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On the relation between two different

concepts of pullback attractors for

non-autonomous dynamical systems

Pedro Maŕın–Rubio a,∗, José Real a

aDpto. de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla,
Apdo. de Correos 1160, 41080 Sevilla, Spain

Abstract

For an abstract dynamical system, we establish under minimal assumptions the
existence of D −attractor, i.e. a pullback attractor for a given class D of families
of time varying subsets of the phase space. We relate this concept with the usual
attractor of fixed bounded sets, pointing out its usefulness in order to ensure the
existence of this last attractor in particular situations. Moreover, we prove that
under a simple assumption these two notions of attractors generate in fact the same
object. This is then applied to a Navier-Stokes model, improving some previous
results on attractor theory.

Key words: Pullback attractors, non-autonomous dynamical systems, tempered
sets.

1 Introduction

Much attention has been paid in the last few decades to attractor theory
with the aim of going further in the study of complex dynamical systems.
Although much information can be obtained with it, such as finite fractal
and Hausdorff dimensions, determining modes, inertial manifolds and finite-
dimensionality behaviour among others (see [13] and the references therein),
a general modelization involves additional difficulties, even in the starting
concepts.
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Namely, this is the case when the model is non-autonomous. Stability, bifur-
cation, and even the concept of attractor need to be revised. Indeed, after the
uniform attractor of Chepyzhov and Vishik, only valid for some situations, the
notions of pullback and forward attractors seem to be general ways to extend
results on this direction (see [5] for a comparison of these two last concepts).

Several branches are then developed. On the one hand, there exists the pull-
back attractor of “fixed” bounded sets as the most usual option. See for in-
stance [9, Section 1] for a brief description on deterministic pullback attractors
for non-autonomous systems; for this reason we will denote this attractor by
ACDF (the attractor of Crauel, Debussche, and Flandoli).

On the other hand, several authors use the concept of attraction in a universe
D not only composed by “fixed” sets, but also moving in time, which usually
appears in applications and is defined in terms of a tempered condition. We
will denote A D the attractor in this case.

Nevertheless, some features of attractors can be circumvented for any of the
two options, notwithstanding the time dependence, such as the invariance
(adapting the concept in a suitable sense). A distinguishing matter is why the
attractor (a family of time dependent sets) has to be unique. It is obvious,
whatever of the above two cited definitions one chooses, that it is minimal, and
that is the only way to talk about uniqueness when dealing with a universe of
autonomous bounded sets, since the attractor is not an object of the universe
and cannot be attracted by itself. On the other hand, for a universe of time-
dependent families, the uniqueness holds easily as for the global attractor of an
autonomous dynamical system, being the attractor a member of this universe
(and therefore attracted by itself). So it is not absolutely clear which of the
two options is better.

A first attempt to consider the topic of whether or not to use autonomous
bounded sets as universe is the paper by Crauel and Flandoli [8]. There they
develop a theory for random attractors and deal with some problems where
the deterministic equations have added terms that represent additive or multi-
plicative noise. In principle, they develop (in Section 3) concepts for a universe
that may change with the fiber ω of the realization of the noise, and define
and prove nice properties for the omega-limit sets. However, they announce in
Remark 3.10 (ii) that they are unable to obtain more than attraction of fixed
bounded sets, so they quit this framework and continue with the standard uni-
verse of autonomous bounded sets. They did not remark that the estimates
with exponential decay w.r.t. initial data allow to extend the universe to a
tempered one with the same properties (the tempered condition is related to
time and ω through the family of measure preserving transformations {θt}).

The natural continuation of the above-mentioned paper was published three
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years later. In [9], Crauel, Debussche, and Flandoli kept the same option of
a universe of autonomous bounded sets. For the other option in the random
case, see for instance [10, p.385] for an early comment.

