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Abstract Autonomic Computing, self-management basedkeywords Autonomic Computing, Policy-based Manage-
high level guidance from humans, is increasingly being aaent, Agent-Oriented Software Engineering

cepted as a means forward in designing reliable systems that

both hide complexity from the user and control IT manage-
ment costs. Effectively, AC may be viewed as Policy-Basedintroduction and Motivation

Self-Management. We look at ways of achieving this, and in

particular focus on Agent-Oriented Software Engineeringutonomic Systems (encompassing both Autonomic Com-
We propose utilizing MaCMAS, an AOSE methodology, foputing and Autonomic Communications) is an emerging fi-
specifying autonomic and autonomous properties of the sygd [1] for the development of large-scale, self-managing,
tem independently, and later, by means of composition @mplex distributed computer-based systems.

these specifications, guided by a policy specification, con- As in all emerging fields, there are many fruitful areas
struct a specification for the policy and its subsequent der concern, that are worthwhile targets for research and de-
ployment. We illustrate this by means of a case study basgflopment. Many issues are yet to be addressed, such as,
on a NASA concept mission, and describe future work onfar example, how should autonomic managers, which to-

support toolkit.
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gether with the component being managed make up an au-
tonomic element, be defined such that it can exist in a col-
laborative autonomic environment, and ultimately provide
self-management of the system.

The long term strategic vision of AC highlighted an over-
arching self-managing vision where the system would have
such a level of “self’ capability that a senior (human) man-
ager in an organization could specify business policies—
such as profit margin on a specific product range, or system
quality of service for a band of customers—and the comput-
ing systems would do the rest themselves.

It has been argued that for this vision to become a reality,
we would require Al completeness, Software Engineering
completeness, and so on [2]. What is clear in this vision is
the importance of some form of policy that is then translated
to all levels in the system in order to achieve self-direction
and self-management.

In introducing the concept of Autonomic Computing,
IBM’'s Paul Horn likened the needs of large scale systems
management to that of the human Autonomic Nervous Sys-
tem (ANS). The ANS, through self-regulation, is able to ef-
fectively monitor, control and regulate the human body with-
out the need for conscious thought [8]. This self-regulation
and separation of concerns provides human beings with the
ability to concentrate on high level objectives without hav-
ing to micro-manage the specific details involved. The vi-
sion and metaphor of Autonomic Computing is to apply the



same principles of self-regulation and complexity-hiding tquality-of-service guarantees. More recently, PBM has be-
the design of computer-based systems, in the hope that cnee extremely popular within the telecommunications in-
day computer systems can achieve the same level of sdlifistry, for next generation networking, with many vendors
regulation as the human ANS [8],[28]. In his talk, Horn highannouncing plans and introducing PBM-based products. This
lighted that the Autonomic Computing system must “fings driven by the fact that policy has been recognized as a
and generate rules for how best to interact with neighborisglution for managing complexity, and for guiding the be-
systems” [8]. havior of a network or distributed system through high-level
We propose to use a methodology called MaCMAS (Messer-oriented abstractions [16]. A PBM tool may also reduce
thodology Fragment for Analyzing Complex Multi-Agentthe complexity of product and system management by pro-
Systems) which provides the models and techniques fofiding a uniform cross-product policy definition and man-
adding policies at runtime. We propose to create isolategement infrastructure [4].
definitions of the features that we want to use in policies us- With one definition of Autonomic Computing being Self-
ing MaCMAS models. Later, when we specify a policy, wélanagement based on high level guidance from humans [12]
deploy these models over the running system using Ma&id considering IBM’s high-level set of self-properties (self-
MAS model composition. CHOP: configuration, healing, optimization and protection)
In addition, to illustrate our approach, we use an exampgainst the types of typical policies mentioned previously
from the NASA ANTS concept mission (described in Sedoptimization, configuration and protection), the importance
tion 5). This mission involves the use of a swarm of picand relevance of polices for achieving autonomicity becomes
class spacecraft to explore and collect data from the astercliegar [29].
belt, and exhibits both autonomous and autonomic proper-
ties.

