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RESUMEN 
 

El análisis por envoltura de datos (DEA) es una metodología no paramétrica que 

evalúa la eficiencia de unidades con capacidad de decisión (DMUs), teniendo en 

cuenta únicamente información relativa a las entradas y salidas de los 

procedimientos de transformación o producción que realizan. DEA ha sido 

utilizado ampliamente por académicos y profesionales en casi cualquier sector y 

se ha convertido en una técnica muy popular. Recientemente, DEA se ha 

extendido a procesos en red (Network DEA), permitiendo incorporar la 

estructura interna de las DMUs, que correspondería a los procesos internos y sus 

interrelaciones en los que se divide cualquier organización o industria. 

Esta tesis ha profundizado en aplicaciones de Network DEA a nuevos sectores, 

desarrollando, por tanto, modelos que permitan identificar las ineficiencias de 

cada proceso. En primer lugar, un modelo con cinco etapas, incluyendo la 

adquisición de jugadores y los sistemas ofensivos y defensivos, ofrece un mayor 

conocimiento de la falta de rendimiento de los equipos de baloncesto de la NBA. 

Dicho trabajo se complementó con otro artículo que ha estimado la evolución de 

la productividad durante un período de cinco años mediante un índice 

Malmquist. Con respecto a la evolución temporal, una propuesta dinámica 

permite incluir actividades que influyen a sucesivos períodos de tiempos, como 

es el caso de la inversión en instalaciones y líneas de transmisión en las empresas 

de telecomunicaciones fijas en los Estados Unidos. 

Asimismo, se ha considerado el efecto de salidas no deseables. Dicho estudio se 

basa en el sector de los aeropuertos, donde incorporar los retrasos de los aviones 

lleva a una evaluación más realista y justa de la eficiencia. Network DEA 

también posibilita la detección de ineficiencias en sistemas complejos, como la 

prestación de servicios por parte de los estados, mediante una estimación de las 

posibles reducciones en las partidas de gasto público, impuestos y deuda, sin 

disminuir el nivel actual de bienestar. Por último, se han propuesto 

aproximaciones de Network DEA para tratar con conjuntos de datos borrosos. En 



resumen, a cambio de un mayor requerimiento de datos, Network DEA revela 

más ineficiencias que DEA tradicional, debido a un conocimiento más profundo 

de la estructura interna de las unidades, además de proporcionar la eficiencia de 

las diferentes etapas que componen el proceso productivo.  

El documento de la tesis ha sido desarrollado siguiendo las pautas marcadas por 

la Universidad de Sevilla para un compendio de artículos. La introducción 

presenta los conceptos básicos de la metodología DEA, que junto a los primeros 

modelos que se propusieron de Network DEA, servirán como base para las 

aplicaciones desarrolladas en el ámbito de la tesis. A continuación se incluyen los 

objetivos de cada una de las publicaciones, así como las motivaciones que han 

llevado a su estudio. En la siguiente sección se resumen del análisis de los 

resultados de los diferentes modelos. Finalmente, se adjunta una síntesis de las 

conclusiones de la tesis, mientras que las publicaciones han sido incorporadas en 

el anexo que cierra el presente documento. 

  



 

 

“Efficiency is doing better what is already done” 

Peter F. Drucker  

(Father of management education) 

 

 

 

“There are only two qualities in the world: efficiency and inefficiency, and 

only two sorts of people: the efficient and the inefficient” 

George Bernard Shaw  

(Co-founder of the London School of Economics) 
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I. FOREWORD 
 

The current document has been prepared by following the guidelines required by 

the University of Seville to submit the PhD thesis as a collection of journal 

papers and book chapters. It consists of the following sections: 

1. An introduction to the basics of Data Envelopment Analysis, along with the 

foundations of Network Data Envelopment Analysis, which will be the basis for 

the development of models and applications  

2. A section covering the aim and motivations of the published papers. 

3. A brief description of the results and discussion of the proposed approaches. 

4. The global conclusions, as well as further research. 

5. The list of references which are cited in previous sections. 

6. An appendix, containing the journal papers and book chapters, on which the 

PhD thesis is based. All journals where the papers have been published are 

indexed in JCR database (Journal Citation Reports), while the books have an 

international impact. 
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II. INTRODUCTION 

The aim of this section is at providing the foundations needed to develop the 

approaches proposed in the published works enclosed in the Appendix. First, an 

introduction to Data Envelopment Analysis is presented and afterwards a brief 

review of the main models of Network Data Envelopment Analysis is carried out. 

Although there are many other features, models and extensions on DEA, a 

review of all DEA methodologies is beyond the scope of this document. 

II.1. DATA ENVELOPMENT ANALYSIS 

Data Envelopment Analysis, henceforth DEA, is a non-parametric optimization 

technique first proposed by Charnes et al. (1976). DEA allows assessing the 

relative efficiency of Decision Making Units (DMUs), which must operate in a 

similar way, by taking into account data of the inputs and outputs regarding their 

production process. In fact, inefficiency is seen as excesses for the inputs and 

shortfalls for the outputs. Therefore, an efficient unit (efficiency = 1) cannot 

increase its current output levels without increasing its input consumption. 

The relative efficiency depends on the distance of the observations to the 

efficient frontier (the closer to the frontier, the more efficient a DMU is), which 

is formed by the efficient DMUs, and there is no need to define its form in 

advance. Due to its versatility, DEA has been widely applied in many sectors by 

researchers, even experiencing a significant growth in the number of publications 

during years (Emrouznejad et al. 2008). 

Although a deeper degree of insight is shown in any book about DEA, e.g. 

Cooper et al. 2011, the basic models which are the basis for Network DEA 

models are going to be presented in this section. The CCR model, named after its 

authors (Charnes et al. 1979), was a linearization of the DEA ratio model. Let 

consider there are n DMUs, each of one transforming m inputs into s outputs, 

being ijx  the observation of the input i consumed by DMU j and kjy  the 
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observation of the output k produced by DMU j. Hence the efficiency of DMU J 

is obtained by the following linear program (1): 

  

 

(1) 

 

 

 

where iu and kv  are the multipliers associated to the input i and the output k, 

respectively. The multipliers represent the importance given to each input and 

output, thus being the product between multipliers and variables the virtual 

inputs and outputs. This model is actually said to be a multiplier model. 