The question in this random framework goes much further with the very nice
paper [7] by Crauel. There, the author continues with the concept of random
attractor w.r.t. the universe of autonomous bounded sets (or the universe of
autonomous compact sets). Even without ergodicity of the flow, he is able to
prove that random attractors (i.e. compact random sets, strictly invariant, and
attracting autonomous bounded sets) that attract compact non-random sets
are almost surely the same object, and one can choose a non-random compact
set K such that P(A ⊂ ΩK) ≥ 1 − ε, where ΩK denotes the omega-limit set
of K, and with ε as small as desired. When the flow is ergodic the result can
be improved and the random attractor satisfies A = ΩD, both for attractors
of non-random bounded or non-random compact sets.

This seems to give a definitive answer to the random case, since an attrac-
tor with nice properties in any universe bigger than that of the autonomous
bounded sets is uniquely determined by the attraction of non-random compact
(even more restrictive than bounded) sets. However, there are some inconve-
niences even in this setting. The results use a version of Poincaré’s recurrence
theorem, so in the end they make use of the probability structure behind the
problem. The second obstacle is that the existence of a random compact at-
tracting set is an assumption in the result, and sometimes the result itself of
existence of a random compact set that attracts is the open question in ap-
plications. So, to circumvent these matters, some authors are directly focused
on the tempered framework (e.g. cf. [1,6]).

The goal of this note is two-fold: on the one hand, we aim to point out that
there exist situations where real difficulties appear in the framework related
to the universe of fixed bounded sets, and this requires, to be solved, to apply
the tempered tools. Examples in this sense are provided. So, this bigger frame-
work is not for the sake of generality. On the other hand, we aim to establish
and answer the natural question that arises now: can the resulting families
corresponding to these two notions of attraction be the same? We show that
in fact they are the same under a suitable assumption.

2 Existence of pullback attractor for fixed bounded sets

We combine in this section some results in the literature, see for instance [14],
about existence of attractors for fixed bounded sets, leading to a sufficient
condition to apply one result of [9], passing through a condition stated in
terms of a family of time-dependent sets.
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To avoid confusion among the two frameworks of this note, since conditions
are similar, we establish statements with explicit references to the suitable
definitions on each case.

Consider a metric space (X, d). As usual, let us denote by dist(C1, C2) the
Hausdorff semidistance between C1 and C2, i.e.

dist(C1, C2) = sup
x∈C1

inf
y∈C2

d(x, y) for C1, C2 ⊂ X.

Suppose given a process in X, i.e. a family of maps U(t, τ) : X → X for
t ≥ τ ∈ R, such that

U(t, τ) = U(t, r)U(r, τ) ∀ τ ≤ r ≤ t.

Let us denote P(X) the family of all nonempty subsets of X, and consider
a family of nonempty sets D̂0 = {D0(t) : t ∈ R} ⊂ P(X) [observe that
we do not require any additional condition on these sets as compactness or
boundedness].

Definition 1 We say that the process U is D̂0-asymptotically compact if for
any t ∈ R and any sequences τn → −∞ and xn ∈ D0(τn), the sequence
U(t, τn)xn, with τn ≤ t, is precompact in X.

Denote

Λ(D̂0, t) :=
⋂

s≤t

⋃

τ ≤s

U(t, τ)D0(τ)
X

∀ t ∈ R. (1)

Proposition 2 If the process U(t, τ) is D̂0-asymptotically compact, then the
set Λ(D̂0, t) given by (1) is a nonempty compact subset of X for all t ∈ R.

Proof. Consider fixed a value t ∈ R.

Take an arbitrary sequence τn → −∞, and for each τn ≤ t choose xn ∈ D0(τn),
then, there exist two subsequences τµ and xµ, and one point y ∈ X such that

U(t, τµ)xµ converges to y in X. Therefore, y belongs to Λ(D̂0, t), which is
therefore nonempty.

On the other hand, it is clear by definition that Λ(D̂0, t) is closed, so in order
to show that it is compact, it is enough to prove that it is relatively compact
in X. Consider a sequence {yn} ⊂ Λ(D̂0, t), we have to prove that it is possible
to extract a subsequence converging in X.