3 Using AOSE for policy modelling

2 Policy-Based Management The field of Agent-Oriented Software Engineering (AOSE)

has arisen to address methodological aspects and other is-
Policies have been described as a set of considerations s related to the development of complex multi-agent sys-
signed to guide decisions of courses of action [15], and F@ms. AOSE is a new software engineering paradigm that au-
licy-Based management (PBM) may be viewed as an adm@i's much promise in enabling the successful development
istrative approach to systems managementahatiori es- of more complex systems than is achievable with current
tablishes rules for dealing with situations that are likely t@bject-Oriented approaches which use agents and organi-
occur. zations of agents as their main abstractions [9].

From this perspective, PBM works by controlling ac- The organizational metaphor has been proven to be one
cess to and setting priorities for the use of ICT resoufice®f the most appropriate tools for engineering Multi-Agent
for instance, where a (human) manager may simply sp&ystems (hereafter, MAS). The metaphor is used by many
ify the business objectives and the system will achieve thg€searchers to guide the analysis and design of MASs, e.g., [19;
in terms of the needed ICT [14]. For example: (1) “Th&l; 31].
customer database must be backed up nightly between 1A MAS organization can be observed from two different
a.m. and 4 a.m.”; (2) “Platinum customers are to receive point of view [31]:
worse than 1-second average response time on all purchase
transactions.”; (3) “Only management and the HR senide€quaintance point of view: shows the organization as the
staff can access personnel records.”; and (4) “The number set of interaction relationships between the roles played
of connections requested by the Web application server can-by agents.
not exceed the number of connections supported by the &8uctural point of view: shows agents as artifacts that be-
sociated database.” [10]. These examples highlight the wide long to sub-organizations, groups, teams. In this view
range and multiple levels of policies, the first concerned with agents are also structured into hierarchical structures show-
system protection through backup, the second with system ing the social structure of the system.
optimization to achieve and maintain a level of quality-of- ) o
service for key customers; while the third and fourth are Both views are intimately related, but they show the or-
concerned with system configuration and protection. ganization from radically different viewpoints. Since any struc-

Policy-Based Management has been the subject of extiyal organization must mc]ude interactions between thglr
sive research in its own right. The Internet Engineering Ta8@€nts in order to function, it is safe to say that the acquain-
Force (IETF) has investigated Policy-Based Networking 4&nce organization is always contained in the structural or-

a means for managing IP-based muiti-service networks whgnization. Therefore, if we first determine the acquaintance
organization, and we define the constraints required for the

! see http://james.eii.us.es/MaCMAS/ for further details. structural organization, a natural map is formed between the
2 Whatis.com, Online computer and internet dictionary andyen acquaintance organization and the corresponding structural
clopedia, 2005. organization. This is the process of assigning roles to agents
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Fig. 1 Acquaintance analysis discipline to compose acquaintance models, which is needed for poli-
cies that imply several system-goals and for deploying an
acquaintance model that specifies a policy over a structural

[31]. Thus, we can conclude that any acquaintance orgaoiganization; that is to say, composition of roles.

zation can be modeled orthogonally to its structural organi- In Figure 1, we summarize the main Software Process

zation [11]. Engineering Metamodel (SPEM) work definitions and mod-

We use this separation to specify policies at the acquaitls of the methodology. In the following, we detail the most
tance organization level, and deploy them over the structuii@lportant features for our purposes in this paper.
organizational of the running system. The scope of poli- The MaCMAS/UML modeling process is focused on in-
cies usually implies features of several acquaintance siéractions/acquaintance organization since they are the mai
organizations. In such cases, we must first compose the &surce of complexity. In order to represent interactions ab-
quaintance sub-organizations, this process being guidedgpactly we usenulti-Role Interaction$mRI) [23; 24]. mRIs

the policy specification, to deploy it later. are first class modeling elements in our models and are used

as the minimum building block for modeling. Their use is

crucial for performing an incremental layered modeling ap-

4 Overview of MaCMAS/UML proach since mRIs can be described internally by means of
finer-grain mRis, or several of them can be abstracted by a

