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Abstract

The present work examines in detail the existence, stability and dynamics of travelling solitary waves
in a Schr̈odinger lattice with saturable nonlinearity. After analysing the linear spectrum of the problem
in the travelling wave frame, a pseudo-spectral numerical method is used to identify weakly non-local
solitary waves. By finding zeros of an appropriately crafted tail condition, we can obtain the genuinely
localised pulse-like solutions. Subsequent use of continuation methods allows us to obtain the relev-
ant branches of solutions as a function of the system parameters, such as the frequency and inter-site
coupling strength. We examine the stability of the solutions in two ways: both by imposing numer-
ical perturbations and observing the solution dynamics, as well as by considering the solutions as fixed
points of an appropriate map and computing the corresponding Floquet matrix and its eigenvalues. Both
methods indicate that our solutions are robustly localised. Finally, the interactions of these solutions are
examined in collision type phenomena, observing that relevant collisions are near-elastic, although they
may, under appropriate conditions, lead to the generation of an additional pulse.

1 Introduction

In the past few years, there has been a large growth in the study of so called discrete solitons that is solitary
waves and localised structures in spatially discrete media. This is to a large measure due to the development
of numerous recent applications where such structures naturally arise and the corresponding models of
differential-difference equations (DDEs), or so-called dynamical lattices, are relevant. Among these, one
can mention the nonlinear optics of waveguide arrays [6, 22], the dynamics of Bose-Einstein condensates
in periodic potentials [24], [29], [21], micro-mechanical models of cantilever arrays [39] or simple models
of DNA [34]. One of the prototypical models that emerges in some form in all of these models (as a direct
model, or as an envelope wave expansion or a tight binding approximation) is the so-called discrete nonlinear
Schr̈odinger equation (DNLS) [20].

A particularly fruitful line of research has been the study of discrete localised structures in lattices that
are optically induced within photorefractive crystals; see e.g., [13] for a recent review. The realisation of
such two-dimensional periodic lattices, following the theoretical proposal of [10], allowed for the observa-
tion of discrete solitons [15, 27], as well as a wide array of additional coherent waveforms including, but not
limited to, dipoles, quadrupoles, soliton trains, vector, necklace and ring solitons, see e.g. [44, 43, 30, 14].
Such crystals (of which strontium barium niobate (SBN) are the prototypical example) feature a, so-called,
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saturable nonlinearity. The coexistence of saturable nonlinearity with a periodic potential (induced by an
ordinary polarization of light) for extraordinarily polarized probe beams in these media has naturally given
rise to an interest in examining dynamical lattices of DNLS type, but with this saturable nonlinearity, rather
than the standard cubic one [18, 40, 25, 7, 26].

The class of DNLS models with saturable nonlinearity are also of particular interest in their own right,
due to a feature first unveiled in [18]. In particular, it is well-known that in the standard DNLS model (see
[20] and also references therein), there are two principal solitary wave solutions, the on-site and the inter-site
soliton and the former has always lower energy than the latter. Hence, their energy difference, the celebrated
Peierls-Nabarro (PN) barrier (a term coined from the theory of dislocations representing the energy that the
dislocation needs to jump from a lattice site to the next) is always sign-definite. However, in the saturable
DNLS model, this is no longer the case. In fact, the energy barrier changes sign and perhaps even more
importantly can also preciselyvanishat isolated points.

The vanishing of the PN barrier is not only of interest in regard to stationary solutions and their stability
properties (see e.g., [28]), but importantly is associated with whether pulses can travel in such lattices
without slowing down or shedding radiation. One may expect that near such points where the wave faces
no potential barrier1, it is more natural to expect uninhibited travelling (although this idea is tempting,
we will demonstrate below that it is, at least partially, problematic). The issue of undistorted travelling
of exponentially localized excitations in DNLS type lattices has been important for a number of reasons.
On the one hand, it is of particular physical relevance, since it would be desirable to transport optical (in
the case of optical waveguides) or quantum (in the case of BECs in optical lattices) bits of information
without radiative losses. On the other hand, it is an issue of mathematical delicacy and there has been some
controversy on the existence (or not) of such solutions; see relevant details in [37, 9, 12, 1]. The difficulty
arises because seeking such travelling waves in the moving (with the speed of the wave) frame leads to
so-called advance-delay equations which are hard to analyse. A recent negative result in this direction has
come from the analysis of the so-called Salerno model [38], which is a homotopic interpolation between
an integrable lattice (where travelling solutions exist in explicit form) and the non-integrable DNLS lattice.
What was observed in [16, 17] was that as soon as the integrable limit was abandoned the travelling solutions
developed tails and were no longer localized.

Our aim in the present paper, expanding on our earlier work of [28], is to settle this problem of travel-
ling solutions for the saturable DNLS lattice, which, according to the above discussion appears as a more
natural candidate to support travelling solitary waves. We examine the problem of existence of such waves,
starting from the linear limit of the equation which will provide us with travelling periodic wave solutions,
resonances with which we would in principle like to avoid. We then discuss our numerical method, which
is based on a pseudo-spectral decomposition of the advance-delay equation due to [2] allied to a globally
convergent Powell hybrid method. This tool used in combination with a tail condition to detect whether the
tail of the wave is decaying or is oscillatory, allows us to identify the exponentially localized ones among
our solutions. Finally, having obtained such solutions, we use continuation to follow their branches as a
function of the system parameters (the inter-site coupling strength or the temporal frequency). We then
discuss the stability of such solutions in two ways. Firstly, we dynamically integrate perturbed profiles of
such solutions; what we observe typically in this case is that the solution remains localized but transforms
itself into another solitary wave element on the same branch of solutions but with a different wavespeed and
frequency. Secondly, whenever possible, we consider the solution as a fixed point of an appropriate map and
obtain the corresponding Floquet matrix and the relevant Floquet multipliers which also indicate that our
solutions are, in fact, dynamically stable. Finally, the dynamics of the solutions is also examined through

1Note a subtle assumption here: we are considering the more common situation, whereby the vanishing of the PN barrier implies
the independence of the wave’s energy on the location of its centre, although it is, in principle, possible that the PN energy barrier
vanishes but the wave energy is still dependent on the location of the centre.
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direct simulations of their collisions and monitored through an appropriately defined coefficient of restitu-
tion associated with the collision (thinking of the waves as quasi-particles with appropriate momenta of their
centres of mass). We find that the collisions of the waves are only very weakly inelastic, although occasion-
ally such collisions may produce an additional solitary wave, a clear indication of the non-integrability of
the model.