By definition of Λ(D̂0, t), for each integer n there exist τn ≤ t − n and xn ∈
D0(τn) such that d(yn, U(t, τn)xn) ≤ 1/n. As long as U is D̂0-asymptotically
compact, we can extract from {U(t, τn)xn} a subsequence converging in X.
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Therefore, it is clear that the corresponding subsequence of {yn} will also
converge in X to the same point.

The following definition contains what seem to be minimal requirements on
continuity for a process in order to study its asymptotic behaviour (cf. [12,14]).

Definition 3 We say that the process U is strong-weak continuous if for any
pair t ≥ τ ∈ R, the map U(t, τ) is continuous from X with the strong topology
into X with the weak topology.

Proposition 4 Suppose that the process U is D̂0-asymptotically compact and
strong-weak continuous, then the family of sets {Λ(D̂0, t) : t ∈ R}, defined
by (1), is invariant for U, i.e.

Λ(D̂0, t) = U(t, τ)Λ(D̂0, τ) ∀ τ ≤ t.

Proof. Fix a pair of values τ ≤ t.

If y ∈ Λ(D̂0, τ), then there exist sequences τn → −∞ and xn ∈ D0(τn), such
that U(τ, τn)xn → y in X when n → ∞. Then,

U(t, τn)xn = U(t, τ)U(τ, τn)xn ⇀ U(t, τ)y weakly in X.

On the other hand, from the sequence {U(t, τn)xn} we can extract a sub-
sequence converging strongly in X, so the limit has to be U(t, τ)y. Thus,
U(t, τ)y ∈ Λ(D̂0, t). We have proved the inclusion U(t, τ)Λ(D̂0, τ) ⊂ Λ(D̂0, t).

For the other inclusion, consider an element z ∈ Λ(D̂0, t). Then there exist
two sequences τn → −∞ and xn ∈ D0(τn), such that U(t, τn)xn → z in X
when n → ∞. For each τn ≤ τ it holds that

U(t, τn)xn = U(t, τ)U(τ, τn)xn. (2)

Taking into account that U is D̂0-asymptotically compact, we can extract a
subsequence {U(τ, τµ)xµ} converging in X to one point y, and by construction

it belongs to Λ(D̂0, τ). By (2) and being U strong-weak continuous, we have
that U(t, τµ)xµ ⇀ U(t, τ)y, so z = U(t, τ)y. This proves the required inclusion

Λ(D̂0, t) ⊂ U(t, τ)Λ(D̂0, τ).

Definition 5 We say that the family of sets D̂0 = {D0(t) : t ∈ R} is pullback-
absorbing for U if for every t ∈ R and every bounded subset B of X, there
exists τ(t, B) ≤ t such that

U(t, τ)B ⊂ D0(t) ∀ τ ≤ τ(t, B).

5
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Proposition 6 If the family of sets D̂0 = {D0(t) : t ∈ R} is pullback-
absorbing for U and the process U is D̂0-asymptotically compact, then for
every t ∈ R and every bounded set B of X, it holds

lim
τ → − ∞

dist(U(t, τ)B, Λ(D̂0, t)) = 0. (3)

Proof. We proceed by a contradiction argument. Suppose that there exist
t ∈ R and a bounded set B of X such that (3) fails. Then, there exist ε > 0
and two sequences τn → −∞ and {xn} ⊂ B such that

d(U(t, τn)xn, Λ(D̂0, t)) ≥ ε ∀ n ≥ 1. (4)

For each integer k ≥ 1, define tk = t − k. As D̂0 is pullback-absorbing, for
each k ≥ 1 there exists a value τnk

in the sequence {τn} such that

τnk
≤ tk and U(tk, τnk

)B ⊂ D0(tk).

In particular,

lim
k→ ∞

τnk
= −∞ and yk := U(tk, τnk

)xnk
∈ D0(tk).

Therefore, the sequence

U(t, tk)yk = U(t, τnk
)xnk

is precompact, and we can conclude the existence of subsequences (τnµ , xnµ)
from (τnk

, xnk
) and of a point z ∈ X such that

lim
µ→ ∞ U(t, tµ)yµ = lim

µ→ ∞ U(t, τnµ)xnµ = z.

