Automated Generation of Computationally Hard Feature Models using
Evolutionary Algorithms

Sergio Segu, Jog A. Parejd**, Robert M. Hieron David Benavided Antonio Ruiz-Corést

aDepartment of Computer Languages and Systems, Univefsgwille
Av Reina Mercedest$, 41012 Seville, Spain
bSchool of Information Systems, Computing and Mathemditsel University
Uxbridge, Middlesex, UB7 7NU United Kingdom

Abstract

A feature model is a compact representation of the proddassoftware product line. The automated extraction
of information from feature models is a thriving topic invislg numerous analysis operations, techniques and tools.
Performance evaluations in this domain mainly rely on tleeaisandom feature models. However, these only provide
a rough idea of the behaviour of the tools with average probland are not shicient to reveal their real strengths and
weaknesses. In this article, we propose to model the probfeinding computationally hard feature models as an
optimization problem and we solve it using a novel evolutignalgorithm for optimized feature models (ETHOM).
Given a tool and an analysis operation, ETHOM generateg mpdels of a predefined size maximizing aspects such
as the execution time or the memory consumption of the to@naberforming the operation over the model. This
allows users and developers to know the performance of toglessimistic cases providing a better idea of their
real power and revealing performance bugs. ExperimentggUsTHOM on a number of analyses and tools have
successfully identified models producing much longer ettens times and higher memory consumption than those
obtained with random models of identical or even larger.size

Keywords: Search-based testing, software product lines, evolutyoalgorithms, feature models, performance
testing, automated analysis.

1. Introduction 16 The automated extraction of information from feature
)] o 7 models (a.k.a automated analysis of feature models) is

Software Product LingSPL) engineering is a SYs, 4 thriving topic that has received much attention in the
tematic reuse strategy for developing families of re- |5t two decades [10]. Typical analysis operations allow
lated software systems [16]. The emphasis is on de- ;s {5 know whether a feature model is consistent (i.e.
riving products from a common set of reusable assets jt ygpresents at least one product), the number of prod-

and, in doing so, reducing production costs and time— .t represented by a feature model, or whether a model
to—market. The products of an SPL are defined in terms ;ntains any errors. Catalogues with up to 30 anal-

of features where &atureis any increment in prod-
uct functionality [6]. An SPL captures the commonal-
ities (i.e. common features) and variabilities (i.e. vari-

ant features) of the systems that belong to the prOd%Ctprogramming [9, 76], or description logic [70]. Also,
line. This is commonly done by using a so-called fea-

these analysis capabilities can be found in several com-
ture model. Afeature mode[32] represents the prod-, mercial and open source tools includisiEAD Tool

ucts of an SPL in terms of features and relationships Suite[3], Big Lever Software Geafd5], FaMa Frame-
amongst them (see the example in Fig. 1). « work [19], Feature Model Plug-if20], pure::variants

ysis operations on feature models have been reported
[10]. Techniques that perform these operations are typ-
ically based on propositional logic [6, 45], constraint

= [53]and SPLOT [43].
*Principal corresponding author

" i 33 The development of tools and benchmarks to eval-
Corresponding author .
Email addressessergioseguratus . es (Sergio Segura), « uate the performance and scalability of feature model
japarejo@us.es (Jo€ A. Parejo) s analysis tools has been recognised as a challenge [7,

Preprint submitted to Elsevier March 25, 2015

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

10, 51, 62]. Also, recent publications reflect an is- constraints of real-time systems, that is, those inputs
creasing interest in evaluating and comparing the perfer- producing an output too early or too late. Their exper-
mance of techniques and tools for the analysis of feature imental results showed that evolutionary algorithms are
models [4, 25, 26, 31, 45, 39, 50, 51, 52, 55, 64, 74]. much more &ective than random search in finding in-
One of the main challenges when performing expesi- put combinations maximising or minimising execution
ments is finding tough problems that show the strengths times. Since then, a number of authors have followed
and weaknesses of the tools under evaluation in ex- their steps using metaheuristics and especially evolu-
treme situations, e.g. those producing longest exegu-tionary algorithms for testing non—functional properties
tion times. Feature models from real domains are by far such as execution time, quality of service, security, us-
the most appealing input problems. Unfortunately, al- ability or safety [2, 42].
though there are references to real feature models with Problem description. Current performance evalu-
hundreds or even thousands of features [7, 37, 66], oaly ations on the analysis of feature models are mainly
portions of them are usually available. This lack af carried out using randomly generated feature models.
hard realistic feature models has led authors to ewal- However, these only provide a rough idea of the aver-
uate their tools with large randomly generated feature age performance of tools and do not reveal their specific
models of 5,000 [46, 76], 10,000 [23, 45, 67, 74] and weak points. Thus, the SPL community lacks mech-
up to 20,000 [47] features. In fact, the size of the fea- anisms that take analysis tools to their limits and re-
ture models used in experiments has been increasing,veal their real potential in terms of performance. This
suggesting that authors are looking for complex prak- problem has negative implications for both tool users
lems on which to evaluate their tools [10]. More re- and developers. On the one hand, tool developers have
cently, some authors have suggested looking for hard no means of performing exhaustive evaluations of the
and realistic feature models in the open source commu- strengths and weaknesses of their tools making it hard
nity [13, 21, 49, 61, 62]. For instance, She et al. [62] to find faults d@ecting their performance. On the other
extracted a feature model containing more than 5,800 hand, users are not provided with full information about
features from the Linux kernel. 12 the performance of tools in pessimistic cases and this
The problem of generating test data to evaluate the makes it dfficult for them to choose the tool that best
performance of software systems has been largely stud-meets their needs. Hence, for instance, a user could
ied in the field of software testing. In this contexts choose atool based on its average performance and later
researchers realised long ago that random valuesuarerealise that it performs very badly in particular cases that
not efective in revealing the vulnerabilities of a sys. appear frequently in their application domain.
tem under test. As pointed out by McMinn [42fan- s In this article, we address the problem of generating
dom methods are unreliable and unlikely to exercise computationally hard feature models as a means to re-
‘deeper’ features of software that are not exercised:by veal the performance strengths and weaknesses of fea-
mere chance” In this context, metaheuristic search ture model analysis tools. The problem of generating
techniques have proved to be a promising solution for hard feature models has traditionally been addressed
the automated generation of test data for both functianal by the SPL community by simply randomly generating
[42] and non—functional properties [2Metaheuristic ..« huge feature models with thousands of features and con-
search techniqueare frameworks which use heuristies straints. That is, it is generally observed and assumed
to find solutions to hard problems at afficedable com-1s that the larger the model the harder its analysis. How-
putational cost. Examples of metaheuristic techniques ever, we remark that these models are still randomly
include evolutionary algorithms, hill climbing, and sims generated and therefore, as warned by software testing
ulated annealing [69]. For the generation of test data, experts, they are not ficient to exercise the specific
these strategies translate the test criterion into an.ab-features of a tool under evaluation. Another negative
jective function (also called a fithess function) that.is consequence of using huge feature models to evaluate
used to evaluate and compare the candidate solutiensthe performance of tools is that they frequently fall out
with respect to the overall search goal. Using this in- of the scope of their users. Hence, both developers and
formation, the search is guided toward promising ar- users would probably be more interested in knowing
eas of the search space. Wegener et al. [72, 73] werewhether a tool may crash with a hard model of small
one of the first to propose the use of evolutionary &- or medium size.
gorithms to verify the time constraints of software bagk Finally, we may mention that using realistic or stan-
in 1996. In their work, the authors used genetic alge- dard collections of problems (i.e. benchmarks) is
rithms to find input combinations that violate the time equally instficient for an exhaustive performance eval-

2

140

141

142

143

144

145

146

147

148

149

150

152

153

154

155

156

157

158

159

160

162

163

164

165

166

167

168

169

170

11

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

uation since they do not consider the specific aspetts
of a tool or technique under test. Thus, feature meed-
els that one tool finds hard to analyse could be trivially
processed by another and vice versa. 1%
Solution overview and contributions. In this article, **
we propose to model the problem of finding comput&-
tionally hard feature models as an optimisation proB-
lem and we solve it using a nov&volutionary algo- *’
riTHmM for Optimised feature Models (ETHOMSiven **
a tool and an analysis operation, ETHOM generates'ih-
put models of a predefined size maximising aspects sych
as the execution time or the memory consumed by the
tool when performing the operation over the model. Egr
the evaluation of our approach, we performed seveyal
experiments using fferent analysis operations, tools
and optimisation criteria. In particular, we used FaMa
and SPLOT, two tools for the automated analysis of fea-
ture models developed and maintained by independent
laboratories. In total, we performed over 50 milliom
executions of analysis operations for the configuration
and evaluation of our algorithm, during more than $i%
months of work. The results showed how ETHOM sui¢-
cessfully identified input models causing much longér
executions times and higher memory consumption than
randomly generated models of identical or even larger
size. As an example, we compared thEeetiveness,,,
of random and evolutionary search in generating fea-
ture models with up to 1,000 features maximising the
time required by a constraint programming solver (a.k:a.

detect them by chance using randomly generated
models.

e Our work allows developers to focus on the search
for computationally hard models of realistic size
that could reveal performance problems in their
tools rather than using huge feature models out of
their scope. If a tool performs poorly with the gen-
erated models, developers could use the informa-
tion as input to investigate possible improvements.

e Our approach provides users with helpful infor-
mation about the behaviour of tools in pessimistic
cases helping them to choose the tool that best
meets their needs.

e Our algorithm is highly generic and can be applied
to any automated operation on feature models in
which the quality (i.e. fitness) of models with re-
spect to an optimisation criterion can be quantified.

e Our experimental results show that the hardness of
feature models depends orifdrent factors in con-
trast to related work in which the complexity of the
models is mainly associated with their size.

e Our algorithm is ready-to-use and publicly avail-
able as a part of the open-source BeTTy Frame-
work [14, 58].

Scope of the contribution. The target audience of

CSP solver) to check their consistency. The results:re- this article is practitioners and researchers wanting to
vealed that the hardest randomly generated model foundevaluate and test the performance of their tools that
required 0.2 seconds to analyse while ETHOM was afble analyse feature models. Several aspects regarding the
to find several models taking between 1 and 27.5 min- scope of our contribution may be clarified, namely:

utes to process. Besides this, we found that the hard-
est feature models generated by ETHOM in the rafge
500-1,000 features were remarkably harder to procéss
than randomly generated models with 10,000 featuf@&s.
More importantly, we found that the hard feature maet-
els generated by ETHOM had similar properties to fé-
alistic models found in the literature. This suggests tHat
the long execution times and high memory consumptjon
detected by ETHOM might be reproduced when using
real models with the consequent negativieet on the
user. o
Our work enhances and complements the currgnt
state of the art on performance evaluation of featyre
model analysis tools as follows: .
e To the best of our knowledge, this is the first az)j-
proach that uses a search—based strategy to exploit
the internal weaknesses of the analysis tools aad
technigues under evaluation rather than trying.40

3

e Our work follows a black-box approach. That
is, our algorithm does not make any assumptions
about an analysis tool and operation under test.
ETHOM can therefore be applied to any tool or
analysis operation regardless of how it is imple-
mented.

e Our approach focuses on testing, not debugging.
That is, our work contributes to the detection of
performance failures (unexpected behaviour in the
software) but not faults (causes of the unexpected
behaviour). Once a failure is detected using the
test data generated by ETHOM, a tool’s develop-
ers and designers should use debugging to identify
the fault causing it, e.g. bad variable ordering, bad
problem encoding, parsing problems, etc.

e It is noteworthy that many dierent factors could
contribute to a technique finding it hard to analyse

237

238

239

240

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

a given feature model, some of them not directly
related to the analysis algorithm used. Examples
including: bad variable ordering, bad problem es-
coding, parsing problems, bad heuristic selectien,
etc. However, as previously mentioned, the pral-
lem of identifying the factors that make a feature

model hard to analyse when using a specific toof’is
out of the scope of this article. 2t

292

The rest of the article is structured as follows. See-
tion 2 introduces feature models and evolutionary alge-
rithms. In Section 3, we present ETHOM, an evoks
tionary algorithm for the generation of optimised fea-
ture models. Then, in Section 4, we propose a speégﬁic
configuration of ETHOM to automate the generation
of computationally hard feature models. The empf?f—
cal evaluation of our approach is presented in Secfion
5. Section 6 presents the threats to validity of our work.
Related work is described in Section 7. Finally, we sum-
marise our conclusions and describe our future workjn
Section 8.