Our exposition will be structured as follows: section 2 contains the model and the analysis of its linear
spectrum, while section 3 discusses our numerical method for obtaining the solutions. Section 4 presents
an overview of the existence results, section 5 addresses the issue of stability and dynamical interactions
(collisions) of travelling waves. Finally, section 6 summarizes our findings and presents some interesting
directions for future study.

2 Model Setup and Linear Analysis

The DNLS with photorefractive nonlinearity is given by

iu̇n(t) = −ε∆2un(t) +
β

1 + |un(t)|2un(t), (1)

where∆2 is the standard second order spatial difference operator

∆2un(t) = un+1(t)− 2un(t) + un−1(t).

Eq. (1) is a Hamiltonian system

E =
∑

n

[ε |un+1 − un|2 + β log(1 + |un|2)].

It conserves thel2-norm P =
∑

n |un|2. The coefficientβ of the nonlinearity can be scaled to unity,
and from now on we will takeβ = 1. Study of the stationary modes of Eq.(1), using the transformation
un(t) = vne

iΛt shows an interesting property of the saturable nonlinearity [28]. For a discrete set of
parameter values the generalised Peierls-Nabarro energy barrier,∆G = Gos −Gis, where the subscriptsos
andis represent onsite and intersite modes respectively andG = E−ΛP , vanishes; see Figure 1. The zeros
where the energy barrier vanishes coincide with alterations in the stability of the onsite (i.e. centered on a
lattice site) and intersite (i.e. centered between two lattice sites) stationary solitary wave modes. Therefore
it could be imagined that genuinely localised travelling modes might bifurcate from these parameter values.
DecreasingΛ towardΛ = 0 moves these zeros of∆G closer to the anti-continuum limit,ε = 0. For a fixed
value ofε = 1 the vanishings of the energy barrier for varyingΛ can be seen in Figure 1(b). AsΛ → 1 the
amplitude of the stationary solutions grow exponentially and forΛ → 0 the amplitude of the solutions goes
to zero, and in these areas the calculation of the zeros is less accurate.

It is worth noting that for a true localised travelling wave to exist we would expect that the lattice would
have to be translationally invariant. This implies that the energy barrier∆Gwould have to be zero where the
intersite mode has a maximum centredanywherebetween two lattice sites and the onsite mode is centred on
a lattice site. In fact the first zero of∆G, atε = Λ/2, is a truetransparent pointof the energy barrier. At this
point the condition for stationary solutions to equation (1) reduces tovn = ε(vn+1+vn−1)(1+|vn|2). This is
exactly the equation for stationary solutions of the Ablowitz-Ladik lattice, which is integrable and supports
a two parameter family of travelling wave solutions. Thetransparent pointscomputed in Figure 1 are only
for a site centred mode and a symmetric intersite mode therefore∆G may not be zero if an asymmetric
intersite mode was used. However the existence of these points indicate that there is an increased possibility

3



0 0.5 1 1.5 2
−20

−10

0

ε

lo
g
(|

∆
 G

|)

0 0.5 1 1.5 2
−30

−20

−10

0

ε

lo
g(

|∆
 G

|)

�����

0.1 0.2 0.3 0.4 0.5 0.6 0.7
−25

−20

−15

−10

−5

Λ

lo
g
(|

∆
 G

|)

�����

Figure 1: Energy difference∆G between intersite and onsite modes of eq (1) forΛ = 0.5, (a) top panel andΛ = 0.25, (a)
bottom panel. (b) The barrier is shown as a function ofΛ for fixed ε = 1. Notice that the energy barrier vanishes for a discrete set
of parameter values, which correspond to the points of stability alternation between the two modes.

of finding travelling wave solutions in the saturable discrete NLS over the cubic discrete NLS where the PN
barrier is strictly non-zero.

Our main aim in what follows is to look for travelling wave solutions of the form

un(t) = ψ(n− ct)ei(kn−Λt). (2)

Using the substitutionz = n−ctwith wave speedc, wavenumberk and frequencyΛ, we obtain a differential
advance-delay equation in the travelling frame of referencez moving with same wavespeedc as the solution,

−icψ′(z) = (2ε− Λ)ψ(z)− ε(ψ(z + 1)eik + ψ(z − 1)e−ik) +
1

1 + |ψ(z)|2ψ(z), (3)

where′ denotes differentiation with respect toz. Equation (3) is rotationally invariant, therefore the trans-
formation

ψ(z) = ψ̃(z)e−ikz (4)

can be used to obtain

−icψ′(z) = (2ε− Λ)ψ(z)− ε(ψ(z + 1) + ψ(z − 1)) +
1

1 + |ψ(z)|2ψ(z), (5)

whereΛ has been redefined as̃Λ = kc + Λ and the tilde is dropped for convenience. Thereforek = 0 can
be taken in (3) without loss of generality and we assume thatψ(0) is real.

