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1 Introduction

Let ϕ be an autonomous semi-dynamical system on a metric space (X, dX) and let A be a
nonempty compact subset of X which is ϕ-invariant, i.e., ϕ(t, A) = A for all t ∈ R+. It is
well known that there exists at least one entire trajectory through each point a ∈ A that is
contained in A, i.e., there exists a mapping χ : R → X such that χ(t + s) = ϕ(s, χ(t)) for
all t ∈ R and s ∈ R+, with χ(0) = a and χ(t) ∈ A for all t ∈ R. Positively invariant sets
are often encountered from absorbing sets, which is a first step to prove the existence of an
attractor. Negatively invariant sets are not discussed directly so often in the literature, e.g.,
[13], but are present in many unstable situations such as following the loss of stability in a
bifurcation or on an unstable manifold about an equilibrium point as well as in discretization
and persistency problems, e.g., [2, 3, 4, 6, 12, 17, 18, 19].

Our aim in this paper is to establish the existence of invariant sets or families when
positively invariant and negatively invariant compact subsets are assumed to exist. We will
do this for both autonomous and nonautonomous systems with both discrete and continuous
time sets. In the nonautonomous case, the various types of invariant sets are in fact families
of subsets of the state space that are mapped onto each other by the nonautonomous process.
We start with the autonomous discrete time case since everything is straightforward in that
case, but the details form part of later constructions. In the positively invariant case this
is the same as the construction of a global attractor once one is inside a compact positively
invariant absorbing set. The main technical difficulty arises in the case of negatively invari-
ant subsets for continuous time systems, as a trajectory joining two points in the set may
leave it at intermediate times. To overcome this a limiting argument is used that involves
the systems frozen at discrete dyadic times.

We will use distX(·, ·) to denote the Hausdorff semi-distance between nonempty compact
subsets of X, i.e.,

distX(A,B) = sup
a∈A

inf
b∈B

dX(a, b),

while we will denote by HX(·, ·) the Hausdorff distance, i.e.,

HX(A,B) = max{distX(A,B), distX(B,A)}.

All through the paper we will only use the symbol ⊂ for inclusion of one set into another
one (equality of the two sets is allowed), but not the symbol ⊆ (analogous comment with ⊃
and ⊇).

To allow for both continuous and discrete time we let T be either R or Z, and obviously
T+ be either R+ or Z+. For completeness we give the following well known definitions, see
for example [5, 20, 21].

Definition 1 An autonomous semi-dynamical system is a continuous mapping (t, x0) 7→
ϕ(t, x0) for t ∈ T+ and x0 ∈ X with the initial value and semi-group properties
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(i) ϕ(0, x0) = x0 for all x0 ∈ X,
(ii) ϕ(s+ t, x0) = ϕ(s, ϕ(t, x0)) for all s, t ∈ T+ and x0 ∈ X.

Definition 2 A subset A of X is said to be ϕ-invariant if ϕ(t, A) = A for all t ∈ T+, ϕ-
positively invariant if ϕ(t, A) ⊂ A for all t ∈ T+, and ϕ-negatively invariant if ϕ(t, A) ⊃ A
for all t ∈ T+.

The nonautonomous counterparts of these definitions will be given in Section 4.

The following result will be used repeatedly.

Lemma 1 Let {An, n ∈ N} be a nested sequence of nonempty compact subsets of a metric
space (X, dX). Then A = ∩n≥1An is a nonempty compact subset of X and

distX(An, A)→ 0 as n→∞. (1)

Proof: Firstly we prove A 6= ∅. Take any aj ∈ Aj for all j ∈ N. For any fixed n ∈ N,
the sequence {am}m≥n ⊂ An, and as An is compact, there exists a converging subsequence
to some element ā ∈ An. Indeed, by a diagonal argument for subsequences, this can be
reproduced recursively for any n ∈ N. Therefore, we conclude that ā ∈ A.

Secondly, since A is closed and contained in A1, which is compact, it is also compact.
The convergence (1) can be easily proved by contradiction. Suppose it is not so. Then

there exists ε > 0 and a sequence {n′} ⊂ N such that for some an′ ∈ An′ it holds:

d(an′ , A) ≥ ε for all n′. (2)

However, reasoning as before, we may extract a subsequence {an′′} ⊂ {an′} such that an′′ →
ā ∈ A, which contradicts (2). Thus, we conclude (1).

2 Discrete time autonomous systems

A discrete time autonomous semi-dynamical system ϕ̃ consists of iterations of a single con-
tinuous mapping ϕ : X → X, i.e., so ϕ̃(n, x0) = ϕn(x0), and trajectories are sequences.
We will first prove that a positively invariant compact subset contains an invariant compact
subset and then consider the negatively invariant case.

Proposition 1 Let A be a nonempty compact subset of X which is ϕ-positively invariant,
i.e., ϕ(A) ⊂ A. Then there exists a maximal nonempty compact subset A∞ of A which is
ϕ-invariant, i.e., ϕ(A∞) = A∞.

