
Innovations in Systems and Software Engineering manuscript No.
(will be inserted by the editor)

Joaquin Pẽna · Michael G. Hinchey · Roy Sterritt · Antonio Ruiz-Cort és

Building and Implementing Policies in Autonomous and Autonomic
Systems Using MaCMAS
A Case Study Based on a NASA Concept Mission

Received: date / Accepted: date

Abstract Autonomic Computing, self-management based on
high level guidance from humans, is increasingly being ac-
cepted as a means forward in designing reliable systems that
both hide complexity from the user and control IT manage-
ment costs. Effectively, AC may be viewed as Policy-Based
Self-Management. We look at ways of achieving this, and in
particular focus on Agent-Oriented Software Engineering.
We propose utilizing MaCMAS, an AOSE methodology, for
specifying autonomic and autonomous properties of the sys-
tem independently, and later, by means of composition of
these specifications, guided by a policy specification, con-
struct a specification for the policy and its subsequent de-
ployment. We illustrate this by means of a case study based
on a NASA concept mission, and describe future work on a
support toolkit.

The work reported in this article was supported by the Spanish Min-
istry of Science and Technology under grants TIC2003-02737-C02-01
and TIN2006-00472, by NASA Software Engineering Laboratory and
NASA Office of Safety and Mission Assurance Software Assurance
Research Program (SARP), and at University of Ulster by the Com-
puter Science Research Institute (CSRI) and the Centre for Software
Process Technologies (CSPT), funded by Invest NI through the Cen-
tres of Excellence Programme, under the EU Peace II initiative.

Joaquin Pẽna
University of Seville
Spain
E-mail: joaquinp@us.es

Michael G. Hinchey
NASA Goddard Space Flight Center
USA
E-mail: Michael.G.Hinchey@nasa.gov

Roy Sterritt
University of Ulster
Northern Ireland
r.sterritt@ulster.ac.uk

Antonio Ruiz-Cort́es
University of Seville
Spain
E-mail: aruiz@us.es

Keywords Autonomic Computing, Policy-based Manage-
ment, Agent-Oriented Software Engineering

1 Introduction and Motivation

Autonomic Systems (encompassing both Autonomic Com-
puting and Autonomic Communications) is an emerging fi-
eld [1] for the development of large-scale, self-managing,
complex distributed computer-based systems.

As in all emerging fields, there are many fruitful areas
for concern, that are worthwhile targets for research and de-
velopment. Many issues are yet to be addressed, such as,
for example, how should autonomic managers, which to-
gether with the component being managed make up an au-
tonomic element, be defined such that it can exist in a col-
laborative autonomic environment, and ultimately provide
self-management of the system.

The long term strategic vision of AC highlighted an over-
arching self-managing vision where the system would have
such a level of “self” capability that a senior (human) man-
ager in an organization could specify business policies—
such as profit margin on a specific product range, or system
quality of service for a band of customers—and the comput-
ing systems would do the rest themselves.

It has been argued that for this vision to become a reality,
we would require AI completeness, Software Engineering
completeness, and so on [2]. What is clear in this vision is
the importance of some form of policy that is then translated
to all levels in the system in order to achieve self-direction
and self-management.

In introducing the concept of Autonomic Computing,
IBM’s Paul Horn likened the needs of large scale systems
management to that of the human Autonomic Nervous Sys-
tem (ANS). The ANS, through self-regulation, is able to ef-
fectively monitor, control and regulate the human body with-
out the need for conscious thought [8]. This self-regulation
and separation of concerns provides human beings with the
ability to concentrate on high level objectives without hav-
ing to micro-manage the specific details involved. The vi-
sion and metaphor of Autonomic Computing is to apply the

2

same principles of self-regulation and complexity-hiding to
the design of computer-based systems, in the hope that one
day computer systems can achieve the same level of self-
regulation as the human ANS [8],[28]. In his talk, Horn high-
lighted that the Autonomic Computing system must “find
and generate rules for how best to interact with neighboring
systems” [8].

We propose to use a methodology called MaCMAS (Me-
thodology Fragment for Analyzing Complex Multi-Agent
Systems1) which provides the models and techniques for
adding policies at runtime. We propose to create isolated
definitions of the features that we want to use in policies us-
ing MaCMAS models. Later, when we specify a policy, we
deploy these models over the running system using MaC-
MAS model composition.

In addition, to illustrate our approach, we use an example
from the NASA ANTS concept mission (described in Sec-
tion 5). This mission involves the use of a swarm of pico-
class spacecraft to explore and collect data from the asteroid
belt, and exhibits both autonomous and autonomic proper-
ties.

2 Policy-Based Management

Policies have been described as a set of considerations de-
signed to guide decisions of courses of action [15], and Po-
licy-Based management (PBM) may be viewed as an admin-
istrative approach to systems management thata priori es-
tablishes rules for dealing with situations that are likely to
occur.

From this perspective, PBM works by controlling ac-
cess to and setting priorities for the use of ICT resources2,
for instance, where a (human) manager may simply spec-
ify the business objectives and the system will achieve these
in terms of the needed ICT [14]. For example: (1) “The
customer database must be backed up nightly between 1
a.m. and 4 a.m.”; (2) “Platinum customers are to receive no
worse than 1-second average response time on all purchase
transactions.”; (3) “Only management and the HR senior
staff can access personnel records.”; and (4) “The number
of connections requested by the Web application server can-
not exceed the number of connections supported by the as-
sociated database.” [10]. These examples highlight the wide
range and multiple levels of policies, the first concerned with
system protection through backup, the second with system
optimization to achieve and maintain a level of quality-of-
service for key customers; while the third and fourth are
concerned with system configuration and protection.

Policy-Based Management has been the subject of exten-
sive research in its own right. The Internet Engineering Task
Force (IETF) has investigated Policy-Based Networking as
a means for managing IP-based multi-service networks with

1 see http://james.eii.us.es/MaCMAS/ for further details.
2 Whatis.com, Online computer and internet dictionary and ency-

clopedia, 2005.

quality-of-service guarantees. More recently, PBM has be-
come extremely popular within the telecommunications in-
dustry, for next generation networking, with many vendors
announcing plans and introducing PBM-based products. This
is driven by the fact that policy has been recognized as a
solution for managing complexity, and for guiding the be-
havior of a network or distributed system through high-level
user-oriented abstractions [16]. A PBM tool may also reduce
the complexity of product and system management by pro-
viding a uniform cross-product policy definition and man-
agement infrastructure [4].

With one definition of Autonomic Computing being Self-
Management based on high level guidance from humans [12]
and considering IBM’s high-level set of self-properties (self-
CHOP: configuration, healing, optimization and protection)
against the types of typical policies mentioned previously
(optimization, configuration and protection), the importance
and relevance of polices for achieving autonomicity becomes
clear [29].

3 Using AOSE for policy modelling

The field of Agent-Oriented Software Engineering (AOSE)
has arisen to address methodological aspects and other is-
sues related to the development of complex multi-agent sys-
tems. AOSE is a new software engineering paradigm that au-
gurs much promise in enabling the successful development
of more complex systems than is achievable with current
Object-Oriented approaches which use agents and organi-
zations of agents as their main abstractions [9].

The organizational metaphor has been proven to be one
of the most appropriate tools for engineering Multi-Agent
Systems (hereafter, MAS). The metaphor is used by many
researchers to guide the analysis and design of MASs, e.g., [19;
21; 31].

A MAS organization can be observed from two different
point of view [31]:

Acquaintance point of view: shows the organization as the
set of interaction relationships between the roles played
by agents.

Structural point of view: shows agents as artifacts that be-
long to sub-organizations, groups, teams. In this view
agents are also structured into hierarchical structures show-
ing the social structure of the system.