MaCMAS is the AOSE methodology that we use to spegoarser-grain one.

ify and deploy policies [22]. It is specially tailored to model An mRl is aninstitutionalized pattern of interactiotiat

complex acquaintance organizations [26]. Its main advaabstractly represents the fulfillment of a system goal without

tages can be observed from three aspects: in the modelitegailing how this is achieved. Thus, using mRI as the mini-
aspect, the main advantage consists in providing an interum modeling element we do not have to take into account
action abstraction to enable the modeling of unpredictak#d$ of the details required to fulfill a complex system goal
behaviors, and providing a notation which, to the best abr the messages that are exchanged at stages where these
our knowledge, is the unique UML 2.0-based approach detptails have not been identified clearly, are not known, or are
icated to modeling the acquaintance organization absjractiot even necessary. This allows us to have abstract models
in the techniques aspect, we provide semi-automatic tegvhere intelligent behavior is carried out by means of neural
niques for decomposing and composing models basing rgtworks, fuzzy logic, etc., (as, for example, is required in
goal-oriented requirements and on dependencies, whichlANTS, cf. Section 5), without the necessity of dealing with
unique in the field; and in the software process aspect, akthe details. In addition, the direct correlation between sys
provide a software process that covers top-down and bottot@m goals and mRlIs allows us to establish a clear traceability
up development approaches providing criteria for decidifgtween goal-oriented requirement documents and analysis
between them. To the best of our knowledge, our approasiedels. This is also important for our goal in this paper,
is the first to address such criteria. since policies usually verse about system goals. Having this

We use this approach for several reasons. First, it piind of model helps in simplifying the way in which policies
vides UML-based models which are the de-facto standaate specified, and deployed in the system at runtime.

in modeling, and which will decrease the learning-curve for mRls are represented with UML 2.0 collaborations [20,

engineers. Second, it allows modeling at different levels pf 132] as are all the models we use. We use three views

abstraction, which allows us to specify policies at whichevef the acquaintance organization: two for representing the
level of abstraction we need. Third, it provides techniquasatic and dynamic aspects of the organization, and a third




for representing the relation between models in different ab-

straction layers. We use the following models:

a) Static Acquaintance Organization View: This shows the
static interaction relationships between roles in the sys-

tem and the knowledge processed by them. It comprises

the following UML models:

Role Models: shows an acquaintance sub-organization

as a set of roles collaborating by means of several
mRIs. As mRlIs allow abstract representation of in-
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B) Role Model

Plan of arole: separately represents the plan of each meig 5 Self-protection from solar storms autonomic property mode
in a role model showing how the mRIs of the role
sequence. It is represented using UML 2.0 Protocol-
StateMachines [20, p. 422]. It is used to focus onswarms of autonomous pico-class (approximately 1kg) space-

craft that will search the asteroid belt for asteroids that have

Plan of a role model: represents the order of mRlIs inspecific characteristics. The mission is envisioned to consis
role model with a centralized description. It is represf approximately 1,000 spacecraft launched from a factory
sented using UML 2.0 StateMachines [20, p. 446]. &hip. As shown in Figure 2, the swarm is envisioned to con-
is used to facilitate easy understanding of the whoist of several types of spacecraft. Many of these spacecraft

(called specialists) will have a specialized single instrmime

c) Traceability view: This model shows how models in diffor collecting particular types of data. To examine an aster-
ferent abstraction layers relate. It shows how mRlIs apéd: several spacecraft will have to form a sub-swarm, under

abstracted, composed or decomposed by meadasf the control of a ruler, and collaborate to collect data from
sification aggregationgeneralizatioror redefinition No- asteroids of interest, based on the properties of that asteroid.

tice that we usually show only the relations between ifhis will be achieved using an insect analogy of hierarchical
teractions because they are the focus of modeling, @cial behavior with some spacecraft directing others.
all the elements that compose an mRI can also be re-

lated. Finally, since an mRI presents a direct correlation _ _
with system goals, traceability models clearly show ho2 Autonomic Properties of ANTS

certain role, while ignoring others.

behavior of a sub-organization.

a certain requirement system goal is refined and materi- ) )
The ANTS system may be viewed as an Autonomic System

alized.