Despite the LP in (1) being aimed at maximization and, in addition, the DMU 

under evaluation will choose the most beneficial values to its multipliers, there is 

a constraint in model (1) that guarantees that all DMUs show an efficiency lower 

than 1 when taking into account the values of the multipliers for DMU J, i.e. the 

DMU under assessment. 

Model (1) is said to be radial, because the value of the efficiency for DMU J 

points out the proportional reduction in the current value of all inputs that would 

lead to a projection on to the efficient frontier. This interpretation can be deduced 

from the dual model of (1), called envelopment model, and presented in (2): 
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(2) 

 

 

where jλ , also known as lambdas, represents the technology of the production 

system from the observations, allowing to reach any feasible points within this 

production process. By means of a convex linear combination of the observations 

of the efficient DMUs, a projection in the frontier for the DMU under assessment 

can be obtained. The values of the inputs and outputs for the projected DMU 

represent its targets inputs and outputs, respectively. 

Furthermore, if the restriction that sum of lambdas equals 1 is introduced, the 

technology will shift from constant returns of scale (CRS) to variable returns of 

scale (VRS). VRS can also be implemented in multiplier models (Banker, 1984). 

The CRS efficiency (global efficiency) can be decomposed into VRS efficiency 

(technical efficiency) times scale efficiency. Finally, θ  means the proportional 

reduction of the inputs needed for an inefficient DMU to reach the frontier. 

The above model (2) is said to be input-oriented, since it aims at minimizing the 

value of the inputs while maintaining the value of outputs. An output-oriented 

model, which aims at maximizing the value of outputs, for both multiplier and 

envelopment models, can be also implemented. In addition to the proportional 

reduction, a second phase can be implemented, where additional input excesses 

and output shortfalls, also known as slacks, are sought, even along the frontier 

when the DMU has been radially projected. 
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Instead, there are other approaches to DEA which do not imply a radial 

optimization. For instance, Tone (2001) proposed a non-oriented model, Slacks-

Based Measure (SBM), which seeks the maximization of all slacks. In other 

words, it aims at maximizing outputs and minimizing inputs. Furthermore, the 

SBM model, which is attached below, shows other desirable properties, such as 

both translation and unit invariant.  

 

 

 

(3) 

 

 

 

where iJs  and kJs  are the slacks for inputs and outputs, respectively. Please note 

that the metrics seeks the maximization of all slacks, while guaranteeing that an 

efficient unit will have efficiency equal to 1. Again the lambdas will define the 

target values of the variables for any inefficient DMUs. 
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presented below: 

( ) ( )
1 1

1

1

 1 1 1 1

. .

               i 1...

             k 1...

, , 0                      , ,

m s

J iJ iJ kJ kJ
i k

n

j ij iJ iJ
j

n

j kj kJ kJ
j

j iJ kJ

E Min m s x s s y

s t

x x s m

y y s s

s s j i k

λ

λ

λ

= =

=

=

   
= − +   

   

≤ − =

≥ + =

≥ ∀ ∀ ∀

∑ ∑

∑

∑



Introduction 
 

9 

  

 

 

(4) 

 

 

 

where the vector ( ), ,x y u
i k bg g g  represents the direction along which the observed 

DMU will move towards the frontier, being β  the step size without abandoning 

the Production Possibility Set (PPS), i.e. the set of all feasible points. It can be 

seen that the larger the value ofβ , the more inefficient the DMU under 

assessment. The relation between DDF (4) and SBM (3) approaches was stated 

by Färe and Grosskopf (2010). 

Finally, it is relevant to mention that there have been proposed several 

methodologies to measure the change of the efficiency over time. Amongst all 
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(5) 

 

 

 
An improvement in productivity corresponds to a MPI greater than unity. 

Otherwise, productivity has declined over time. As shown above in (5), MPI is 

commonly decomposed into efficiency change (EFFCH) and technical change 

(TECCH).  
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Apart from the exogenous inputs and outputs, the intermediate products 

connecting sub-DMUs, i.e. output from one internal stage and input to other 

stage, are included. The only restrictions are that all intermediate products must 

be produced and consumed within the system and that there cannot be loops, e.g. 

an intermediate product being produced and consumed at the same stage. 

However, exogenous variables can be inputs to or outputs from any stage. 

Although complex structures of internal processes are allowed, most of the 

research has been carried out on series systems, especially on 2-stage series 

system. A review of the approaches on 2-stage Network DEA was done by Cook 

et al. (2010).  

So Network DEA allows revealing more sources of inefficiency, which are 

related to the under-performing of the internal processes. In fact, even a DMU 

assessed as efficient when traditional DEA is applied, could be regarded as 

inefficient according to a Network DEA approach, because all its processes must 

be efficient for a DMU to be network (or global) efficient. 

First attempts on Network DEA laid the foundations for Network DEA PPS 

(Färe and Grosskopf, 1996a, 2000) and successfully modeled previous 

applications as a set of interrelated stages (Löthgren and Tambour, 1999, Seiford 

and Zhu, 1999). However, these approaches did not differ from applying 

traditional DEA to each of the stages in an independent way.  

However, if the interconnection between stages is not taken into account, the 

target values of intermediate products computed for a stage could lead to 

inconsistencies in other stages. For instance, if a input-oriented DEA model is 

applied to a stage, the computation of its efficiency will imply a reduction in the 

value of an intermediate product, but this target value will have a negative impact 

on the calculation of the efficiency of the stage that produce the intermediate 

product. This issue was first addressed by Kao and Hwang (2008) and their 

Relational Model will be described in the following section. 
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There have been other methodologies defined as Network DEA, such as 

computing the efficiency of latter stages by using the target variables of former 

stages, depending on the orientation (Sexton and Lewis, 2003, Lewis and Sexton, 

2004a, 2004b, Lewis et al. 2009) and the multi-activity approaches, which 

integrate shared inputs (Yu, 2008a, 2008b, 2010, Yu and Chen, 2011, Yu and 

Fan, 2009, Yu and Lee, 2009, Yu and Lin, 2008). 

Despite shared inputs not being included in the published papers that make up 

this document, the term refers to variables that are divided among several 

divisions, usually without stating the ratios in advanced (Chen et al. 2010, Zha 

and Liang, 2010). For a more detailed classification of all possibilities when the 

internal structure of a DMU is considered, please refer to Castelli et al. (2010). 