Since U(t, tµ)yµ converges to z, z ∈ Λ(D̂0, t), and so U(t, τnµ)xnµ converges to
z, which is a contradiction with (4).

As a consequence of the above results, we can establish easily a sufficient
condition in order to ensure the existence of the global pullback attractor
{ ACDF(t)}. But firstly, for clarity in our comparison, let us recall the original
result as was formulated in [9, Th.1.1, p.311].

Theorem 7 Assume that U(t, s) : X → X is continuous for all s ≤ t. Given
t ∈ R, assume that there exists a compact attracting set K(t). Then the set

ACDF(t) =
⋃

B bounded
Λ(B, t)

X
, (5)

6
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is a nonempty compact subset of K(t). It attracts all bounded sets from −∞ :
for all B ⊂ X

lim
s→ − ∞

dist(U(t, s)B, ACDF(t)) = 0.

Moreover, it is the minimal closed set with this property: if Ã(t) is a closed
set that attracts all bounded sets from −∞, then ACDF(t) ⊂ Ã(t). Finally,
ACDF(τ) is also well defined for all τ > t and satisfies the invariance property

U(τ, r)ACDF(r) = ACDF(τ), ∀τ ≥ r ≥ t.

For these reasons, we say that ACDF(t) is the global attractor of the dynamical
system U(t, s) at time t.

The nice thing here is that our conditions on the family D̂0 do not require
compactness nor boundedness as in [9] is asked for the family {K(t)}.

Remark 8 Theorem 7 can also be obtained under the assumption of a pro-
cess strong-weak continuous instead of continuous, provided the existence of a
family {K(t)} with each K(t) a compact (pullback) attracting set at time t.
Indeed, this generalization can be proved similarly to propositions 2, 4 and 6.

The only difference is that the assumption in [9] of existence of a compact
attracting set K(t) at one single time t is enough –jointly with the continuity of
the process– to ensure (cf. [9, Remark 1.1]) the existence of compact attracting
sets for all future: namely take K(r) = U(r, t)K(t) for r ≥ t. For a strong-
weak continuous process this is not so. But in fact we have a family of compact
attracting sets already built: {Λ(D̂0, r) : r ∈ R}.

Corollary 9 Consider a family D̂0 = {D0(t) : t ∈ R} of nonempty subsets
of X and a process U that is D̂0-asymptotically compact and strong-weak con-
tinuous, and assume also that D̂0 is pullback-absorbing for U. Then, it exists
the attractor of Crauel, Debussche and Flandoli ACDF = { ACDF(t) : t ∈ R}.

Moreover, the following relation holds:

ACDF(t) ⊂ Λ(D̂0, t) ∀t ∈ R. (6)

Proof. Firstly, observe that Theorem 7 is also valid for a strong-weak contin-
uous process U (see Remark 8). In order to rearrange that proof and obtain
the results, we only need a family {K(t) : t ∈ R} of compact pullback at-
tracting sets. It is enough to take as K(t) = Λ(D̂0, t) thanks to Proposition 2
and Proposition 6.

Finally, the relation (6) is another consequence of Theorem 7 since ACDF is
minimal among all families of closed sets attracting bounded sets.

7
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Remark 10 Properties of Λ(D̂0, t) proved in propositions 2, 4 and 6 point
out that it is an attractor. However, since the property of pullback absorption
is only for bounded sets, the most we can expect for {Λ(D̂0, t)} is to be an
attractor of fixed bounded sets. But ACDF is already the smallest family with
such property. Therefore, the best we can expect in (6) is to have not only an
inclusion but an equality.

The expectation of obtaining in all cases an equality in (6) instead of an strict
inclusion is vain. Consider the following example.