5 ANTS Case Study and some of its models

autonomic property of the system.

5.1 ANTS Mission Overview

as it meets four key requirements: self-configuration, self-
healing, self-optimization and self-protection, as illustrated
in [30]. Here we focus on self-configuration properties as
these are illustrated in our case study.

In this section, we briefly introduce ANTS, a NASA concept  ANTS is self-protecting: The self protecting behavior of
mission, that illustrates properties of several potential@xptthe team will be interrelated with the self-protecting behav-

ration missions. We show two models of an autonomous aifi of the individual members. The anticipated sources of
threats to ANTS individuals (and consequently to the team

itself) will be collisions and solar storms.

Collision avoidance through maneuvering will be limited
because ANTS individuals will have limited ability to adjus
their orbits and trajectories, due to thrust for maneuvering
The Autonomous Nano-Technology Swarm (ANTS) migpowered by solar sails. Individuals will have the capability
sion [3; 30] is a concept mission that involves the use of coordinating their orbits and trajectories with other in-
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Fig. 3 Traceability model of ANTS

dividuals to avoid collisions with them. Given the chaoti&.3 Example of Models of Autonomous and Autonomic
environment of the asteroid belt and the highly dynamic tr@roperties of ANTS
jectories of the objects in it, occasional near approaches of

interloping asteroidal bodies (even small ones) to the ANTGer applying MaCMAS to the ANTS system, we obtain
team may present threats of c_oIIisions.With its individualg,e traceability diagram of Figure 3. This diagram summa-
Collision-avoidance maneuvering for this type of spacecrafles the mRils in the system structured by layers of abstrac-
presents a great challenge and is currently under considy |n this diagram, the top layer is the most abstract. As
eration. Th_e main self-protection mechanism for cplhsm@ach node represents a system-goal also, we can see here
avoidance is achieved through the process of planning. Thg division of tasks necessarily undertaken to develop the
plans involve constraints that will result in acceptable ”Skﬁ/stem. As each mRI is inside a role model, we can also
of collisions between individuals when they carry out thelfae which roles we have determined to carry out by observ-
observational goals. In this way, ANTS exhibits a kind ghq the role models. In the model shown, we have depicted
self-protection behavior against collisions. several sub-regions. Horizontal subdivisions depict layers of
abstraction, while the vertical line denotes the distinchien
tween the parts of the system that represent autonomic and
. . , the parts of the system that represent autonomous behaviors.
Another possible ANTS self-protection mechanism cqy aqdition to mRIs, MaCMAS also uses UML packages to
uld protect against the effects of solar storms, which is thenresent role models that contain several mRls. In Figure 3

basis of the case study we use later in this paper. Charggd identify two of these packages, which group the mRIs
particles from solar storms could subject individuals to deg[g—gd in the example that follows.

dation of sensors and electronic components. The increase

solar wind from solar storms could also affect the orbits and 10 foster reuse, to model an autonomous or an auto-
trajectories of the ANTS individuals and thereby could jeoflo™Mic property in a sufficiently generic and generalized way,
ardize the mission. Specific mechanisms to protect ANE§d to enable a policy to be deployed at runtime, proper-
spacecraft against the effects of solar storms have not §§§8 Must be independent of the concrete agents over which
been determined. A potential mechanism might, for exafi€y Will be deployed. As we have shown, the features re-
ple, provide spacecrafts with a solar storm sensing capabiﬂy'red to have an appropriate descrlptlon cqrrelates with the
through on-board, direct observation of the solar disk. Whig@tures of an acquaintance sub-organization. As we have
the spacecraft recognize that a solar storm threat exists, tR&P Shown, to represent this kind of organization, MaCMAS
would invoke their goal of protecting themselves from thBf@POSes two kind of models—one for showing the relation-
harmful effects of a solar storm. Part of the protective r hips between roles, that is, role models, and another to show