 

II.2.1. RELATIONAL MODEL 

The Relational Model (Kao and Hwang, 2008, Kao, 2009) extended the 

multiplier model (1) to a multi-stage structure, but making the multiplier of a 

certain intermediate product have the same value for all processes regardless of 

being produced or consumed (the relative importance of an intermediate product 

should remain the same regardless of it being produced or consumed). 

Equivalences with previous approaches were pointed out by Chen et al. (2009). 

The relational model by Kao and Hwang (2008) only included a 2-stage structure 

and will be reproduced in this section due to its simplicity. There will be inputs 

to the first stage, outputs from the second stage and intermediate products only 

linking both stages. Let consider there are R intermediate products, being rjz  be 

observation of the intermediate product r of DMU j. Thus the input-oriented CRS 

relational model for a two-stage series system is presented in (6). 
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One of the two main drawbacks of the model in (6) is that a VRS version would 

be highly non-linear, as long as it is computed as the product of the efficiency of 

the internal processes. Although this issue was partially addressed by Kao and 

Hwang (2011), it has been common to turn to the Additive Decomposition model 

when the internal stages exhibit VRS.  

The Additive Decomposition model for a 2-stage system can be found in Chen et 

al. (2009) and a model for general structures is defined by Chen et al. (2010). 

Instead of a product of the efficiencies of the individual stages, Chen et al. (2009) 

proposed the weighted average of these efficiencies. For a certain value of the 

weights (the sum of the virtual inputs in a stage divided by the total sum of 

virtual inputs), the input-oriented VRS additive decomposition model is 

presented below: 

 

 

    

 (8) 
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According to other authors, the efficiency decomposition of the relational 

Network DEA can be seen as a centralized approach, since it optimizes the 

efficiencies of all stages at the same time. Instead, other options are proposed, 

like giving priority to one of the stages or introducing game theory approaches 

(Liang et al. 2006, 2008, Chen and Yan, 2011). 

 

II.2.2. NETWORK SBM 

Tone and Tsutsui (2010) proposed the Network SBM model, which added the 

SBM metrics from model (3) (Tone, 2001) to the envelopment form of the 

Relational Network DEA (model (6)). In addition, the Network SBM model was 

designed to admit any number of processes and any network structure.  

By following the notation by Lozano (2011), let ( )outP r ( )( )inP r  the set of 

processes that generate (consume) the intermediate product r, and for each 

( )outp P r∈ ( )( )inp P r∈ , let p
rjz  the observed amount of intermediate product r 

generated (consumed) by process p of DMU j.  

For the scope of this work, the sets ( )outP r and ( )inP r  only contain one 

process. In other words, every intermediate product is produced by one stage and 

consumed by another. Please note that for each exogenous input and output (and 

their slacks), the super-index p will point out which process consumes or 

generate it, respectively. The Network SBM model is presented in (9). 

Apart from the inclusion of the processes, the main difference from (3) is the 

constraint that guarantees that, for every intermediate product, its generated 

amount is greater than the consumed amount within the system. This constraint 

turns out to be the dual to the imposition on the multipliers of intermediate 

products to have the same value regardless of the process. Sometimes the 

constraint is changed to set the generated amount equals the consumption. 
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Although Network DEA models differ on the metrics, which will be chosen to fit 

a certain application, a general PPS, i.e. the set of feasible points within the 

technology, can be defined. The overall PPS and the PPS of all processes are 

defined by Lozano (2011). In fact, the notation used in the published works 

enclosed in the Appendix is based on that of Lozano (2011). 

There have been an increasing number of publications and models based on the 

envelopment form of the relational Network DEA, such as Avkiran (2009), 

Avkiran and McCrystal (2012) or Fukuyama and Matousek (2011). Previous 

concepts that were reviewed in section II.1 has been also extended to DEA, such 

as the MPI in two-stage systems (Kao and Hwang, 2014). Regarding undesirable 

outputs, Fukuyama and Weber (2010) applied their directional slacks-based 

measure of technical inefficiency (SBI) (Fukuyama and Weber, 2009) to a two-

stage system with bad outputs. 

Due to the similarities between intermediate products and carry-over activities, 

Tone and Tsutsui (2010) proposed a Dynamic DEA model based on its previous 

Network SBM model (Tone and Tsutsui, 2009). Carry-over activities, a.k.a. 

links, refer to connecting activities between two periods of time, i.e. activities 

from previous periods of time that have an effect on a later period (Chen, 2009). 

If periods of time are considered to be stages within a network structure, carry-

over activities can be modeled as intermediate products and the Network SBM 

model applied. This concept has been also introduced into the multiplier 

relational model (Kao, 2013).  

II.2.3. FUZZY NETWORK DEA 

So far, all DEA and Network DEA models were supposed to work with crisp 

data. Since input and output data are sometimes ambiguous in the real world, 

many researches have proposed fuzzy methods in DEA to deal with imprecise 

data. A fuzzy number is a function whose domain is a set of real numbers and 
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each value in that domain is assigned a grade of membership. In other words, it 

refers to a set of possible values, where each value has its own weight. 

Unfortunately, there is not a unique way to fit fuzzy data in DEA. For a review of 

the fuzzy DEA models please refer to Hatami-Marbini et al. (2011). 

Concerning Network DEA, Kao and Liu (2011) extended the multiplier 2-stage 

relational model to a fuzzy environment, where all inputs, outputs and 

intermediate products are supposed to be LR-type fuzzy numbers. It can be seen 

as a modification of their previous work (Kao and Liu, 2000) to support a 2-stage 

structure.  

The efficiency will also be a LR-type fuzzy number, whose membership function 

can be built by means of its alpha-cuts (an alpha-cut is the set of all elements that 

have a membership value greater than or equal to alpha), due to its nested 

structure. An alpha-cut is defined by two values, namely its lower and upper 

bounds. For the efficiency of DMU J, the lower and upper bounds of an alpha-cut 

are represented by ( )L
JE

α
 and ( )UJE

α
, respectively. 