We seek soliton solutions (homoclinic orbits toψ = 0) of equation (5). It is straightforward to show that
(5) supports linear waves (radiation modes) that travel at the same wave speedc as the sought for soliton. A
so-called embedded soliton is obtained when the radiation mode component exactly vanishes in the tail of
the solitary wave. At best, this can happen at a discrete set of values of the frequencies. An advance-delay
equation of the form (5), can be seen as a dynamical system with an infinite-dimensional phase space [2].
Since such systems have a discrete spectrum only, then a necessary condition for codimension one solitons
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Figure 2: Condition of the spectrum of an advance delay equation for the existence of a codimension one embedded soliton.
Shaded region indicates the area where the rest of the discrete spectrum is located.

is that the equilibrium has only one pair of eigenvalues on the imaginary axis; see the schematic of Figure
2. Therefore, to begin a search for embedded solitons, we look for parameter values where there are purely
imaginary eigenvalues of the linear part of (5). To find such eigenvalues, we study the dispersion relation
obtained by the substitutionψ(z) = eiλz into the linear part of (5),

cλ+ (Λ− 1) = −ε(eiλ + e−iλ − 2). (6)

After rearrangement this can be written as

cλ+ (Λ− 1) = 4ε sin2(
λ

2
) (7)

We wish to investigate parameter regions where equation (7) has only one rootλ > 0. This is done using
numerical continuation software to to follow points where an extra pair of roots is created. This is equivalent
to solving (7) together with the condition for a double root

c = 2ε sin(λ). (8)

The results are shown as dashed lines in Figure 3. The figure also depicts regions (spectral bands) where
more than one pair of roots to (6) occurs. It can be seen that the spectral bands accumulate on the linec = 0
so asc is reduced toward zero then there is an ever increasing number of resonances. At the anti-continuum
limit, ε = 0, there are no resonances but the number of resonances increases asε is increased. Only the first
few spectral bands are shown in Figure 3; hence, although it appears that the number of resonances begins
to decrease again in the limitc → 0, if more spectral bands had been shown we would observe that the
number of resonances increases asc is reduced towardc = 0. The effects on the spectral bands of varying
Λ are shown in Figure 4, ForΛ = 1 (7) has odd symmetry and this is reflected in the spectral bands Figure
4(b) which now all reach(0, 0) and there is no longer any gap between the first and second spectral bands.
Figure 4(a) shows the spectral bands forΛ = 0 where the gap between the fundamental band and the second
lower band has increased. The same analysis can be performed in the (c, Λ) plane for fixedε giving Figure
5.

Also of interest will be the decay rate of the solitary waves, this is governed by the real part of eigenval-
ues of the linear form of equation (5). Substitutingψ(z) = e(κ+iλ)z, κ, λ ∈ R, into (5) gives,

cκ =2ε sin(λ) sinh(κ),
cλ =2ε(1− cos(λ) cosh(κ)) + 1− Λ.

(9)
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Figure 3:Intersections of (7) and (8) forΛ = 0.5 and varyingc andε. The shaded areas show regions where there is more than
one branch of linear waves according to (7)& (8). Values indicate the number of roots of (7) in each region. Subplots show left
and right hand sides of (7) for (ε, c) = (1,3), one root (i), (3,3.5), three roots (ii) and (3.5,0.6), seven roots (iii). (iv) displays the
overlapping of the bands for smallε, c, only the first six bands have been shown.
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Figure 4:Intersections of (7) and (8) for (a)Λ = 0, (b) Λ = 1 and varyingc andε. The shaded area shows where there is more
than one branch of linear waves according to (7)& (8). Values indicate the number of roots of (7).

For travelling solutionsc 6= 0 there are no purely real eigenvalues,λ = 0, for Λ 6= 1 and only the zero
eigenvalue,κ = λ = 0 at Λ = 1. The decay rate of solutions will be dominated by the terms withκ
closest to the imaginary axis. By rearranging equation (9), contours for fixedκ of the fundamental spectral
bandλ ∈ (0, π) can be plotted in parameter space, shown in Figure 6. It is worth noting that theκ = 0
contour is in fact the condition for purely imaginary roots and so overlays the spectral bands computed
previously Figures 3-5. The eigenfunction corresponding to this fundamental band governs the localisation
of the solution in the continumn limit. Therefore near to theκ = 0 boundaries we would expect the width
of any soliton to increase rapidly whilst the amplitude will go to zero asκ→ 0.
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Figure 6:Spectral bands, in the (ε, c) plane (a), and the (c, Λ) plane (b). Overlaid in thick lines are the decay rate contours, (9),
for the fundamental spectral bandλ ∈ (0, π) for fixed values ofκ. κ = 0 corresponds to the edges of the spectral bands, shown in
thick black line.κ = 0.25, dash-dotted line.κ = 0.5, dashed line.κ = 1, solid line.

3 Numerical Methods

Taking as our starting point the travelling wave form of the discrete nonlinear Schrödinger equation with
a photorefractive nonlinearity (3), a pseudo-spectral substitution is used to transform (3) into a system of
algebraic equations. To do this we follow a similar methodology as presented in [2], using a finite Fourier
series expansion to approximate the discrete soliton,ψ(z), on a long finite interval [-L/2, L/2]. Our choice of
expansion terms is governed by out earlier choice thatψ(0) should be real and the realisation that equation
(5) is invariant under the reversing symmetryz → −z, ψ → ψ∗. We are seeking fundamental “single
hump” solitons therefore we shall look for solutions that are invariant under this reversibility, which leads
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us to choosing an expansion which has even real functions and odd imaginary functions:

ψ(z) =
N∑

j=1

aj cos(ωjz) + ibj sin(ωjz), (10)

ωj =
πj

L
, (11)

whereaj , bj ∈ R are the coefficients of the Fourier series. Substituting this into (3) gives a system of2N
algebraic equations for the unknown coefficientsaj , bj :

Re(F (z)) =
N∑

j=1

−cbjωj cos(ωjz) + (2ε− Λ)aj cos(ωjz)− ε(aj cos(ωj [z + 1]) cos(k)

− bj sin(ωj [z + 1]) sin(k) + aj cos(ωj [z − 1]) cos(k)− bj sin(ωj [z − 1]) sin(k))

+
1

1 +
∣∣∣(∑N

m=1 am cos(ωmz) + ibm sin(ωmz))
∣∣∣
2aj cos(ωjz) = 0,

(12)

Im(F (z)) =
N∑

j=1

−cajωj sin(ωjz) + (2ε− Λ)bj sin(ωjz) + ε(bj sin(ωj [z + 1]) cos(k)

+ aj cos(ωj [z + 1]) sin(k) + bj sin(ωj [z − 1]) cos(k)− aj cos(ωj [z − 1]) sin(k))

+
1

1 +
∣∣∣(∑N

m=1 am cos(ωmz) + ibm sin(ωmz))
∣∣∣
2 bj sin(ωjz) = 0.