sponse might be to orient solar panels and sails to minim2@W these relationships evolve over time, that is to say, plan
the impact of the solar wind. An additional response mightedels

be to power down unnecessary subsystems to minimize dis- For example, showing the autonomous process of orbit-
ruptions and damage from charged patrticles. ing an asteroid to take a measurement requires at least two
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Fig. 4 Orbiting and measuring an asteroid autonomous property

models—its role model and its plan model. Figure 4b shows§the asteroid, it escapes the orbit using its knowledge of
the role model for this case. We show here the models frdatre orbit model ¢rbitM).

the third layer of abstraction of Figure 3. In this model there  Autonomic properties can be also modeled in this way.
are two kinds of elements: roles, which are represented ¥s role models can be used at any level of abstraction, we
ing interface-like icons, and mRlIs, which are represented@sn use them for specifying autonomic properties that con-
collaboration-like icons. In this model, roles show whickern a single agent, or even a group of agents when deal
is their general goal and their particular goals when pang with autonomic properties at the swarm level. Thus, as
ticipating in a certain interaction with other roles or wittshown in the traceability model, we have a role model at ab-
some part of the environment (represented using interfaggsction layer 2 that shows the swarm autonomic behavior,
with the <<environment-> stereotype). Roles also reprewhile at layer 4, we show autonomic properties at the level
sent the knowledge they manage (middle compartment) asfdndividual spacecraft.

the services they offer (bottom compartment). For example, Here we illustrate a model at abstraction layer 4 for a
the goal of theOrbiter role is “maintain the orbit and mea-self-protection autonomic property: protecting from solar sto-
sure [the asteroid]”, while its goal when participating in thems. The role model for this property is shown in Figure 5b,
Report Orbitinteraction is to get a model of the orbitit mustind, as can be seen, as it is a property at the individual
follow. In addition to roles, mRIs also show us some imMevel, a single role is showrsglfProtectSpaceCrafits plan
portant information. They must also show the system-gaabdel is shown in Figure 5a. As all the spacecraft can be
they achieve when executed, the kind of coordination thatdffected by solar storms, this role is applied to all the space-
carried out when executed, the knowledge used as inputi@ift in the swarm, thus adding this autonomic property to
achieve the goal, and the knowledge produced. For exampig of them.

the goal of the mRReport Orbitis to “Report the Orbit”. It

is done by taking as input the knowledge of thebitMod-

eler regarding the orbit and producing as output the model

for the orbit (orbitM) in theOrbiter role. 6 Adding policies to the system

Continuing with the example, in Figure 4a, we show the
plan model of this role model where the order of executioMw
of all its mRIs is shown. As can be seen, Gbiter, while it As shown previously, for building and structural organi-
is in orbit, is adjusting its orbit and measuring and reportirgation, used at runtime, we have to compose role models.
measures. And when it has completed constructing a mo&ehce the MaCMAS methodology proposes several meth-
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Fig. 7 Software Process of Role Composition

emergent roles roles that appear in the composition yet
they do not belong to any of the initial role models;

emergent mRIs those that are not present in any of the ini4 o3| of the role: The new goal of the role is a new goal

tial role models; , that abstracts all the role goals of the role to be com-
composed roles the roles in the resultant models that rep- posed. This information can be found in requirements

resent several mmal_roles as a single element; hierarchical goal diagrams or we can add it asahe
composed mRIs mRIs in the resultant model that repre-  (conjunction) of the goals to be composed. In addition,

sents several initial mMRIs as a single element; the role goal for each mRI can be obtained from the goal
unchanged roles those that are left unchanged and imported ¢ the initial roles for that mRl.