303
304
2. Preliminaries 305

306

2.1. Feature models and their analyses
Feature modelslefine the valid combinations of fea-

307

tures in a domain and are commonly used as a comgact

representations of all the products of an SPL. A feature
model is visually represented as a tree-like structuré in
which nodes represent features and connections ilfus-
trate the relationships between them. These relatign-
ships constrain the way in which features can be cam-
bined. Fig. 1 depicts a simplified sample feature model.
The model illustrates how features are used to spegify
and build software foiGlobal Position System (GPS)
devices. The software loaded in the GPS is determifed
by the features that it supports. The root feature (ite.
‘GPS’) identifies the SPL. 318
Feature models were first introduced in 1990 as°a

e Optional. If a child feature is defined as optional,
it can be optionally included in products in which
its parent feature appears. For instance, the sample
model definedMultimediato be an optional fea-
ture.

e Alternative. Child features are defined as alter-
native if only one feature can be selected when
the parent feature is part of the product. In our
SPL, software for GPS devices must provide sup-
port for either an.CD or Touchscreen but only one
of them.

e Or-Relation. Child features are said to have an
or-relation with their parent when one or more of
them can be included in the products in which the
parent feature appears. In our example, GPS de-
vices can provide support for aviP3 player a
Photo vieweror both of them.

Notice that a child feature can only appear in a prod-
uct if its parent feature does. The root feature is a part
of all the products within the SPL. In addition to the
parental relationships between features, a feature model
can also containross-tree constraintsetween features.
These are typically of the form:

e Requires. If a feature A requires a feature B, the
inclusion of A in a product implies the inclusion of
B in the product. GPS devices witlraffic avoid-
ing requireAuto-rerouting

e Excludes. If a feature A excludes a feature B, both
features cannot be part of the same product. In our
sample SPL, a GPS withouchscreen cannot in-
clude aKeyboardand vice-versa.

The automated analysis of feature models deals with
the computer-aided extraction of information from fea-
ture models. It has been noted that in the order of 30 dif-
ferent analysis operations on feature models have been

part of the FODA (Feature—Oriented Domain Analysis) reported during the last two decades [10]. The analy-
method [32]. Since then, feature modelling has been Sis of feature models is usually performed in two steps.
widely adopted by the software product line community First, the analysis problem is translated into an interme-
and a number of extensions have been proposed inzat-Odiate problem such as a boolean satisfiability problem
tempts to improve properties such as succinctness:and(SAT) or a Constraint Satisfaction Problem (CSP). SAT
naturalness [56]. Nevertheless, there seems to be azonProblems are often modelled using Binary Decision Di-
sensus that at a minimum feature models should be abledgrams (BDD). Then, anfisthe-shelf solver is used to

to represent the following relationships among features; analyse the problem. Most analysis problems related to
»s feature models are NP-hard [7, 51]. However, solvers

e Mandatory. If a child feature is mandatory, it is» provide heuristics that work well in practice. Experi-
included in all products in which its parent featusg ments have shown that each technique has its strengths
appears. In Fig. 1, all GPS devices must provide and weaknesses. For instance, SAT solvers fi@ent
support forRouting when checking the consistency of a feature model but

332

4

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

:

Traffic avoiding

|
| Auto-rerouting |<— _ | Predicte entryl | Keyboard | | Screen | | MP3 player | | Photo viewer |
A

Radar detector

| 3D map view |

L +{aten] [160]

4 Mandatory AN Alernative — —» Requires
4 optional /B o - — Excludes

Figure 1: A sample feature model

incapable of calculating the number of products in a
reasonable amount of time [11, 45, 51]. BDD solvers
are the mostfécient solution known for calculating the
number of products but at the price of high memory con-
sumption [11, 46, 51]. Finally, CSP solvers are espe-
cially suitable for dealing with numeric constraints as-
sociated with feature models with attributes (so-called
extended feature models) [9].

Initialization
Evaluation

Encoding

Stop criteria met?

[YES]

Selection
Crossover

2.2. Evolutionary algorithms

The principles of biological evolution have inspired
the development of a whole branch of optimisation tech-
nigues callecEvolutionary Algorithms (EAs)These al-
gorithms manage a set of candidate solutions to an opti-
misation problem that are combined and modified itera-
tively to obtain better solutions. Each candidate solution %
is referred to as aimdividual or chromosomé analogy
to the evolution of species in biological genetics where
the DNA of individuals is combined and modified along Figure 2: General working scheme of evolutionary algorithms
generations enhancing the species through natural se-
lection. Two of the main properties of EAs are that they
are heuristic and stochastic. The former means thatanspeed. This problem is hard since a car is a highly
EA is not guaranteed to obtain the global optimum for complex system in which speed depends on a number
the optimisation problem. The latter means thafedi = Of parameters such as engine type and the shape of the
ent executions of the algorithm with the same input pa- car. Moreover, there are likely to be extra constraints
rameters can produceftiirent output, i.e. they are not: like keeping the cost of the car under a certain value,
deterministic. Despite this, EAs are among the mest making some designs infeasible. All EA variants are
widely used optimisation techniques and have been=ap-based on a common working scheme shown in Fig. 2.
plied successfully in nearly all scientific and engineer- Next, we describe its main steps and relate them to our
ing areas by thousands of practitioners. This success isexample.
due to the ability of EAs to obtain near optimal soles
tions to extremely hard optimisation problems with af Initialisation. The initial population (i.e. set of
fordable time and resources. w0 candidate solutions to the problem) is usually generated

As an example, let us consider the design of a casasrandomly. In our example, this could be done by
an optimisation problem. A similar example was used randomly choosing a set of values for the design
to illustrate the working of EAs in [73]. Let us suppose parameters of the car. Of course, it is unlikely that
that our goal is to find a car design that maximises this initial population with contain an optimal or

5

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

near optimal car design. However, promising val-
ues found at this step will be used to produce variants
along the optimisation process leading to better designs.

Evaluation. Next, individuals are evaluated using a
fithess function. Afitness functioris a function that
receives an individual as input and returns a numerical
value indicating the quality of the individual. This
enables the objective comparison of candidate solutions
with respect to an optimisation problem. The fitness Figure 3: Sample crossover and mutation in the search of amapti
function should be deterministic to avoid interferences car design.
in the algorithm, i.e. dferent calls to the function with
the same set of parameters should produce the same
output. In our car example, a simulator could be used the individuals in a fitness—ordered ranking (so-called
to provide the maximum speed prediction as fithess.«s rank-based roulette wheel). When using tournament
«0 Selection, a group ofi individuals is randomly chosen
Stopping criterion. lterations of the remaining steps from the population and a winning individual is selected
of the algorithm are performed until a termination cri= according to its fitness.
terion is met. Typical stopping criteria are: reaching«a
maximum or average fitness value, maximum executien Crossover. These are the techniques used to combine
times of the fitness function, number of iterations «@f individuals and produce new individuals in an analo-
the loop (so-called generations) or number of iteratieas gous way to biological reproduction. The crossover
without improvements on the best individual found. «s mechanism used depends on the encoding scheme but
w7 there are a number of widely-used mechanisms [1].
Encoding. In order to create fespring, an individual«: For instance, two classical crossover mechanisms for
needs to bencodedrepresented) in a form that faciliss binary encoding are one-point crossover and uniform
tates its manipulation during the rest of the algorithum. crossover. When using the former, a location in the
In biological genetics, DNA encodes an individuaks vector is randomly chosen as the break point and
characteristics on chromosomes that are used inste-portions of vectors after the break point are exchanged
production and whose modifications produce mutants. to produce €ispring (see Fig. 5 for a graphical example
Classical encoding mechanisms for EAs include the of this crossover mechanism). When using uniform
use of binary vectors that encode numerical valuessin crossover, the value of each vector element is taken
genetic algorithms (so-called binary encoding) and tree from one parent or other with a certain probability,
structures that encode the abstract syntax of programsusually 50%. Fig. 3(a) shows an illustrative application
in genetic programming (so-called tree encoding) of crossover in our example of car design. An F1
[1, 54]. In our car example, this step would requite car and a small family car are combined by crossover
design patterns of cars to be expressed using a datgoroducing a sports car. The new vehicle has some
structure, e.g. binary vectors for each design parameter.design parameters inherited directly from each parent
w2 such as number of seats or engine type and others
Selection. In the main loop of the algorithm (see Fig= mixed such as shape and intermediate size.
2), individuals are selected from the current populatien
in order to create newffspring. In this process, bettess Mutation. At this step, random changes are applied to
individuals usually have a greater probability of being the individuals. Changes are performed with a certain
selected, with this resembling natural evolution whefe probability where small modifications are more likely
stronger individuals are more likely to reproduce. Rer than larger ones. Mutation plays the important role
instance, two classic selection mechanisms are rouletteof preventing the algorithm from getting stuck prema-
wheel and tournament selection [1]. When using the turely at a locally optimal solution. An example of
former, the probability of choosing an individual i& mutation in our car optimisation problem is presented
proportional to its fithess and this can be seen as deter-in Fig. 3(b). The shape of a family car is changed
mining the width of the slice of a hypothetical spinning by adding a back spoiler while the rest of its design
roulette wheel. This mechanism is often modified parameters remain intact.
by assigning probabilities based on the position .6f

6

b) Mutation

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

Decoding. In order to evaluate the fithess of new
and modified individualsdecoding is performed.

For instance, in our car design example, data stored
on data structures is transformed into a suitable car
design that our fitness function can evaluate. It often
happens that the changes performed in the crossover
and mutation steps create individuals that are not valid
designs or break a constraint, this is usually referred
to as aninfeasible individugl e.g. a car with three o 1 2 3 4 5 6 7
wheels. Once an infeasible individual is detected, this TREE [op2[or1[Mo [oro Ao [AL [Mo Jopo]
can be either replaced by an extra correct one or it
can be repaired, i.e. slightly changed to make it feasible.

Individual

CTC

Survival. Finally, individuals are evaluated and the next Figure 4: Encoding of a feature model in ETHOM

population is formed in which individuals with better
fithess values are more likely to remain in the popula- . .
tion. This process simulates the natural selection of the Encoding. For the representation of feature models as

better adapted individuals that survive and generfites individuals (a.k.a. chromosomes) we propose using a
spring, thus improving a species. s» custom encoding. Generic encodings for evolutionary

s algorithms were ruled out since these either were not

s0 Suitable for tree structures (i.e. binary encoding) or
3. ETHOM: an Evolutionary algoriTHm for Opti- s were not able to produce solutions of a fixed size (e.g.

mized feature M odels su tree encoding), a key requirement in our approach. Fig.
s2 4 depicts an example of our encoding. As illustrated,
In this section, we present ETHOM, a novel eve= each model is represented by means of two arrays,

lutionary algorithm for the generation of optimised one storing information about the tree and another one
feature models. The algorithm takes several constraiatscontaining information abouCross-Tree Constraints
and a fitness function as input and returns a featwre (CTC) The order of each feature in the array corre-
model of the given size maximising the optimisatien sponds to theDepth—First Traversal (DFT)order of
criterion defined by the function. A key benefit of oss the tree. Hence, a feature labelled with in the tree
algorithm is that it is very generic and so is applicalle is stored in the first position of the array, the feature
to any automated operation on feature models in which labelled with*1’ is stored the second position and so
the quality (i.e. fitness) of the models can be measused on. Each feature in the tree array is defined by a pair
quantitatively. In the following, we describe the basic < PR C > wherePRis the type of relationship with
steps of ETHOM as shown in Fig. 2. s itS parent feature (M: Mandatory, Op: Optional, Or:

s Or-relationship, Alt: Alternative) an€ is the number
Initial population. The initial population is generateds of children of the given feature. As an example, the
randomly according to the size constraints received first position in the tree array;, Op, 2 >, indicates that
as input. The current version of ETHOM allows the the feature labelled witt0’ in the tree has an optional
user to specify the number of features, percentages=of relationship with its parent feature and has two child
cross-tree constraints and maximum branching factor<of features (those labelled with’ and‘3’). Analogously,
the feature model to be generated. Several algoritamseach position in the CTC array stores information about
for the random generation of feature models have beenone constraint in the forre TC,O,D > whereTC is
proposed in the literature [57, 67, 78]. There are aiso the type of constraint (R: Requires, E: Excludes) and
tools such as BeTTy [14, 58] and SPLOT [43, 65] that O andD are the indexes of the origin and destination
support the random generation of feature models. s« features in the tree array respectively.