3



Proof: Since A is compact and ϕ continuous, the set ϕ(A) is compact. Define A0 = A and
A1 = ϕ(A0), so A1 ⊂ A0. Then A2 = ϕ(A1) is compact and contained in A1 since ϕ(A1)
= ϕ(ϕ(A0)) ⊂ ϕ(A0) ⊂ An. Continuing in this way gives a nested sequence of nonempty
compact subsets An+1 = ϕ(An) ⊂ An for n = 0, 1, 2, . . . Hence the set defined by

A∞ =
⋂
n≥0

An

is a nonempty compact subset of A. Moreover, A∞ is ϕ-invariant, since

1) If ā ∈ A∞, then ā ∈ An for all n ≥ 0 and ϕ(ā) ∈ ϕ(An) for all n ≥ 0. Hence

ϕ(ā) ∈
⋂
n≥0

ϕ(An) =
⋂
n≥1

An = A∞,

from which it follows that ϕ(A∞) ⊂ A∞.

2) If ā ∈ A∞, then ā ∈ An+1 = ϕ(An) for all n, so there exist bn ∈ An such that ϕ(bn) = ā.
Now the bn ∈ A, which is compact. Hence there exists a convergent subsequence bnj

→ b̄ in
A. In fact, b̄ ∈ A∞, since

distX
(
b̄, A∞

)
≤ distX

(
b̄, bnj

)
+ distX

(
Anj

, A∞
)
→ 0 as j →∞,

where we have used Lemma 1. Moreover, by continuity ā = ϕ(bnj
) → ϕ(b̄), so ā = ϕ(b̄),

which means that A∞ ⊂ ϕ(A∞).
The maximality of A∞ is clear by its construction.

Proposition 2 Let A be a nonempty compact subset of X which is ϕ-negatively invariant,
i.e., A ⊂ ϕ(A). Then there exists a maximal nonempty compact subset A∞ of A which is
ϕ-invariant, i.e., ϕ(A∞) = A∞.

Proof: Define A0 = A and let A−1 be the maximal subset of A0 such that A0 = ϕ(A−1). It
is not difficult to characterize A−1 as {a ∈ A : ϕ(a) ∈ A}, or also equivalently as A∩ϕ−1(A),
which clearly is a closed set inside the compact set A. Therefore, A−1 is compact too.

Repeating this procedure gives a nested sequence of (maximal) nonempty compact sub-
sets A−n−1 ⊂ A−n = ϕ(A−n−1) for n = 0, 1, 2, . . . Hence the set defined by

A∞ =
⋂
n≥0

A−n

is a nonempty compact subset of A. Moreover, A∞ is ϕ-invariant by a similar argument to
that in the proof of Proposition 1. Again the maximality is clear by construction.

For the discrete time systems being considered here, entire trajectories are bi-infinite
sequences {xn : n ∈ Z} such that ϕ(xn) = xn+1 for all n ∈ Z. For completeness we state
and prove the following well known result.
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Proposition 3 Let A∞ be a ϕ-invariant set. Then for any point ā ∈ A∞ there exists an
entire trajectory {xn : n ∈ Z} (which is not necessarily unique) such that x0 = ā and xn ∈
A∞ for all n ∈ Z.

Proof: Since ϕ(A∞) = A∞, there exists an x−1 ∈ A∞ (not necessarily unique) such that
ϕ(x−1) = x0 := ā. Repeating this argument, there exists an x−n−1 ∈ A∞ such that ϕ(x−n−1)
= x−n ∈ A∞ for each n ∈ Z+. The forward part of the trajectory is obtained by iterating
the mapping ϕ starting at x0 = ā, i.e., xn+1 = ϕ(xn) for n ∈ Z+.

3 Continuous time autonomous systems

In this section ϕ : R+×X → X is a continuous mapping, which satisfies the initial condition
and semi-group properties. Indeed, the results stated here are particular cases of the non-
autonomous ones (cf. Section 4). However, we consider that ideas about the proofs are
clearly exposed if we start in this way.

Firstly, we will consider the simpler case of a positively invariant compact subset.

Proposition 4 Let A be a nonempty compact subset of X which is ϕ-positively invariant,
i.e., ϕ(t, A) ⊂ A for all t ∈ R+. Then there exists a maximal nonempty compact subset A∞
of A which is ϕ-invariant, i.e., ϕ(t, A∞) = A∞ for all t ∈ R+.

Proof: Since A is compact and ϕ continuous, the set ϕ(t, A) is compact for each t ∈ R+.
Moreover, by the semi-group property

ϕ(s+ t, A) = ϕ(s, ϕ(t, A)) ⊂ ϕ(s, A) ⊂ A

for all s, t ∈ R+, i.e., the ϕ(t, A) are a nested family of nonempty compact subsets. Hence
the set defined by

A∞ =
⋂
t≥0

ϕ(t, A)

is a nonempty compact subset of A. Moreover, A∞ is ϕ-invariant by a similar argument to
that in the proof of Proposition 1, with some slight differences which are worth showing.