Both views are intimately related, but they show the or-
ganization from radically different viewpoints. Since any struc-
tural organization must include interactions between their
agents in order to function, it is safe to say that the acquain-
tance organization is always contained in the structural or-
ganization. Therefore, if we first determine the acquaintance
organization, and we define the constraints required for the
structural organization, a natural map is formed between the
acquaintance organization and the corresponding structural
organization. This is the process of assigning roles to agents

3

System Analyst

 Build Intial Acq . Org. ()
Layer Completion ()

 Reuse ()
Traceability maintenance ()

 Analysis

Role Plan
Role Model

Plan
Resources

Dependecies
Model

Role Model Ontology

Static Acquaintance
Organization Models

Traceability
Model

Complexity
Domain

Guidelines

Decomp.
Guidelines

Comp.
Guidelines

Reuse
Guidelines

Dynamic Acquaintance
Organization Models

Parameterized
Role Model

Open Systems
Guidelines

Relating
Role Models

Top-down vs.
Bottom-up
Guidelines

Fig. 1 Acquaintance analysis discipline

[31]. Thus, we can conclude that any acquaintance organi-
zation can be modeled orthogonally to its structural organi-
zation [11].

We use this separation to specify policies at the acquain-
tance organization level, and deploy them over the structural
organizational of the running system. The scope of poli-
cies usually implies features of several acquaintance sub-
organizations. In such cases, we must first compose the ac-
quaintance sub-organizations, this process being guided by
the policy specification, to deploy it later.

4 Overview of MaCMAS/UML

MaCMAS is the AOSE methodology that we use to spec-
ify and deploy policies [22]. It is specially tailored to model
complex acquaintance organizations [26]. Its main advan-
tages can be observed from three aspects: in the modeling
aspect, the main advantage consists in providing an inter-
action abstraction to enable the modeling of unpredictable
behaviors, and providing a notation which, to the best of
our knowledge, is the unique UML 2.0-based approach ded-
icated to modeling the acquaintance organization abstractly;
in the techniques aspect, we provide semi-automatic tech-
niques for decomposing and composing models basing on
goal-oriented requirements and on dependencies, which is
unique in the field; and in the software process aspect, we
provide a software process that covers top-down and bottom-
up development approaches providing criteria for deciding
between them. To the best of our knowledge, our approach
is the first to address such criteria.

We use this approach for several reasons. First, it pro-
vides UML-based models which are the de-facto standard
in modeling, and which will decrease the learning-curve for
engineers. Second, it allows modeling at different levels of
abstraction, which allows us to specify policies at whichever
level of abstraction we need. Third, it provides techniques

Fig. 2 ANTS encounter with an asteroid

to compose acquaintance models, which is needed for poli-
cies that imply several system-goals and for deploying an
acquaintance model that specifies a policy over a structural
organization; that is to say, composition of roles.

In Figure 1, we summarize the main Software Process
Engineering Metamodel (SPEM) work definitions and mod-
els of the methodology. In the following, we detail the most
important features for our purposes in this paper.

The MaCMAS/UML modeling process is focused on in-
teractions/acquaintance organization since they are the main
source of complexity. In order to represent interactions ab-
stractly we usemulti-Role Interactions(mRI) [23; 24]. mRIs
are first class modeling elements in our models and are used
as the minimum building block for modeling. Their use is
crucial for performing an incremental layered modeling ap-
proach since mRIs can be described internally by means of
finer-grain mRIs, or several of them can be abstracted by a
coarser-grain one.

An mRI is aninstitutionalized pattern of interactionthat
abstractly represents the fulfillment of a system goal without
detailing how this is achieved. Thus, using mRI as the mini-
mum modeling element we do not have to take into account
all of the details required to fulfill a complex system goal
nor the messages that are exchanged at stages where these
details have not been identified clearly, are not known, or are
not even necessary. This allows us to have abstract models
where intelligent behavior is carried out by means of neural
networks, fuzzy logic, etc., (as, for example, is required in
ANTS, cf. Section 5), without the necessity of dealing with
all the details. In addition, the direct correlation between sys-
tem goals and mRIs allows us to establish a clear traceability
between goal-oriented requirement documents and analysis
models. This is also important for our goal in this paper,
since policies usually verse about system goals. Having this
kind of model helps in simplifying the way in which policies
are specified, and deployed in the system at runtime.

mRIs are represented with UML 2.0 collaborations [20,
p. 132] as are all the models we use. We use three views
of the acquaintance organization: two for representing the
static and dynamic aspects of the organization, and a third

4

for representing the relation between models in different ab-
straction layers. We use the following models:

a) Static Acquaintance Organization View: This shows the
static interaction relationships between roles in the sys-
tem and the knowledge processed by them. It comprises
the following UML models:
Role Models: shows an acquaintance sub-organization

as a set of roles collaborating by means of several
mRIs. As mRIs allow abstract representation of in-
teractions, we can use these models at whatever level
of abstraction we desire. We use role models to rep-
resent autonomous and autonomic properties of the
system at the level of abstraction we need.

Ontology: shows the ontology shared by roles in a role
model. It is used to add semantics to the knowledge
owned and exchanged by roles. We do not show it in
this paper, but, as we show later, they are also impor-
tant for deploying policies.

b) Behavior of Acquaintance Organization View: The behav-
ioral aspect of an organization shows the sequencing of
mRIs in a particular role model. It is represented by two
equivalent models:
Plan of a role: separately represents the plan of each role

in a role model showing how the mRIs of the role
sequence. It is represented using UML 2.0 Protocol-
StateMachines [20, p. 422]. It is used to focus on a
certain role, while ignoring others.

Plan of a role model: represents the order of mRIs in a
role model with a centralized description. It is repre-
sented using UML 2.0 StateMachines [20, p. 446]. It
is used to facilitate easy understanding of the whole
behavior of a sub-organization.

c) Traceability view: This model shows how models in dif-
ferent abstraction layers relate. It shows how mRIs are
abstracted, composed or decomposed by means ofclas-
sification, aggregation, generalizationor redefinition. No-
tice that we usually show only the relations between in-
teractions because they are the focus of modeling, but
all the elements that compose an mRI can also be re-
lated. Finally, since an mRI presents a direct correlation
with system goals, traceability models clearly show how
a certain requirement system goal is refined and materi-
alized.

5 ANTS Case Study and some of its models

In this section, we briefly introduce ANTS, a NASA concept
mission, that illustrates properties of several potential explo-
ration missions. We show two models of an autonomous and
autonomic property of the system.

5.1 ANTS Mission Overview

The Autonomous Nano-Technology Swarm (ANTS) mis-
sion [3; 30] is a concept mission that involves the use of

A) Plan Model

B) Role Model

Measure
risk of solar

storms
Protecting

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

SailAsShield

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

offSubSys
MeasureStorms

Space

<<Environment>>
Space

stormVector: Vector3
stormIntensity:Real

SelfProtecSC

StormVector: Vector3
stormIntensity : Real
asteroidRelativePos: Pos
stormType: StormTypes

Role Goal: Self-protection
mRI Measure Storms Goal:
Protect from solar storm
mRI offSubSys Goal: Protect
from solar storm
mRI SailAsShieldGoal: Protect
from solar storm

SelfProtecSC

SelfProtecSC

SelfProtecSC

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

offSubSys
Goal: Power off subsystems
Pattern: self-procedure

In: Out:
 SelfProtecSC.stormIntensity

SailAsShield
Goal: Use sail as shield
Pattern: self-procedure

In: Out:
SelfProtecSC.stormVector

 SelfProtecSC.stormIntensity

MeasureStorms
Goal: Measure Storm Risk
Pattern: Sense Environment

In:
Space.stormVector

 Space.stormIntensity

Out:
 SelfProtecSC.stormIntensity

SelfProtecSC.stormVector

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

Fig. 5 Self-protection from solar storms autonomic property model

swarms of autonomous pico-class (approximately 1kg) space-
craft that will search the asteroid belt for asteroids that have
specific characteristics. The mission is envisioned to consist
of approximately 1,000 spacecraft launched from a factory
ship. As shown in Figure 2, the swarm is envisioned to con-
sist of several types of spacecraft. Many of these spacecraft
(called specialists) will have a specialized single instrument
for collecting particular types of data. To examine an aster-
oid, several spacecraft will have to form a sub-swarm, under
the control of a ruler, and collaborate to collect data from
asteroids of interest, based on the properties of that asteroid.
This will be achieved using an insect analogy of hierarchical
social behavior with some spacecraft directing others.