Example 11 Assume that f = f(t, x) : R2 → R is a continuous function,
globally lipschitz w.r.t. x, and such that f(t, x) = −x if |x| ≤ e−t. Then, for
the process U(t, τ) defined on R by

U(t, τ)x0 = x(t; τ, x0), x0 ∈ R, t ≥ τ,

where x(·; τ, x0) is the unique solution of the (PC) ẋ = f(t, x) with x(τ) = x0,
one has that ACDF(t) = {0} for all t ∈ R.

On the other hand, if we take D̃0 = {D0(t) : t ∈ R} with D0(t) = [−e−t, e−t]
for all t ∈ R, one can check that U(t, τ)D0(τ) = D0(t). So,

Λ(D̃0, t) = D0(t) = [−e−t, e−t], ∀t ∈ R. (7)

Proposition 12 Under the assumptions of Corollary 9, if there exists a value
T ∈ R such that

⋃
t≤T D0(t) is bounded, then ACDF(t) = Λ(D̂0, t) for all t ≤ T.

Proof. Fix any t ≤ T. By Corollary 9 it remains to prove the inclusion
ACDF(t) ⊃ Λ(D̂0, t).

By definition (1)

Λ(D̂0, t) :=
⋂

s≤t

⋃

τ ≤s

U(t, τ)D0(τ)
X

⊂
⋂

s≤t

⋃

τ ≤s

U(t, τ)B0

X
= Λ(B0, t),

where we have denoted B0 =
⋃

τ ≤T D0(τ), that is bounded by assumption.
Now, by (5) the result is clear.

3 Pullback attractors for families of sets depending on time

In this section we establish the basic result about the existence of pullback
attractor, close to that in [3] (see also [4]), for the case where the attracted
universe is not composed of fixed bounded sets but of families of sets depending
on time.
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Let be given D a nonempty class of sets parameterized in time D̂ = {D(t) :
t ∈ R} ⊂ P(X).

Definition 13 The process U is said to be pullback D −asymptotically compact
if for any t ∈ R, any D̂ ∈ D, any sequence τn → −∞, and any sequence
xn ∈ D(τn), the sequence {U(t, τn)xn} is relatively compact in X.

Remark 14 Observe that the pullback D −asymptotic compactness above in
Definition 13 is w.r.t. a class of families (D), while the D̂0−asymptotic com-
pactness in the sense of Definition 1 corresponds to a single family (D̂0).

The property given in Definition 13 is enough to prove the following result,
whose proof is analogous to [3, Prop.12] combined with some ideas used in
Section 2:

Proposition 15 Let us assume that the process U is strong-weak continuous,
pullback D −asymptotically compact. For each D̂ ∈ D, the set Λ(D̂, t) defined
by (1) is a non-empty compact subset of X, invariant for U, that attracts D̂
in the pullback sense, i.e.:

lim
τ → − ∞

dist(U(t, τ)D(τ), Λ(D̂, t)) = 0.

Definition 16 It is said that D̂0 = {D0(t) : t ∈ R} ∈ D is pullback D −absorbing
for the process U if for any t ∈ R and any D̂ ∈ D, there exists a τ0(t, D̂) ≤ t
such that

U(t, τ)D(τ) ⊂ D0(t) for all τ ≤ τ0(t, D̂).

Remark 17 Observe again that by the notation no possible confusion arises
with the property given in Definition 3.

Joining the concepts given in Definitions 13 and 16 we have the following
result (whose proof is analogous to [3, Th.7] combined with some ideas used
in Section 2):

Theorem 18 Let us suppose that U is a strong-weak continuous process and it
is pullback D −asymptotically compact, and that D̂0 = {D0(t) : t ∈ R} ∈ D is
a family of pullback D −absorbing sets for U. Then, the family A D = { A D(t) :
t ∈ R} ⊂ P(X) defined by

A D(t) = Λ(D̂0, t), t ∈ R, (8)

has the following properties:

(1) the set A D(t) is compact for any t ∈ R,
(2) A D is pullback D −attracting, i.e.

lim
τ → − ∞

dist(U(t, τ)D(τ), A D(t)) = 0 for all D̂ ∈ D,

9
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(3) A D is invariant, i.e. U(t, τ)A D(τ) = A D(t) for all τ ≤ t,
(4) and

A D(t) =
⋃

D̂∈D
Λ(D̂, t)

X

for t ∈ R.