1) Fix τ > 0. If ā ∈ A∞, then ā ∈ ϕ(t, A) for all t ≥ 0. Then ϕ(τ, ā) ∈ ϕ(τ, ϕ(t, A))
= ϕ(τ + t, A) for all t ≥ 0. Hence

ϕ(τ, ā) ∈
⋂
t≥0

ϕ(τ + t, A) =
⋂
t≥τ

ϕ(t, A) ⊂
⋂
t≥0

ϕ(t, A) = A∞,

since ϕ(τ, A) = ϕ(t, ϕ(τ − t, A)) ⊂ ϕ(t, A) for all 0 ≤ t ≤ τ , from which it follows that
ϕ(τ, A∞) ⊂ A∞ for any τ > 0.
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2) Fix τ > 0. If ā ∈ A∞, then ā ∈ ϕ(τ + tn, A) = ϕ(τ, ϕ(tn, A)), where tn → 0 as n → ∞.
Hence there exist bn ∈ ϕ(tn, A) such that ϕ(τ, bn) = ā for all n ∈ N. Now the bn ∈ A, which
is compact. Hence there exists a convergent subsequence bnj

→ b̄ in A. In fact, b̄ ∈ A∞,
since

distX
(
b̄, A∞

)
≤ distX

(
b̄, bnj

)
+ distX

(
ϕ(tnj

, A), A∞
)
→ 0 as j →∞,

where we have used again Lemma 1. Moreover, by continuity ā = ϕ(τ, bnj
) → ϕ(τ, b̄), so ā

= ϕ(τ, b̄), which means that A∞ ⊂ ϕ(τ, A∞).

Finally, we claim that A∞ is the maximal ϕ-invariant set inside A. Indeed, consider
B ⊂ A with ϕ(t, B) = B. Then, B = ϕ(t, B) ⊂ ϕ(t, A) for all t ≥ 0. This implies that
B ⊂ A∞.

The negative invariant case is more complicated as one has to ensure that constructed
subsets remain in the original set A.

Theorem 1 Let A be a nonempty compact subset of X which is ϕ-negatively invariant, i.e.,
A ⊂ ϕ(t, A) for all t ∈ R+. Then there exists a maximal nonempty compact subset A∞ of
A which is ϕ-invariant, i.e., ϕ(t, A∞) = A∞ for all t ∈ R+.

Proof: We apply the result of Proposition 2 to the discrete time system formed by the
time-1 mapping ϕ(1, ·) : X → X. This gives us a nonempty compact subset A

(1)
∞ of A which

is the maximal ϕ(1, ·)-invariant subset of A, i.e., with ϕ(1, A
(1)
∞ ) = A

(1)
∞ . The problem is that

ϕ(t, A
(1)
∞ ) may not be a subset of A for all t ∈ (0, 1). Therefore we repeat the procedure for

the discrete time system formed by the time-2−1 mapping ϕ(2−1, ·) : X → X and obtain a

nonempty compact subset A
(2)
∞ of A which is the maximal ϕ(2−1, ·)-invariant subset of A,

i.e., with ϕ(2−1, A
(2)
∞ ) = A

(2)
∞ . By this and the semi-group property,

A(2)
∞ = ϕ(2−1, A(2)

∞ ) = ϕ
(
2−1, ϕ(2−1, A(2)

∞ )
)

= ϕ
(
1, A(2)

∞
)

so A
(2)
∞ is also a ϕ(1, ·)-invariant subset of A. But A

(1)
∞ is the maximal compact ϕ(1, ·)-

invariant subset of A, so A
(2)
∞ ⊂ A

(1)
∞ .

We repeat this procedure with the discrete time system formed by the time-2−n mapping
ϕ(2−n, ·) : X → X and obtain a nonempty compact subset A

(n)
∞ of A which is the maximal

ϕ(2−n, ·)-invariant subset of A, which is thus also ϕ(2−n+1, ·)-invariant. Hence A
(n)
∞ ⊂ A

(n−1)
∞

for n = 1, 2, . . . This is a nested family of nonempty compact subsets, so the set defined by

A∞ =
⋂
n≥1

A(n)
∞

is a nonempty compact subset of A. Moreover, A∞ is ϕ(2−n, ·)-invariant for each n = 0, 1,
. . ., i.e., ϕ(2−n, A∞) = A∞.
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Indeed, the inclusion ϕ(2−n, A∞) ⊂ A∞ follows easily from the definition of A∞ and the

ϕ(2−n, ·)-invariance of the sets A
(m)
∞ for m=n, n + 1, . . . For the opposite inclusion, fix an

element x ∈ A∞, then x ∈ A
(m)
∞ for all m, and therefore there exist ym ∈ A

(m)
∞ such that

x = ϕ(2−n, ym). As A
(m)
∞ ⊂ A, from {ym} we may extract a convergent subsequence ym′ → ȳ.

Actually, ȳ ∈ A∞ (again by Lemma 1), and finally by continuity of ϕ(2−n, ·), we deduce that
x = ϕ(2−n, ȳ), which concludes the required inclusion and the equality ϕ(2−n, A∞) = A∞.

Now, from this and the semi-group property it follows that ϕ(j2−n, A∞) = A∞ for all j
= 0,. . ., 2n and for all n = 1, 2, . . ., i.e., for all dyadic numbers in [0, 1].