555
Evaluation. Feature models are evaluated accordiag Selection. Selection strategies are generic and can
to the fitness function received as input obtainingsa be applied regardless of how the individuals are
numeric value that represents the quality of a candidate represented. In our algorithm, we implemented both

solution, i.e. its fitness. ss0 rank-based roulette-wheel
selection strategies. The selection of one or the other

560

7

and binary tournament

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

Parent A

0 1 2 3 4 5 6 7 0 1 2 3

Parent B

Offspring

TREE [op2[or1] Mo [oro [Ato

Ao [Ao [Ao | [op2]ora[mo [oro [Ao | Ao [Ao [Ao |

R,3,5|R,2,6

1
CTC |EB6|R6,7| _______ Voo
| P

Figure 5: Example of one-point crossover in ETHOM

mainly depends on the application domain. 595
596

Crossover. We provided our algorithm with two,

different crossover techniques, one-point and umform

crossover. Fig. 5 depicts an example of the appllcat|0

of one-point crossover in ETHOM. The process starts
by selecting two parent chromosomes to be combm d
the tree and
CTC arrays, a random point is chosen (the so- caﬂoed

For each array in the chromosomes,

crossover point). Finally, thefispring is created by

copying the contents of the arrays from the beglnmng

605

to the crossover point from one parent and the restf
the other one. Notice that the characteristics of ou
encoding guarantee a fixed size for the |nd|V|duaIss|
terms of features and CTCs. .
Mutation. Mutation operators must be specifically den-
signed for the type of encoding used. ETHOM uses fou
different types of custom mutation operators, namel)g13

2
=

e Operator 1. This randomly changes the typzelz5
of a relationship in the tree array, e.g. from
mandatory M, 3 >, to optionalg Op, 3 >.

e Operator 2.This randomly changes the number of
children of a feature in the tree, e.g. framM, 3 >
to < M,5 >. The new number of children is in the
range [Q BF] whereBF is the maximum branching
factor indicated as input.

e Operator 3. This changes the type of a cross-tree
constraint in the CTC array, e.g. from excludes
<E,3,6>torequire<x R, 3,6 >.

e Operator 4. This randomly changes (with equal
probability) the origin or destination feature of a
constraint in the CTC array, e.g. fromE, 3,6 > es
to < E, 1,6 >. The implementation of this ensures

8

that the origin and destination features arfet
ent.

These operators are applied randomly with the same
probability.

Decoding. At this stage, the array-based chromosomes
are translated back into feature models so that they
can be evaluated. In ETHOM, we identified three
types of patterns making a chromosome infeasible or
semantically redundant, nameli): those encoding set
relationships (or- and alternative) with a single child
feature (e.g. Fig. 6(a))i) those containing cross-tree

" constraints between features with parental relationship
(e.g. Fig. 6(b)), andi) those containing features linked
by contradictory or redundant cross-tree constraints
(e.g. Fig. 6(c)). The specific approach used to address
infeasible individuals, replacing or repairing (see
Section 2.2 for details), mainly depends on the problem
and it is ultimately up to the user. In our work, we used
a repairing strategy described in the next section.

[£F 3% &%
Bl @ B LE =
é (a) (©)
N
x [B] (8]

(d) (e) (U]

Figure 6: Examples of infeasible individuals and repairs

Survival. Finally, the next population is created by
including all the new fispring plus those individuals

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

from the previous generation that were selected d&or
crossover but did not generate descendants. 668
669

For a pseudo-code listing of the algorithm we refer
the reader to [59]. 671
672
4. Automated generation of hard feature models o

674
In this section we propose a method that models the
problem of finding computationally hard feature mogks
els as an optimisation problem and explain how this.is
solved using ETHOM. In order to find a suitable cogs
figuration of ETHOM, we performed numerous execu-
tions of a sample optimisation problem evaluating dif-
ferent combination of values for the key parameters®f
the algorithm, presented in Table 1. The optimisati®n
problem was to find a feature model maximising tfie
execution time taken by the analysis tool when che®k-

ing model consistency, i.e. whether it represents at |€ast
one product. We chose this analysis operation becéatise

it is currently the most frequently quoted in the literge
ture [10]. In particular, we searched for feature mod#ls
of different size maximising execution time in the CSP
solver JaCoP [29] integrated into the framework for the
analysis of feature models FaMa [19]. Next, we clarify
the main aspects of the configuration of ETHOM: ~ **

691

e Initial population. We used a Java program ime.
plementing the algorithm for the random genesra-
tion of feature models described by Tt et al. e
[67]. For a detailed description of the generatien
approach, we refer the reader to [59].

696

e Fitness function. Our first attempt was to meaz-:
sure the time (in milliseconds) taken by FaMa o
perform the operation. However, we found that
the result of the function was significantlffected
by the system load and was not deterministic. To
solve this problem, we decided to measure the fit-
ness of a feature model as the number of back-
tracks produced by the analysis tool during its anal-
ysis. Abacktrackrepresents a partial candidate so-
lution to a problem that is discarded because it can-
not be extended to a full valid solution [68]. In con-
trast to the execution time, most CSP backtracking
heuristics are deterministic, i.e. fi#irent execu-
tions of the tool with the same input produce the
same number of backtracks. Together with execu-
tion time, the number of backtracks is commonly
used to measure the complexity of constraint satis-
faction problems [68]. Thus, we can assume that
the higher the number of backtracks the longer the
computation time.

703

9

e Infeasible individuals. We evaluated thefkec-
tiveness of both replacement and repair techniques.
More specifically, we evaluated the following re-
pair algorithm applied to infeasible individuals:
isolated set relationships are converted into op-
tional relationships (e.g. the model in Fig. 6(a) is
changed as in Fig. 6(d)),) cross-tree constraints
between features with parental relationships are re-
moved (e.g. the model in Fig. 6(b) is changed as in
Fig. 6(e)), andii) two features cannot be linked by
more than one cross-tree constraint (e.g. the model
in Fig. 6(c) is changed as in Fig. 6(f)).

e Stopping criterion. There is no means of decid-
ing when an optimum input has been found and
ETHOM should be stopped [73]. For the config-
uration of ETHOM, we decided to allow the al-
gorithm to continue for a given number of execu-
tions of the fitness function (i.e. maximum number
of generations) taking the largest number of back-
tracks obtained as the optimum, i.e. the solution to
the problem.

Table 1 depicts the values evaluated for each config-
uration parameter of ETHOM. These values were based
on related work using evolutionary algorithms [23], the
literature on parameter setting [18], and our previous
experience in this domain [48]. Each combination of
parameters used was executed 10 times to avoid hetero-
geneous results and to allow us to perform statistical
analysis on the data. The values underlined are those
that provided better results and were therefore selected
for the final configuration of ETHOM. In total, we per-
formed over 40 million executions of the objective func-
tion to find a good setup for our algorithm.

Values evaluated and selected

Roulette-whe2tTournament
One-paitdniform

Parameter

Selection strategy
Crossover strategy

Crossover probability 0.7,0.8,0.9
Mutation probability 0.005, 0.0079.02
Size initial population 50, 100, 200
#Executions fitness function 2000, 5000

Infeasible individuals Replacing, Repairing

Table 1: ETHOM configuration

5. Evaluation

In order to evaluate our approach, we developed a
prototype implementation of ETHOM. The prototype
was implemented in Java to facilitate its integration into

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

742

743

744

745

746

747

748

749

750

751

the BeTTy Framework [14, 58], an open-source Java (5,000) and compared the results. Recall that the size
tool for functional and performance testing of tools that of the population in our algorithm was set to 200
analyse feature modéls 74 Individuals which meant that the maximum number
We evaluated theficacy of our approach by comparss of generations was 25, i.e. 5,0200. This process
ing it to random search since this is the usual approach was repeated with ffierent model sizes to evaluate the
for performance testing in the analysis of feature mag- scalability of our algorithm. In particular, we generated
els. In particular, the evaluation of our evolutionary pre- models with diferent combinations of featuref200,
gram was performed through a number of experiments. 400, 600, 800, 1,000and percentage of constraints
In each experiment, we compared theetiveness ofe (with respect to the number of feature$)0%, 20%,
a random generator and ETHOM when searching for 30%, 40%. The maximum branching factor was set
feature models maximising properties such as the exe-to 10 in all the experiments. For each model size,
cution time or memory consumption required for their we repeated the process 25 times to get averages and
analysis. Additionally, we performed some extra exper- performed statistical analysis on the data. In total, we
iments studying the characteristics of the hard feature performed about 5 million executich®f the fitness
models generated and the behaviour of ETHOM when function for this experiment. The fitness was set to
allowed to run for a large number of generations. The be the number of backtracks used by the analysis tool
setup and results of our experiments as well as the statis-when checking the model consistency. For the analysis,
tical analysis of the data are summarised in this section we used the solver JaCoP integrated into FaMa v1.0
and fully reported in an external technical report due with the default heuristicsMostConstrainedDynamic
to space limitations [59]. The experimental work and for the selection of variables anddomainMinfor the
the statistical analysis of the results took more thansix selection of values from the domains. To prevent the
months and involved several people. 73 experiment from getting stuck, a maximum timeout of
All the experiments were performed on a cluster-af 30 minutes was used for the execution of the fitness
four virtual machines equipped with an Intel Core-2 function in both the random and evolutionary search. If
CPU 6400@2.13GHz running Centos OS 5.5 and Javathis timeout was exceeded during random generation,
1.6.020 on 1400 MB of dedicated memory. These vif- the execution was cancelled and a new iteration was
tual machines ran on a cloud of servers equipped with started. If the timeout was exceeded during evolution-

Intel Core 2 CPU 6400@2.13Ghz and 4GB of RAM
memory managed using Opennebula 2.0.1. 780
781

5.1. Experiment #1: Maximizing execution time insa
CSP solver 783

This experiment evaluated the ability of ETHOKY
to search for input feature models maximising tfie
analysis time of a solver. In particular, we measured e
execution time required by a CSP solver to determifie
whether the input model was consistent (i.e. it repfé-
sents at least one product). This was the problem u&e
to tune the configuration of our algorithm. Again, W&
chose the consistency operation because currently

ary search, the best solution found until that moment
was returned, i.e. the instance exceeding the timeout
was discarded. After all the executions, we measured
the execution time of the hardest feature models found
for a full comparison, i.e. those producing a larger
number of backtracks. More specifically, we executed
each returned solution 10 times to get average execution
times.

Analysis of results. Fig. 7 depicts the féectiveness of

dETHOM for each size range of the feature models gen-

erated. We define thegffectivenes®f our evolutionary

W jgProgram as the percentage of times (out of 25) in which

the most frequently mentioned in the literature. Nekt, ETHOM found a better optimum than random search,

793

we present the setup and results of our experiment.

794

Experimental setup. This experiment was performetf

through a number of iterative steps. In each step, e
randomly generated 5,000 feature models and checked
their consistency, saving the maximum fitness obtainé&d.