The computation of the upper bound will consist in maximizing the calculation 

of the efficiency for the range of values of the alpha-cuts of each variable, 

whereas the lower bound consists in minimizing the efficiency considering that 

variables can take any value within their alpha-cuts. Therefore, both 

computations are two-level programs, where the outer and inner programs could 

be combined only when they have the same direction for optimization. 

The program for computing the upper bound for the efficiency of DMU J is 

presented in (11), whereas the lower bound can be obtained by (12). Please 

notice that a multiplier model is used in (11) and an envelopment model in (12), 

since the direction for optimization have to be the same in the outer and inner 

programs, as stated above.  
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In addition, when computing the upper bound for the efficiency of DMU J, the 

most favorable conditions for DMU J and the most unfavorable conditions for 

the rest of DMUs have been selected, i.e. the largest values of outputs and the 

lower values of inputs within their ranges of values for DMU J and the lower 

values of outputs and higher value of inputs for the rest of DMUs. In the case of 

the lower bound for the efficiency of DMU J, it works the other way around. 

Regarding the intermediate products, these variables can take any value within 

the range corresponding to the domain of their alpha-cuts. 
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Although the program below (12) is non-linear, nonlinearity is not a complex 
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III. AIM AND MOTIVATIONS 

This PhD thesis consists in a collection of published works regarding Network 

DEA, whose aim was to carry out applications of Network DEA and designing 

new models. The publications are enclosed at the appendix and will be referred 

to as [1] to [6]. In this section, brief reviews of the motivations of each 

publication, starting at [1], are presented.  

III.1. DEA APPROACH TO NBA TEAMS 

The motivation of the paper [1] was to implement a Network DEA model to 

measure the performance of NBA teams. For instance, if a team underperforms, 

stakeholders may be interested in studying which aspects of the team did not 

meet the expectations, but only by taking into account the internal structure of 

the DMU, it can be stated which stage has to be improved. Although there have 

been previous applications to evaluate efficiency of sports teams, the only 

Network DEA approaches were those of Lewis and Sexton (2004a, 2009), which 

did not involve the relational model.   

Specifically, the proposed approach, which consists of five stages, is an 

application of the non-oriented Network SBM reviewed in previous sections.  

The first stage is related to the acquisition process, since the budget is used to 

sign up players who have certain skills. The manager has to distribute the 

resources between first-team players and the bench team, i.e. allocate the 

economic resources, in order to optimize their performance.  

The rest of the stages can be seen as part of the production process. By means of 

the offensive and defensive systems, which the coach is in charge of, the skills of 

the players will be transformed into points (and avoidance of the points by rival 

teams). Finally, the points made and received should be converted into wins (the 

more wins, the better ranking). To sum up, the production process of a NBA 
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team has been divided into acquisition, offensive, defensive and effectiveness 

stages. 

III.2. DYNAMIC EFFICIENCY OF ILECS 

The telecommunications sector has been on the most competitive industries since 

the liberalization of the market by the Telecommunications Act of 1996. In 

addition, in this context the long-term planning and investments in network 

elements and facilities are crucial for companies to succeed. So, instead of a 

static approach, it is fully justified to implement a Dynamic DEA approach to 

assess the global performance along the whole horizon, where the long-term 

activities, which have an effect on the following periods of time, as well as the 

customer base, are considered to be carry-over activities.   

So the Dynamic DEA by Tone and Tsutsui (2010), where carry-over activities 

are considered are treated as intermediate products, was implemented in [2]. 

Every period of time will function as an internal process, being the operating 

expenses the single input and operating revenues (at the end of the period) the 

single output. With respect to the carry-over activities, the four links that are 

taken from one year to the following are the number of employees (free link), the 

number of total switched lines (good link), total assets (good link) and total 

liabilities at the end of the year (bad link).  

Once the dynamic efficiency for every company and year have been computed, a 

regression on the external factors that might have influence the performance of 

the companies, such as regulatory policies and both local and intermodal 

competition, was carried out. 

III.3. MALMQUIMST NETWORK DEA 

Although a Network DEA approach was proposed in the article [1] to evaluate 

the efficiency of NBA teams, the motivation of publication [3] is that managers 
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and coaches usually elaborate plans and rosters for several years, mainly due to 

the length of players’ contracts, thus analyzing the productivity change of the 

teams become relevant.  

In addition, a lookout took place before season 2011/12, where the owners 

proposed to reduce players’ income, so an assessment of economic resources 

management through the recent seasons can reveal if there have been excesses in 

salaries preventing efficiency. A MPI has been implemented to estimate the 

productivity change of NBA teams from 2006/06 to 2012/13 seasons, as well as a 

FGNZ decomposition.  

The actual Network DEA model consists in input-oriented envelopment Network 

DEA, based on the following network of processes: an acquisition process, where 

the teams use the budget to sing up players, the offensive and defensive 

subsystems, which transform the players’ skills into points, and the final stage 

relative to effectiveness. 

Finally, a regression is carried out to establish the influence of the budget, 

efficiency, technological and scale change on efficiency (the last three 

explanatory variables come from the FGNZ decomposition), and the approach by 

Lewis and Sexton (2004a, 2004b, 2009) is implemented to obtain efficiencies for 

each of the stages. 

III.4. AIRPORTS WITH UNDESIRABLE OUTPUTS 

The motivation of this paper is to develop a Network DEA approach to the 

modeling of airports operations considering that some or all of the processes 

generate undesirable outputs. Specifically, taking into account the undesirable 

effects of airport operations contributes to a fairer performance assessment, 

because some of the airports may be oversaturated and causing excessive 

pollution and noise to passengers. 
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The network structure consists in two processes: one related to the movement of 

the aircrafts and a second one related to the airplane’s load factors. Hence, the 

intermediate product linking the two processes will be the annual aircraft 

movements in and out of the airport, since the movements are only a means of 

providing the service of transporting people and goods. In addition, the first stage 

generates the two undesirable outputs, namely the number of delayed flights and 

accumulated flight delays. 

The paper includes the Production Possibility Set for the process and global 

structure of Network DEA when there are undesirable outputs. The proposed 

approach is based on the directional distance function, so that the movements of 

passengers and cargo can be maximized at the same time that the undesirable 

outputs are minimized.   