By continuity of ϕ, it is not difficult to deduce that for any compact set B ⊂ A, it holds
that

HX (ϕ(τ, B), ϕ(t, B))→ 0 as τ → t,

for dyadic τ ∈ [0, 1] with τ → t ∈ [0, 1], where t is arbitrary. In particular, putting B = A∞,
we deduce

HX (ϕ(τ, A∞), ϕ(t, A∞))→ 0 as τ → t

for dyadic τ ∈ [0, 1] with τ → t ∈ [0, 1], where t is arbitrary. Finally,

HX (ϕ(t, A∞), A∞) ≤ HX (ϕ(t, A∞), ϕ(τ, A∞)) +HX (ϕ(τ, A∞), A∞)

gives ϕ(t, A∞) = A∞ for all t ∈ [0, 1], and hence for all t ∈ R+, since HX (ϕ(τ, A∞), A∞) =
0 for all dyadic τ ∈ [0, 1].

We conclude now proving that A∞ is the maximal ϕ-invariant set in A. Assume that
B ⊂ A satisfies that ϕ(t, B) = B for all t ≥ 0. Then, by Proposition 2 B ⊂ A

(1)
∞ , A

(2)
∞ , . . .

and thus B ⊂
⋂
n≥1A

(n)
∞ = A∞.

4 Nonautonomous dynamical systems

Solution mappings of nonautonomous differential equations provide one of the main motiva-
tions for the process definition of an abstract nonautonomous dynamical system on a metric
state space (X, dX), [1, 5, 20]. Recall that to allow for both continuous and discrete time,
we denote by T either R or Z and define T≥2 := {(t, s) ∈ T2 : t ≥ s}.

Definition 3 A process is a continuous mapping (t, t0, x0) 7→ φ(t, t0, x0) for (t, t0) ∈ T≥2
and x0 ∈ X with the initial value and evolution properties
(i) φ(t0, t0, x0) = x0 for all t0 ∈ T and x0 ∈ X,
(ii) φ(t2, t0, x0) = φ(t2, t1, φ(t1, t0, x0)) for all t0 ≤ t1 ≤ t2 in T and x0 ∈ X.

A process is often also called a two-parameter semi-group on X in contrast with the one-
parameter semi-group of an autonomous semi-dynamical system.
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Definition 4 A family of nonempty compact sets A = {A(t) : t ∈ T} of X said to be
φ-invariant if

φ(t, t0, A(t0)) = A(t) for all (t, t0) ∈ T≥2 ,

φ-positively invariant if

φ(t, t0, A(t0)) ⊂ A(t) for all (t, t0) ∈ T≥2

and φ-negatively invariant if

φ(t, t0, A(t0)) ⊃ A(t) for all (t, t0) ∈ T≥2 .

It follows from the above definition that the set-valued mapping t 7→ A(t) = φ(t, t0, A(t0))
is continuous in t ∈ R in the Hausdorff metric HX for a φ-invariant family of nonempty
compact sets A of a continuous time process.

For positive invariant sets we can consider the continuous and discrete time cases together.

Proposition 5 Let A = {A(t) : t ∈ T} be a family of nonempty compact subsets of X which
is positively invariant for the process φ, i.e., φ(t, t0, A(t0)) ⊂ A(t) for all (t, t0) ∈ T≥2 . Then
there exists a family of nonempty compact subsets A∞ = {A∞(t) : t ∈ T} contained in A
in the sense that A∞(t) ⊂ A(t) for all t ∈ T, which is φ-invariant, i.e., φ(t, t0, A∞(t0)) =
A∞(t) for all (t, t0) ∈ T≥2 .

Moreover, A∞ is the maximal φ-invariant family contained in A, i.e., any other φ-
invariant family B = {B(t) : t ∈ T} with B(t) ⊂ A(t) for all t ∈ T, satisfies that
B(t) ⊂ A∞(t) for all t ∈ T.

Proof: Since A is a family of compact sets and the process φ is continuous, the set
φ(t, t0, A(t0)) is compact for all (t, t0) ∈ T≥2 . Moreover, by the two-parameter semi-group
property we have that

φ(t, s0, A(s0)) = φ(t, t0, φ(t0, s0, A(s0))) ⊂ φ(t, t0, A(t0)) ⊂ A(t) for all s0 ≤ t0 ≤ t. (3)

So, for fixed t ∈ T, the sets φ(t, t0, A(t0)), for t0 ≤ t, are a nested family of nonempty compact
subsets of A(t). Hence the set defined by

A∞(t) =
⋂
t0≤t

φ(t, t0, A(t0))

is a nonempty compact subset of A(t) for each t ∈ T. Moreover, A∞ = {A∞(t) : t ∈ T} is
φ-invariant, since

1) If ā ∈ A∞(t0), then ā ∈ φ(t0, s0, A(s0)) for all s0 ≤ t0. Hence

φ(t, t0, ā) ⊂ φ(t, t0, φ(t0, s0, A(s0))) = φ(t, s0, A(s0)),
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for any t ≥ t0 and any s0 ≤ t0. So, using the nested character proved in (3),

φ(t, t0, ā) ∈
⋂
s0≤t0

φ(t, s0, A(s0)) ⊂
⋂
s0≤t

φ(t, s0, A(s0)) = A∞(t).

Thus φ(t, t0, A∞(t0)) ⊂ A∞(t).