5.2 Autonomic Properties of ANTS

The ANTS system may be viewed as an Autonomic System
as it meets four key requirements: self-configuration, self-
healing, self-optimization and self-protection, as illustrated
in [30]. Here we focus on self-configuration properties as
these are illustrated in our case study.

ANTS is self-protecting: The self protecting behavior of
the team will be interrelated with the self-protecting behav-
ior of the individual members. The anticipated sources of
threats to ANTS individuals (and consequently to the team
itself) will be collisions and solar storms.

Collision avoidance through maneuvering will be limited
because ANTS individuals will have limited ability to adjust
their orbits and trajectories, due to thrust for maneuvering
powered by solar sails. Individuals will have the capability
of coordinating their orbits and trajectories with other in-

5

RM Protect from
solar storms

RM orbit &
measure

MoveInform
Orbit

Adjust
Orbit

Prospecting
Asteroid Belt

Explore
and

Discover
ApproachOrbit

Search
new

asteroid

Inform
asteroid

Evaluate

Avoid
Crashing

Avoid run
out of power

Avoid loss
of

connection

Recover
from loss of
connection

Protect
from solar

storms

Measure
(image)

Measure (distance)
Measure (form)

Measure (GForces)

Decide If
Abort

Measure
(X-ray)

Measure
(form)

Measure
(GForce)

Measure
(image)

Measure
(GForce)

Measure
(image)

Send
Earth

Self-
Protection

AUTONOMIC
PROPERTIES

AUTONOMOUS
PROPERTIES

A
b

st
ra

ct
io

n

L
ay

e
r

1
A

b
s

tr
ac

ti
o

n

L
ay

er
 2

A
b

st
ra

ct
io

n

L
ay

er
 4

A
b

st
ra

ct
io

n

L
ay

er
 3

Measure
solar

storms

Switch
off sub-
sytems

Use sail
as a

shield

MeasureEscape
Orbit

Inform
Measures

...

...

...
...

...

... ...

Fig. 3 Traceability model of ANTS

dividuals to avoid collisions with them. Given the chaotic
environment of the asteroid belt and the highly dynamic tra-
jectories of the objects in it, occasional near approaches of
interloping asteroidal bodies (even small ones) to the ANTS
team may present threats of collisions with its individuals.
Collision-avoidance maneuvering for this type of spacecraft
presents a great challenge and is currently under consid-
eration. The main self-protection mechanism for collision
avoidance is achieved through the process of planning. The
plans involve constraints that will result in acceptable risks
of collisions between individuals when they carry out their
observational goals. In this way, ANTS exhibits a kind of
self-protection behavior against collisions.

Another possible ANTS self-protection mechanism co-
uld protect against the effects of solar storms, which is the
basis of the case study we use later in this paper. Charged
particles from solar storms could subject individuals to degra-
dation of sensors and electronic components. The increased
solar wind from solar storms could also affect the orbits and
trajectories of the ANTS individuals and thereby could jeop-
ardize the mission. Specific mechanisms to protect ANTS
spacecraft against the effects of solar storms have not yet
been determined. A potential mechanism might, for exam-
ple, provide spacecrafts with a solar storm sensing capability
through on-board, direct observation of the solar disk. When
the spacecraft recognize that a solar storm threat exists, they
would invoke their goal of protecting themselves from the
harmful effects of a solar storm. Part of the protective re-
sponse might be to orient solar panels and sails to minimize
the impact of the solar wind. An additional response might
be to power down unnecessary subsystems to minimize dis-
ruptions and damage from charged particles.

5.3 Example of Models of Autonomous and Autonomic
Properties of ANTS

After applying MaCMAS to the ANTS system, we obtain
the traceability diagram of Figure 3. This diagram summa-
rizes the mRIs in the system structured by layers of abstrac-
tion. In this diagram, the top layer is the most abstract. As
each node represents a system-goal also, we can see here
the division of tasks necessarily undertaken to develop the
system. As each mRI is inside a role model, we can also
see which roles we have determined to carry out by observ-
ing the role models. In the model shown, we have depicted
several sub-regions. Horizontal subdivisions depict layers of
abstraction, while the vertical line denotes the distinctionbe-
tween the parts of the system that represent autonomic and
the parts of the system that represent autonomous behaviors.
In addition to mRIs, MaCMAS also uses UML packages to
represent role models that contain several mRIs. In Figure 3
we identify two of these packages, which group the mRIs
used in the example that follows.

To foster reuse, to model an autonomous or an auto-
nomic property in a sufficiently generic and generalized way,
and to enable a policy to be deployed at runtime, proper-
ties must be independent of the concrete agents over which
they will be deployed. As we have shown, the features re-
quired to have an appropriate description correlates with the
features of an acquaintance sub-organization. As we have
also shown, to represent this kind of organization, MaCMAS
proposes two kind of models—one for showing the relation-
ships between roles, that is, role models, and another to show
how these relationships evolve over time, that is to say, plan
models.

For example, showing the autonomous process of orbit-
ing an asteroid to take a measurement requires at least two

6

A) Plan Model

Orbiting
After

Measure

[Dist(relativePos,Astero-
idRelativePos)<dist]

Measure

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

[not (Orbiter.AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)]

AdjustOrbit

InformOrbit

Inform
Measures

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

Asteroid

Orbiter

1..n

<<Environment>>
Asteroid

relativePos: Pos
pData:Data

Measure
Goal: Measure Asteroid
Pattern: Environmental Int.

In:
 Orbiter.aste-
 roidRelativePos

Out:
 pMeassu-
 rer.astModel

1..n

OrbitModeller

astData:AteroidData
orbitM: OrbitModel

CalculateOrbit(AsteroidData)::
OrbitModel

Role Goal: Calculate orbits
mRI Goals: send orbit models

Report Orbit
Goal: Report Orbit

Pattern: Collaboration
In:
 OrbitMo-

deller.orbitM

Out:
Orbiter.orbitM

Postcondition :
Orbiter .astModel <> empty

Instantiation Rule:
(Orbiter.allInstances -> forAll (c |
SWARM.pMeasureMeasurers .includes (c))

Guard:
Dist(relativePos,Asteroid
RelativePos)<dist

 Measurer

Orbiter

Orbiter

orbitM: OrbitModel
relativePos: Pos
asteroidRelativePos: Pos
astData: AstData
astModel: AstModel

AdjustOrbit(relativePos,orbitM)
PProcessData(m:Measure)::Model
PMeasureX(input)::pMeasure
AmIInsideOrbit(Pos,OrbitModel)::Bool
MeasureFinished(AstModel)::Bool

Role Goal: Maintain Orbit and
Measure
mRI Measure Goal: GetModel
mRI Orbits Goal: Get the Orbit Model

Receiver

listOfModels:Model
listOfSenders:Sender

Role Goal: Know Model
mRI Goals: get Model

Orbiter
Report Measures

Goal: Distribute results

Pattern: Collaboration
In:
 Orbiter.astModel

Out:
Receiver.astModel

Receiver

1..n

1..nAdjustOrbit

Goal: Distribute results

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:
Receiver.astModel

Orbiter

EscapeOrbit

Goal: Escape an Orbit

Pattern: self-procedure
In:
 Orbiter.orbitM

Out: Orbiter

Postcondition :
not (Orbiter.AmIInsideOrbit (Orbi-
ter.relativePos ,Orbiter .orbitM)

guard:
not (Orbiter .AmIInsideOrbit(Orbi -
ter.relativePos ,Orbiter.orbitM)

guard:
Orbiter .MeasureFi -
nished (astModel)