III.5. FUZZY NETWORK DEA 

Despite the variety of fuzzy DEA models, previous fuzzy Network DEA 

approaches only deal with two serial stages or parallel stages. So the motivation 

of the publication [5] was to provide a formulation of fuzzy Network DEA 

models that could work for any internal structure. As well as extending the fuzzy 

2-stage DEA by Kao and Liu (2012), other fuzzy approaches, namely those of 

Saati et al. (2002) and Wang et al. (2005) are going to be extended to general 

network of processes.  

III.6. NDEA APPROACH TO PUBLIC SERVICES 

Due to the global economic crisis, the motivation of the research done in [6] was 

to identify the inefficiencies in the provision of public services, e.g. feasible 

reductions in taxes, debt and public expenditures, that could be removed from the 

public finances. An efficient public system would, in order to provide its public 

services, spends what is necessary but without burdening taxpayers more than is 

required. 
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The proposed network DEA approach consists of two stages. The first stage aims 

at collecting the revenues, basically from tax receipts, in order to finance the 

expenditures. Next stage transforms the expenditures into services to the people 

and economy. GDP and population are set to be the proxies of that provision. 

The proposed model optimizes the sum of multiple directional distance functions 

along the different inputs and outputs, involving the feasible reductions in taxes 

and debt. 
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IV. RESULTS AND DISCUSSION 

In this section, a quick glance at the results of each publication and their 

interpretation, starting at [1], are presented. Please refer to the full publications 

[1] to [6] for further details. 

IV.1. DEA APPROACH TO NBA TEAMS 

The proposed approach was applied to measure the efficiency of the 30 NBA 

teams during regular season 2009/10. Results show that Network DEA has more 

discriminating power and provides more insight than traditional DEA, although 

rankings of the teams by both approaches were similar. In fact, even teams with a 

large number of wins, such as Los Angeles Lakers, may end up with low 

efficiency scores, provided their economic management of resources was not 

adequate. 

Network DEA allows uncovering sources of inefficiency that can remain hidden 

in the traditional DEA approach. In this publication [1], Network DEA reveals 

additional slacks, i.e. feasible reductions for inputs and improvement for outputs, 

in the performance of teams that were considered to be almost efficient when 

traditional DEA was applied. The team with the highest Network DEA efficiency 

turned out to be Oklahoma City Thunders, which presents a well-balanced budget 

and number of victories. Finally, slacks for intermediate products are also 

included.  

IV.2. DYNAMIC EFFICIENCY OF ILECS 

The Dynamic DEA approach was applied to the main Incumbent Local Exchange 

Carriers (ILECs) in the U.S. telecommunication market from 1997 to 2007. 

Results show that there is no clear relation between size of the ILEC and 

efficiency. In addition, the approach allows analyzing the evolution of the carry-

over activities along time: the operational revenues should have been larger than 
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they were during the first years under study, while the operating expenses should 

have been reduced during the remaining periods of time. Regarding the assets, 

there was a significant lack of investment on facilities and switched lines during 

the last periods. 

Finally, the multiple regression point outs that local competition, encouraged by 

the liberalization of the telecommunications sector, has had a negative impact on 

the efficiency of ILECs. In fact, a larger investment by local competitors on their 

own equipment and facilities, instead of leasing the ILECs’ facilities, would have 

led to a sharper deterioration of ILECs’ efficiency. On the other hand, the 

intermodal competition and incentive regulation seemed not to have an influence 

on efficiency. 

IV.3. MALMQUIMST NETWORK DEA 

Results reveal that there has been technological progress for the last seasons, 

consisting of a reduction in the budget of the efficient teams, excluding that of 

the lockout, and an increasing efficiency change. This means that best practices 

are improving and that most teams have been reducing their payrolls to catch up 

with these practices, thus backing up the owners’ proposal to reduce players’ 

income. 

These conclusions also match up with regression results, which show that change 

in wins between seasons is mainly affected by the shift in scale efficiency, and 

thus managers should adjust their resources properly in order to operate in their 

most productive scale size. Regarding the efficiencies of the stages, the offensive 

and defensive stages show values very close to 1, revealing that the first and last 

stages are the most decisive to the overall efficiency.  
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IV.4. AIRPORTS WITH UNDESIRABLE OUTPUTS 

The proposed approach was applied to a dataset of 39 Spanish airports for the 

year 2008, leading to the conclusion that the Network DEA approach has much 

more discriminatory power than the traditional one, specially revealing a much 

greater shortfall in the cargo handled by the airports and excesses in the flight 

delays. 

IV.5. FUZZY NETWORK DEA 

The publication [5] shows that extending the crisp Network DEA approaches to 

handle fuzzy data becomes natural and it is even possible to work with linear 

programs. Since Network DEA represents a more fine-grained level of analysis, 

it enhances the usefulness of the approach. 

IV.6. NDEA APPROACH TO PUBLIC SERVICES 

The proposed approach was applied to the U.S. states during the period 2007-

2011, adopting a contemporaneous approach, since the budgetary circumstances 

in each year are different. Although 22 states have managed their finances in an 

efficient way, other have been taxing people excessively or financing 

expenditures through borrowing. In fact, the estimated total inefficiency of the 

states raises to 500 billion US$. Furthermore, the approach identifies the 

reductions or increases in expenditures that might have been made.  
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V. CONCLUSIONS 
 

The running of most of the production processes, companies and activities are 

organized by following a certain structure, and thus providing a single measure 

of efficiency for the whole entity omits the operation of the internal stages and 

leaves out the chance to improve the weakest areas of the organization. 

Furthermore, there are many applications where a network structure makes more 

sense, because there are some variables that are not suitable to be set as inputs or 

outputs, but as intermediate products. 

The scope of this thesis includes a mixed range of applications of Network DEA 

as well as theoretical models. First, a Network SBM approach consisting of five 

stages, e.g. acquisition and production stages, is applied to evaluate the potential 

reduction of team budget and increase of games won by the NBA teams. The 

network structure allows incorporating data regarding the performance of the 

players on the court and therefore analyzing the efficiency of the offensive and 

defensive systems, among others. 

The Network DEA approach to NBA teams has been accompanied by another 

paper estimating the productivity change, since managers make the financial 

planning and coaches build the roster with a view to consecutive seasons. 

Therefore, a Malmquist Productivity Index has been applied, based on the 

network structure of NBA teams. Results backed up the teams owners’ proposal 

to reduce players’ income, because of the catching up with the best practices. 