Then, we executed ETHOM and allowed it to run f6t
the same number of executions of the fitness functibn

1BeTTY was used because it was developed by the authors

10

i.e. a higher number of backtracks. As illustrated, the
effectiveness of ETHOM was over 80% in most of the
size ranges, reaching 96% or higher in nine of them.
Overall, our evolutionary program found harder feature
models than those generated randomly in 85.8% of the
executions. We may remark that our algorithm revealed
the lowest &ectiveness with those models containing
10% of cross-tree constraints. We found that this was

25 features ranges x 4 constraints ranges x 25 iterations00Q0,
(5,000 random search 5,000 evolutionary search)

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

~~10%CTC =-20%CTC —-30%CTC —40%CTC ., Table 3 presents a summary of the results. The ta-

40
30
20

ws case for all size ranges. The hardest randomly generated
as Model required 0.2 seconds to be processed. In contrast,

122 - — a «s ble depicts the maximum execution time taken by the
0 \ T N = CSP solver to analyse_ the hardest models found us-
£ 70 - s INg random and evolutionary search. The data shows
% e /\\/ = that ETHOM found models that led to higher execution
g s / s times than those randomly generated and this was the
k5]
[

10 «s ETHOM found four models whose analysis required be-
0 ws tween 1 and 27.3 minutes (1,644 seconds). We may
200 400 600 800 1000 a7 remark that ETHOM reached the maximum timeout
Number of Features as Of 30 minutes once during the experiment but random

ao Search never produced times over 0.2 seconds. Interest-
o ingly, ETHOM was able to find smaller but significantly
1 harder feature models (e.g. 600-10%, 60 seconds) than
o o o s> the hardest randomly generated model found which had
due to the simplicity of the analysis in this size range. go features, 20% of CTCs and an analysis time of 0.2
The number of backiracks produced by these models soconds. Finally, the results show that ETHOM found
was very low, zero in most cases, and thus ETHOM it more dificult to find hard feature models as the per-
had problems finding promising individuals that could centage of cross-tree constraints increased. We remark,
evolve towards optimal solutions. s however, that this trend was also observed in the random
Table 2 depicts the evaluation results for the rangesof search with an average fitness of 45.3 backtracks in the
feature models with 20% of cross-tree constraints. kor range of 20% CTC, 16.6 backtracks in the range of 30%
each number of features and search technique, randomCTC and 9.1 backtracks in the range of 40% CTC. We
and evolutionary, the table shows the average and max-conclude, therefore, that these results are caused by the
imum fitness obtained (i.e. number of backtracks)sas CSP solver and the heuristic used which provide a better
well as the average and maximum execution times ofd¢he performance when the models have a high percentage of
hardest feature models found (in seconds). Tifiece s« constraints.
tiveness of the evolutionary program is also presented Fig. 8 compares random and evolutionary techniques
in the last column. As illustrated, ETHOM found feas for the search for a feature model maximising the num-
ture models producing a number of backtracks largekdy ber of backtracks in two sample executions. Horizon-
several orders of magnitude than those produced usingtally, the graphs show the number of generations where
randomly generated models. The fitness of the hardesteach generation represents 200 executions of the fithess
models generated using our evolutionary approach wasfunction. Fig. 8(a) shows that random search reaches
on average over 3,500 times higher than that of ran- its maximum number of backtracks after only 5 gen-
domly generated models (200,668 backtracks againsterations (about 1000 executions). That is, the random
45.3) and 40,500 times higher in the maximum valste generation of 4,000 other models does not produce any
(23.5 million backtracks against 1,279). As expected, higher number of backtracks and therefore is useless. In
these results were also reflected in the execution tirses.contrast to this, ETHOM shows a continuous improve-
On average, the CSP solver took 0.06 seconds to anal-ment. After 13 generations (about 2600 executions),
yse the randomly generated models and 9 seconds tathe fithess found by evolutionary search is above that of
analyse those generated using ETHOM. The supet®r- the maximum for the randomly generated models. Fig.
ity of evolutionary search was remarkable in the maxi- 8(b) depicts another example in which random search
mum times ranging from the 0.2 seconds for randomaly is ‘lucky’ and finds an instance with a high number of
generated models to the 1,032.2 seconds (17.2 minutespacktracks in the 14th generation. Evolutionary optimi-
taken by the CSP solver to analyse the hardest featuresation, however, once again manages to improve the ex-
model generated by ETHOM. Overall, our evolutions ecution times continuously overcoming the best fithess
ary approach produced a harder feature model than #gan-produced using random search after 22 generations. We
dom techniques in 92% of the executions in the range:0f might note that a significant leap of about 200 back-
20% of constraints. For details regarding the data cos#e- tracks can also be observed in generation 23. In both
sponding to 10%, 30% and 40% of constraints we refer examples, the curve suggests that ETHOM would find
the reader to [59]. ss even better solutions if the number of generations was

11

Figure 7: Hfectiveness of ETHOM in Experiment #1.

8

a

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

Random Search ETHOM
#Features AvgFitness Max Fitness AvgTime MaxTime AvgFitness Max Fitness AvgTime MaxTime Effect. (%)

200 808 61 002 Q003 63.4 215 m4 006 96
400 301 389 004 007 7,128.4 106,655 .p4 293 88
600 403 477 Q05 009 9,188.2 116,479 .00 798 92
800 911 1279 Q08 020 22,427.6 483,971 .28 246 88
1000 572 582 010 013 964,532.6 23,598,675 /2 1,0322 96
Total 453 1,279 0.06 0.20 200,668 23,598,675 8.96 1,032.2 92

Table 2: Evaluation results on the generation of feature isoge@ximising execution time in a CSP solver. Fitness measurediimber of
backtracks. Time in seconds. C¥20%

10% CTC 20% CTC 30% CTC 40% CTC
#Features Random ETHOM Random ETHOM Random ETHOM Random ETHOM
200 Q04 006 003 006 004 Q17 004 008
400 Q05 033 007 293 004 061 008 013
600 Q10 599 0.09 7.98 006 662 007 409
800 Q09 2804 0.20 246 0.10 139 0.09 Q052
1,000 012 16439 013 10322 012 162 Q10 Q27
Max 0.12 1,643.9 0.20 1,032.2 0.12 139 0.10 4.09

Table 3: Maximum execution times produced by random and dwvolaity search. Time in seconds.

increased. This was confirmed in a later experiment:in Experimental setup. The experiment consisted of a
which the program was allowed to run for up to 125 number of iterative steps. At each step, we randomly
generations (25,000 executions of the fitness functiaen) generated 5,000 models and compiled each of them
finding feature models producing more than 77.6 mil- into a BDD for use in counting the number of solutions
lion backtracks (see Section 5.3 for details). .1 Of the input feature model. We then executed ETHOM
«2 and allowed it to run for 5,000 executions of the fithess
5.2. Experiment #2: Maximizing memory consumptign function (i.e. 25 generations) searching for feature
in a BDD solver 22 models maximising the size of the BDD. Again, this
This experiment evaluated the ability of ETHOM t@ process was repeated withfférent combinations of
generate input feature models maximising the memery features,{50, 100, 150, 200, 250and percentages of
consumption of a solver. In particular, we measured ¢he constraints{10%, 20%, 30%:to evaluate the scalability
memory consumed by a BDD solver when determiniag of our approach. For each model size, we repeated
the number of products represented by the model. /e the process 25 times to get statistics from the data.
chose this analysis because it is one of the hardestin total, we performed about 3.5 million executions
operations in terms of complexity and it is the secoad of the fitness function for this experiment. We may
most frequently quoted operation in the literature [18]. remark that we generated smaller feature models than
We decided to use a BDD-based reasoner for this those presented in the previous experiment in order to
experiment since it has proved to be the mdtient .« reduce BDD building time and make the experiment
option to perform this operation in terms of time affordable. Measuring memory usage in Java fsailt
[10, 51]. ABinary Decision Diagran{BDD) solver is s and computationally expensive since memory profilers
a software package that takes a propositional formela usually add a significant overload to the system. To
as input and translates it into a graph representation simplify the fitness function, we decided to measure the
(the BDD itself) that providesfécient algorithms forsss fitness of a model as the number of nodes of the BDD
counting the number of possible solutions. The number representing it. This is a natural option used in the
of nodes of the BDD is a key aspect since it determimses research community to compare the space complexity
the consumption of memory and can be exponential of BDD tools and heuristics [46]. For the analysis,
in the worst case [46]. Next, we present the setup and we used the solver JavaBDD [30] integrated into the
results of our experiment. s feature model analysis tool SPLOT [43]. We chose
ws SPLOT for this experiment because it integrates highly

12

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

Random models —Evolutionary algorithm Randommodels ~—Evolutionary algorithm
500 - 450 -
450 - 400 -
400

350

350

300
300

250

250

200
200
150
150

100 100 -

Fitness value for best individual
Fitness value for best individual

50 - 50 -

0 +pep————r T T T T T T T T T T T T T—T—T—T T 0 +
123 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 123 456 7 8 9 1011 1213 14 15 16 17 18 19 20 21 22 23 24 25
Generation Generation

a) Feature models with 400 features and 30% of cross-tree constraints b) Feature models with 1,000 features and 10% of cross-tree constraints

Figure 8: Comparison of randomly generated models and ETHONhé&osearch of the highest number of backtracks

efficient ordering heuristics specifically designed for the ~+-10%CTC -#-20%CTC ~+-30%CTC

analysis of feature models using BDDs. In particular, 122 T e——————
we used the heuristi®re-CL-MinSpan’presented by &0 o
Mendonca et al. in [46]. For a detailed description of
the configuration of the solver we refer the reader to
[59]. As in our previous experiment, we set a maximum o
timeout of 30 minutes for the fitness function to prevent 30
the experiment from getting stuck. We measured the 20
compilation and execution time of the hardest feature 10
models found to allow a more detailed comparison. I 100 150 200 250
Each optimal solution was compiled and executed 10
times to get average times.

70
60
50

Effectiveness (%)

Number of Features

Figure 9: Hfectiveness of ETHOM in Experiment #2.

Analysis of results. Fig. 9 depicts the féectiveness of
ETHOM for each size range of the feature models gen-

erated, i.e. percentage of times (out of 25) in which eve-
lutionary search found feature models producing higher
memory consumption than randomly generated med-
els. As illustrated, the feectiveness of ETHOM wasss

creasing the maximum timeout would significantly im-
prove the &ectiveness.

Table 4 depicts the number of BDD nodes of the hard-
est feature models found using random and evolution-

over 96% in most cases, reaching 100% in 10 outsof ary search. For each size range, the table also shows
the 15 size ranges. The lowest percentages were registhe computation time (BDD building time execution
tered in the range of 250 features. When analysingsthe time) taken by SPLOT to analyse the model. As il-
results, we found that the timeout of 30 minutes was lustrated, ETHOM found higher maximum values than
reached frequently in the range of 250 features hinder- random techniques in all size ranges. On average, the
ing ETHOM from evolving toward promising solutionsa BDD size found by our evolutionary approach was be-
In other words, the feature models generated weressotween 1.03 and 10.3 times higher than those obtained
hard that they often took more than 30 minutes to anal- with random search. The largest BDD generated in ran-
yse and were discarded. In fact, the maximum tinae- dom search had 14.8 million nodes while the largest
out was reached 18 times during random generationandBDD obtained using ETHOM had 20.6 million nodes.
62 times during evolutionary search, 25 of them in the Again, the results revealed that ETHOM was able to
range of 250 features and 30% of constraints. In this find smaller but harder models (e.g. 150-30%, 17.7 mil-
size range, ETHOM exceeded the timeout after onlys7 lion nodes) than the hardest randomly generated model
generations on average (25 being the maximum). Ower- found, 250-30% 14.8 million nodes. We may recall that
all, ETHOM found feature models producing highes the maximum timeout was reached 62 times during the
memory consumption than random search in 94.4%.0f execution of ETHOM. This result suggests that the max-
the executions. The results suggest, however, thatin-imum found by evolutionary search would have been

13

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

10% CTC 20% CTC 30% CTC

Random ETHOM Random ETHOM Random ETHOM
#Features BDDsize Time BDDSize Time BDDSize Time BDD Size Time BDD Size Time BDD Size Time
50 687 002 1,579 w1 2,067 o 6,892 1 4,233 1 20,481 m2
100 7,947 4 22,608 ®3 44,560 ®m3 240,941 @4 128,970 a4 989,046 29
150 52,641 m4 176,466 as 477,174 B2 4,872,868 30 808,881 07 17,719,021 67
200 294,534 20 1,126,682 18 2,829,486 26 17,447,587 68 10,098,279 1709 17,634,083 457
250 2,327,128 10 8,806,065 41 10,812,118 11@ 20,680,364 898 14,878,606 929 17,680,923 968
Max 2,327,128 110 8,806,065 41.1 10,812,118 116.2 20,680,364 898.3 14,878,606 929.7 17,719,021 960.8