B) Role Model

Fig. 4 Orbiting and measuring an asteroid autonomous property

models–its role model and its plan model. Figure 4b shows
the role model for this case. We show here the models from
the third layer of abstraction of Figure 3. In this model there
are two kinds of elements: roles, which are represented us-
ing interface-like icons, and mRIs, which are represented as
collaboration-like icons. In this model, roles show which
is their general goal and their particular goals when par-
ticipating in a certain interaction with other roles or with
some part of the environment (represented using interfaces
with the<<environment>> stereotype). Roles also repre-
sent the knowledge they manage (middle compartment) and
the services they offer (bottom compartment). For example,
the goal of theOrbiter role is “maintain the orbit and mea-
sure [the asteroid]”, while its goal when participating in the
Report Orbitinteraction is to get a model of the orbit it must
follow. In addition to roles, mRIs also show us some im-
portant information. They must also show the system-goal
they achieve when executed, the kind of coordination that is
carried out when executed, the knowledge used as input to
achieve the goal, and the knowledge produced. For example,
the goal of the mRIReport Orbitis to “Report the Orbit”. It
is done by taking as input the knowledge of theOrbitMod-
eler regarding the orbit and producing as output the model
for the orbit (orbitM) in theOrbiter role.

Continuing with the example, in Figure 4a, we show the
plan model of this role model where the order of execution
of all its mRIs is shown. As can be seen, theOrbiter, while it
is in orbit, is adjusting its orbit and measuring and reporting
measures. And when it has completed constructing a model

of the asteroid, it escapes the orbit using its knowledge of
the orbit model (orbitM).

Autonomic properties can be also modeled in this way.
As role models can be used at any level of abstraction, we
can use them for specifying autonomic properties that con-
cern a single agent, or even a group of agents when deal-
ing with autonomic properties at the swarm level. Thus, as
shown in the traceability model, we have a role model at ab-
straction layer 2 that shows the swarm autonomic behavior,
while at layer 4, we show autonomic properties at the level
of individual spacecraft.

Here we illustrate a model at abstraction layer 4 for a
self-protection autonomic property: protecting from solar sto-
rms. The role model for this property is shown in Figure 5b,
and, as can be seen, as it is a property at the individual
level, a single role is shown (SelfProtectSpaceCraft). Its plan
model is shown in Figure 5a. As all the spacecraft can be
affected by solar storms, this role is applied to all the space-
craft in the swarm, thus adding this autonomic property to
all of them.

6 Adding policies to the system

ww
As shown previously, for building and structural organi-

zation, used at runtime, we have to compose role models.
Since the MaCMAS methodology proposes several meth-

7

Compose
Roles

Compose
Roles������������	
����	��

������������	
����	��

Acq.

Org. Model
Acq.

Org. Model

Acq.
Org. Model

Acq.
Org. Model

��������	
�����������	
��� ���
	��
����	��	
���	����
	��
����	��	
���	��	
����	
��� Acq.
Org. Model

Acq.
Org. Model

Compose
Plans

Compose
Plans

Modified Acq.
Org. Model

Modified Acq.
Org. Model

Modified
Structural Org.

Modified
Structural Org.

Fig. 6 Software Process Overview

ods for composition, we can use them to modify the policies
taken into account in the system at runtime or at design-time.

As shown in Figure 6, the process for that follows the
following steps:

1. Specify Policy:Specify the policy using a sub-set of the
natural language and the acquaintance models available;

2. Determine involved models:Analyze it to find out which
role models or interactions, and consequently which au-
tonomic and autonomous properties, are involved in it;

3. Compose roles and plans:Compose these role models,
both static and dynamic aspects;

4. Deploy using compositionDeploy the changes in the
system using role model composition. That is to say, the
running system has a set of role models mapped over its
structural organization; thus, adding a new policy con-
sists of composing the current role models with the one
that describes the new policy.

We have to take into account that when composing sev-
eral role models, we can find

emergent roles: roles that appear in the composition yet
they do not belong to any of the initial role models;

emergent mRIs: those that are not present in any of the ini-
tial role models;

composed roles: the roles in the resultant models that rep-
resent several initial roles as a single element;

composed mRIs: mRIs in the resultant model that repre-
sents several initial mRIs as a single element;

unchanged roles: those that are left unchanged and imported
directly from the initial role models;

unchanged mRIs: those left unchanged and imported di-
rectly.

Once relationships between elements have been estab-
lished by analyzing the policy, we must complete the com-
posite role model. Importing an mRI or a role requires only
adding it to the composite role model. The following shows
how to compose plans and role models.

6.1 Composing roles

When several roles are merged in a composite role model,
their elements must be also merged:

� � � � � � � � �� � � � � ! �" # � $ # � � � � # � �% � � � & & # � ! �� � � � � � � � �� � � � � ! �" # � $ # � � � � # � �% � � � & & # � ! �
' � (% � � � � � �� �) � � � � � � � �' � (% � � � � � �� �) � � � � � � � �

* # � $ # � �' # ! � �* # � $ # � �' # ! � �* # � $ # � �� ' + �* # � $ # � �� ' + �

, # � !- � � � � � " . /, # � !- � � � � � " . / ' # ! � 0 # 1 � ! �' # ! � 0 # 1 � ! �

2 % � ! 1" # � $ # � � � � � # ! �� # 1 � !2 % � ! 1" # � $ # � � � � � # ! �� # 1 � !

' � ! � � � � � � � � � !� � � # % � " �1 � $ � � 1 � � " /� # 1 � ! �' � ! � � � � � � � � � !� � � # % � " �1 � $ � � 1 � � " /� # 1 � ! �
* # � $ # � � 1� ' + �* # � $ # � � 1� ' + � * # � $ # � � 1' # ! � �* # � $ # � � 1' # ! � � * # � $ # � � � �� # ! � � # 1 � !* # � $ # � � � �� # ! � � # 1 � !

3 � � � & � � �� ' + �3 � � � & � � �� ' + � 3 � � � & � � �� # ! � �3 � � � & � � �� # ! � �' � ! � � � � &� # ! � � # 1 � ! �� # 1 � !' � ! � � � � &� # ! � � # 1 � ! �� # 1 � !
� � � � � � � � �� � � � � ! �" # � $ # � � � � # � �% � � � &1 � $ � � 1 � � " � � �� � � � � � � � �� � � � � ! �" # � $ # � � � � # � �% � � � &1 � $ � � 1 � � " � � �
� � $ � � 1 � � " /� � � # % � " �� # 1 � !� � $ � � 1 � � " /� � � # % � " �� # 1 � !

* # � $ # � � 11 � $ 4 � � � # % � " �� # 1 � ! �* # � $ # � � 11 � $ 4 � � � # % � " �� # 1 � ! � ' � ! � � � � &� # ! � � # 1 � ! �� # 1 � !' � ! � � � � &� # ! � � # 1 � ! �� # 1 � !
+ 1 � � � � � /� � � � & � � �� ! � � � � � �+ 1 � � � � � /� � � � & � � �� ! � � � � � �

* # � $ 4� ' + � 5 6 7 89 :
Fig. 7 Software Process of Role Composition

1. Goal of the role: The new goal of the role is a new goal
that abstracts all the role goals of the role to be com-
posed. This information can be found in requirements
hierarchical goal diagrams or we can add it as theand
(conjunction) of the goals to be composed. In addition,
the role goal for each mRI can be obtained from the goal
of the initial roles for that mRI.