directly from the initial role models; _ _2. Cardinality of the role: It is the same as in the initial
unchanged mRIs those left unchanged and imported di-  gje for the corresponding mRI.

rectly. 3. Initiator(s) role(s): If mRI composition is not performed,

as in our case, this feature does not change.
Interface of a role: All elements in the interfaces of
roles to be merged must be added to the composite in-
terface. Notice that there may be common services and
knowledge in these interfaces. When this happens, they
must be included only once in the composite interface,
or renamed, depending on the composition of their on-
tologies, as we show below.
6.1 Composing roles 5. Guard of arole/mRI: The new guards are tlad (con-
junction) of the corresponding guards in initial role mod-
When several roles are merged in a composite role model, els if roles composed participate in the same mRI. Oth-
their elements must be also merged: erwise, guards remain unchanged.

Once relationships between elements have been estgb
lished by analyzing the policy, we must complete the com-’
posite role model. Importing an mRI or a role requires only
adding it to the composite role model. The following shows
how to compose plans and role models.



[not (Orbiter. AmlInsideOrbit(Orbi-
ter.relativePos, Orbiter.orbit)]
AdjustOrbit
N N [Dist(relativePos, Astero-
Acq.Org. Relatingrole ___ __ __ IdReli‘,‘I:i‘Tgwsq
i models to be models 1
Requiremen Goal d model '
ts Statgment Hierarchy Com?Pse ) : . After
H v v v ! Orbiting Report Measure | [OTbiter.MeasureFi- O
' Measures nished (astModel)]
4 N : EscapeOrbit
al No Yes N 1 [Orbiter MeasureF -
- N ! ReportOrbit nished(astModel)]
L/ Changes “\ : EscapeOrbit
X } \ .ﬁ ________________________________ -ﬁ(:
in most 1 [SelProtecSC. stormintensit
@ roles? @‘/ ! >Risk;z;zlg?'::famcr Analyzing
Merge role H risk of solar
lgans Obtain Obtain Merge role ' storms
PR role composite role models plans i Analyzi
s Pid nalyzing
T~ lans model plan 7 H risk of solar Protecting
N P P’ . '
\\ I‘ ~~~~~~ T L3 ) Lt ! storms
-7 T Tme~l ‘ 1
- ' - [SelProtecSC stormintensity
I@D H MeasureStorms. > RiskForSystemsFactor]
=g ’él:l | offSubSys
E
Composed Composite ' H
role plans role mogidl plan : Fig. 10 Composed plan
: ; |
v v 1
Xy +
‘D‘"*@E‘ ..... >D----, E@: Parallel: The plan of each model is executed in parallel. It
Compose o AddoAq aoh can be documented by using concurrent orthogonal re-
Dynamic Acq. Dynamic Org. Model Model

gions of state machines (cf. [20, p. 435]).

Interleaving: To interleave several plans, we must build a
new state machine where all mRls in all plans are taken
into account. Notice that we must usually preserve the
order of execution of each plan to be composed. We can
use algorithms to check behavior inheritance to ensure
that this constraint is preserved, since to ensure this prop-
erty, the composed plan must inherit from all the initial
plans [13].

Org. Model Acq. Org.

Fig. 8 Software Process of Plan Composition

6. Ontologies of an mRI: The new ontology must cover
all the terms described in all the ontologies of roles to be
composed (cf. [5; 17; 18]). This procedure also shows
how to deal with repeated knowledge in the interface of
roles to be composed. That is to say, if as a result of on-
tology composition, a knowledge entity that is repeated g gepicted in Figure 8, the composition of role model
in several roles is shown as the same element in the cofsns has to be performed following one of the plan com-
posed ontology, we can include it once; if it results ?&hsition techniques described previously to later, if we are
different elements in the composed ontology, we MUgerested in the plan of one of the composed roles, as it is
rename them. needed to assign the new plan to the composed roles; we can

extract it using the algorithms mentioned previously.
We can also perform a composition of role plans follow-