(13)

These equations are posed on the collocation pointsz i where:

zi =
Li

2(N + 1)
. (14)

We now have a large system of nonlinear algebraic equations which are solved numerically for a fixed set of
parameter values(c, ε,Λ) using the Powell hybrid method [35], as implemented using the Minpack routines
[36], with an error tolerance of10−13. The Powell hybrid method uses a combination of steepest descent
and Newton directions, with a weighting ofβk so that0 < βk < 1 can be selected to vary which direction
is used,

xk+1 = xk + βkdk + (1− βk)hk,

wherehk is the Newton direction anddk is the steepest descent. The parameterβk is related to the maximum
step size which is updated using a an algorithm that gives a bias toward steepest decent when convergence
is slow and a bias toward the Newton direction if convergence is fast. The Powell hybrid method has been
chosen as it is globally convergent. Using the Powell hybrid algorithm gives a solution of (12) and (13) for a
given initial guess of coefficientsaj , bj . This solution can then be converted back in terms ofψ(z) allowing
us to study the form of the solution obtained by the fixed point method. Any solution that is found using
this method can then be numerically continued using AUTO [8], with error tolerance10−10, allowing us to
investigate the effect of varying parameters on solution shape and especially tail amplitude.

The solutions found using the Powell Hybrid method will generally be weakly non-local solitary waves
[4] or quasi-solitons [23] and exhibit non-zero oscillatory tails; see, for example, Figure 7. To find solutions
with non oscillatory tails we need to add an extra tail condition, For this condition we use a signed measure
of the amplitude of the tail and seek to find zeros of this function. There are a number of candidates for this
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Figure 7:Results obtained using the Powell hybrid method withε = 1, c = 0.7, Λ = 0.5, L = 120. Solid line indicatesRe(ψ),
dashed line showsIm(ψ). (a) Shape of full solution. (b) Magnification of the tail exhibiting oscillations.

tail function such as those used in [28] and [2], which measure the amplitude of the imaginary part ofψ or
the gradient of the real part ofψ in the tail of the solution respectively. It would also be possible to use the
magnitude ofψ in the tail however this would not give a signed measure of the tail amplitude and would
therefore be less reliable as localised solutions would correspond to zeros of a quadratic function instead of
as regular zeros of the tail function. We will choose to use the measure used in [28], namely

∆ = Im(ψ(
L

2
)). (15)

Eq. (15) is a measure of the amplitude of the imaginary part of the tail of a solution of period L. We typically
consider a travelling solitary wave solution to (3) as being made up of two parts, an exponentially localised
core,ψcore, and a non-vanishing oscillatory backgroundψtail:

ψ(z) = ψcore(z) + ψtail(z)

At a sufficient distance from the centre of the solitonψcore will be zero due to its exponential localisation
and therefore∆ is purely a measure ofψtail. Because of the wayψ(z) has been approximated in Eq. (10),
we know that the real part ofψ(z) is odd aroundz = L/2 and the imaginary part is even therefore (15) is a
pure measure of the amplitude of the tail ifL is large enough.

If a zero of∆ is found then this implies that the tail of the travelling wave will be everywhere zero,
(ψtail(z) = 0, ∀z). Therefore altering the period,L, of the solution would not change the solution,
however if a value of L is chosen too small then at the point the tail condition is applied,ψcore 6= 0 and so∆
will not accurately reflect the amplitude of the tail. The accuracy of the solutions found with vanishing tail
amplitude can be seen in Figure 9 where it is observed that the tail is zero up to the numerical accuracy used
(in this caseO(10−10)). If a zero of∆, is found it can be numerically continued in L and another problem
parameter. If L is chosen appropriately large so thatψcore(L/2) = 0, then increasing it further should have
no effect on the parameter values of the point∆ = 0, whilst if L is too small andψcore(L/2) 6= 0 then we
would expect the parameter value at which∆ = 0 is found to vary with L. As can be seen from Figure 8,
choosingL . 55 for branches I & II andL . 70 for branch III indicates that the tail is being measured
too close to the core and so (15) is not a true measure of the amplitude of the tail as there are still some
influences from the core of the solitary wave. For very large values of L another problem can be seen to
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Figure 8:Continuation of three zeros of∆ in L andε with c = 0.7,Λ = 0.5 with N = 200 (a) & (b) andN = 300 (c). The
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Figure 9: Travelling solitary wave of Branch II withε = 1.020, c = 0.7037, Λ = 0.5, L = 120, ∆ = 0. The solid line
indicatesRe(ψ), while the dashed line showsIm(ψ). (a) Shape of full solution. (b) Magnification of the tail showing it is zero to
the numerical accuracy of the solver (10−10).

manifest itself in Figure 8 panel (b) inset and more clearly in panel (c); that is if L is increased beyond a
certain point, then the collocation pointszi used will be quite far apart and will not accurately represent
a soliton solution. Hence the parameter values at which∆ = 0 is found will not represent a true solitary
wave solution. This problem can, in principle, be overcome by increasing the number of collocation points
N . However, we note that the optimal number of collocation points is difficult to predict and varies with
solution parameters.