2) If ā ∈ A∞(t), then ā ∈ φ(t, sn, A(sn)) = φ(t, t0, φ(t0, sn, A(sn))) for all sn ≤ t0 ≤ t. Hence
there exist bn ∈ φ(t0, sn, A(sn)) ⊂ A(t0) such that φ(t, t0, bn) = ā. Now the bn ∈ A(t0), which
is compact, so there exists a convergent subsequence bnj

→ b̄ in A(t0). Moreover, we can
choose the sn → −∞. In fact, b̄ ∈ A∞(t0), since

distX
(
b̄, A∞(t0)

)
≤ distX

(
b̄, bnj

)
+ distX

(
φ(t0, snj

, A(snj
)), A∞(t0)

)
→ 0 as j →∞,

by Lemma 1. Finally, by continuity ā = φ(t, t0, bnj
) → φ(t, t0, b̄), so ā = φ(t, t0, b̄), which

means that A∞(t) ⊂ φ(t, t0, A∞(t0)).

The maximality of A∞ as φ-invariant family inside A follows from its construction.
Indeed, consider a φ-invariant family B with B(t) ∈ A(t) for all t ∈ T. Then φ(t, t0, B(t0)) =
B(t)⊂φ(t, t0, A(t0)) for all t0 ≤ t, whence B(t) ⊂ A∞(t).

We consider the negative invariant case first for discrete time processes and then for
continuous time processes.

Proposition 6 Let A = {A(n) : n ∈ Z} be a family of nonempty compact subsets of X
which is φ-negatively invariant for a discrete time process φ, i.e., A(n) ⊂ φ(n, n0, A(n0)) for
all (n, n0) ∈ Z≥2 . Then there exists a maximal family of nonempty compact subsets A∞ =
{A∞(n), n ∈ Z} of A, which is φ-invariant, i.e., φ(n, n0, A∞(n0)) = A∞(n) for all (n, n0) ∈
Z≥2 .

Proof: Define A
(j)
0 ≡ A(j) for all j ∈ Z. Fix n ∈ Z and let A

(n)
−1 be the maximal subset

of A
(n−1)
0 such that A

(n)
0 = φ(n, n − 1, A

(n)
−1 ). Since A

(n−1)
0 is nonempty and compact and

φ(n, n − 1, ·) continuous, the set A
(n)
−1 , which similarly as done in Proposition 2 can be

characterized as A
(n−1)
0 ∩ φ(n, n− 1, ·)−1(A

(n)
0 ), is nonempty and compact too.

Repeating recursively this procedure gives a sequence of nonempty compact subsets
A

(n)
−j ⊂ A(n − j) for all j ≥ 0, with A

(n)
−j−1 defined as the maximal subset in A(n − j − 1)

such that A
(n)
−j = φ(n− j, n− j − 1, A

(n)
−j−1), and hence in particular

φ
(
n, n− j, A(n)

−j

)
= A

(n)
0 for j = 0, 1, 2, . . .

Similarly, we can define nonempty compact subsets sets A
(n+k)
−j for j, k ∈ Z+.
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Now we claim that for a fixed n ∈ Z the following relation holds:

A
(n+k+1)
−k−1 ⊂ A

(n+k)
−k for each k ∈ Z+, (4)

i.e., a nested family of nonempty compact subsets of A(n). To see this consider the case k

= 1, recall that A
(n+1)
−1 is the maximal subset of A(n) with φ(n + 1, n, A

(n+1)
−1 ) = A(n + 1),

and by construction A(n+ 1) ⊃ A
(n+2)
−1 = φ(n+ 1, n, A

(n+2)
−2 ), so A

(n+2)
−2 ⊂ A

(n+1)
−1 . Reasoning

similarly and recursively, (4) is proved. Hence the set defined by

A∞(n) =
⋂
k≥0

A
(n+k)
−k

is a nonempty compact subset of A(n) for each n ∈ Z.
Moreover, the family of nonempty compact subsets A∞ = {A∞(n), n ∈ Z} is φ-invariant,

since

1) If ā ∈A∞(n0), then ā ∈A(n0+k)
−k and φ(n, n0, ā) ∈ φ

(
n, n0, A

(n0+k)
−k

)
for all k ≥ 0. Moreover,

for k ≥ n− n0 and l = k − n+ n0 ≥ 0,

A
(n0+k)
−k = A

(n0+[l+n−n0])
−[l+n−n0] = A

(n+l)
−l−n+n0

.

But
φ
(
n, n0, A

(n+l)
−l−n+n0

)
= A

(n+l)
−l

by construction, so

φ(n, n0, ā) ∈ φ
(
n, n0, A

(n0+k)
−k

)
= φ

(
n, n0, A

(n+l)
−l−n+n0

)
= A

(n+l)
−l .

Hence
φ(n, n0, ā) ∈

⋂
l≥0

A
(n+l)
−l = A∞(n),

which means that φ (n, n0, A∞(n0)) ⊂ A∞(n).

2) If ā ∈ A∞(n), then ā ∈ A(n+l)
−l for all l ≥ 0. But

A
(n+l)
−l = A

(n0+[l+n−n0])
−l = A

(n0+k)
−[k−n+n0]

for k = l + n− n0 ≥ n− n0. Moreover,

φ
(
n, n0, A

(n0+k)
−k

)
= A

(n0+k)
−[k−n+n0],
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so ā ∈ φ
(
n, n0, A

(n0+k)
−k

)
. Hence there exist bk ∈ A(n0+k)

−k ⊂ A(n0) such that φ(n, n0, bk) = ā.