Table 4: BDD size and computation time of the hardest featureeteddund using random and evolutionary search. Time in skon

much higher if we had not limited the time to make the that checking the consistency of feature models with
experiment #ordable. As expected, the superiority.@f simple cross-tree constraints (i.e. those involving three
ETHOM was also observed in the computation timesde- features or less) using SAT solvers is highRiaent.
quired by each model. This suggests that our appreachWe emphasise, however, that SAT solvers are not the
can also deal with optimisation criteria involving coms optimum solution for all the analyses that can be per-
pilation and execution time in BDD solvers. e formed on a feature model [10, 11, 51]. Previous studies
Fig. 10 shows the frequency with which each fithess show that CSP and BDD solvers are often better alter-
value was found during the search. The data presentednatives for certain operations and therefore experiments
corresponds to the hardest feature models generated irwith these and others solvers are still necessary.
the range of 50 features and 10% of cross-tree een- All the experiments performed suggested that
straints. We chose this size range because it producedETHOM would find even better solutions if allowed to
the smallest BDD sizes and facilitated the represeta- run longer. To check this, we reproduced Experiments
tion of the results using a common scale. For randomaly #1 and #2, increasing the number of generations from
generated models (Fig. 10(a)), a narrow curve is.ab- 25 to 125. As expected, we found that the results pro-
tained with more than 99% of the executions prodite- vided by evolutionary search improved as the number
ing fitness values under 310 BDD nodes. During evald- of generations increased and did not reach a clear peak.
tionary execution (Fig. 10(b)), however, a wider cut¥e In contrast, the results of random search showed little
is obtained with 40% of the executions producing val- or no improvement at all. In the execution with the CSP
ues over 310 nodes. Both histograms clearly show:that solver, ETHOM produced a new maximum fitness of
ETHOM performed a more exhaustive search in a larger more than 77 million backtracks (computed in 27.5 min-
portion of the solution space than random search. This utes) while random search found a maximum value of
trend was also observed in the other size ranges. s only 1,603 backtracks (computed in 0.2 seconds). Sim-
wes ilarly, the maximum fitness produced in our experiment
5.3. Additional results and discussion wes With BDD and random search was 89,779 nodes, far
We performed some extra experiments reported insan from the best fithness obtained by our evolutionary pro-
external technical report due to space limitations [52]. gram, 22.7 million nodes.
Among other results, we studied the ability of ETHQM As part of our evaluation, we also studied the char-
to generate input models maximising execution timesdn acteristics of the hardest feature models generated by
a propositional logic-based solver (a.k.a. SAT solvery. ETHOM for each size range in the experiments with
The setup and results of this experiment were similasto CSP, SAT and BDD solvers; the results are presented in
those presented in Sections 5.1 and 5.2. The fitness ofTable 5. The data reveals that the models generated have
each model was measured as the number of decisiensa fair proportion of all relationships and constraints.
(i.e. steps) taken by the SAT solver when checkifag This is interesting since ETHOM was free to remove
model consistency. In the experiment, our evolutien- any type of relationship or constraint from the model
ary approach succeeded in finding harder feature mad-if this helped to make it harder, but this did not hap-
els than those generated randomly in 87.8% of the exe- pen in our experiments. Recall that the only constraints
cutions. We may remark, however, that th&eliences.s imposed by our algorithm are those regarding the num-
in the execution times obtained using random and ewo- ber of features, number of constraints and maximum
lutionary techniques were relatively small. This findiag branching factor. Another piece of evidence is that dif-
supports the results of Mendoca et al. [45] that shew ferences between the minimum and maximum percent-

14

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

_ 99% exec. 1% exec. 500 4 60% exec. 40% exec.

500
450 - 450 1
2 400 g 400 1
o o i
S 350 1 £ 350
§ 300 - § 300
[} [}
45 250 1 w5 250 1
@ 200 1 T 200 -
£ E
€ 150 - 150 -
2 Maximum 2 Maximum
100 - fitness value 100 - fitness value
50 1 | 50 | i
0 4 T 04 S ——
10 310 610 910 1210 1510 10 310 610 910 1210 1510
Fitness value (number of BDD nodes) Fitness value (number of BDD nodes)
a) Distribution of fitness values for random models b) Distribution of fithess values for our evolutionary approach

Figure 10: Histograms with the distribution of fithess valt@sandom and evolutionary techniques when searching fea@mre model maximiz-
ing the size of the BDD.

ages of each modelling element are small. More imper- Our experimental results revealed that ETHOM is
tantly, the average percentages found are very similastoable to find smaller but much harder feature models
those of feature models found in the literature. In [61], than those found using random search. We also com-
She et al. studied the characteristics of 32 published:fea-pared the results obtained in our experiments with the
ture models and reported that they contain, on average,execution times and memory consumption produced by
25% of mandatory features (between 17.1% and 27.9% large randomly generated models. More specifically,
in our models), 44% of set subfeatut¢between 37%:0 we randomly generated 100 feature models with 10,000
and 46.3% in our models), 16% of set relationships features and 20% of CTCs and recorded the execution
(between 13.8% and 16.1% in our models), 6% of.ar- times taken by the CSP solver JaCoP to check their con-
relationships (between 7% and 8.9% in our models)and sistency. The results revealed an average execution time
9% of alternative relationships (between 6.7% and 7.2% of 7.5 seconds and a maximum time of 8.1 secénds
in our study). As a result, we conclude that the models far from the 27 minutes required by the hardest fea-
generated by our algorithm are by no means unrealistic. ture models found by ETHOM for 500-1000 features.
On the contrary, in the context of our study, they are-a Similarly, we generated 100 randomly generated fea-
fair reflection of the realistic models found in the litet= ture models with 500 features and 10% of CTCs and
ature. This suggests that the long execution times:.andrecorded the size of the BDD generated when counting
high memory consumption found by ETHOM might he the number of products using the JavaBDD solver. The
reproduced when using real models with the consequentresults revealed an average BDD size of 913,640 nodes
negative &ect on the user. nz and a maximum size of 17.2 million nodes, far from the
Regarding the consistency of the models, the results 22 millions of BDD nodes reached by ETHOM in the
are heterogeneous. On the one hand, we analysed: alrange of 100 features [59]. These results clearly show
the models generated using ETHOM in our experiment the potential of ETHOM to find hard feature models of
with CSP and found that most of them are inconsis- realistic size that are likely to reveal deficiencies in anal
tent (92.8%). That is, only 7.2% of the generated magd- ysis tools rather than using large randomly generated
els represent at least one valid product. On the otlker models.
hand, we found that 100% of the models generated.us- In another experiment, we checked whether the hard
ing ETHOM in our experiments with SAT and BDD are feature models generated by ETHOM were also hard for
consistent. This suggests that the consistency of the«in-other tools and heuristics. In particular, we first checked
put models &ects strongly but quite fierently the per.i.. whether the hardest feature models found in Experiment
formance of each solver. Also, it shows the ability.af #1 using a CSP solver were also hard when using a SAT
our algorithm to guide the search for hard feature med- solver. The results showed, as expected, that all models
els regardless of their consistency.

5Most of the time was taken by the translation from the feature
model to a constraint satisfaction problem while the analytsielf
3Subfeatures in alternative an or-relationships was trivial. In fact, the maximum number of backtracks generate
4Alternative and or-relationships was 7.

15

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

CSP Solver SAT Solver BDD Solver

M odelling element Min Avg Max Min Avg Max Min Avg Max

% relativeto no. of features

Mandatory 253 279 310 200 251 280 100 171 248

Optional 275 349 450 305 369 440 180 357 465

Set subfeatures » 370 415 310 378 455 345 463 620

Set relationships @ 141 160 120 138 153 133 161 200
-Or 55 7.0 9.0 55 71 83 6.0 89 120
- Alternative 55 71 85 40 6.7 88 33 72 100

% relativeto no. of constraints

Requires 3B 475 566 411 519 684 310 485 643

Excludes 431 525 687 316 481 589 357 515 690

Table 5: Properties of the hardest feature models found iexperiments.

were trivially analysed in a few seconds. Then, weire- periment #2, 250 features and 30% CTCs), adversely
peated the analysis of the hardest feature models fawndaffecting the results. Increasing this timeout would have
in Experiment #1 using the other seven heuristics avail- certainly increased theffectiveness of ETHOM at the
able in the CSP solver JaCoP. The results revealedithatprice of making our experiments more time-consuming.
the hardest feature models found in our experiment,.s- Finally, as a safety check, we tested ETHOM with
ing the heuristidVlostConstrainedDynamjavere triv-1s; different optimisation problems. In particular, we used
ially solved by some of the others heuristics. For exam- problems with a known global maximum where the ef-
ple, the hardest model in the range of 800 features.andficacy of ETHOM was easier to observe. For instance,
10% CTC produced 5.3 million backtracks when us- we used ETHOM to search for feature models with
ing the heuristiaviostContrainedDynamiand only 43.,,; n features andn% of CTCs that represent as many
backtracks when using the heurisBmallestMin This u.. products as possible being the maximum. Interest-
finding clearly shows that feature models that are hasd ingly, the algorithm progressively removed the relation-
to analyse by one tool or technique could be trivially ships constraining the set of products (i.e. mandatory
processed by others and vice-versa. Hence, we gon-and alternative), generating models with optional and
clude that using a standard set of problems, randamly or-relationships only. This demonstrates the ability of
generated or not, is not Sicient for a full evaluation.., ETHOM to change the model if that helps to make it
of the performance of dlierent tools. Instead, as ins better for the given problem. This and other examples
our approach, the techniques and tools under evaluationare available as a part of the BeTTy testing framework
should be exercised to identify their strengths and weak- [14].
nesses providing helpful information for both users and
developers.) wa, 5.4, Statistical analysis

The average féectiveness of our approach ranged
from 85.8% to 94.4% in all the experiments. As ex- Statistical analysis is usually performed by formulat-
pected from an evolutionary algorithm, we found that ing two contrary hypotheses. The first hypothesis is re-
these variations in theffiectiveness were caused by the ferred to as theaull hypothesis(H{)) and says that the
characteristics of the search spaces of each prohlem.algorithm has no impact at all on the goodness of the re-
In particular, ETHOM behaves better when the seasgh sults obtained, i.e. there is ndidirence between the re-
space is heterogeneous and there are mdtgrelnt fit- .o sults obtained by ETHOM and random search. Opposite
ness values, i.e. it is easy to compare the quality.of to the null hypothesis, aalternative hypothesiéHil) is
the individuals. However, results get worse in home- formulated, stating that ETHOM has a significant ef-
geneous search spaces in which most fithess values.ardéect in the quality of the results obtained. Statistical
equal (e.g. Experiment #1, range of 10% of CTGs). tests provide a probability (namedvalug ranging in
A common strategy to alleviate this problem is to use [0,1]. Alow p-value indicates that the null hypothesis is
a larger population, increasing the chances of the-al- probably false and the alternative hypothesis is probably
gorithm finding promising individuals during initialisa=« true, i.e. ETHOM works. Alternatively, high p-values
tion. We also found that the maximum timeout of 30 suggest that ETHOM does not work. Researchers have
minutes was indticient in some size ranges (e.g. Exs established by convention that p-values under 0.05 or

16

2z 0.01 are so-calledtatistically significantand are suf.sz creating syntactically incorrect models as follows.
s ficient to reject the null hypothesis, i.e. demonstrate First, we used a publicly available (and previously
20 that ETHOM provides better results that random seaeeh. used) algorithm for the random generation of feature
1220 The statistical analysis described in this section wasper- models. Second, we performed several checks using
vz formed using the SPSS 17 statistical package [28]. .= the parser of BeTTy, FaMa and SPLOT to make sure
1222 The techniques used to perform the statistical anaty- that the generated models were syntactically correct
1223 SIS and obtain the p-values depend on whether the.dataand had the desired properties, e.g. a maximum
124 follows a normal frequency distribution or not. After. branching factor. A related risk is the possibility of our
s Some preliminary tests (Kolmogorov-Smirnov [35, 63] random and evolutionary algorithms havingteient

s and Shapiro-Wilk [60] tests) we concluded that ewr expressiveness, e.g. tree patterns that can be generated
12z data did not follow a normal distribution and thus aar with ETHOM but not with our random algorithm. To
1228 tests required the use of so-called non—parametric teeh-minimise this risk, we imposed the same generation
120 Niques. In particular, we applied the Mann-Withney.ld constraints on both our random and evolutionary
10 Non—parametric test [41] to the experimental results:eb- generators. More specifically, both generators received
»n tained with ETHOM and random search. Tables As6 exactly the same input constraints: number of features,
v and A.7 show the results of these tests in SPSS.dor percentage of CTC and maximum branching factor
1wz Experiments #1 and #2 respectively. For each num- of the model to be generated. Also, both generators
1234 ber of features and percentage of cross-tree constraiatsprohibit the generation of CTCs between features with
s the values of the test are provided. As illustrated, the parental relation and features linked by more than
w3 tests rejected the null hypotheses with extremely lowsp- one CTC. A related limitation of the current ETHOM
e values (zero in most cases) for nearly all experimental encoding is that it does not allow there to be more than
s configurations of both experiments. This, coupled with one set relationship of the same type (e.g. alternative
1239 the results shown in Section 5, clearly shows the:su- group) under a parent feature. Hence, for instance,
a0 periority of our algorithm when compared to randesa if two alternative groups are located under the same
na Search. As expected, statistical tests accepted somesnulfeature, these are merged into one during decoding.
22 hypotheses in the range of 10% of CTCs in Experiment We may remark, however, that this onlyfects the

w #1. As explained in Section 6, this is due to the small expressiveness of ETHOM putting it at a disadvantage
124 CcOmMplexity of the analysis on those models which made against random search. Also, the results do not reveal
125 the fitness landscape extremely flat. Similarly, the tests any correlation between the number of set relationships
126 accepted some null hypotheses in the range of 250:4ga-and the hardness of the models which means that this
a7 tures and 30% of CTCs in Experiment #2. This was restriction did not benefit our algorithm. Besides this,
123 due to the maximum timeout of 30 minutes used for aur the results show that ETHOM is equally capable of
1240 €Xperiments that made our algorithm stop prematutely, generating consistent or inconsistent models if that
10 Stopping it from evolving toward promising solutionsuse make them harder for the target solver. Therefore, it
1251 For a more detailed explanation of our statistical anal- seems unlikely that our algorithm has a tendency to