2. Cardinality of the role: It is the same as in the initial
role for the corresponding mRI.

3. Initiator(s) role(s): If mRI composition is not performed,
as in our case, this feature does not change.

4. Interface of a role: All elements in the interfaces of
roles to be merged must be added to the composite in-
terface. Notice that there may be common services and
knowledge in these interfaces. When this happens, they
must be included only once in the composite interface,
or renamed, depending on the composition of their on-
tologies, as we show below.

5. Guard of a role/mRI: The new guards are theand(con-
junction) of the corresponding guards in initial role mod-
els if roles composed participate in the same mRI. Oth-
erwise, guards remain unchanged.

8

; < = > < = ? @ <A @ B C D; < = > < = ? @ <A @ B C D
E < F G H = < I < CJ D K J B J< I < C JE < F G H = < I < CJ D K J B J< I < C J L ? B @M H < = B = N O PL ? B @M H < = B = N O P Q N F R S = > RI ? T < @ D J ? U <N ? I ? A D < T

V ? I A ? D H J <= ? @ < I ? T < @ A @ B CV ? I A ? D H J <= ? @ < I ? T < @ A @ B C
S U J B H C= ? @ <A @ B C DS U J B H C= ? @ <A @ B C DV ? I A ? D < T= ? @ < A @ B C DV ? I A ? D < T= ? @ < A @ B C D V ? I A ? D <W P C B I H N Q N F RS = > R ; ? T < @ W P C B I H NQ N F R S = > RW P C B I H NQ N F R S = > R

; < = > < = ? @ <I ? T < @ D A @ B C D; < = > < = ? @ <I ? T < @ D A @ B C D
Q T T J ? Q N F RS = > R ; ? T < @ Q N F R S = > R; ? T < @Q N F R S = > R; ? T < @

E < @ B J H C > = ? @ <I ? T < @ DI ? T < @X Y Z [\] ^_[` a ^ bc a d] ^ ef a g] ^S U J B H CN ? I A ? D H J < = ? @ <I ? T < @ A @ B CS U J B H CN ? I A ? D H J < = ? @ <I ? T < @ A @ B C
Fig. 8 Software Process of Plan Composition

6. Ontologies of an mRI: The new ontology must cover
all the terms described in all the ontologies of roles to be
composed (cf. [5; 17; 18]). This procedure also shows
how to deal with repeated knowledge in the interface of
roles to be composed. That is to say, if as a result of on-
tology composition, a knowledge entity that is repeated
in several roles is shown as the same element in the com-
posed ontology, we can include it once; if it results in
different elements in the composed ontology, we must
rename them.

6.2 Composing plans

The composition of plans consists of setting the order of
execution of mRIs in the composite model, using the role
model plan or role plans. We provide several algorithms to
assist this task: extraction of a role plan from the role model
plan and vice versa, and aggregation of several role plans;
see [23] for further details of these algorithms.

Thanks to these algorithms, we can keep both plan views
consistent automatically. Depending on the number of roles
that have to be merged we can base the composition of the
plan of the composite role model on the plan of roles or on
the plan of the role model.

Several types of plan composition can be used for role
plans and for role model plans:

Sequential: The plan is executed atomically in sequence with
others. The final state of each state machine is super-
posed with the initial state of the state machine that rep-
resents the plan that must be executed, except the initial
plan that maintains the initial state unchanged and the
final plan that maintains the final state unchanged.

Analyzing
risk of solar

storms
Protecting

SailAsShield

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

offSubSys
MeasureStorms

Orbiting
After

Measure

[Dist(relativePos,Astero-
idRelativePos)<dist]

Measure

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

[not (Orbiter.AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)]

AdjustOrbit

ReportOrbit

Report
Measures

[Orbiter.MeasureFi-
nished(astModel)]

EscapeOrbit

Analyzing
risk of solar

storms

[SelProtecSC.stormIntensity
> RiskForSystemsFactor]

EscapeOrbit

Fig. 10 Composed plan

Parallel: The plan of each model is executed in parallel. It
can be documented by using concurrent orthogonal re-
gions of state machines (cf. [20, p. 435]).

Interleaving: To interleave several plans, we must build a
new state machine where all mRIs in all plans are taken
into account. Notice that we must usually preserve the
order of execution of each plan to be composed. We can
use algorithms to check behavior inheritance to ensure
that this constraint is preserved, since to ensure this prop-
erty, the composed plan must inherit from all the initial
plans [13].

As depicted in Figure 8, the composition of role model
plans has to be performed following one of the plan com-
position techniques described previously to later, if we are
interested in the plan of one of the composed roles, as it is
needed to assign the new plan to the composed roles; we can
extract it using the algorithms mentioned previously.

We can also perform a composition of role plans follow-
ing one of the techniques to compose plans described previ-
ously. Later, if we are interested in the plan of the composite
role model, for example for testing, we can obtain it using
the algorithms mentioned previously.

7 Example of applying a new policy to the ANTS case
study

We use the following fictitious scenario to document our ex-
ample: It has been discovered that several spacecraft have
collided with an asteroid as a result of self-protection from
a solar storm. As a result, it has been decided to avoid pro-
tection from solar storms while orbiting, sending the follow-
ing policy to the system, which is shown graphically in Fig-
ure 11.

If a spacecraft is orbiting and measuring an asteroid
and it determines that there exists risk of a solar storm, the
spacecraft must first escape the orbit and later power down
subsystems and use its sail as a shield.

Notice that we have limited the policy to two role models
to simplify the example, but in the real world we must also

9

Space

<<Environment>>
Space

stormVector: Vector3
stormIntensity:Real

SelfProtecSC

SelfProtecSC

SelfProtecSC
Guard :
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

offSubSys
Goal: Power off subsystems
Pattern: self-procedure

In: Out:
 SelfProtecSC.stormIntensity

SailAsShield
Goal: Use sail as shield
Pattern: self-procedure

In: Out:
SelfProtecSC.stormVector

 SelfProtecSC.stormIntensity

MeasureStorms
Goal: Measure Storm Risk
Pattern: Sense Environment

In:
Space.stormVector

 Space.stormIntensity

Out:

SelfProtecSC.stormIntensity
SelfProtecSC.stormVector

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

Asteroid

Orbiter

1..n

<<Environment>>
Asteroid

relativePos: Pos
pData:Data

Measure
Goal: Measure Asteroid
Pattern: Environmental Int.

In:
 Orbiter.aste-
 roidRelativePos

Out:
 pMeassu-
 rer.astModel

1..n

OrbitModeller

astData:AteroidData
orbitM: OrbitModel

CalculateOrbit(AsteroidData)::
OrbitModel

Role Goal: Calculate orbits
mRI Goals: send orbit models

Report Orbit
Goal: Report Orbit

Pattern: Collaboration
In:
 OrbitMo-

deller.orbitM

Out:
Orbiter.orbitM

Postcondition :
Orbiter .astModel <> empty

Instantiation Rule:
(Orbiter .allInstances -> forAll (c |
SWARM.pMeasureMeasurers .includes (c))

Guard:
Dist(relativePos,Asteroid
RelativePos)<dist

 Measurer

Orbiter

SelfProtectingOrbiter

orbitM: OrbitModel
relativePos: Pos
asteroidRelativePos: Pos
astData: AstData
astModel: AstModel

StormVector: Vector3
stormIntensity : Real
stormType: StormTypes

AdjustOrbit(relativePos,orbitM)
PProcessData(m:Measure)::Model
PMeasureX(input)::pMeasure
AmIInsideOrbit(Pos,OrbitModel)::Bool
MeasureFinished(AstModel)::Bool

Role Goal: Maintain Orbit and
Measure and self protection
mRI Measure Goal: GetModel
mRI Orbits Goal: Get the Orbit Model

mRI Measure Storms Goal: Protect
from solar storm
mRI offSubSys Goal: Protect from
solar storm
mRI SailAsShieldGoal: Protect from
solar storm

Receiver

listOfModels:Model
listOfSenders:Sender

Role Goal: Know Model
mRI Goals: get Model

Orbiter
Report Measures

Goal: Distribute results

Pattern: Collaboration
In:
 Orbiter.astModel

Out:
Receiver.astModel

Receiver

1..n

AdjustOrbit

Goal: Distribute results

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:
Receiver.astModel

Orbiter

EscapeOrbit

Goal: Escape an Orbit

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:

Orbiter

Postcondition :
not (Orbiter.AmIInsideOrbit (Orbi-
ter.relativePos ,Orbiter .orbitM)

guard:
not (Orbiter .AmIInsideOrbit (Orbi-
ter.relativePos,Orbiter.orbitM)

guard:
Orbiter .MeasureFi -
nished(astModel) or
(SelProtecSC.stormIntensity >
RiskForSystemsFactor)

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

Fig. 9 Composed Role Model

Fig. 11 Policy for protecting from solar storms when orbiting

take into account the rest of the autonomic properties and
associated role models involved in orbiting an asteroid.