Now the bk ∈ A(n0), which is compact, so there exists a convergent subsequence bkj
→ b̄ in

A(n0). In fact, b̄ ∈ A∞(n0), since

distX
(
b̄, A∞(n0)

)
≤ distX

(
b̄, bkj

)
+ distX

(
A

(n0+kj)
−kj

, A∞(n0)
)
→ 0 as j →∞.

Finally, by continuity ā = φ(n, n0, bkj
) → φ(n, n0, b̄), so ā = φ(n, n0, b̄), which means that

A∞(n) ⊂ φ(n, n0, A∞(n0)).

The maximality of the family A∞ is clear by construction, analogously as in Proposition
5.

Theorem 2 Let A = {A(t) : t ∈ R} be a family of nonempty compact subsets of X which
is φ-negatively invariant for a continuous time process φ, i.e., A(t) ⊂ φ(t, t0, A(t0)) for all
(t, t0) ∈ R≥2 . Then there exists a family of nonempty compact subsets A∞ = {A∞(t) : t ∈ R}
with A∞(t) ⊂ A(t) for all t ∈ R, which is φ-invariant, i.e., φ(t, t0, A∞(t0)) = A∞(t) for all
(t, t0) ∈ R≥2 .

Moreover, A∞ is the maximal φ-invariant family contained in A.

Proof: The proof generalizes that of Theorem 1 to processes. We first consider the process

restricted the dyadic numbers in R. Let T0 = Z and Dn =
{
d

(n)
j := j2−n : j = 0, 1, . . . , 2n − 1

}
,

then define

Tn := Z + Dn =
{
k + d

(n)
j : k ∈ Z, d(n)

j ∈ Dn

}
, n = 1, 2, . . .

We apply the result of Proposition 6 to the discrete time system formed by the restriction
φ
∣∣
T0

of the mapping φ to the time set T0. This gives us a family A(0)
∞ = {A(0)

∞ (t) : t ∈ T0}
of nonempty compact subsets, with A

(0)
∞ (t)⊂A(t) for all t ∈ T0, which is the maximal φ

∣∣
T0

-

invariant family of subsets of {A(t) : t ∈ T0}, i.e., with φ(n+ 1, n, A
(0)
∞ (n)) = A

(0)
∞ (n+ 1) for

any n ∈ Z.
The problem is, as before, that φ(n + t, n, A

(0)
∞ (n)) may not be a subset of A(n + t)

for all t ∈ (0, 1). Therefore we repeat the procedure for the discrete time system formed

by the restriction φ
∣∣
T1

of the mapping φ to the time set T1 and obtain a family A(1)
∞ =

{A(1)
∞ (t) : t ∈ T1} of nonempty compact sets, which is the maximal φ

∣∣
T1

-invariant family

with A
(1)
∞ (t) ⊂ A(t) for all t ∈ T1, i.e., with φ

(
t
(1)
j+1, t

(1)
j , A

(1)
∞ (t

(1)
j )
)

= A
(1)
∞ (t

(1)
j+1) for every t

(1)
j ,

t
(1)
j+1 ∈ T1 with t

(1)
j+1 − t

(1)
j = 2−1. By this and the semi-group property,

A(1)
∞ (m+ 1) = φ

(
m+ 1,m+ 2−1, A(1)

∞ (m+ 2−1)
)

= φ
(
m+ 1,m+ 2−1, φ(m+ 2−1,m,A(1)

∞ (m))
)

= φ
(
m+ 1,m,A(1)

∞ (m)
)
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for all m ∈ Z, so {A(1)
∞ (t) : t ∈ T0} is also a φ

∣∣
T0

-invariant family of compact subsets

of {A(t) : t ∈ T0}. But A(0)
∞ is the maximal φ

∣∣
T0

-invariant family of compact subset of

{A(t) : t ∈ T0}, so A
(1)
∞ (t) ⊂ A

(0)
∞ (t) for all t ∈ T0 ∩ T0 = T0.

We repeat this procedure with the the discrete time system formed by the restriction φ
∣∣
Tn

of the mapping φ to the time set Tn and obtain a family A(n)
∞ = {A(n)

∞ (t) : t ∈ Tn} composed
by nonempty compact subsets of {A(t) : t ∈ Tn}, which is the maximal φ

∣∣
Tn

-invariant family

of subsets of {A(t) : t ∈ Tn}, which is thus also φ
∣∣
Tn−1

-invariant. Hence A
(n)
∞ (t) ⊂ A

(n−1)
∞ (t)

for all t ∈ Tn−1 ∩ Tn = Tn−1, for n = 1, 2, . . .

Thus for each tl ∈ Tl for an arbitrary l ∈ N, the subsets A
(n)
∞ (tl), n ≥ l, are nonempty,

compact and nested. Hence the set defined by

A∞(tl) =
⋂
n≥l

A(n)
∞ (tl)

is a nonempty compact subset of A(tl). In this way we obtain a family A(dyadic)
∞ = {A∞(td) :

td ∈ ∪l≥0Tl} of nonempty compact subsets of X with A∞(td) ⊂ A(td) for all td ∈ ∪l≥0Tl.