The family A D, called the global pullback D −attractor for the process U, is
minimal in the sense that if Ĉ = {C(t) : t ∈ R} ⊂ P(X) is a family of
closed sets such that

lim
τ → − ∞

dist(U(t, τ)B(τ), C(t)) = 0,

then A D(t) ⊂ C(t).

Remark 19 If we assume that D0(t) is closed for all t ∈ R, and the family
D is inclusion-closed (i.e. if D̂ ∈ D, and D̂′ = {D′(t) : t ∈ R} ⊂ P(X)
with D′(t) ⊂ D(t) for all t, then D̂′ ∈ D), then the pullback D −attractor A D
belongs to D, and it is the only family in D satisfying properties (1)–(3) above.

The following results give a comparison of the two introduced attractors.

Corollary 20 Under the assumptions of Theorem 18, if the universe D con-
tains all bounded sets of X, then both attractors, ACDF and A D, exist, and the
following relation holds:

ACDF(t) ⊂ A D(t) ∀t ∈ R.

Proof. Apply Theorem 18 and Corollary 9.

Corollary 21 Under the assumptions of Theorem 18, if the universe D con-
tains all bounded sets of X, and the family D̂0 satisfies for some T ∈ R that⋃

t≤T D0(t) is bounded, then ACDF(t) = A D(t) for all t ≤ T.

Proof. This is a particular case of Proposition 12.

Remark 22 (i) When D is the universe of all constant bounded subsets of
X, the existence of A D implies the existence of ACDF, and both are equal:
ACDF(t) = A D(t) for all t ∈ R.

However, the existence of ACDF does not necessarily imply the existence of A D
defined by (8), because it may happen that D̂0 6∈ D. This is in fact the situation
in many cases in applications where the sets D0(t) do depend effectively on t,
as we can see in the example in Section 4.

(ii) As observed in the Introduction, in a random framework an analogous
question was addressed and solved by Crauel (cf. [7, Cor.5.5 and Cor.5.8]),
but without any special additional requirement on the sets or the universe. The

10
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proofs rely on the use of some probabilistic arguments, such as the Poincaré’s
recurrence theorem.

In the deterministic non-autonomous framework the situation is different. In
Example 11, if one takes as D the universe of all constant bounded subsets of
R and the family D̂0 defined by (7), one has that

ACDF(t) = {0}, A D(t) = [−e−t, e−t], ∀t ∈ R.

4 An application: non-autonomous 2D-Navier-Stokes equations

Besides the abstract setting, the applications involve an election of the universe
for the dynamical system on each case. This is usually chosen through the
estimates for the problem, and finally leads to a tempered condition –using
a suitable function– on the radius of the absorbing balls or whatever other
object relevant for the global dynamic.

We state an example to illustrate how the simplest universe of fixed bounded
sets can be amplified in these situations to a tempered universe, but still fulfill-
ing the conditions in Corollary 21. Thus, the global attractor of fixed bounded
sets in fact will attract more objects: those of the new tempered universe.

The dynamical system associated to a non-autonomous 2D-Navier-Stokes prob-
lem in bounded and even in some unbounded domains was proved to have a
global pullback attractor in [2] and [3] respectively. Let us recall briefly the
main points we are interested in (we refer for a more detailed exposition to
the papers cited above).

Consider the following problem:





∂u

∂t
− ν∆u +

∑2
i=1 ui

∂u

∂xi

= f(t) − ∇p in (τ, +∞) × O,

div u = 0 in (τ, +∞) × O,

u = 0 on (τ, +∞) × ∂O,

u(τ, x) = u0(x), x ∈ O,

(9)

with the standard notation, and where O ⊂ R2 is an open set with boundary
∂O. We do not suppose that Γ is regular, and O is not necessarily bounded,
but satisfies a Poincaré inequality, i.e., there exists λ1 > 0 such that

∫

O
|φ|2dx ≤ 1

λ1

∫

O
| ∇φ|2dx, for all φ ∈ H1

0 (O).