6.2 Composing plans ing one of the techniques to compose plans described previ-

ously. Later, if we are interested in the plan of the composite

The composition of plans consists of setting the order [flé model, for example for testing, we can obtain it using
execution of mRIs in the composite model, using the rol8€ algorithms mentioned previously.
model plan or role plans. We provide several algorithms to
assist this task: extraction of a role plan from the role model
plan and vice versa, and aggregation of several role plafisExample of applying a new policy to the ANTS case
see [23] for further details of these algorithms. study

Thanks to these algorithms, we can keep both plan views
consistent automatically. Depending on the number of rolég use the following fictitious scenario to document our ex-
that have to be merged we can base the composition of Hmaple: It has been discovered that several spacecraft have
plan of the composite role model on the plan of roles or aollided with an asteroid as a result of self-protection from

the plan of the role model. a solar storm. As a result, it has been decided to avoid pro-
Several types of plan composition can be used for rdiection from solar storms while orbiting, sending the follow-
plans and for role model plans: ing policy to the system, which is shown graphically in Fig-
ure 11.

Sequential: The planis executed atomically in sequende wit If a spacecraft is orbiting and measuring an asteroid
others. The final state of each state machine is supand it determines that there exists risk of a solar storm, the
posed with the initial state of the state machine that reppacecraft must first escape the orbit and later power down
resents the plan that must be executed, except the inigabsystems and use its sail as a shield.
plan that maintains the initial state unchanged and the Notice that we have limited the policy to two role models
final plan that maintains the final state unchanged. to simplify the example, but in the real world we must also
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associated role models involved in orbiting an asteroid.
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As a result, we must compose both models and their
plans following the constraints imposed by the policy. The
composition of both role models is shown in Figure 9. As we
can see, the rolé3rbiter andSelfProtectS®ave been com-
posed into a single role call&klfProtectingOrbitefollow-
ing the prescription showm in Section 6.1. We can observe
that the rest of roles have been left unchanged and that all
mRIs have been also added without changes.

In addition, as the self protection must be taken into ac-
count during the whole process of orbiting and measuring,
and not in a concrete state, we must perform a parallel com-

sition, as it is shown in Figure 10. Notice also, that the
licy tells us the order of mRIs we must follow for self-

protection, adding th&scape OrbitmRI before protection,
which results in the new state machine shown.

is applied, determining the role models that should be tak8rFuture work: implementing the policy manager
into account. Notice that although the second element de-
notes an interaction, in the traceability diagram we can firsd
out easily the role model it belongs to, nam&iptect from
Solar StormsThe second part shows a modification of thef our previous paper, i.e. [27], we have implemented part
of the planned tool. This is based on two existing tools: (i)

plans where a new order for the interaction is specified.

Although this work is still ongoing, since the publication
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the vocabulary that can be used in the policy. This vocabu-
lary is composed of the role models, mRls, etc. in the MaC-
MAS model of the system, along with some temporal, condi-
tional, etc., operators, e.gnd or, if, etc. It will also provide
models of the policy so that the user can see if the results ob-
tained are correct. This also allows the user to change the ob-
tained models as needed and to keep track of these changes
in the policy specification.

Both tools have been developed separately: MaCMAS-
CT in the University of Seville, and R2D2C in the NASA
Software Engineering Laboratory in collaboration with re-
searchers from Virginia Tech and SAIC.

MaCMAS-CT has been implemented over ArgoUML,
defining an UML profile that extends UML with a set of
stereotypes, e.g<<role>>, and tagged values, e.Bole-
Goal. We have also extended this tool to provide the graph-
ical representation of MaCMAS models. In Figure 12, we
show a screenshot of this tool.