Moreover, by Proposition 2, the family A(dyadic)
∞ is φ

∣∣
Tn

-invariant for each n = 0, 1, . . .,
i.e., with

φ
(
t
(n)
j+1, t

(n)
j , A∞(t

(n)
j )
)

= A∞(t
(n)
j+1)

for every t
(n)
j , t

(n)
j+1 ∈ Tn with t

(n)
j+1 − t

(n)
j = 2−n. From this and the semi-group property it

follows that φ(t1, t0, A∞(t0)) = A∞(t1) for all dyadic numbers t0 ≤ t1 in R.

Finally, for non-dyadic t, we define A∞(t) by

A∞(t) = φ (t, t0, A∞(t0)) ,

for an arbitrary dyadic t0 < t. This definition is independent of the choice of t0 (by the
semi-group property and the invariance for the dyadic numbers).

Define the family A∞ = {A∞(t) : t ∈ R}. We check that it is φ−invariant. Indeed, it
only remains to show the equality A∞(t) = φ (t, s, A∞(s)) for the case of s non-dyadic. The
desired result follows from the definition of A∞(s) and the semi-group property, i.e.,

φ (t, s, A∞(s)) = φ (t, s, φ (s, t0, A∞(t0))) = φ (t, t0, A∞(t0)) = A∞(t),

where t0 (< s) is dyadic, but otherwise arbitrary.

Now we check that A∞(t) ⊂ A(t) for t non dyadic. Since both sets are compact and φ
is a process, this follows from the following estimates being {td} a sequence of dyadic values

12



with td > t and decreasing to t:

distX(A∞(t), A(t)) = lim
td↓t

distX(φ(td, t, A∞(t)), φ(td, t, A(t)))

≤ lim
td↓t

distX(A∞(td), A(td)) = 0,

where we have used the φ-negatively invariant character of A and the φ-invariance of A∞.
The limit is zero because for any td we have that A∞(td) ⊂ A(td).

Finally, the maximality of A∞ as φ-invariant family inside A follows by construction.
Indeed, consider a φ-invariant family B = {B(t) : t ∈ R} with B(t) ⊂ A(t) for all t ∈ R.

Then, the family {B(t) : t ∈ T0} is φ
∣∣
T0

-invariant, and by construction we have B(t) ⊂
A

(0)
∞ (t) for all t ∈ T0. We can repeat this analysis with times in T1, . . . Therefore B(td) ⊂

A∞(td) for all td ∈ ∪l≥0Tl. The invariance of B and the definition of A∞(t) for any non
dyadic t implies B(t) ⊂ A∞(t) and concludes the proof.

5 Relatively invariant sets

Important dynamics is often restricted to a lower dimensional subset such as a stable or
unstable invariant manifold. The above results carry over to this case by the observation
that the dynamical system restricted to such a manifold is a dynamical system in its own
right.

Consider a discrete time autonomous semi-dynamical system given by a continuous map-
ping ϕ : X → X and let M be a nonempty subset of X such that ϕ(M) ⊂ M . Then the
restriction ϕ to M is a continuous mapping ϕ|M : M →M , where continuity is considered in
the subspace topology, i.e., (M,dX) is a metric subspace of (X, dX). Similar considerations
also hold for continuous time autonomous semi-dynamical system. Thus Proposition 1 and
Proposition 2 carry over to ϕ|M and we have the following results. To include discrete and
continuous time systems in the same statement, we define ϕ(n, x) = ϕn(x) in the discrete
time case.

Corollary 1 Let ϕ be an autonomous semi-dynamical system on a metric space (X, dX) for
the time set T and let M be a nonempty subset of X which is ϕ-positively invariant, i.e.,
ϕ(t,M) ⊂ M for all t ∈ T+. In addition, let A be a nonempty compact subset of M which
is ϕ-positively invariant or ϕ-negatively invariant.

Then there exists a maximal nonempty compact subset A∞ of A, and hence of M , which
is ϕ-invariant, i.e., ϕ(t, A∞) = A∞ for all t ∈ T+.

The nonautonomous case can be generalized directly in the same way. However, since
nonautonomous invariant manifolds typically depend on time we will allow both the subsets
M to depend on time and the set A too. (In fact, for the proofs one does not have to use
the restricted system at all).
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Corollary 2 Let φ be a process on a metric space (X, dX) for the time set T and let M =
{M(t) : t ∈ T} be a family of nonempty closed subsets of X which is φ-positively invariant,
i.e., φ(t, t0,M(t0)) ⊂ M(t) for all (t, t0) ∈ T≥2 . In addition, let A = {A(t) : t ∈ T} be
a family of nonempty compact subsets of X with A(t) ⊂ M(t) for each t ∈ T which is φ-
positively invariant, i.e., φ(t, t0, A(t0)) ⊂ A(t) for all (t, t0) ∈ T≥2 , or φ-negatively invariant,
i.e., A(t) ⊂ φ(t, t0, A(t0)) for all (t, t0) ∈ T≥2 .

Then there exists a maximal family of nonempty compact subsets A∞ = {A∞(t) : t ∈ T}
contained in A, and hence in M, which is φ-invariant, i.e., φ(t, t0, A∞(t0)) = A∞(t) for all
(t, t0) ∈ T≥2 .

These two results can then be used to obtain the existence of entire solutions taking
values in the given compact subsets of M and M, respectively.