Apart from the estimation of productivity change between consecutive periods, 

there are sectors where activities from previous years have an influence on the 

performance of the following years, such as the US wireline telecommunications 

sector, where previous customer base and investment in network elements are 

crucial for the future performance. In this case, a Dynamic DEA model was 

implemented, by considering the carry-over activities as intermediate products. 
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Finally, a regression analysis was carried out to evaluate the impact of local and 

intermodal competition on carriers’ efficiency. 

There are some other processes which may generate not only desirable outputs 

but also undesirable outputs, such as airport operations, where airplane delays 

take place. Taking into account the effects of these undesirable outputs 

contributes to a fairer performance assessment. A two-stage model was 

implemented, which consisted of one stage related to the movement of airplanes 

and a second one related to the load factors, while a directional distance approach 

measured both the increase in desirable outputs and decrease in undesirable ones. 

Network DEA allows not only to open the black box of a DMU, but also to 

integrate into a single model the computation of the efficiencies of several 

interrelated processes, e.g. optimal taxation and public expenditure. The feasible 

reductions in taxes, debt and public expenditures, while maintaining the current 

level of public services, have been computed for the US Stages by applying a 

two-stage approach.   

Apart from working with crisp data, in the literature researchers have proposed 

DEA approaches to handle fuzzy data. Recently, fuzzy proposals were made 

recently for only two-stage and parallel productions networks. In this thesis, 

several fuzzy approaches have been extended to general network of processes, 

providing the foundations of the formulations of Network Fuzzy DEA 

applications.  

To sum up, including the intermediate products and the network structure implies 

that Network DEA approaches require much more data. In return, Network DEA 

has proved to show a greater discrimination power than traditional DEA  By 

means of the different applications and models attached in this document, it has 

been proved that the results obtained from Network DEA are more accurate and 

valid, as well as revealing additional sources of inefficiency related to the 
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performance of the internal stages. Therefore, Network DEA can be seen as an 

improvement over DEA and has a brilliant future ahead of. 

As for further research, there are some applications where a Network DEA 

approach has not been proposed yet, e.g. the complete running of a hospital, the 

performance of tennis players and the assessment of tertiary education agents. 

Another topic for further research that is attracting experts’ attention is the 

Dynamic Network DEA (Tone and Tsutsui, 2014), which integrates their 

previous dynamic (Tone and Tsutsui, 2010) and network approaches (Tone and 

Tsutsui, 2009). The operation of a DMU for each period of time will be made up 

of a network structure, while these network structures from different periods of 

time will be connected by carry-over activities. In addition, the carry-over 

activities can link any of the internal stages with the equivalent stage in 

consecutive periods of time. 

However, there are some critical issues concerning Network DEA that are 

pending to be solved out. Fukuyama and Mirdehghan (2012) claimed that the 

Network SBM model by Tone and Tsutsui (2009) did not provide a proper 

measure of the efficiency of the individual stages, and proposed a second phase 

where additional slacks for intermediate products were addressed at. The status 

of the efficiency of each stage depends on the existence of second-phase slacks. 

Chen et al. (2013) also pointed out the faults of the envelopment form of 

Network DEA models in assessing stage efficiency, whereas the multiplier model 

failed at providing targets for the intermediate products (and thus failing at 

establishing the efficient frontier). An unified primal-dual approach for Network 

DEA has been pursued by researchers for a long time. 
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Abstract In this paper, a Network DEA approach to assess the efficiency of NBA teams
is proposed and compared with a black-box (i.e. single-process) DEA approach. Both ap-
proaches use a Slack-Based Measure of efficiency (SBM) to evaluate the potential reduction
of inputs consumed (team budget) and outputs produced (games won by the team). The
study considers the distribution of the budget between first-team players and the rest of the
payroll. The proposed network DEA approach consists of five stages, which evaluate the
performance of first-team and bench-team players, the offensive and defensive systems and
the ability for transforming the points made by itself and by the opponents into wins. It has
been applied to the 30 NBA teams for the regular season 2009–2010. The results show that
network DEA has more discriminating power and provides more insight than the conven-
tional DEA approach.

Keywords Sports efficiency · NBA · Network DEA · SBM · Inefficiency sources

1 Introduction

NBA (National Basketball Association) has become one of the biggest sports businesses
all around the world, because of broadcasting rights, advertising and merchandising sales.
However, the popularity and number of fans of a NBA team will depend on its results.
Therefore, it is useful to perform an efficiency analysis and evaluate if the team manage
properly the current budget in order to win the maximum number of games from the regular
season.

Since the development of DEA methodology (Data Envelopment Analysis), by Charnes
et al. (1978) it has been widely used to assess the relative efficiency of Decision Making
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Units (DMUs). These DMUs must be homogeneous, working in an identical way: trans-
forming the same inputs into the same outputs. DEA itself is a non-parametric tool that
infers the production frontier without assuming any particular functional frontier form and
the relative efficiency of every DMU is assessed based only in the observed inputs and out-
puts of the DMUs.

Although DEA has been applied in many different fields, DMUs has traditionally been
seen as black boxes with its inputs and outputs, but without any consideration of what is
happening inside the DMU. However, Färe and Grosskopf (2000) argue that if DMUs are
modeled taking into consideration their internal processes, the efficiency assessment can be
achieved in a more accurate way and additional information can be obtained.

The aim of this paper is to use a network DEA approach to perform an efficiency analysis
of the 30 teams in the NBA. Apart from getting further insight into the resources manage-
ment of every team, network DEA has never before been applied to basketball. First-team
wages together with bench-team wages are both considered as inputs, because every team
has to decide how to allocate the input resources, choosing between signing up better first-
team players and having more competitive players in the bench. The proposed approach
considers five stages, corresponding to the performances of the players, the offensive and
defensive systems, as well as the effectiveness in winning games. Furthermore, since re-
ducing payroll is as important as winning more games, the proposed approach provides a
non-oriented efficiency measure, based on inputs and output slacks.

The structure of the paper is the following. Section 2 makes a literature revision of the ap-
plications of DEA to sports. Section 3 introduces the proposed approach (variables, model,
data and methodology). Section 4 presents the results of the relative efficiency of the NBA
teams, by using data from the regular season 2009/2010. Finally, Sect. 5 summarizes and
concludes.