The first part of the policy shows the context where it
is applied, determining the role models that should be taken
into account. Notice that although the second element de-
notes an interaction, in the traceability diagram we can find
out easily the role model it belongs to, namelyProtect from
Solar Storms. The second part shows a modification of the
plans where a new order for the interaction is specified.

If a spacecraft is orbiting and measuring an
 Role Model

asteroid and it measures that there exists risk of a solar storm,
 Interaction

the spacecraft must first escape the orbit and later
 Interaction

power down subsystems and use its sail as a shield
 Interaction Interaction

As a result, we must compose both models and their
plans following the constraints imposed by the policy. The
composition of both role models is shown in Figure 9. As we
can see, the rolesOrbiter andSelfProtectSChave been com-
posed into a single role calledSelfProtectingOrbiterfollow-
ing the prescription showm in Section 6.1. We can observe
that the rest of roles have been left unchanged and that all
mRIs have been also added without changes.

In addition, as the self protection must be taken into ac-
count during the whole process of orbiting and measuring,
and not in a concrete state, we must perform a parallel com-
position, as it is shown in Figure 10. Notice also, that the
policy tells us the order of mRIs we must follow for self-
protection, adding theEscape OrbitmRI before protection,
which results in the new state machine shown.

8 Future work: implementing the policy manager

ss
Although this work is still ongoing, since the publication

of our previous paper, i.e. [27], we have implemented part
of the planned tool. This is based on two existing tools: (i)

10

MaCMAS Policy BuilderMaCMAS Policy Builder

hijkilmnoinmp qrstsupoinmpv qrstsupoinmpw qrstsupoinmpxxxABC If Then After Before And Or First Second nth ...qyulkuzmz{uytsli{|stsr}urnjml~{sr}urultm{isnurnstjmull~{mlulipu{lti{j�t�mr�xFile Edit View Help�{uzmu|spst� �sltiympmjmrtl�ipmoinmpl�{|stsr}urnjml~{sr}jmull~{ml�mpy�{itmzy{ijlipu{xxxj�ql�rtipi}smlxxx jmull~{mlxxx lkuzmz{uyt �~spnkipsz�
Space

<<Environment>>
Space

stormVector: Vector3
stormIntensity:Real

SelfProtecSC

SelfProtecSC

SelfProtecSC
Guard :
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

offSubSys
Goal: Power off subsystems
Pattern: self-procedure

In: Out:
 SelfProtecSC.stormIntensity

SailAsShield
Goal: Use sail as shield
Pattern: self-procedure

In: Out:
SelfProtecSC.stormVector

 SelfProtecSC.stormIntensity

MeasureStorms
Goal: Measure Storm Risk
Pattern: Sense Environment

In:
Space.stormVector

 Space.stormIntensity

Out:

SelfProtecSC.stormIntensity
SelfProtecSC.stormVector

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

Asteroid

Orbiter

1..n

<<Environment>>
Asteroid

relativePos: Pos
pData:Data

Measure
Goal: Measure Asteroid
Pattern: Environmental Int.

In:
 Orbiter.aste-
 roidRelativePos

Out:
 pMeassu-
 rer.astModel

1..n

OrbitModeller

astData:AteroidData
orbitM: OrbitModel

CalculateOrbit(AsteroidData)::
OrbitModel

Role Goal: Calculate orbits
mRI Goals: send orbit models

Report Orbit
Goal: Report Orbit

Pattern: Collaboration
In:
 OrbitMo-

deller.orbitM

Out:
Orbiter.orbitM

Postcondition :
Orbiter .astModel <> empty

Instantiation Rule:
(Orbiter .allInstances -> forAll (c |
SWARM.pMeasureMeasurers .includes (c))

Guard:
Dist(relativePos,Asteroid
RelativePos)<dist

 Measurer

Orbiter

SelfProtectingOrbiter

orbitM: OrbitModel
relativePos: Pos
asteroidRelativePos: Pos
astData: AstData
astModel: AstModel

StormVector: Vector3
stormIntensity : Real
stormType: StormTypes

AdjustOrbit(relativePos,orbitM)
PProcessData(m:Measure)::Model
PMeasureX(input)::pMeasure
AmIInsideOrbit(Pos,OrbitModel)::Bool
MeasureFinished(AstModel)::Bool

Role Goal: Maintain Orbit and
Measure and self protection
mRI Measure Goal: GetModel
mRI Orbits Goal: Get the Orbit Model

mRI Measure Storms Goal: Protect
from solar storm
mRI offSubSys Goal: Protect from
solar storm
mRI SailAsShieldGoal: Protect from
solar storm

Receiver

listOfModels:Model
listOfSenders:Sender

Role Goal: Know Model
mRI Goals: get Model

Orbiter
Report Measures

Goal: Distribute results

Pattern: Collaboration
In:
 Orbiter.astModel

Out:
Receiver.astModel

Receiver

1..n

AdjustOrbit

Goal: Distribute results

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:
Receiver.astModel

Orbiter

EscapeOrbit

Goal: Escape an Orbit

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:

Orbiter

Postcondition :
not (Orbiter.AmIInsideOrbit (Orbi-
ter.relativePos ,Orbiter .orbitM)

guard:
not (Orbiter .AmIInsideOrbit(Orbi-
ter.relativePos,Orbiter.orbitM)

guard:
Orbiter .MeasureFi -
nished(astModel) or
(SelProtecSC.stormIntensity >
RiskForSystemsFactor)

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

oinmp�pmjmrtl
Policy Builder

Model Builder

Fig. 13 Policy Builder Tool Schema

Fig. 12 MaCMAS Screenshot

an ArgoUML extension used to model MaCMAS diagrams,
called the MaCMAS CASE tool (MaCMAS-CT), and (ii) a
NASA proprietary prototype tool called R2D2C which al-
lows for policies to be specified in natural language (or a va-
riety of other input notations) and then generates a provably-
correct corresponding specification (currently in Hoare’s lan-
guage of Communicating Sequential Processes, or CSP [7],
although other formal languages may be used) that can be
checked and analyzed.

In Figure 13, we have sketched how our final tool might
look. As can be seen, the tool will provide information about

the vocabulary that can be used in the policy. This vocabu-
lary is composed of the role models, mRIs, etc. in the MaC-
MAS model of the system, along with some temporal, condi-
tional, etc., operators, e.g.and, or, if, etc. It will also provide
models of the policy so that the user can see if the results ob-
tained are correct. This also allows the user to change the ob-
tained models as needed and to keep track of these changes
in the policy specification.

Both tools have been developed separately: MaCMAS-
CT in the University of Seville, and R2D2C in the NASA
Software Engineering Laboratory in collaboration with re-
searchers from Virginia Tech and SAIC.