12 YSis of the data we refer the reader to [59]. 12 generate only consistent or inconsistent models.
1303
= 6. Threatsto validity 1304 Ext_ernal validity. This is _con_cerned with how the ex-
10s periments capture the objectives of the research and the
1254 In order to clearly delineate the limitations of the extent to which the conclusions drawn can be gener-
s experimental study, next we discuss internal amd alised. This can be mainly divided into limitations of
s external validity threats. 1s the approach and generalizability of the conclusions.
1257 1300 Regarding the limitations, the experiments showed

wss Internal validity. This refers to whether there iso no significant improvements when using ETHOM with
1so SUficient evidence to support the conclusions and problems of low complexity, i.e. feature models with
o the sources of bias that could compromise these 10% of constraints in Experiment #1. As stated in Sec-
ver conclusions. In order to minimise the impact .ef tion 5.1, this limitation is due to the fitness landscape
ez external factors in our results, ETHOM was executed being relatively flat for simple problems; most fithess
wes 25 times for each problem to get averages. Moreaver, values are zero or close to zero. Another limitation of
1ss Statistical tests were performed to ensure significance the experimental approach is that experiments for ex-
wes Of the diferences identified. Regarding the randem tremely hard feature models become too time consum-
wes generation of feature models, we avoided the risks©f ing, e.g. feature models with 250 features in Experi-

17

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

ment #2. This threat is caused by the nature of the hard 45, 50, 51, 55, 64, 67, 70]. Byealistic models we
feature models we intend to find, with the analysissef mean those modelling real-world domains or a sim-
promising feature models becoming increasingly time plified version of them. Some of the realistic feature
consuming and memory intensive. We may remark, models most quoted in the literature are e-Shop [36]
however, that this limitation is intrinsic to the problema with 287 features, graph product line [38] with up to
of looking for hard feature models and thus it equally 64 features and BerkeleyDB [34] with 55 features. Al-
affects random search. Finally, we emphasise that:in though there are reports from industry of feature models
the worst case ETHOM behaves randomly equalling:the with hundreds or even thousands of features [7, 37, 66],
strategies for the generation of hard feature models usedonly a portion of them is typically published. This has
in the current state of the art. we led authors to generate feature models automatically
Regarding the generalisation of the conclusions,.ave to show the scalability of their approaches with large
used two diferent analysis operations and the results problems. These models are generated either randomly
might not generalise further. We remark, howevey, [12, 11, 22, 26, 44, 47,57, 74,75, 76, 78, 79] or using a
that these operations are currently the most frequesntly process that tries to produce models with the properties
quoted in the literature, haveftiérent complexity andgs: of those found in the literature [23, 45, 64, 67]. More re-
more importantly, are the basis for the implementatien cently, some authors have suggested looking for tough
of many other analysis operations on feature models and realistic feature models in the open source commu-
[10]. Thus, feature models that are hard to analyse nity [13, 21, 49, 61, 62]. As an example, She et al. [62]
for these operations would certainly be hard to amal- extracted a feature model from the Linux kernel con-
yse for those operations that use them as an auxiliary taining more than 5,000 features and compared it with
function making our results extensible to other anady- publicly available realistic feature models.
ses. Similarly, we only used two analysis tools for the = Regarding the size of the models used for experi-
experiments, FaMa and SPLOT. However, these tasls ments, there is a clear tendency for model size to in-
are developed and maintained by independent lahera-crease: this ranges from the model with 15 features used
tories providing a sficient degree of heterogeneity fex. in 2004 [8] to models with up to 10,000 and 20,000 fea-
our study. Also, the results revealed that a numbessof tures used in recent years [23, 45, 47, 67, 74]. These
metrics for the generated models (e.g. percentagesoffindings reflect an increasing interest in using complex
CTCs) were in the ranges observed in realistic models feature models in performance evaluation. This also
found in the literature, which supports the realism of the suggests that the only mechanism used to increase the
hard feature models being generated. We may remark,complexity of the models is by increasing size. When
however, that these models could still contain structuses compared to previous work, our approach is the first to
that are unlikely in real-world models and therefore this use a search—based strategy to reveal the performance
issue requires further research. Finally, our random.and weaknesses of the tools and techniques under evalua-
evolutionary generators do not allow two features ta«be tion rather than simply using large randomly generated
linked by more than one CTC for simplicity (see Sectian models. This allows developers to focus on the search
4). This implicitly prohibits the generation of cycles ot for tough models of realistic size that could reveal de-
requires constraints, i.eA— > BandB- > A. How- s ficiencies in their tools rather than using huge feature
ever, these cycles express equivalence relationships«@ananodels out of their scope. Similarly, users could have
seem to appear in real models (e.g. Linux kernel fea- more information about the expected behaviour of the
ture model [49]) which could slightlyfeect the generwes tools in pessimistic cases helping them to choose the
alisation of our results. These cycles will be allowed:in tool or technique that best meets their needs.
future versions of our algorithm. 1408 The application of optimisation algorithms in the
uo context of software product lines has been explored by
o Several authors. Guo et al. [23] proposed a genetic al-
1w gorithm called GAFES for optimised feature selection

In this section we discuss related work in the areaf 7' féature models, e.g. - selecting the set of features

software product lines and search-based testin s that minimises the total cost of the product. Sayyad
P 9 . etal [55] compared thefiectiveness of five multi-

s Objective optimization algorithms for the selection of
e Optimised products. Other authors [25, 39, 71] have

A number of authors have used realistic feature mad- proposed algorithms for the selection of test suites (i.e.
els to evaluate their tools [4, 9, 24, 26, 31, 33, 46, set of products) maximising or minimising certain pref-

18

7. Related work

7.1. Software product lines

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

erences, e.g. feature coverage. Compared to theirmore, ETHOM explores the whole search space of fea-
work, our approach dliers in several aspects. First, aut ture models, not only those withftirent width prop-
work addresses a ftierent problem domain, hard fea= erties, in looking for input problems that increase the
ture model generation. Second, and more importantly, execution times of analysis tools. Having said this, we
ETHOM searches for optimum feature models while think that both works are complementary since ETHOM
related algorithms search for optimum product config- generates hard feature models and their approach tries to
urations. This means that ETHOM and related alge- determine what makes the models hard to analyse.
rithms bear no resemblance and face completdigidis During the preparation of this article, we presented a
ent challenges. For instance, related algorithms use anovel application of ETHOM in the context of reverse
standard binary encoding to represent product configu- engineering of feature models [40]. More specifically,
rations while ETHOM uses a custom array encodingso we used ETHOM to search for a feature model that rep-
represent feature models of fixed size. w2 resents a specific set of products provided as input. The
Pohl et al. [51] presented a performance comparisen results showed that within a few generations our algo-
of nine CSP, SAT and BDD solvers on the automated rithm was able to find feature models that represent a
analysis of feature models. As input problems, they superset of the desired products. This contribution sup-
used 90 realistic feature models with up to 287 featwses ports our claims about the generalisability of our algo-
taken from the SPLOT repository [65]. The longest rithm showing its applicability to other domains beyond
execution time found in the consistency operation was the analysis of feature models.
23.8 seconds, far from the 27.5 minutes found in gdr Finally, we would like to remark that our approach
work. Memory consumption was not evaluated. As part does not intend to replace the use of realistic or ran-
of their work, the authors tried to find correlations he-r domly generated models which can be used to evalu-
tween the properties of the models and the performasnceate the average performance of analysis techniques. In-
of the solvers. Among other results, they identifiedian stead, our work complements previous approaches en-
exponential runtime increase with the number of fea- abling a more exhaustive evaluation of the performance
tures in CSP and SAT solvers. This is not suppotted of analysis tools using hard problems.
by our results, at least not in general, since we found
feature models producing much longer execution times 7.2. Search-based testing
than larger randomly generated models. Also, the.au- Regarding related work in search-based testing, We-
thors mentioned that SAT and CSP solvers providegs a gener et al. [72] were the first to use genetic algorithms
similar performance in their experiment. This was nét to search for input values that produce very long or very
observed in our work in which the SAT solver was mugh short execution times in the context of real time systems.
more dficient than the CSP solver, i.e. random and In their experiments, they used C programs receiving
evolutionary search were unable to find hard problems hundreds or even thousands of integer parameters. Their
for SAT. Overall, we consider that using realistic fea= results showed that genetic algorithms obtained more
ture models is helpful but not ficient for an exhausses extreme execution times with equal or less tebré
tive evaluation of the performance of solvers. In cern- thanrandom testing. Our approach may be considered a
trast, our work provides the community with a limitless specific application of the ideas of Wegener and later au-
source of motivating problems to explore the strengths thors to the domain of feature modelling. In this sense,
and weaknesses of analysis tools. 108 OUr main contribution is the development and configura-
In later work, Pohl et al. [52] proposed using widtk tion of a novel evolutionary algorithm to deal with opti-
measures from graph theory to characterise the strdc-misation problems on feature models and its application
tural complexity of feature models as a way to estimate to performance testing in this domain.
the difficulty in analysing them. They performed sevesal Many authors continued the work of Wegener et al.
experiments running the consistency operation on #an- in the application of metaheuristic search techniques to
domly generated models of up to 1,000 features in mine test non-functional properties such as execution time,
state of the art CSP, SAT and BDD solvers. As a resudt, quality of service, security, usability or safety [2]. The
for some of the solvers they found a correlation betwegn techniques used by the search-based testing community
one of the metrics and the time taken by the analysis. include, among others, hill climbing, ant colony opti-
When compared to their work, ETHOM uses a blagk- misation, tabu search and simulated annealing. In our
box strategy and thus it may be used to find hard input approach, we used evolutionary algorithms inspired by
feature models for any analysis tool or analysis opera- the work of Wegener et al. and their promising results in
tion regardless of their implementation details. Further- a related optimisation problem, i.e. generation of input

19

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

values maximising the execution time in real time sys- problems are automatically generated and are often
tems. We remark, however, that the use of other meta- forced to have at least one solution (i.e. be satisfiable).
heuristic techniques for the generation of hard feature The CP research community realised long ago that there
models is a promising research topic that requiresfur- are benefits in using hard problems to test the perfor-
ther study. 12 mance of their tools. In 1997, Cook and Mitchell [17]
Genetic Algorithms (GAs) [1] are a subclass of evalw- presented a survey on the strategies to find hard SAT
tionary algorithms in which solutions are encoded using instances proposed so far. In their work, the authors
bit strings. However, it is diicult to encode the hierars= warned about the importance of generating hard prob-
chical structure of feature models using this approaeh lems for understanding their complexity and for provid-
and therefore we discarded their use. Genetic Program-ing challenging benchmarks. Since then, many other
ming (GP) is another variant of evolutionary algorithms contributions have explored the generation of hard SAT
in which solutions are encoded as trees [54]. This:en- and CSP problems [5, 77].
coding is commonly used to represent programs whese A common strategy to generate hard CSP and SAT
abstract syntax can be naturally represented hierarghi-problems is by exploiting what is known as tpkase
cally. Crossover in GP is applied on an individual by transition phenomenofv7]. This phenomenon estab-
switching one of its branches with another branch fram lishes that for many NP-complete problems the hardest
another individual in the population, i.e. individuals can instances occur between the region in which most prob-
have diterent sizes. We identified several factors that lems are satisfiable and the region in which most prob-
make GPs unsuitable for our problem. First, the classic lems are unsatisfiable. This happens because for these
tree encoding does not consider cross-tree constraints aproblems the solver has to explore the search space in
in feature models. As a result, crossover would praka- depth before finding out whether the problem is satisfi-
bly generate many dangling edges which may require able or not. CSP and SAT solvers can be parametrically
costly repairing heuristics. Second, and more imper- guided to search in the phase transition region enabling
tantly, crossover in GP does not guarantee a fixed sizethe systematic generation of hard problems. We are not
for the solution which was a key constraint in our wosk. aware of any work using evolutionary algorithms for the
These reasons led us to design a custom evolutionary.al-generation of hard CP problems.
gorithm, ETHOM, supporting the representation of fea- When compared to CP problems, the analysis of fea-
ture trees of fixed size with cross-tree constraints. s ture models dfers in several ways. First, CSP and SAT
106 are related problems within the constraint programming