2 Literature review

Anderson and Sharp (1997) published one of the first papers that implemented a DEA ap-
proach to analyze sports performance, namely that of baseball batters. However, most of the
previous works on DEA applied to sports deals with soccer leagues. Thus, Haas (2003a)
presented an input-oriented DEA model, both VRS and CRS, that takes total wages and
salaries as inputs, plus population of the clubs’ home town as a non-discretionary input vari-
able. The outputs include points awarded during the season and the total revenue figures
which serve as an indicator for a team’s success in international competitions. Haas (2003b)
studied the technical efficiency of the Major Soccer League in the United States considering
players’ wages and head coach’s wage as inputs and awarded points, number of spectators
and revenues as outputs.

Espitia-Escuer and García-Cebrián (2006) studied the potential of the teams in the Span-
ish soccer league between the years 1998 and 2005, analyzing each year separately. The
evaluation is carried out from an output-oriented perspective: the efficiency in obtaining
better results given the available resources on the field of play. In order to perform that task,
they considered a system which takes as inputs the attacking and defensive moves against
the opposing team and the total points awarded as the single output.

Boscá et al. (2009) measured offensive and defensive efficiency of teams in Italian soc-
cer league, from the attacking and possession moves made by the team and by the opposing
team as inputs and the goals as outputs. Once the home and away efficiencies are evaluated,
they performed a regression analysis to explain the points obtained by teams with regard to
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different indicators, so they could decide if it is more important to be efficient offensively
or defensively to obtain a high ranking in the league. Picazo-Tadeo and González-Gómez
(2010) used a radial version of DEA, as in the other papers commented in this section so far.
However, it focused on the fact that participating in other official competitions consumes re-
sources, predictably reducing a team’s potential in the league. They proposed the addition of
further restrictions that force the performance of an observation to be assessed by comparing
its productive plan with a plan corresponding to an efficient team (or a linear combination),
which has to play at least the same number of extra games in all competitions.

As in their previous work, Espitia-Escuer and García-Cebrián (2010) described a pro-
duction process with two stages but again they focused on the second one: how every team
manage the on-field performance during matches. Their paper considers teams that play in
the Champions’ League as well as in their own national competition and both efficiency and
superefficiency models are used, the latter for discriminating among efficient units. Guzmán
and Morrow (2007) used the Malmquist productivity index to measure the change in produc-
tivity over a 6-year period (the seasons 1997–1998 to 2002–2003) of the English Premier
League. Barros and Douvis (2009) also studied the changes in total productivity, but this
time of the football clubs of Greece and Portugal and for the seasons 1999–2000 through
2002–2003.

Barros et al. (2010) and Barros and Garcia-del-Barrio (2011) implemented a DEA-
bootstrapping procedure to analyze the technical efficiency of Brazilian first soccer league
and Spanish first division soccer league, respectively. The procedure consists of two stages.
In the first stage, a bootstrapped DEA is used to estimate relative efficiency scores whose
bias has been corrected. Then, in the second stage, the Simar and Wilson’s procedure is
applied to bootstrap the DEA scores with a truncated regression, to further explain the influ-
ence of variables in the efficiency results.

There are also some works in this area using imprecise data and fuzzy linear program-
ming. Thus, Aoki et al. (2009) proposed a model that classifies the DMU with imprecise
data into four groups. The method is applied to 25 soccer teams that participated in Japan
Robocup 2008. Cadenas et al. (2010) use fuzzy linear programming models applying DEA
to the Spanish Football League 2006/2007. The inputs of their offensive model are the offen-
sive on-field production: balls kicked into the area, attacking plays, minutes of possession
and shots-on-goal. Whereas the inputs of the defensive model has been defined as the inverse
of the above variables by the opposing team. The output is the number of goals.

Chen and Johnson (2010) studied the dynamics of the performance space of Major
League Baseball by means of a DEA approach. Concerning other sports, Fried et al. (2004)
evaluated the technical efficiency of golf players, by using game statistics as inputs and earn-
ings per event as the single output. They used a radial, output-oriented model that computes
earnings targets for each player as well. Finally, DEA has also been applied to the Olympic
Games (e.g. Lozano et al. 2002; Lins et al. 2003; Li et al. 2008; Soares de Mello et al. 2009;
Zhang et al. 2009, and Wu et al. 2010).

To the best of our knowledge, there are only a couple of papers on DEA applied to
basketball. Namely, Cooper et al. (2009) applied the multiplier DEA formulation to evaluate
the effectiveness of basketball players of the Spanish Basketball League (ACB), considering
the stats of the player (i.e. adjusted field goal, free throw, rebounds, assists, steals, etc.) as
outputs. AR-I type constraints on the output weights are included to incorporate the views of
the basketball experts. The lower and upper bounds of the weight constraints depend on the
type of basketball player, allowing the weights to vary across players in order to reflect their
different characteristics. The procedure proposed by Cooper et al. (2009) added a second
step that involves a choice of weights from among the alternative optimal solutions of the
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extreme efficient DMUs. Cooper et al. (2011) use a novel cross-efficiency approach that
reduces the differences in the weights chosen by the DMUs and apply the model to the
ranking of basketball players who play in the position of center, by considering the weight
profiles of some model players.

A final group of studies that are relevant to this research is the one formed by network
DEA applications to sports. Thus, Sexton and Lewis (2003) presented a network DEA ap-
proach to the Major League Baseball (MLB). Each DMU is described as a two-stage ac-
quisition and production operation. In Stage 1, the team’s front office uses resources (total
player salaries) to acquire talent (offensive and defensive production). In Stage 2, the tal-
ent produces games won on the field. They identified two intermediate products, total bases
gained and total bases surrendered as offensive and defensive production, and selected a
radial output orientation for the overall organization. However, that approach differs from
ours, because it establishes separate efficient frontiers for every sub-DMU and computes the
organizational efficiency based on the Stage 2 frontier using the intermediate product levels
that would have arrive at the Stage 2 if the Stage 1 had been efficient. So-called reverse vari-
ables are dealt-with the same way as in Lewis and Sexton (2004a), in which the efficiency
of the 30 MLB organizations during the 1999 regular season was analyzed.