4 Continuation results

We also note that for large values ofc andε, the solution branches become more difficult to calculate as
larger values ofL andN have to be taken to ensure that∆ is still a true measure of the tail amplitude. Asε
is increased the solution curves in Figure 10 appear more like a square well in shape and it therefore tends
to become more difficult to isolate a true zero of∆ from a nearby nonzero but still very small value of∆.
Hence, the computation of the exact parameter value at which any subsequent solitary wave branch would
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Figure 11:Continuation of the 3 zeros of∆ shown in Figure 10, varyingε andc with Λ = 0.5. The continuation curves diverge
for different values of L near the spectral bands as explained in the text. Solid black lines indicate the solution branches shown in
Figure 13, black dashed-dotted lines are forL = 280, solid red lines -L = 130, red dashed-dotted lines -L = 120, blue solid lines
- L = 110, blue dashed-dotted lines -L = 90, green dashed-dotted lines -L = 80, green solid lines -L = 60. (b) Detail of the
upper part of branch II, top panel, and lower part of branch I, bottom panel. clearly showing divergence for differing values of L.

would have zero tail amplitude becomes increasingly cumbersome. The solution branches shown are easily
repeatable for differing values ofL, Figure 11 shows the effects of varying L in the continuation of solitary
wave branch. Note, in particular, the differing behaviour as a branch approaches the lower spectral bands
and the ’kinks’ in the upper parts of the solution curves as they approach the upper spectral band; this effect
is due to the value ofL being too small and thereforeψcore being non-zero in the tail.

Once a weakly non-local soliton is found using the Powell-Hybrid method, the solution is continued in
(∆,W ), whereW is any chosen parameter. If a solution which passes through∆ = 0 is identified, in a
way similar to what is shown in Fig. 12, then∆ can be fixed there and the solution can be continued in any
two parameters from(ε, c,Λ, L). Using this method a number of different zeros of∆ are found as shown in
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Figure 12:Continuation of branch with second zero of∆ atε ≈ 1.02. for c = 0.7,Λ = 0.5, L = 60. (a)Re(ψ), (b) Im(ψ).

Figure 10. Notice the difference between the ’U’ and ’n’ shaped curves which do not pass through∆ = 0
and the ’S’ shaped curves which include the zeros of∆. It can be seen that these curves appear periodic in
1/ε and are of similar form to those found in previous works [5] [23]. Finding expressions for these curves
is a regular asymptotic problem involving the computation of only the first few terms of an asymptotic
expansion and will be discussed in future work. However obtaining parameter values where the curves pass
through∆ = 0 is a much more difficult, beyond all orders asymptotic problem due to the amplitude of the
tails becoming exponentially small asε approaches∆(ε) = 0, [31].
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Figure 13:Continuation of the 3 zeros of∆ shown in Figure 10, varyingε andc with Λ = 0.5. Circles on thec = 0 axis indicate
the transparent points of (1).

By continuing the three zeros of∆ in Figure 10 in the parameters (c, ε) with ∆ = 0 the effects of the
multi-phonon bands, Figure 3, on the solitons can be investigated. Continuation of the three zeros of∆ found
in Figure 10 are shown in Figure 13. The continuation curves for a particular zero of∆ above the multi-
phonon bands for differing values ofL are the same, but they differ when they enter the lower phonon bands
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or approach the upper phonon band, either terminating at the edge or losing their exponential localisation
when entering the band. This behaviour indicates that the true solitary wave continuation branches cannot be
continued inside the multi-phonon band and, in fact, terminate at the boundary of the spectral bands where
an extra pair of purely imaginary eigenvalues appear. Profiles along branch I are shown in Figure 14 where
the broadening of the soliton for largec as it approaches the upper phonon band can easily be seen. Branches
II and III have qualitatively similar profiles. It is interesting to note that although the solution branches in
Figure 13 cannot be continued into the spectral bands and down to the linec = 0, it appears that they do
in fact originate from the first three transparent points of (1). It may therefore be expected to be possible to
find further branches of∆ = 0 for larger values ofε andc.
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Figure 14:Continuation of the first branch of solutions with varyingε, c andΛ = 0.5 (a)Re(ψ(z)), (b) Im(ψ(z)). The lower
portion of the branch is computed withL = 60, if the solution is continued inside the multi-phonon band it becomes delocalized.
As c is incresed larger values ofL = 80 and280 are used to capture the solution as the soliton core expands. Near the upper
phonon band the soliton branch terminates. Solutions have been truncated inz for ease of viewing.

The parameterε is fixed by the governing equation (1), whilstΛ andc are dependent upon the solution
ansatz, equation (2) therefore to investigate how the solution profiles may vary for a given lattice it makes
sense to fix the parameterε at some value and then continue the soliton branches in the solution parameters
c andΛ, as is shown in Figure 15. Settingε = 1 we can use the solutions for branches I & II already used in
this section as a starting point, a branch III solution forε = 1 can be found by continuing the solution used
in this section in the parametersε,Λ until ε = 1. Using this method a number of other solution branches
can also be found for smaller values ofΛ. As Λ is decreased and the gap between each successive branch
decreases. It is expected that many more branches than shown would exist ifΛ is decreased, although as the
branches appear closer together it becomes difficult to distinguish between them. None of the extra branches
found here (IV - VII) intersect the lineΛ = 0.5 and so it would not be possible to see these branches for
ε = 1 in Figure 13, however in a similar fashion to branch III, these extra branches could appear for larger
values ofε originating from higher transparent points.