MaCMAS-CT has been implemented over ArgoUML,
defining an UML profile that extends UML with a set of
stereotypes, e.g.<<role>>, and tagged values, e.g.Role-
Goal. We have also extended this tool to provide the graph-
ical representation of MaCMAS models. In Figure 12, we
show a screenshot of this tool.

R2D2C is a tool that allows for the specification require-
ments in natural language, use cases, and other parseable no-
tations. From them, it produces a CSP model which can be
analyzed, adapted, corrected, etc., reflecting changes back
in the use cases and/or natural language, or other input nota-
tions. It can be also used to as a basis for sound code gener-
ation [6].

In addition, it has been successfully used to specify poli-
cies for autonomic systems using constrained natural lan-
guage [29]. In R2D2C, policies are viewed as scenarios (just
as in the example of this paper), and are used to generate a
CSP model that is guaranteed to be equivalent, and which
can then be checked for various issues of consistency and
completeness, along with other problems, which may then
be addressed and rectified.

11������������ ������������������� ������� ������ ¡¢�¡ £ ¤¥¦§¦̈ £ ¢�¡ £ © ¤¥¦§¦̈ £ ¢�¡ £ ª ¤¥¦§¦̈ £ ¢�¡ £ «««ABC If Then After Before And Or First Second nth ...¤¬ ¨��̈ ­ ­®̈ ¬§ ¦��®̄ ¦§¦¥°¨¥¡� �±®¦¥° ¥̈ �̈§ ®�¦¡¨¥¡ ¦§ � ̈ ��±® � ¨��£̈ ® �§�®�² §³ ¥ «́File Edit View Helpµ®̈ ­ ̈ ¦̄£¦§¶ ·¦�§ �¬ £ � ¥§��̧£ ¢�¡ £�¹®̄ ¦§¦¥° ¥̈¡� �±®¦¥°� ̈ ��±® �º £¬ »®�§ ­ ¬®����£ ®̈«««�̧ ¤�¹¥§�£�°¦ �««« � ̈ ��±® �««« ��̈ ­ ­®̈ ¬§ ¼±¦£¡ ��£¦­¶
Space

<<Environment>>
Space

stormVector: Vector3
stormIntensity:Real

SelfProtecSC

SelfProtecSC

SelfProtecSC
Guard :
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

offSubSys
Goal: Power off subsystems
Pattern: self-procedure

In: Out:
 SelfProtecSC.stormIntensity

SailAsShield
Goal: Use sail as shield
Pattern: self-procedure

In: Out:
SelfProtecSC.stormVector

 SelfProtecSC.stormIntensity

MeasureStorms
Goal: Measure Storm Risk
Pattern: Sense Environment

In:
Space.stormVector

 Space.stormIntensity

Out:

SelfProtecSC.stormIntensity
SelfProtecSC.stormVector

Guard:
SelProtecSC.stormIntensit
y > RiskForSystemsFactor

Asteroid

Orbiter

1..n

<<Environment>>
Asteroid

relativePos: Pos
pData:Data

Measure
Goal: Measure Asteroid
Pattern: Environmental Int.

In:
 Orbiter.aste-
 roidRelativePos

Out:
 pMeassu-
 rer.astModel

1..n

OrbitModeller

astData:AteroidData
orbitM: OrbitModel

CalculateOrbit(AsteroidData)::
OrbitModel

Role Goal: Calculate orbits
mRI Goals: send orbit models

Report Orbit
Goal: Report Orbit

Pattern: Collaboration
In:
 OrbitMo-

deller.orbitM

Out:
Orbiter.orbitM

Postcondition :
Orbiter .astModel <> empty

Instantiation Rule:
(Orbiter .allInstances -> forAll (c |
SWARM.pMeasureMeasurers .includes (c))

Guard:
Dist(relativePos,Asteroid
RelativePos)<dist

 Measurer

Orbiter

SelfProtectingOrbiter

orbitM: OrbitModel
relativePos: Pos
asteroidRelativePos: Pos
astData: AstData
astModel: AstModel

StormVector: Vector3
stormIntensity : Real
stormType: StormTypes

AdjustOrbit(relativePos,orbitM)
PProcessData(m:Measure)::Model
PMeasureX(input)::pMeasure
AmIInsideOrbit(Pos,OrbitModel)::Bool
MeasureFinished(AstModel)::Bool

Role Goal: Maintain Orbit and
Measure and self protection
mRI Measure Goal: GetModel
mRI Orbits Goal: Get the Orbit Model

mRI Measure Storms Goal : Protect
from solar storm
mRI offSubSys Goal: Protect from
solar storm
mRI SailAsShieldGoal: Protect from
solar storm

Receiver

listOfModels:Model
listOfSenders:Sender

Role Goal: Know Model
mRI Goals: get Model

Orbiter
Report Measures

Goal: Distribute results

Pattern: Collaboration
In:
 Orbiter.astModel

Out:
Receiver.astModel

Receiver

1..n

AdjustOrbit

Goal: Distribute results

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:
Receiver.astModel

Orbiter

EscapeOrbit

Goal: Escape an Orbit

Pattern: self-procedure
In:
 Orbiter.orbitM

Out:

Orbiter

Postcondition :
not (Orbiter.AmIInsideOrbit (Orbi-
ter.relativePos,Orbiter .orbitM)

guard:
not (Orbiter .AmIInsideOrbit (Orbi-
ter.relativePos,Orbiter.orbitM)

guard:
Orbiter .MeasureFi -
nished(astModel) or
(SelProtecSC.stormIntensity >
RiskForSystemsFactor)

1..n

1..n

1..n

1..n

1..n

1..n

1..n

1..n

¢�¡ £ ½£ � ¥§�
Policy Builder

Model Builder

Enhanced
R2D2

Enhanced
MaCMAS

Modeling

Elements

Policy analysis

Parts to modify
in XMI format

C

Fig. 14 Policy Builder Tool Working Schema

In Figure 14, we show how we plan to integrate both
tools, which will required for future enhancement of both
tools. As illustrated in the figure, ArgoUML allows us to
store models using XMI, an OMG standard based on XML
that is primary used for exchanging UML models, that we
plan to use as the exchange format between MaCMAS-CT
and R2D2C. Thus, we plan to enhance R2D2C in order to
accept input as MaCMAS models represented in XMI. This
provides the tool with the capability to check properties and
to generate code. Another point of integration between R2D2C
and the planed tool will consist of integrating the policy
parser provided by R2D2C, limiting the vocabulary to the
elements present in the XMI model. Finally, MaCMAS-CT
will also need an extension to support the composition of
roles and plans automatically. In this sense, we have ob-
tained some results applying MDA[25].

Thus the usual steps performed by the planed tool will
be the following:

1. generate the Acquaintance model using MaCMAS-CT;
2. produce an XMI equivalent of this model using MaCMAS-

CT that will be accepted by R2D2C in order to obtain the
names of role models and mRIs that we allow in the tex-
tual specification;

3. express the policy in the graphical interface of the tool;
4. R2D2C will analyze the textual description and converts

it to an XMI specification with the models that have to be
composed and whose elements will be imported, com-
posed or deleted modifying the XMI of our system;

5. MaCMAS will perform the composition when needed
and import/delete the elements prescribed;

6. allow the user to manually perform changes reflecting
these changes in the policy;

7. R2D2C will take the last XMI file and the policy in order
to generate the required code.

9 Conclusions

We have presented an AOSE-based approach for modeling
autonomous and autonomic properties of the system. The
approach supports models at different levels of abstraction.
We have also presented a technique for composing these
models in order to obtain a particular structural organiza-
tion. We have used this technique to compose those models
involved in a new policy and to deploy the resultant model
on the running system. We have also shown our first results
regarding the implementation of a CASE tool that imple-
ments the techniques described in this paper.