Example 1 Consider a process φ on X. Suppose that X = X1 ×X2 and that

φ(t, t0, x0) = (φ1(t, t0, (x01, x02)), φ2(t, t0, (x01, x02))) ,

where x0 = (x01, x02). Let m : T×X1 → X2 be continuous and define M = {M(t) : t ∈ T}
by

M(t) = {(x1,m(t, x1)) : x1 ∈ X1} , t ∈ T,

which are obviously nonempty closed subsets of X. Then M is φ-positively invariant if

φ2 (t, t0, (x1,m(t0, x1))) = m (t, φ1 (t, t0, (x1,m(t0, x1))))

for all x1 ∈ X1 and (t, t0) ∈ T≥2 .

6 Bifurcation in a nonautonomous system

There are at present few general, theoretical results about bifurcations in nonautonomous
dynamical systems, e.g., [7, 8, 10, 11, 14, 15, 16]. The above results allow us to make a
preliminary investigation to show that what could be considered to be a bifurcation has
occurred. This will be illustrated in terms of modifications of a simple example of a pitch
fork bifurcation in a scalar ordinary differential equation.

The zero steady state solution of the autonomous semi-dynamical system generated by
the differential equation

dx

dt
= νx− x3

undergoes a supercritical bifurcation at ν = 0 to produce two locally asymptotically stable
steady state solutions ±

√
ν for ν > 0, with the zero steady state solution now unstable.
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Now let b : R→ R be a nonconstant continuous function with bounded values, specifically
with 0 < α ≤ b(t) ≤ β for all t ∈ R. Then the scalar ordinary differential equation

dx

dt
= νx− b(t)x3 (5)

is nonautonomous and generates a process. This process has the zero solution for all ν,
which is asymptotically stable for ν < 0 and unstable for ν > 0. There are no other steady
state solutions. Note that

d

dt
x2 = 2νx2 − 2b(t)x4,

so

2νx2 − 2βx4 ≤ d

dt
x2 ≤ 2νx2 − 2αx4

Let ν > 0. Then

2νx2

(
1− β

ν
x2

)
≤ d

dt
x2 ≤ 2νx2

(
1− α

ν
x2
)
,

from which it follows that
d

dt
x2 < 0 for x2 >

ν

α

and
d

dt
x2 > 0 for 0 < x2 <

ν

β
.

Hence the sets

A− =

[
−
√
ν

α
,−
√
ν

β

]
, A+ =

[√
ν

β
,

√
ν

α

]
are each positively invariant with respect to the process and so each contains an invariant
family A±∞ = {A±∞(t) : t ∈ R}. In particular, each interval contains at least one entire
solution of the process. One can also conclude that the families A±∞ are local pullback
(nonautonomous) attractors for the process, see [9, 16] for definitions and details. These are
candidates for the counterparts of the bifurcating steady state solutions in the autonomous
case and provide an indication that some kind of nonautonomous bifurcation has occurred.

In fact, the differential equation (5) is a Bernoulli equation and can be solved explicitly.
Following the analysis in [9] one can show that each subintervals contains just one entire
solution which is locally asymptotically stable. These entire solutions are given explicitly by

ξ±ν (t) = ± 1√
2
∫ t
−∞ b(s)e

−2ν(t−s) ds

i.e., the sets in A±∞ are singleton sets A±∞(t) = {ξ±ν (t)} for all t ∈ R.
This detailed structure cannot, however, be obtained from the above analysis using in-

variant subsets. Nevertheless, such an analysis gives useful information when no alternative
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finer analysis is possible, for example for the following modification of the differential equa-
tion (5). Let g : R2 → [1, 2] be continuously differentiable and consider the nonautonomous
differential equation

dx

dt
= νx− b(t)x3 + εxg(t, x),

where ε > 0 is very small. Proceeding as above, we obtain

2(ν + ε)x2 − 2βx4 ≤ d

dt
x2 ≤ 2(ν + 2ε)x2 − 2αx4

and the positively invariant intervals

A− =

[
−
√
ν + 2ε

α
,−
√
ν + ε

β

]
, A+ =

[√
ν + ε

β
,

√
ν + 2ε

α

]
,

each of which contains an invariant family A±∞ = {A±∞(t) : t ∈ R} of nonempty compact
subsets which is a pullback attractor. The additional term destabilizes the zero solution,
which loses stability now for some ν ∈ (−ε, 0).

A more complicated situation occurs for the nonautonomous system (where ε > 0 is
assumed again to be very small, particularly such that αε2 < 1)

dx

dt
= νx− b(t)x3 + ε,

which has no trivial solution.
For an initial condition x0 ≥ ε, one can check that the sign of x′ for the corresponding

solution through x0 is negative, provided ν < −1 + αε2 (< 0), since x′ < ε(ν − αε2 + 1). It
follows from the above and the positive sign of x′ at any x ≤ 0 that the interval [0, ε] is then
absorbing and positively invariant and thus contains a nontrivial entire solution.

On the other hand, by examining the signs of x′ at x = ± ε, one sees that the interval
[−ε, ε] is negatively invariant for ν > 1 + βε2 and thus contains a nontrivial entire solution.
One can also show that there exist positively invariant absorbing sets on both the positive
and negative sides of this interval. These positively invariant absorbing sets also contain
entire solutions different from that contained in the interval [−ε, ε] near the origin.
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