As can be seen in Figure 15, the continuation branches again terminate at the spectral bands for smallc,
as they should, whilst for large wavespeeds the branches seem to converge to a point for(c,Λ) ≈ (2,−1)
although in this limit the amplitude of the solitary waves becomes very large and it is debatable whether
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Figure 15:Continuation of the 3 solitary wave branches with varyingΛ andc for fixed ε = 1. Extra branches, labelled IV - VII
are also found for smaller values ofΛ. Branches appear to converge in the large wavespeed limit.

these represent valid solutions. The variation in amplitude of the solutions along the continuation curves for
Figures 13 and 15 are shown in Figure 16. AsΛ is increased the wave amplitude decreases. The amplitude
of branch I tends to zero in both cases (where for the (ε, c) plane the first branch has been extended by
using a solution for whichψcore 6= 0 in the tail. However we would expect the same qualitative behaviour
of the core amplitude if the solution was continued to the edge of the spectral band) as it approaches the
fundamental spectral band due to the related eigenfunction of the fundamental band, Figure 6. See [32],
[31] for analysis and results around this band. All other branches terminate at a spectral band with non-zero
amplitude. Apart from this difference in amplitude there is little qualitative difference between the solutions
on each branch, in particular all solutions are single humped.
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Figure 16:Amplitude of solutions,|ψ(z = 0)| along the continuation branches shown in (a) Figure 15 asΛ varies and (b) from
Figure 13 asε varies. Thick dashed line in panel (b) is from a solution on Branch I for whichψcore 6= 0 in the tail henceL is too
small, however this gives a good indication that the soliton amplitude goes to zero as it intersects the upper phonon band.

To confirm that no branches have been missed in between the ones shown in Figure 15 (although it
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would be expected that there are more branches below the ones shown), the transparent points of the grand-
canonical energyG are again calculated. Taking a stationary solution computed from the solution at the
anti-contimuum limit to the pointε = 1 for a fixed valueΛ = 0.5 and continuing inΛ yields Figure 1 (b).
A number of transparent points are found, becoming denser asΛ approaches zero. However, nearΛ = 0
and1 the continuation breaks down. This break down is due to the amplitude of the stationary profiles being
related to the value at the anti-continum limit of±

√
(1/Λ)− 1 so that asΛ approaches zero the amplitude

blow up and atΛ = 1 the amplitude is zero, therefore this analysis is only valid in the regionΛ ∈ (0, 1)
and so the transparent points from which the first two branches orginate cannot be found using this method,
although for a fixedΛ and variedε they can be found as regular transparent points, see Figure 1(a).

5 Direct Numerical Integration

We can use the solutions obtained in the previous section (as stationary solutions in the travelling frame) as
initial conditions in numerical simulations of equation (1). A4th order Runge-Kutta method as implemented
by Matlab, with variable time step and absolute tolerance10−10, is used to solve the initial value problem
with periodic boundary conditionsun+N = un. This method only requires data at the preceding time step so
only the initial data (and the lattice parameterε) need to be specified. On the other hand,(c,Λ) are solution
parameters and are not prescribed a priori but are intrinsic characteristics of each solution which would be
expected to occupy a single point in(c,Λ) space for a givenε. We wish to study the temporal evolution of
the travelling solitary waves found in section 4 and their “robustness” (i.e., stability) under perturbations, as
well as their interactions. A typical example of the evolution of a single soliton withε = 1 from branch II is
shown in Figure 17. As can be inferred from the dynamics, the solution appear to be steadily and robustly
propagating with a constant slope on the space-time diagrams (i.e., a constant speed), as anticipated. This
has been repeated for solitons on branches I and III with similar results which have been excluded here for
brevity.
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Figure 17:Numerical Integration of the solution of Branch II in Figure 13 withε = 1, c = 0.67725 with Λ = 0.5, N = 100.
(a) Motion of the solution through the lattice for 100 time steps (shown is a space-time contour plot of the modulus of the solution),
(b) Initial and final profiles of the wave after 100 time steps; the final lattice node points are indicated with a +.
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5.1 Stability of Travelling Waves Under Perturbation

The direct integration discussed above can be used to investigate the stability of the solutions obtained by
numerical continuation. It has been shown that embedded solitons can be considered as semi-stable objects
[45], that is if they are perturbed by adding energy to them then the soliton will relax back to its original state
by shedding off the excess energy as radiation in the lattice whilst if they are perturbed by reducing their
energy then the soliton will become delocalised and radiate all energy away accross the lattice. However
here we find that our solutions appear in fact to be stable to amplitude perturbations, Figures 18 - 20.
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Figure 18:Direct integration of a perturbed solution from Branch I in Figure 13 withε = 1 andc = 1.00926,Λ = 0.5, N =
2000. (a) Motion of the solution withα = 0.8 through the lattice for 1000 time steps, (b) the top panel shows the position of the
soliton at time t, the middle panel shows the velocity based upon numerical differentiation, and the lower panel shows the log of
the power spectrum indicating a shift in frequency from the unperturbed valueΛ = 0.5. (c) and (d) show the same as (a) and (b)
but withα = 1.2

These different types of perturbations can be simulated by direct integration using initial profiles that
represent different fractions of the solution profiles obtained in the previous sections,vn(0) = αun(0) where
un(0) is an initial solution taken from one of the branches in Figure 13 andα is a constant used to vary the
initial profile (α = 1 would correspond the unperturbed solution). The results of these simulations for
α 6= 1 are shown for a branch I solution in Figure 18. Figure 19 shows the variation in position, wavespeed
and frequency of perturbed solutions on branches II and III where qualitatively similar results are found to
perturbed solutions on branch I. When the initial profile is perturbed instead of either relaxing back to the
unperturbed solution if extra energy is added or becoming delocalised if energy is taken away, as might be
expected if the solutions were in fact semi-stable. Instead it appears that another travelling soliton solution is
selected but withdifferent frequencyΛ and wavespeedc. The peak in the frequency spectrum can be seen to
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Figure 19:Variation in position, wavespeed,c and frequencyΛ for perturbed solutions on branch II with (a)α = 0.8 and (b)
α = 1.2. Branch III with (c)α = 0.8 and (d)α = 1.2. Panels are the same as for Figure 18 (b) and (d).

move, Figure 18 panels (a) and (c) and Figure 19, from the unperturbed value ofΛ = 0.5 and the wavespeed
c also exihibits a small variation although this is difficult to detect. Figures 20-21 show a clearer view of the
frequency and amplutide variation of the perturbed solutions. Ifα > 1(< 1) thenΛ, c decreases (increases).
During an initial transition period where a the soliton settles into the “new” solution, a certain amount of
radiation is shed and the velocity is distinctly higher than that of the unperturbed soliton, see panels (b) &
(d) in Figure 18 . After this transient, the soliton settles into the new solution, although as compared with
the unperturbed solution the amplitude is often oscillatory, see Figure 20, and the new wavespeed is not
constant but often slightly oscillatory with periodic “dips”. The rapid oscillations that appear in the values
of |unMax |, wherenMax is the lattice site with largest the value of|u|, in Figure 20 is due toRe(un) and
Im(un) not being exactly out of phase so that|un| appears oscillatory. The change in the soliton frequency
due to variations ofα is shown in Figure 21 for Branches I & II, as can be seen the new soliton profiles stay
very close to the unperturbed solution branch even for a large perturbation,α = 0.5, 1.4.

