully oupled FBSDER, we will use the followingresult, that is a diret onsequene of Theorem 1:Corollary 2 Under the assumptions (i')-(iv'), if (Y, Z) ∈ M2
Ft

(0, T ; Rn) ×
M2

Ft
(0, T ; Rn×m) is �xed, there exists a unique pair (X, k) of {Ft}-progressivelymeasurable proesses de�ned on Ω×[0, T ], suh that X is ontinuous with values



Probabilisti representation of PDE via FBSDER 113in Ō, k is ontinuous with values in R
d and paths of bounded variation in [0, T ],and they satisfy a.s. for all t ∈ [0, T ] that

Xt = x0 +

∫ t

0

b(s,Xs, Ys, Zs) ds+

∫ t

0

σ(s,Xs, Ys, Zs) dWs − kt, (7)
kt = −

∫ t

0

∇φ(Xs) d|k|s, |k|t =

∫ t

0

1{Xs∈∂O} d|k|s. (8)We will also need the following well-known result (see for instane Pardoux'snotes at Geilo, 1996) for the bakward equation:Theorem 3 Under the assumptions (ii')-(v'), let be given X ∈ M2
Ft

(0, T ; Ō)and ξ ∈ L2(Ω,FT ; Ō). Then, there exists a unique pair (Y, Z) ∈M2
Ft

(0, T ; Rn)×
M2

Ft
(0, T ; Rn×m) suh that

Yt = h(ξ) +

∫ T

t

f(s,Xs, Ys, Zs) ds−
∫ T

t

Zs dWs, (9)a.s. for all t ∈ [0, T ]. Moreover, we have that Y ∈ L2
Ft

(Ω;C([0, T ]; Rn)).Using the two results above, it is not di�ult to prove existene and uniquenessof solution of problem (4)-(6) if T is small enough. More exatly, we have thefollowing result, whose proof we will omit for the sake of brevity:Theorem 4 Suppose the assumptions (i')-(v'), and that moreover σ does notdepend on z. Then, there exists a T∗ > 0 suh that if T ≤ T∗, the appliation
Φ de�ned from

L2
Ft

(Ω;C([0, T ]; Ō)) × L2
Ft

(Ω;C([0, T ]; Rn)) ×M2
Ft

(0, T ; Rn×m)on itself by Φ(X,Y, Z) = (X̄, Ȳ , Z̄), with (X̄, Ȳ , Z̄) the unique solution of
X̄t = x0 +

∫ t

0

b(s, X̄s, Ys, Zs) ds+

∫ t

0

σ(s, X̄s, Ys) dWs − k̄t,

k̄t = −
∫ t

0

∇φ(X̄s) d|k̄|s, |k̄|t =

∫ t

0

1{X̄s∈∂O} d|k̄|s,

Ȳt = h(X̄T ) +

∫ T

t

f(s, X̄s, Ȳs, Z̄s) ds−
∫ T

t

Z̄s dWs,a.s. for all t ∈ [0, T ], is a ontration. So, if T ≤ T∗, the problem (4)-(6) has aunique solution.For the resolution of the above fully oupled FBSDER for any T > 0, wefollow [5℄ and [1℄.We shall denote by Γ1 the mapping
Γ1 : M2

Ft
(0, T ; Rn) ×M2

Ft
(0, T ; Rn×m) →M2

Ft
(0, T ; Rn) ×M2

Ft
(0, T ; Rn×m),



114 P. Marín-Rubio, J. Realde�ned by Γ1(Y, Z) = (Ȳ , Z̄), with (X̄, Ȳ , Z̄, k̄) the unique solution of
X̄t = x0 +

∫ t

0

b(s, X̄s, Ys, Zs) ds+

∫ t

0

σ(s, X̄s, Ys, Zs) dWs − k̄t,

k̄t = −
∫ t

0

∇φ(X̄s) d|k̄|s, |k̄|t =

∫ t

0

1{X̄s∈∂O} d|k̄|s,

Ȳt = h(X̄T ) +

∫ T

t

f(s, X̄s, Ȳs, Z̄s) ds−
∫ T

t

Z̄s dWs,a.s. for all t ∈ [0, T ].We will denote by Γ2 the mapping
Γ2 : M2

Ft
(0, T ; Ō) × L2(Ω,FT ; Ō) →M2

Ft
(0, T ; Ō) × L2(Ω,FT ; Ō),de�ned by Γ2(X, ξ) = (X̄, X̄T ), with X̄ suh that (X̄, Ȳ , Z̄, k̄) is the uniquesolution of̄