The main advantage of this approach is that, as mod-
els are developed at different levels of abstraction, we can
specify policies for autonomous and autonomic systems at
different levels of abstraction. As these models allow for the
abstraction of “intelligent behaviors” since the procedures
carried out inside an interaction can be described internally
by means of neural networks, fuzzy logic, etc., this allows
us to specify policies over these kinds of implementations.
Thus, a human designer, not expert in the details of the im-
plementation, may easily modify the system while maintain-
ing its integrity.

References

1. IEEE Task Force on Autonomous and Autonomic Systems,
(TFAAS), June 2005. Available at http://www.computer.org/tab.

2. O. Babaoglu, A. Couch, G. Ganger, P. Stone, M. Yousif, and
J. Kephart. Panel: Grand challenges of autonomic computing.
In 2nd IEEE International Conference on Autonomic Computing
(ICAC’05), Seattle, WA, 13-16 June 2005.

3. S. A. Curtis, W. F. Truszkowski, M. L. Rilee, and P. E. Clark.
ANTS for the human exploration and development of space. In

12

Proc. IEEE Aerospace Conference, Big Sky, Montana, USA, 9–
16 March 2003.

4. A.G. Ganek. “Autonomic computing: implementing the vision”.
Keynote presentation at the Autonomic Computing Workshop,
AMS’03, seattle, June 2003.

5. J. Heflin and J. Hendler. Dynamic ontologies on the web. In
AAAI/IAAI, pages 443–449, 2000.

6. M. G. Hinchey, J. L. Rash, and C. A. Rouff. Requirements to
design to code: Towards a fully formal approach to automaticcode
generation. Technical Report TM-2005-212774, NASA Goddard
Space Flight Center, Greenbelt, MD, USA, 2004.

7. C. A. R. Hoare. Communicating sequential processes. In R.M.
McKeag and A. M. Macnaghten, editors,On the construction of
programs – an advanced course, pages 229–254. Cambridge Uni-
versity Press, 1980.

8. P. Horn. Autonomic computing: IBM perspective on the state of
information technology. InAGENDA’01, Scottsdale, AR, 2001,
(available at http://www.research.ibm.com/autonomic/).

9. N. Jennings. An agent-based approach for building complex soft-
ware systems.Communications of the ACM, 44(4):35–41, 2001.

10. D. Kaminsky. An introduction to policy for autonomic computing.
white paper, IBM, March 2005.

11. E. A. Kendall. Role modeling for agent system analysis, design,
and implementation.IEEE Concurrency, 8(2):34–41, April/June
2000.

12. J. O. Kephart and W. E. Walsh. An artificial intelligence perspec-
tive on autonomic computing policies. InPOLICY, pages 3–12.
IEEE Computer Society, 2004.

13. B. Liskov and J. M. Wing. Specifications and their use in defin-
ing subtypes. InProceedings of the Eighth Annual Conference on
Object-Oriented Programming Systems, Languages, and Applica-
tions, pages 16–28. ACM Press, 1993.

14. L. Lymberopoulos, E. Lupu, and M. Sloman. An adaptive policy-
based framework for network services management.J. Network
Syst. Manage., 11(3), 2003.

15. M.J. Masullo and S.B. Calo. Policy management: An architecture
and approach. InIEEE First International Workshop on Systems
Management, Los Angeles, CA, April 14-16, 1993.

16. A. Meissner, S.B. Musunoori, and L.C. Wolf. MGMS/GML - to-
wards a new policy specification framework for multicast group
integrity. In SAINT, pages 233–242. IEEE Computer Society,
2004.

17. P. Mitra and G. Wiederhold. An ontology-composition algebra.
In S. Staab and R. Studer, editors,Handbook on Ontologies, In-
ternational Handbooks on Information Systems, pages 93–116.
Springer-Verlag, 2004.

18. P. Mitra, G. Wiederhold, and J. Jannink. Semi-automaticinte-
gration of knowledge sources. InProc. of the 2nd Int. Conf. On
Information FUSION’99, 1999.

19. J. Odell, H. Parunak, and M. Fleischer. The role of roles in design-
ing effective agent organisations. In A. Garcia and C. Lucenaand
F. Zambonelliand A. Omiciniand J. Castro, editors,Software En-
gineering for Large-Scale Multi-Agent Systems, number 2603 in
LNCS, pages 27–28, Berlin, 2003. Springer–Verlag.

20. Object Management Group (OMG). Unified modeling language:
Superstructure. version 2.0. Final adopted specification ptc/03–
08–02, OMG, August 2003. www.omg.org.

21. H. Van Dyke Parunak and James Odell. Representing socialstruc-
tures in UML. In J̈org P. Müller, Elisabeth Andre, Sandip Sen,
and Claude Frasson, editors,Proceedings of the Fifth Interna-
tional Conference on Autonomous Agents, pages 100–101, Mon-
treal, Canada, 2001. ACM Press.

22. J. Pẽna. On Improving The Modelling Of Complex Acquaintance
Organisations Of Agents. A Method Fragment For The Analysis
Phase. PhD thesis, University of Seville, 2005.

23. J. Pẽna, R. Corchuelo, and J. L. Arjona. Towards Interaction
Protocol Operations for Large Multi-agent Systems. InProceed-
ings of the 2nd Int. Workshop on Formal Approaches to Agent-
Based Systems (FAABS 2002), volume 2699 ofLNAI, pages 79–
91, NASA-GSFC, Greenbelt, MD, USA, 2002. Springer–Verlag.

24. J. Pẽna, R. Corchuelo, and J. L. Arjona. A top down approach for
MAS protocol descriptions. InACM Symposium on Applied Com-
puting SAC’03, pages 45–49, Melbourne, Florida, USA, 2003.
ACM Press.

25. J. Pẽna, M. G. Hinchey, R. Sterritt, A. Ruiz Cortés, and
M. Resinas. A model-driven architecture approach for modeling,
specifying and deploying policies in autonomous and autonomic
systems. InSecond International Symposium on Dependable Au-
tonomic and Secure Computing (DASC 2006), 29 September - 1
October 2006, Indianapolis, Indiana, USA, pages 19–30. IEEE
Computer Society, 2006.

26. J. Pẽna, R. Levy, and R. Corchuelo. Towards clarifying the im-
portance of interactions in agent-oriented software engineering.
International Iberoamerican Journal of AI, 9(25):19–28, 2005.

27. J. Pena, M. G. Hinchey, and R. Sterritt. Towards modeling, spec-
ifying and deploying policies in autonomous and autonomic sys-
tems using an AOSE methodology. InEASE ’06: Proceedings of
the Third IEEE International Workshop on Engineering of Auto-
nomic and Autonomous Systems (EASE’06), pages 37–46, Wash-
ington, DC, USA, 2006. IEEE Computer Society.

28. R. Sterritt. Towards autonomic computing: Effective event man-
agement. In27th Annual IEEE/NASA Software Engineering Work-
shop (SEW), IEEE Computer Society Press, pages 40–47, Mary-
land, USA, December 3-5 2002.

29. R. Sterritt, M.G. Hinchey, J. Rash, W. Truszkowski, C. Rouff, and
D. Gracanin. “Towards formal specification and generation of au-
tonomic policies”. InFirst IFIP Workshop on Trusted and Auto-
nomic Ubiquitous and Embedded Systems (TAUES 2005). LNCS
3823, Dec 2005.

30. R. Sterritt, C. A. Rouff, , M. G. Hinchey, J. L. Rash, and W.F.
Truszkowski. Next generation system and software architec-
tures: Challenges from future NASA space exploration missions.
Journal of Science of Computer Programming, 61(1):48–57, June
2006.

31. F. Zambonelli, N. Jennings, and M. Wooldridge. Developing
multiagent systems: the GAIA methodology.ACM Transactions
on Software Engineering and Methodology, 12(3):317–370, July
2003.