7.3. Performance evaluation of CSP and SAT solvers paradigm. The analysis of feature models, however, is a

. 105 high-level I Ily sol i ite h -
CSP and SAT solvers (hereinafter, CP solvers) use 'gh-level problem usually solved using quite heteroge

1500~ NEOUS approaches such as constraint programming, de

algorithms and techniques of Constraint Programrrl_!rgg scription logic, semantic web technologies or ad-hoc al-

. 0
(CP) to solve complex problems from domains Sucrl's as gorithms [10]. Also, CP solvers focus on a single anal-

computer science, artificial intelligence or hardwarelitza- ysis operation (i.e. satisfiability) for which there exist

sigrP. The underlying problems of CSP and SAT solveorgs a number of well known algorithms. In the analysis of

16
are NP—cqmpIete and so CS.P and S.AT solver_s havl%anfeature models, however, more than 30 analysis opera-
exponential worst case runtime. This maké&cency

2 crucial matter for these tvpes of tools. Hence. thsre tions have been reported. In this scenario, we believe
exist a number of available)l/)penchmarks .to evaluz;\telg?ldthat our approach may help the community to generate
w07 hard problems and study their complexity, leading to a

compare the performance of CP solvers [27]. Also, SEY petter understanding of the analysis operations and the

eral competitions are held every year to rank the per- performance of analysis tools.

::;T;gctigg g;ert?r?rtt:zF)Sa:'f'scct)?:fétiﬁgh?gg;gmple,16%)3 We identified two main advantages in our work when

CP solvers use three main types of problems for o compart_ad to the systemati_c genere_ltion of hard CP prc_)b—
formance evaluation: problems from realistic domaﬁ%ﬁs lems. First, our approach is generic and can be applied
P to any tool, algorithm or analysis operation for the au-

. 613
(e.9. hardware design), randomly generated pmbll%ﬁnstomated treatment of feature models. Second, our algo-

and hard problems. Both randomly generated and hgrdrithm is free to explore the whole search space looking
w6 fOr input models that reveal performance vulnerabilities.

6A SAT problem can be regarded a subclass of CSP with dhly In contrast, CP related_work focuses the_s,earCh for in-

boolean variables. w5 pUtS problem in a specific area (the transition phase re-

"http://www.satcompetition.org 1619 gion).

20

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

Overall, we conclude that related work in CP suppast ing topic that need further study. The develop-

our approach for the generation of hard feature med- ment of more flexible algorithms would be desir-
els as a way to evaluate the performance strengthssand able in order to deal with other feature modelling
weakness of feature model analysis tools. 1672 languages (e.g. cardinality-based feature models)
1673 or stricter structural constraints, e.g. enabling the
8. Conclusions and future work 1674 generation of hard models with a given perf:ent-
1675 age of mandatory features. Also, the generation of
In this paper, we presented ETHOM, a novel evo- feature models with complex cross-tree constraints
lutionary algorithm to solve optimisation problems on (those involving more than two features) remains
feature mode's and Showed hOW |t can be usedlsfbr an Open Cha”enge that we intel’ld to addl’eSS in our
the automated generation of computationally hard fea- future work.

ture models. Experiments using our evolutionary ap-
proach on dierent analysis operations and mdepen—
dent tools successfully identified input models prodluc-
ing much longer executions times and higher memory
consumption than randomly generated models of iden-
tical or even larger size. In total, more than 50 mil-
lion executions of analysis operations were perforrﬁgéd
to configure and evaluate our approach. This is the
first metaheuristic-based strategy to guide the search for
computationally hard feature models rather than sim-
ply using randomly generated models. This approach
will allow developers to focus on the search for tough
models of realistic size that could reveal deficiencies in
their tools rather than using huge randomly generated
feature models out of the scope of their tools. Simi-
larly, users are provided with more information about
the expected behaviour of the tools in pessimistic cases,
helping them to choose the tool or technique that bétter
meets their needs. Contrary to general belief, we fotind

that model size has an important, but not decisii@oe,,, A java implementation of ETHOM is ready-to-use

on performance. Also, we found that the hard featyre ang publicly available as a part of the open-source
models generated by ETHOM had similar properties to BeTTy Framework [14, 58].

realistic models found in the literature. This means tlﬁoat

the long execution times and high memory consumption

found by our algorithm might be reproduced in real sce- Material
narios with the consequent negativiéeet on the user.

In view of the positive results obtained, we expect this
work to be the seed for many other research contri§u-
tions exploiting the benefits of ETHOM in particulaf,
and evolutionary computation in general, on the afal-
ysis of feature models. In particular, we envision tWo
main research directions to be explored by the commu-

nity in the future, namely: wor Acknowledgments

e Applications. Further applications of our algo-
rithm are still to be explored. Some promising ap-
plications are those dealing with the optimisation
of non—functional properties in other analysis oper-
ations or even dierent automated treatments, e.g.
refactoring feature models. The application of our
algorithm to minimisation problems is also an open
issue in which we have started to obtain promising
results. Additionally, it would be nice to apply our
approach to verify the time constraints of real time
systems dealing with variability like those of mo-
bile phones or context—aware pervasive systems.
Last, but not least, we plan to study the hard fea-
ture models generated and try to understand what
makes them hard to analyse. From the information
obtained, more refined applications and heuristics
could be developed leading to morfigent tool
support for the analysis of feature models.

The prototype implementation of ETHOM, hard fea-
ture models generated (in XML format), statistical
results (in SPSS format) and raw experiment data
are available ahttp://www.lsi.us.es/~segura/
files/material/ESWA13/.

e Algorithms development. The combinationos We would like to thank Dr. Don Batory, Dr. Javier
of different encodings, selection techniques, Dolado, Dr. Arnaud Gotlieb, Dr. Andreas Metzger, Dr.
crossover strategies, mutation operators and atherJose C. Riquelme, Dr. David Ruiz and Dr. Javier Tuya
parameters may lead to a whole new variety of ewo- whose comments and suggestions helped us to improve
lutionary algorithms for feature models to be ex- the article substantially. We would also like to thank
plored. Also, the use of other metaheuristic tech- Jo$ A. Galindo for his work integrating ETHOM into
niques (e.g. ant colony optimisation) is a promis- the framework BeTTy.

21

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748

This work has been partially supported by the Eure- [8]
pean Commission (FEDER) and Spanish Governnrent
under CICYT projects SETI (TIN2009-07366) afd
TAPAS (TIN2012-32273) and the Andalusian Govefgs [g]
ment projects THEOS (TIC-5906) and COPAS (Pi12-

TIC-1867). 1755
1756
1757
Appendix A. Statistical analysisresults wse [10]
1759
1760
wer [11]
#Features CTC (%) 1762
10 20| 30 | 40 1763
200 053 0] 0| O 1o
wes [12]
400 028 0| OO 1766
600 03| 0] 0| O 1767
800 0 0|00 izz [13]
1000 0121 0| 0| O 70

1771
Table A.6: p-values obtained in Experiment #1 using the Manf-

Whitney-Wilcoxon test w7z [14]
#Features CTC (%) 1774
1020 | 30 s [19]
1776
50 0 0 0 1777 [16]
100 0] O 0 1778
150 0] 00 T
200 0] O 0 1781
250 0| 0085 1782

1783

Table A.7: p-values obtained in Experiment #2 using the Mann1784

Whitney-Wilcoxon test s [18]
1786

1787
1788 [19]

1789

References

[1] M. Affenzeller, S. Wagner, S. Winkler, and A. BehaBenetic'’® (20]
Algorithms and Genetic Programming: Modern Concepts afitl
Practical Applications Numerical Insights. Taylor & Franus”: (21]
2009.

[2] W. Afzal, R. Torkar, and R. Feldt. A systematic review Gt*
search-based testing for non-functional system propertie- **°
formation and Software TechnoladyL(6):957-976, 2009. *'*

[3] AHEAD Tool Suite. http://www.cs.utexas.edu/users/ " (22]
schwartz/ATS.html, accessed July 2013. 17%8

[4] N. Andersen, K. Czarnecki, S. She, and A. Wasowskifi-E®
cient synthesis of feature models.1l6th International Softwaré® (23]
Product Line Conferenc@ages 106115, 2012. 180

[5] C. Ansotegui, R. Bejar, C. Fernandez, and C. Mateu. Ed%e
matching puzzles as hard SKISP benchmarks. In P. Stuckéey)®
editor, Principles and Practice of Constraint Programmingl- ***
ume 5202 oflLecture Notes in Computer Sciengages 560 1805
565. Springer Berlii Heidelberg, 2008.

[6] D. Batory. Feature models, grammars, and propositionaritfxar1807
las. InSoftware Product Lines Conference (SPL@jume 3714'%%
of Lecture Notes in Computer Sciencpages 7—-20. Sprlngel1809
Verlag, 2005.

[7] D. Batory, D. Benavides, and A. Ruiz-Cés. Automated anal**!
ysis of feature models: Challenges ahe@hmmunications ofa12
the ACM December:45-47, 2006.

[24]

[25]

[26]

22

D. Benavides, A. Ruiz-Coéts, and P. Trinidad. Coping with au-
tomatic reasoning on software product lines.Pioceedings of
the 2nd Groningen Workshop on Software Variability Manage-
ment November 2004.

D. Benavides, A. Ruiz-Cogs, and P. Trinidad. Automated rea-
soning on feature models. kvth International Conference on
Advanced Information Systems Engineering (CAiSBlume
3520 ofLecture Notes in Computer Scienceages 491-503.
Springer—Verlag, 2005.

D. Benavides, S. Segura, and A. Ruiz-@art Automated anal-
ysis of feature models 20 years later: A literature revibvior-
mation System$5(6):615 — 636, 2010.

D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-ErA first
step towards a framework for the automated analysis of feature
models. InManaging Variability for Software Product Lines:
Working With Variability Mechanism&006.

D. Benavides, S. Segura, P. Trinidad, and A. Ruiz-&artUsing
Java CSP solvers in the automated analyses of feature models.
LNCS 4143:389-398, 2006.

T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czaknec
Variability modeling in the real: a perspective from the aer
ing systems domain. IRroceedings of the IEEECM Interna-
tional Conference on Automated Software Engineerjpages
73-82. ACM, 2010.

BeTTy Framework. http://www.isa.us.es/betty, ac-
cessed July 2013.

BigLever. Biglever software geargttp://www.biglever.
com/, accessed July 2013.

P. Clements and L. Northrooftware Product Lines: Practices
and Patterns SEI Series in Software Engineering. Addison—
Wesley, August 2001.

S.A. Cook and D.G. Mitchell. Finding hard instances loé t
satisfiability problem: A survey. IBatisfiability Problem: The-
ory and Applicationsvolume 35 ofDimacs Series in Discrete
Mathematics and Theoretical Computer Sciengages 1-17.
American Mathematical Society, 1997.

A.E. Eiben and S.K. Smit. Parameter tuning for configuring
and analyzing evolutionary algorithm&warm and Evolution-
ary Computation1(1):19 — 31, 2011.

FaMa Tool Suitehttp://www.isa.us.es/fama/, accessed
July 2013.

Feature Modeling Plug-irhttp://gp.uwaterloo.ca/fmp/,
accessed July 2013.

J.A. Galindo, D. Benavides, and S. Segura. Debian mpeka
repositories as software product line models. Towards auto-
mated analysis. IProceedings of the 1st International Work-
shop on Automated Configuration and Tailoring of Applicatio
(ACOTA) Antwerp, Belgium, 2010.

R. Gheyi, T. Massoni, and P. Borba. A theory for featuredmo
els in Alloy. In Proceedings of the ACM SIGSOFY First Alloy
Workshoppages 71-80, Portland, United States, nov 2006.

J. Guo, J. White, G. Wang, J. Li, and Y. Wang. A genetic algo
rithm for optimized feature selection with resource constsa

in software product lines.Journal of Systems and Software
84:2208-2221, December 2011.