5.2 Orbital Stability of Travelling Waves

The above results already illustrate the stability of this branch of travelling solutions. However, to cor-
roborate these findings we have also used linearization techniques in the form of linear stability analysis.
we introduce a small perturbationξn to a given solutionun0 (of branches I-III) of Eq. (1) according to
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Figure 20:Profiles of perturbed embedded solitons, (a) Branch I soliton withα = 0.8, (b) Branch I soliton withα = 1.2, (c)
Branch II soliton withα = 0.8, (d) Branch II soliton withα = 1.2. Top panels show|u| for soliton and bottom panels.Re(u) -
solid line,Im(u) - dashed line.
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Figure 21:Change in frequency,Λ, of a soliton due to perturbation of the initial profile withΛ = 0.5, α ∈ (0.5, 1.4). Branch
I, solid line indicates unperturbed solution amplitudes, with perturbed solutions shown by circles. Branch II, dashed line indicates
unperturbed solution amplitudes, perturbed solutions indicated by crosses. Error bars indicate the variation in amplitude.

un = un0 + ξn. Then, the equation satisfied to leading order byξn is:

iξ̇n − β

1 + |un0|2 ξn +
β

(1 + |un0|2)2
(|un0|2ξn + u2

n0ξ
∗
n

)
+ ε∆ξn = 0 (16)

In order to examine the orbital stability analysis of the relevant solution, a Floquet analysis can be performed
if there existT ∈ R andq ∈ Z so that the map

un(0) → un+q(T ) (17)
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Figure 22:Floquet eigenvalues in the unit circle. Solutions corresponds, from left to right, to the 1st, 2nd and 3rd branches. In
all cases,q = 8, p = 1. The Krein signature (see e.g., [19], [3]) is indicated by the following signs: Positive (+), negative (×) and
zero◦

has a fixed point [16, 17]. Then, the stability properties are given by the spectrum of the Floquet operatorF
(whose matrix representation is the monodromy) defined as:

( {Re(ξn+q(T ))}
{Im(ξn+q(T ))}

)
= F

( {Re(ξn(0))}
{Im(ξn(0))}

)
(18)

The Floquet operator is symplectic, which implies that there is always a pair of degenerate monodromy
eigenvalues (corresponding to the phase and growth modes [19], [3]) at1. If the moving soliton is stable, all
the eigenvalues must lie on the unit circle.

Given the spatial and temporal dependence of the solution, we expect the periodicity condition of the
map (17) is fulfilled as long as the profile “recurrence” periodT is connected to the solution frequency
through

T =
q

c

2πc
Λ

=
q

p
, p ∈ Z. (19)

This commensurability condition implies the absence of a continuous parameter set for which an orbital
stability analysis can be performed. Instead, it is possible to examine the results of Floquet theory for
isolated points along the branches I-III, as is shown in Fig. 22.

We have performed the stability analysis for a set of commensurate solutions of each branch, finding
that the modulus of every eigenvalue is1. In consequence, we observe that the relevant examined solutions
are orbitally stable ones. The values ofp : q chosen in each set of commensurate solutions (for which we
have established the above notion of stability) are the following:

• 1st Branch. 15:4, 120:31, 4:1, 120:29, 30:7, 40:9, 60:13,24:5, 5:1, 120:23, 60:11, 40:7, 6:1, 120:19,
20:3, 120:17, 15:2, 8:1, 60:7, 120:13, 10:1, 120:11, 12:1, 40:3, 15:1, 120:7.

• 2nd Branch. 80:17, 5:1, 16:3, 40:7, 80:13, 20:3, 80:11, 8:1, 80:9, 10:1, 80:7.

• 3rd Branch. 15:2, 8:1, 60:7, 120:13, 10:1.

5.3 Collisional Interactions Between Travelling Waves

Lastly, we have tested the robustness of the travelling wave solutions under both symmetric (i.e., identical
solutions moving in opposite directions) and non-symmetric (i.e., non-identical solutions moving in opposite
directions or even solutions moving with different speeds in the same direction) conditions.
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Figure 23:Dependence of the restitution coefficient for symmetric collisions with respect to the frequencyΛ for branches I, II
and III (from left to right). Circles correspond to reflection / refraction and triangles to breather creation.
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Figure 24: Collision of two solitary waves belonging to branch I with initial velocityc = 1.7351 andΛ = −0.7121. They
are refracted / reflected after the collision. (Left) Space-time contour plot of the solution density. (Right) Time dependence of the
amplitude of the moving wave.

To this end, we have used in our collisional numerical experiments solutions of branches I, II and III in
Figure 15 with fixedε = 1 and variableΛ andc. As a quantitative diagnostic of the elasticity of the collision
we have used the restitution coefficient, defined as:

R =
c2,f − c2,i

c1,f − c1,i
(20)

wherecj,i (cj,f ) indicates the initial (final) velocity of thej-th wave. An elastic collision corresponds to
R = 1.