Yt = h(ξ) +

∫ T

t

f(s,Xs, Ȳs, Z̄s) ds−
∫ T

t

Z̄s dWs,

X̄t = x0 +

∫ t

0

b(s, X̄s, Ȳs, Z̄s) ds+

∫ t

0

σ(s, X̄s, Ȳs, Z̄s) dWs − k̄t,

k̄t = −
∫ t

0

∇φ(X̄s) d|k̄|s, |k̄|t =

∫ t

0

1{X̄s∈∂O} d|k̄|s,a.s. for all t ∈ [0, T ].By Corollary 2 and Theorem 3, under the onditions (i')-(v') the maps
Γ1 and Γ2 are well de�ned. Also, it is lear that to solve the problem (4)-(6) is equivalent to �nding a �xed point for Γ1 or Γ2. Thus, in order toprove existene and uniqueness of solution to problem (4)-(6), it is enoughto �nd a Hilbert norm in M2

Ft
(0, T ; Rn) ×M2

Ft
(0, T ; Rn×m), suh that Γ1 is aontration for this norm. Analogously, it is enough to �nd a omplete metriin M2

Ft
(0, T ; Ō) × L2(Ω,FT ; Ō), for whih the map Γ2 is a ontration.From now on, for l ≥ 1 integer, and λ ∈ R, we will denote by ‖ · ‖λ the normon M2

Ft
(0, T ; Rl), equivalent to the usual one, given by

‖ζ‖2
λ = E

∫ T

0

e−λs|ζ|2ds.For the sake of brevity on these notes we omit here the estimates onthe di�erene of two solutions (X, k) and (X ′, k′) assoiated respetively toproesses (Y, Z) and (Y ′, Z ′), or the inverse. If we ombine these estimatesin the two possible orders, to obtain estimations for Γ1 and Γ2, we have twopossibilities.On the one hand, one an searh for a λ ∈ R suh that, with the norm on
M2

Ft
(0, T ; Rn) ×M2

Ft
(0, T ; Rn×m) de�ned by

‖(Y, Z)‖2
λ = ‖Y ‖2

λ + ‖Z‖2
λ,



Probabilisti representation of PDE via FBSDER 115the mapping Γ1 is a ontration.On the other hand, one an searh for a λ suh that, with the metrion M2
Ft

(0, T ; Ō) × L2(Ω,FT ; Ō) indued by the norm on M2
Ft

(0, T ; Rd) ×
L2(Ω,FT ; Rd) de�ned by

‖(X, ξ)‖2
λ = exp(−λT )E|ξ|2 + λ1‖X‖2

λ,the mapping Γ2 is a ontration.Then, one obtains existene and uniqueness for (4)-(6) that generalize to bmonotone and O not neessarily onvex some of the results in [5℄ and [1℄.For example, existene and uniqueness of solution for (4)-(6) hold when itsoupling is weak, that is, when dependene of b and σ respet to their variables yand z is small, or, analogously for the bakward equation, when the dependeneof f and h with respet to x is small. More exatly, we have:Theorem 5 Let onditions (i')-(v') hold. Then there exists an ε0 > 0depending on Lσx
, Lbx

, Lfx
, Lfy

, Lfz
, Lh and T suh that if Lby

, Lbz
, Lσy

,
Lσz

∈ [0, ε0), then there exists λ suh that Γ1 is a ontration, and thus thereexists a unique solution to (4)-(6). On the other hand, the same thesis holdsfor Γ2, hanging roles of Lby
, Lbz

, Lσy
, and Lσz

, with Lh and Lfx
.Also, using Γ2, and reasoning as in [1℄ or [2℄, one an proveTheorem 6 Let onditions (i')-(v') hold, and suppose one of the followingtwo onditions:a) If h is independent of x, there exists α ∈ (0, 1) suh that µ(α, T )Lfx