11
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Assume also the standard notation for the spaces V, H and V (see [13]).

In [3] the authors prove that the problem above generates a strong-weak con-
tinuous process in H (even more than this, see [3, Prop.16]), and in [3, Th.17]
they prove that if

∫ t

− ∞
eσs‖f(s)‖2

∗ds < +∞ for all t ∈ R,

(where σ = νλ1) then there exists the global pullback D −attractor, where D
is the universe (the class) of all families D̂ = {D(t) : t ∈ R} ⊂ P(H) such
that D(t) ⊂ B(0, r

D̂
(t)) for some function r

D̂
: R → (0, +∞) satisfying the

tempered condition limt→ − ∞ eσtr2(t) = 0.

Indeed, the condition to apply Theorem 18 here is to consider the absorbing
family D̂0 = {D0(t) : t ∈ R}, where D0(t) = {v ∈ H : |v| ≤ Rσ(t)} with
the positive value Rσ(t) given by (Rσ(t))2 = e−σt

ν

∫ t
− ∞ eσs‖f(s)‖2

∗ds + 1.

Actually the definition of a single family or of a class of families such that
the process has “good” asymptotic properties is obtained from the estimates
of the decay of the solutions. The point is that if one aims to construct the
attractor ACDF, it is unclear in this situation how to proceed keeping only
with fixed bounded sets, but clearer using Corollary 9. Moreover, once we are
involved in this framework, with the same effort (applying Theorem 18) we
may obtain the attractor A D, which in principle is a bigger family. But the
interesting point is that if these two families are the same, what one really
obtains is that the usual concept of attractor, i.e. ACDF, in fact attracts in a
richer universe.

Proposition 23 Under the notation and assumptions above, if there exists a
value T ∈ R such that

sup
t≤T

Rσ(t) < +∞, (10)

then the following equality holds:

ACDF(t) = A D(t) ∀t ∈ R,

where ACDF is the attractor of fixed bounded sets for the dynamic generated
by (9) and A D is the global pullback D −attractor.

Remark 24 (i) It is not difficult to check that a sufficient condition for (10)
is that f ∈ L∞(−∞, T ; V ∗).

(ii) An analogous result can be obtained for the delay cases stated in [2] and
[11].
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Conclusions

It is clear from applications that in order to establish the existence of (pull-
back) attractors of bounded sets for the dynamical system associated to one
problem, it is sometimes useful to go up to a bigger framework, replacing
the universe of autonomous bounded sets by a universe of families of time-
depending sets. This more general concept of D −attractor is better adapted
to different situations, and easier to obtain, even when the existence of the
usual attractor is unclear.

In examples, this D −attractor is usually related to a tempered universe, i.e.
where the families of time-depending sets are given by a tempered condition
on their growth in time. Moreover, it usually happens that the universe of
autonomous bounded sets is a subset of the tempered universe.

Therefore, the two concepts of attractor, respectively ACDF and A D, are usu-
ally related through the inclusion ACDF ⊂ A D. More precisely, the existence
of A D provides a sufficient condition that ensures the existence of ACDF. Al-
though the cases of an ODE or a PDE in a bounded domain do not usually
require this way of proceeding, in other situations where compactness of the
(semi-)process does not hold or is unknown, this approach is essential, a fact
that we aimed to point out.

Even in the random case, where the relation between both objects is well
known (they coincide, or at least in a probability sense, cf. [7]), it is sometimes
useful to study previously the existence of a random D −attractor in order to
obtain a sufficient condition that ensures the existence of the random attractor
in the sense of Crauel, Debussche, and Flandoli.

In the non-random case, we have obtained sufficient conditions that guarantee
that these two objects are in fact the same. Therefore, we can claim that ACDF,
previously considered only the attractor of bounded sets, in fact attracts more
objects.
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