5.4 Symmetric collisions

We first consider the collisions of two identical incoming solitary waves moving in opposite directions.
Upon colliding, the waves are refracted or reflected. In some cases, the appearance of a third pulse after the
collision is observed (we refer to such an event as “breather creation”) as for non-exact solutions [7, 26]. Fig.
23 shows the values of the restitution coefficients together with the parameters values for which the breather
creation takes place and Figs. 24 and 25, show typical examples of collisions with and without creation of
additional waves. It is worthwhile to note here the high degree of elasticity of the observed dynamics, as
well as the potential for inducing breather creation, especially for the higher branches and, in particular, for
small values of the frequency.
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Figure 25:Collision of two waves with initial velocityc = 1.0338 andΛ = 0.1129. They are refracted / reflected after the
collision with an extra breather created. The panels are similar to those of Fig. 24, but the right panel also shows the amplitude of
the wave created atn = 0.
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Figure 26: Dependence of the restitution coefficient for collisions of a travelling wave withc = 1.3006 andΛ = 0.0143
in branch I (left),c = 1.0338 andΛ = 0.1129 in branch II (center) andc = 0.8881 andΛ = 0.0845 in branch III (right).
These collisions take place with waves of the same branch whoseΛ is indicated in the X-axes of the graphs. Circles correspond to
reflection / refraction and triangles to breather creation.

5.5 Asymmetric collisions

In this case, the incoming solitary waves do not have the same velocities, nor do they necessarily move in
opposite directions. This allows the possibility of collisions between pulses in the same branch, as well as
ones in different branches. We show in Figs. 26 the restitution coefficient for intra-band and collisions (the
results are similar for inter-band collisions). Examples of collisions with and without creation are shown in
Figs. 27 and 28. It is observed once again that the restitution coefficient is fairly high, while one can also
note that in this case the waves are almost “transparent” (no reflection is observed); in some instances, the
creation of additional waves is also observed in this setting.

The existence of solitary waves with different velocities and the same value ofε allows us also to
consider collisions in the same direction. The velocities of the incoming traveling waves must be very
different (so that they can catch up with each other in relatively short intervals of time) and the amplitude
somewhat similar (so that nontrivial collisional dynamics may ensue). These conditions are rather difficult
to achieve and for this reason we restrict our considerations to a qualitative analysis of some case examples.
We show in Fig. 29, two example of collisions, corresponding to reflection (there is repulsion between the
waves) and refraction.

6 Conclusions

In this work, we have considered the issues arising when examining the existence, stability and dynamics
of travelling solitary waves in a nonlinear Schrödinger lattice model with saturable nonlinearity. We have
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Figure 27:Collision of two travelling waves of different velocities. One belongs to branch I with initial velocityc = 1.3006
andΛ = 0.0143. The other one belongs to branch III, having initial velocityc = 1.0676 andΛ = −0.0751. They are refracted
/ reflected after the collision. (Left) The space-time contour plot of the density is shown. (Right) The time dependence of the
amplitude of the traveling waves is presented.
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Figure 28: Collision of two waves with different velocities. One belongs to branch II with initial velocityc = 1.0338 and
Λ = 0.1129. The other one belongs to branch III, having initial velocityc = 0.9876 andΛ = −0.0025. The panels are similar to
the previous figure.
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Figure 29:Collision of two traveling waves with different velocities moving in the same direction. They have (Left)c = 1.4201
andΛ = −0.3509, belonging to branch II andc = 1.1804 andΛ = −0.1817, belonging to branch III. The coherent structures
repel each other. (Right)c = 1.6433 andΛ = −0.5597, belonging to branch I andc = 1.1804 andΛ = −0.1817, belonging to
branch III. The waves are refracted.
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illustrated that in this context, the static problem features transparent points, that is zeros of a generalised
energy barrier between site centred and intersite modes. The existence of which, loosely speaking, suggest
the possibility of truly localised travelling waves with arbitrarily small wave speed. However the accumu-
lation of linear spectrum onc = 0 does not allow for such waves to exist without (exponentially small)
oscillatory tails, that could eventually lead to radiative loss. Nevertheless, a detailed examination of the
linear spectrum allows us to identify parameter regions for finite wavespeedc where a single resonance of
the travelling solution with plane waves occurs. Within these regions, it is possible to search for isolated,
that is codimension-one parameter values where the tail of the solution vanishes. An appropriate definition
of the tail based on the symmetry of the solution has been proposed and found to be particularly efficient in
our numerical investigations. These isolated points lead to branches in two-parameter planes (such as speed
vs. frequency or speed vs. coupling strength) which have been fully elucidated. The solutions obtained
have been confirmed to travel without radiative loss in direct numerical simulations of the model. Perturba-
tions of these embedded-soliton type solutions have been shown to lead to their “degeneration” into another
element of the corresponding branch (upon suitable modification of the intrinsic frequency parameter), but
clearly also illustrate the robustness of the waves. This robustness has been further confirmed by linear
stability analysis and the computation of the Floquet spectra of waves. Finally, the collisions of the waves
have shown a high restitution coefficient, indicating their near-elasticity. However, they also highlight the
absence of integrability of the discrete model through partial amplitude decrease and phenomena such as the
creation of an additional localised excitations.

A particularly interesting direction of future study would involve the examination of higher dimensional
generalisations of the present work. While such generalisations are already being studied (see for instance
the works of [41], [42]), demonstrating interesting possibilities about the propagation on- and off-lattice dir-
ections, there is no “numerically exact” (up to a desired accuracy) computation of travelling wave solutions
nor their stability, to the best of our knowledge. Such studies are currently in progress and will be reported
in future publications.

It should be stressed that while we have presented detailed numerical evidence for the existence and
stability of travelling discrete solitary waves in the saturable DNLS model, we have not provided a definite
mathematical proof. It would be interesting to see to what extent a rigorous analysis could be developed.
Recent progress has been obtained for example by Oxtobyet al [31] by looking at the limit of small amp-
litude waves and computation of the so-called Stokes constant corresponding to the solutions originating
at the fundamental spectral band in Figure 3. We also mention in related cubic DNLS models the work of
Pelinovskyet alwhere a rigorous Melnikov theory is developed in a special case [32].
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