C3 < λ1.b) If h does depend on x, there exists α ∈ (k1L
2
σz
L2

h, 1) suh that µ(α, T )L2
h < 1.Then, there exists a unique solution for (4)-(6).Remark 1 Reasoning as in [2℄, one an make some (tehnial) improvements.Namely, it is possible to onsider that σ an depend on z, but introduingompatibility onditions. On other hand, if Lfy

is negative enough, then (4)-(6)has a unique solution for all �nal time T > 0.Finally, as in [5℄, and in [1℄, with the previous results on the problem (4)-(6), one an prove existene of visosity solution to a homogeneous Neumannproblem for an assoiated system of quasi-linear paraboli PDE. We brie�yreall here how this an be done.For eah (t, x) ∈ [0, T ]× Ō, onsider the problem
Xt,x

s = x+

∫ s

t

b(r,Xt,x
r , Y t,x

r , Zt,x
r )dr +

∫ s

t

σ(r,Xt,x
r , Y t,x

r , Zt,x
r )dWr − kt,x

s ,

Y t,x
s = h(Xt,x

T ) +

∫ T

s

f(r,Xt,x
r , Y t,x

r , Zt,x
r )dr −

∫ T

s

Zt,x
r dWr,

kt,x
s =−

∫ s

t

∇φ(Xt,x
r ) d|kt,x|r, |kt,x|s =

∫ s

t

1{Xt,x
r ∈∂O} d|kt,x|r, s ∈ [t, T ].



116 P. Marín-Rubio, J. RealIt is immediate to extend to this family of problems the previous theorems onexistene and uniqueness of solution for problem (4)-(6).To establish the relation with PDE, we assume now that b, σ, f and h aredeterministi, moreover, we suppose that σ does not depend on z. Also, forsimpliity, we onsider n = 1. For short, we introdue the following notation:
(Lϕ)(s, x, y, z) =

1

2

d∑

i,j=1

(σσ∗)ij(s, x, y)
∂2ϕ

∂xi∂xj
(s, x) + (b(s, x, y, z),∇ϕ(s, x)),and onsider the homogeneous Neumann problem

∂u

∂t
(t, x) + (Lu)(t, x, u(t, x), (∇u(t, x))∗σ(t, x, u(t, x)))

+f(t, x, u(t, x), (∇u(t, x))∗σ(t, x, u(t, x))) = 0, (t, x) ∈ (0, T )×O,
∂u

∂n
(t, x) = 0, (t, x) ∈ (0, T )× ∂O,

u(T, x) = h(x), x ∈ O. (10)Then, we have, for example, the following result, that an be proved as Theorem3.8 in [1℄, and atually an also be adapted to deal with a system.Theorem 7 Under the assumptions of Theorem 6, suppose, moreover, n = 1.Suppose also that b, σ, f and h are deterministi, ontinuous in all its variables,and σ does not depend on z. Then, the funtion u de�ned by u(t, x) = Y x,t
t ,

(t, x) ∈ [0, T ]× Ō, is a visosity solution of (10).Referenes[1℄ J. Ma and J. Cvitani¢, Re�eted forward-bakward SDEs and obstaleproblems with boundary onditions, J. Appl. Math. Stohasti Anal. 14(2)(2001), 113�138.[2℄ J. Ma and J. Yong, Forward-Bakward Stohasti Di�erential Equationsand Their Appliations, Vol. 1702 of Leture Notes in Mathematis,Springer-Verlag, Berlin, 1999.[3℄ P. Marín-Rubio and J. Real, Some results on stohasti di�erentialequations with re�eting boundary onditions, J. Theoret. Prob. 17(3)(2004), 705�716.[4℄ E. Pardoux and S. G. Peng, Adapted solution of a bakward stohastidi�erential equation, Systems Control Lett. 14(1) (1990), 55�61.[5℄ E. Pardoux and S. Tang, Forward-bakward stohasti di�erentialequations and quasilinear paraboli PDEs, Probab. Theory Related Fields114(2) (1999), 123�150.[6℄ E. Pardoux and S. Zhang, Generalized BSDEs and nonlinear Neumannboundary value problems, Probab. Theory Related Fields 110(4) (1998),535�558.