A. Hemakumar. Finding contradictions in feature models. |
First International Workshop on Analyses of Software Paidu
Lines (ASPL)pages 183-190, 2008.

C. Henard, M. Papadakis, G. Perrouin, J. Klein, and Yraon.
Multi-objective test generation for software product Bneln
Proceedings of the 17th International Software ProducteLin
Conference SPLC '13, pages 62—71, New York, NY, USA,
2013. ACM.

R. Heradio-Gil, D. Fernandez-Amoros, J.A. Cerrada, and
C. Cerrada. Supporting commonality-based analysis of softwa

1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878

[27]

(28]

[29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

(43]

[44]

(45]

product lines.Software, IET5(6):496 —509, dec. 2011. 1879
H. Hoos and T. Stutzle. SATLIB: An online resource for tieso
search on SAT. In |.P. van Maaren, H. Gent, and T. Walsh .e4l-
itors, Sat2000: Highlights of Satisfiability Research in the Year
200Q pages 283-292. |IOS Press, 2000. 1883
IBM. SPSS 17 Statistical Package:tp://www.spss.com/, 1ss4
accessed November 2010. 1885
JaCoPhttp://jacop.osolpro.com/, accessed July 2013.1ss6
JavaBDD. http://javabdd.sourceforge.net/, accessedssr
July 2013. 1888
M.F. Johansen, @. Haugen, and F. Fleurey. An algoritbmusse
generating t-wise covering arrays from large feature models
In 16th International Software Product Line Conferenpagesiso
46-55, 2012. 1892
K. Kang, S. Cohen, J. Hess, W. Novak, and S. Petersen.
Feature—Oriented Domain Analysis (FODA) Feasibility Studys
Technical Report CMYSEI-90-TR-21, SEI, 1990. 1895
A. Karatas, H. Oguiiziin, and A. Dogru. Global constrainises
on feature models. In D. Cohen, editBrinciples and Practiceise
of Constraint Programmingvolume 6308 ofLecture Notes irnsss
Computer Sciengpages 537-551, 2010. 1899
C. Kastner, S. Apel, and D. Batory. A case study implenmgntboo
features using AspectJ. BPLC '07: Proceedings of the 11tlo:
International Software Product Line Conferengeages 223-t902
232, Washington, DC, USA, 2007. IEEE Computer Society.1903
A. Kolmogorov. Sulla determinazione empirica di una leggesos
distribuzione.G. Inst. Ital. Attuarj 4:83, 1933. 1905
S.Q. Lau. Domain analysis of e-commerce systems uginag
feature—based model templates. master’s thesis. Dept. of EGE,
University of Waterloo, Canada, 2006. 1908
F. Loesch and E. Ploedereder. Optimization of varigbil 109
software product lines. IfProceedings of the 11th Internasio
tional Software Product Line Conference (SPLE&ges 151-se11
162, Washington, DC, USA, 2007. IEEE Computer Society.1012
R.E Lopez-Herrejon and D. Batory. A standard problem sfas
evaluating product-line methodologies. ®CSE '01: Proceed1e14
ings of the Third International Conference on Generativel ans
Component-Based Software Engineeripgges 10-24, Lontois
don, UK, 2001. Springer-Verlag. 1017
R.E. Lopez-Herrejon, F. Chicano, J. Ferrer, A. Egyedd as
E. Alba. Multi-objective optimal test suite computation foffts 1019
ware product line pairwise testing. Rroceedings of the 29tkv20
IEEE International Conference on Software Maintenar 3. 1s21
R.E. Lopez-Herrejon, J.A. Galindo, D. Benavides, Sgi8e, 1922
and A. Egyed. Reverse engineering feature models with evedu-
tionary algorithms: An exploratory study. Bearch Based Sofisz4
ware Engineeringvolume 7515 ol ecture Notes in Computeszs
Sciencepages 168-182. Springer Berlin Heidelberg, 2012. 1926
H.B. Mann and D.R. Whitney. On a test of whether one of tao
random variables is stochastically larger than the ottfamn. 1928
Math. Stat, 18:50-60, 1947. 1929
P. McMinn. Search-based software test data generaticur- 1930
vey. Software Testing Verification and Reliabiljtyt4(2):105-1931
156, 2004. 1932
M. Mendonca, M. Branco, and D. Cowan. S.P.L.O.T.: Saf®sss
Product Lines Online Tools. I€ompanion to the 24th ACNbss
SIGPLAN International Conference on Object-Oriented Pias
gramming, Systems, Languages, and Applications (OORSks4)
pages 761-762, Orlando, Florida, USA, October 2009. ACNbs7
M. Mendonca, D.D. Cowan, W. Malyk, and T. Oliveira. Cad} 1938
orative product configuration: Formalization anfi@ent algo- 19se
rithms for dependency analysidournal of Softwarg3(2):69—1s40
82, 2008. 1941
M. Mendonca, A. Wasowski, and K. Czarnecki. SAT-bases
analysis of feature models is easy. Rroceedings of the Intersoss

23

[46]

[47]

(48]

[49]

[50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

[61]

national Sofware Product Line Conference (SPLZD)09.

M. Mendonca, A. Wasowski, K. Czarnecki, and D.D. Cowan.
Efficient compilation techniques for large scale feature models.
In 7th International Conference on Generative Programming
and Component Engineering (GPClppges 13-22, 2008.

A. Osman, S. Phon-Amnuaisuk, and C.K. Ho. Using first or-
der logic to validate feature model. [fhird International
Workshop on Variability Modelling in Software-intensivesS
tems (VaMoS)pages 169-172, 2009.

J.A.. Parejo, A. Ruiz-Coés, S. Lozano, and P. Fernandez.
Metaheuristic optimization frameworks: a survey and bench-
marking. Soft Computing - A Fusion of Foundations, Method-
ologies and Applicationsl6:527-561, 2012.

L. Passos, M. Novakovic, Y. Xiong, T. Berger, K. Czarkieand

A. Wasowski. A study of non-boolean constraints in variapil
models of an embedded operating systenT.Hind International
Workshop on Feature-Oriented Software Development (FOSD)
SPLC '11, pages 2:1-2:8. ACM, 2011.

G. Perrouin, S. Oster, S. Sen, J. Klein, B. Baudry, an@rgon.
Pairwise testing for software product lines: comparisonaaf t
approachesSoftware Quality Journal0:605-643, 2012.

R. Pohl, K. Lauenroth, and K. Pohl. A performance compuaris
of contemporary algorithmic approaches for automated analy-
sis operations on feature models. 26th International Con-
ference on Automated Software Engineeripgges 313-322.
IEEE, 2011.

R. Pohl, V. Stricker, and K. Pohl. Measuring the struatcom-
plexity of feature models. 128th International Conference on
Automated Software Engineerimgages 454-464. IEEE, 2013.
pure::variantshttp://www.pure-systems.com/, accessed
July 2013.

F. Rothlauf. Representations for Genetic and Evolutionary Al-
gorithms Springer, 2nd edition, 2012.

A.S. Sayyad, T. Menzies, and H. Ammar. On the value of user
preferences in search-based software engineering: A tade s
in software product lines. IRroceedings of the 2013 Interna-
tional Conference on Software Engineeril@SE '13, pages
492-501, Piscataway, NJ, USA, 2013. IEEE Press.

P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps. Fea
ture Diagrams: A Survey and A Formal SemanticsPtoceed-
ings of the 14th |IEEE International Requirements Enginegri
Conference (RE’0§Minneapolis, Minnesota, USA, September
2006.

S. Segura. Automated analysis of feature models usingiato
sets. InFirst Workshop on Analyses of Software Product Lines
(ASPL) pages 201207, Limerick, Ireland, September 2008.

S. Segura, J.A. Galindo, D. Benavides, J.A. Parejo AarRuiz-
Cortes. BeTTy: Benchmarking and Testing on the Automated
Analysis of Feature Models. In U.W. Eisenecker, S. Apel, and
S. Gnesi, editorsSixth International Workshop on Variabil-
ity Modelling of Software-intensive Systems (VaMoS'fayes
63-71, Leipzig, Germany, 2012. ACM.

S. Segura, J.A. Parejo, R.M. Hierons, D. Benavides, and
A. Ruiz-Cores. ETHOM: An evolutionary algorithm for
optimized feature models generation (v1.3). Technical Re-
port ISA-2013-TR-01, Applied Software Engineering Reshar
Group, Seville, Spain, 2013. http://www.isa.us.es/
sites/default/files/HardFMUsingEA_1.pdf.

S. S. Shapiro and M. B. Wilk. An analysis of variance test
for normality (complete samplesiometrika 52(34):pp. 591—
611, 1965.

S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czakiec
The variability model of the linux kernel. IRourth Interna-
tional Workshop on Variability Modelling of Software-intgve
Systems (VaMoglinz, Austria, January 2010.

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006

(62]

(63]

(64]

(65]

(66]

(67]

(68]

(69]

[70]

(71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czakiec
Reverse engineering feature models Phoceeding of the 33rd
International Conference on Software Engineeripgges 461—
470. ACM, 2011.

N. V. Smirnov. Tables for estimating the goodness of fitof e
pirical distributions. Annals of Mathematical Statistid9:279,
1948.

S. Soltani, M. Asadi, D. Gasevic, M. Hatala, and E. Baghe
Automated planning for feature model configuration based on
functional and non-functional requirements. 16th Interna-
tional Software Product Line Conferenqeages 56-65, 2012.
S.P.L.O.T.: Software Product Lines Online Toolstp://
www.splot-research.org/, accessed July 2013.

M. Steger, C. Tischer, B. Boss, A.iMer, O. Pertler, W. Stolz,
and S. Ferber. Introducing PLA at Bosch gasoline systems: Ex-
periences and practices. limernational Sofware Product Line
Conference (SPLCpages 34-50, 2004.

T. Thim, D. Batory, and C. Kstner. Reasoning about edits to
feature models. Iinternational Conference on Software Engi-
neering pages 254-264, 2009.

Edward Tsang.Foundations of Constraint SatisfactiorAca-
demic Press, 1995.

S. VoRB. Meta-heuristics: The state of the art. BHGAI ’00:
Proceedings of the Workshop on Local Search for Planning and
Scheduling-Revised Paperages 1-23. Springer-Verlag, Lon-
don, UK, 2001.

H.H. Wang, Y.F. Li, J. Sun, H. Zhang, and J. Pan. Verifyin
feature models using OWLJournal of Web Semantic5:117—
129, June 2007.

S. Wang, S. Ali, and A. Gotlieb. Minimizing test suites in
software product lines using weight-based genetic algost

In Proceeding of the Fifteenth Annual Conference on Genetic
and Evolutionary Computation Conferen€ECCO '13, pages
1493-1500, New York, NY, USA, 2013. ACM.

J. Wegener, K. Grimm, M. Grochtmann, and H. Sthamer. Sys-
tematic testing of real-time systems. Rroceedings of the
Fourth International Conference on Software Testing and Re
view (EuroSTAR)1996.

J. Wegener, H. Sthamer, B.F. Jones, and D.E. Eyres. ngesti
real-time systems using genetic algorithmSoftware Quality
Control, 6(2):127-135, 1997.

J. White, B. Doughtery, and D. Schmidt. Selecting highty o
timal architectural feature sets with filtered cartesiandling.
Journal of Systems and Softwa82(8):1268—1284, 2009.

J. White, B. Doughtery, D. Schmidt, and D. Benavides. Au-
tomated reasoning for multi-step software product-line gpnfi
uration problems. IfProceedings of the Sofware Product Line
Conferencepages 11-20, 2009.

J. White, D. Schmidt, D. Benavides P. Trinidad, and Ruiz-
Cortes. Automated diagnosis of product-line configuration er-
rors in feature models. IProceedings of the 12th Sofware
Product Line Conference (SPLQ)imerick, Ireland, September
2008.

K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. Random
constraint satisfaction: Easy generation of hard (sai)an-
stancesAtrtificial Intelligence 171(8-9):514-534, 2007.

H. Yan, W. Zhang, H. Zhao, and H. Mei. An optimization $tra
egy to feature models’ verification by eliminating verificatio
irrelevant features and constraints.IGSR pages 6575, 2009.
W. Zhang, H. Yan, H. Zhao, and Z. Jin. A BDD-based apphnoac
to verifying clone-enabled feature models’ constraints eunst
tomization. In10th International Conference on Software Reuse
(ICSR) LNCS, pages 186-199. Springer, 2008.

24