R2D2C is a tool that allows for the specification require-
ments in natural language, use cases, and other parseable no-
tations. From them, it produces a CSP model which can be
analyzed, adapted, corrected, etc., reflecting changes back

an ArgoUML extension used to model MaCMAS diagram#) the use cases and/or natural language, or other input nota-
called the MaCMAS CASE tool (MaCMAS-CT), and (ii) ations. It can be also used to as a basis for sound code gener-
NASA proprietary prototype tool called R2D2C which alation [6].

lows for policies to be specified in natural language (or a va-

In addition, it has been successfully used to specify poli-

riety of other input notations) and then generates a provablyas for autonomic systems using constrained natural lan-

correct corresponding specification (currently in Hoare’s |

Jage [29]. In R2D2C, policies are viewed as scenarios (just

guage of Communicating Sequential Processes, or CSP [in the example of this paper), and are used to generate a

although other formal languages may be used) that can

checked and analyzed.

In Figure 13, we have sketched how our final tool migltompleteness, along with other problems, which may then
look. As can be seen, the tool will provide information abodtte addressed and rectified.

P model that is guaranteed to be equivalent, and which
can then be checked for various issues of consistency and
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In Figure 14, we show how we plan to integrate bot§ conclusions
tools, which will required for future enhancement of both

tools. As illustrated in the figure, ArgoUML allows us toye have presented an AOSE-based approach for modeling
store models using XMI, an OMG standard based on XMkytonomous and autonomic properties of the system. The
that is primary used for exchanging UML models, that we,nroach supports models at different levels of abstraction.
plan to use as the exchange format between M‘?‘,CMAS'Q&e have also presented a technique for composing these
and R2D2C. Thus, we plan to enhance R2D2C in order igndels in order to obtain a particular structural organiza-

accept input as MaCMAS models represented in XMLI. Thigsn \we have used this technique to compose those models
provides the tool with the cap_ablllty to che.ck properties anfyolved in a new policy and to deploy the resultant model

to generate code. Another point of integration between R2Bg6he running system. We have also shown our first results

and the planed tool will consist of integrating the poliCYagarding the implementation of a CASE tool that imple-
parser provided by R2D2C, limiting the vocabulary to thg,ents the techniques described in this paper.

elements present in the XMI model. Finally, MaCMAS-CT The main advantage of this approach is that, as mod-

will also need an extension to support the composition fs are developed at different levels of abstraction, we can
roles and plans automatically. In this sense, we have Qecify nolicies for autonomous and autonomic systems at
fferent levels of abstraction. As these models allow for the
straction of “intelligent behaviors” since the procedures

carried out inside an interaction can be described internally

1. generate the Acquaintance model using MaCMAS-CTRY means _of neqrql networks, fuzz_y Iogic,_ etc., this aII.ows

2. produce an XMl equivalent of this model using MaCMAS: to specify policies over these kinds of implementations.
CT that will be accepted by R2D2C in order to obtain th&€hus, a human designer, not expert in the details of the im-
names of role models and mRis that we allow in the teRleémentation, may easily modify the system while maintain-
tual specification; Ing Its Integrity.

3. express the policy in the graphical interface of the tool;

4. R2D2C will analyze the textual description and converts
it to an XMI specification with the models that have to be
composed and whose elements will be imported, coféferences
posed or deleted modifying the XMl of our system;

Thus the usual steps performed by the planed tool

tained some results applying MDA[25]. ﬂ
W]
be the following:

. - 1. IEEE Task Force on Autonomous and Autonomic Systems,
5. MaCMAS will perform the composition when needed (TFAAS), June 2005. Available at http://www.computer/ta.

and import/delete the elements prescribed; 2. 0. Babaoglu, A. Couch, G. Ganger, P. Stone, M. Yousif, and
6. allow the user to manually perform changes reflecting J. Kephart. Panel: Grand challenges of autonomic computing
these changes in the policy; In 2nd IEEE International Conference on Autonomic Computing
; i - (ICAC'05), Seattle, WA, 13-16 June 2005.
7. R2D2C will take the I.aSt XMl file and the pOIICym order 3. S. A. Curtis, W. F. Truszkowski, M. L. Rilee, and P. E. Clark
to generate the required code. ANTS for the human exploration and development of space. In
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