Lewis and Sexton (2004b) generalized their previous work, splitting up the front-office
stage in two stages, one of which consumes player salaries to produce position player talent
while the other consumes salaries to produce pitching talent. The on-field sub-DMU consist
of three stages, one of which represents the offensive process, another the defensive stage
and a third one consumes the output of the previous offensive and defensive stages (runs
gained and surrendered) to produce games won. In a subsequent paper, Lewis et al. (2009)
take only the three sub-DMUs from the on-field competition, and evaluate their single and
total efficiencies in the same way as in Sexton and Lewis (2003).

Finally, García-Sánchez (2007) uses a three-stage approach to evaluate the efficiency in
Spanish Football League, but it can be hardly considered as network DEA, because every
stage takes the efficiency of the previous stage as an input. His proposed first stage measures
the operating efficiency, by taking offensive and defensive movements as inputs and goals
as output. The second and third stages measures operating and social effectiveness, whose
outputs are the classification of the team and the outcome, respectively.

3 Evaluation of NBA teams’ efficiency

NBA (National Basketball Association) is the main basketball league in the USA and the
most important basketball competition all around the world. There are 30 teams in the NBA,
grouped into two conferences (East and West) and six divisions (Atlantic, Central, Southeast,
Southwest, Northwest and Pacific). Every year, NBA consists of two phases: regular season
and playoffs. The top eight teams from each conference go to the conference playoffs and
the two winners from each conference (East and West) play for the title in the last playoff.
Concerning regular season, every team play 82 games and it is mandatory to achieve a good
place in the ranking to gain access to the playoffs.

NBA is not only one of the biggest sport entertainments but it also has become an im-
portant business. It involves a great deal of money in TV broadcasting rights, pay-per-view,
sponsorship, and tickets, sports clothes and merchandising sales. The income from all those
sources will depend on the performance on every team though: the better the team performs
in the league, the more revenues it will get, since there would be a greater number of fans for
that team. However, the teams have a limited number of economic resources every season,
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Table 1 DMU’s inputs
Input Name Label

x1 First team budget FTBudget

x2 Bench team budget BTBudget

Table 2 DMU’s output
Output Name Label

y1 Number of team victories Wins

so it is appropriate to study how efficiently the teams manage their resources in order to win
games.

3.1 Single-process model

The first model we are going to work with is a single-process production model that trans-
forms input resources into outputs. We are going to take players salaries as input, since
payroll is the main expense in NBA teams. Although other previous works on DEA applied
to sports (Sexton and Lewis 2003; Guzmán and Morrow 2007) also choose salaries as input,
we differentiate between the budget related to first and bench teams. The first team consists
of the five players who have played more regularly during the season and the bench team
refers to the rest of the players.

Therefore, the most important decision in every team is how to allocate the economic
resources, so some teams usually decide to set a great part of the budget to sign up top-
performing players to build a powerful first team, whereas other teams tend to spread the
total payroll between all the players in order to have more competitive players in the bench,
since every game is 48 minutes and first-team players cannot play the whole game. There-
fore, there are two inputs in our model, and are presented in Table 1.

With regards to the selection of the outputs, note that the outputs chosen in DEA applica-
tions to sports depend on the sport that is being considered. For instance, the research works
focused on baseball (e.g. Lewis et al. 2009; Lewis and Sexton 2004a) usually take the num-
ber of victories as an output, whereas works on other sports in which the ranking depends on
the number of points (e.g. soccer) assign the number of points won as an output (e.g. Espitia-
Escuer and García-Cebrián 2010; Picazo-Tadeo and González-Gómez 2010). As shown in
Table 2, in our case, the number of team victories is the single output considered. This is so
because the ranking in the regular season depends on the number of victories. A better rank
means easier matches during the playoffs, due to the fact that the best team will be paired
off with the eighth team to access the playoffs, the second team will be paired off with the
seventh and so on. Furthermore, in each playoff, the team with the highest rank will play
more matches at home, which is an obvious advantage.

In order to measure the efficiency of each NBA team, the SBM DEA model (Tone 2001)
is used. The SBM model, which is equivalent to the Enhanced Russell Measure (ERM)
independently proposed by Pastor et al. (1999), is non-radial and tries to minimize the ratio
of average inputs reductions and outputs increases, instead of making a radial reduction of
inputs or radial increase of outputs. Since every NBA team tries to obtain as many wins as
possible (in order to qualify for play-offs in a high rank thus getting an easier first round)
and simultaneously to reduce its team’s payroll (in order to move away from league salary
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cap and be able to sign players next seasons), the use of a non-oriented SBM model is fully
justified.

Let xiJ be the i-th input of the model, according to Table 1, of the DMU J and y1J the
output of the model for the DMU J.

The proposed SBM efficiency score will take into account the output slacks swins
J (number

of victories) and the slack in the total budget s
budget
J (first team budget plus bench team

budget), since every team seeks to maximize the number of victories while reducing its total
budget. Although the SBM model is non-linear, it can be linearized as

EfficiencySBM
J = Min t − s

′budget
J

x1J + x2J

(1)

s.t.

t + s ′wins
J

y1J

= 1 (2)

∑

j

λ′
j · xij = x ′

iJ i = 1,2 (3)

x ′
1J + x ′

2J = t · (x1J + x2J ) − s
′budget
J (4)

∑

j

λ′
j · y1j = t · y1J + s ′wins

J (5)

∑

j

λ′
j = t (6)

λ′
j ≥ 0 (7)

s
′budget
J , s ′wins

J ≥ 0 (8)

Equation (1) accounts for the objective function, which corresponds to maximizing the total
budget slack while (2) imposes the linearization constraint. Equation (3) computes the inputs
of the target operation point. These input targets are related to the observed values by means
of the input slack computed in (4). Note that this input slack is aggregated and includes both
first and bench team budgets. Equation (5) computes the target value for the single output,
which is equal to the observed value plus the corresponding output slack. Note that, in (6),
Variable Returns to Scale (VRS) are considered since an increase in the budget will not
necessarily mean a fixed, proportional increase in the number of victories.

3.2 Proposed network DEA model

Before formulating the proposed network DEA approach a brief introduction to network
DEA in general will be presented. The main differences with respect to the more traditional
single-process DEA will be highlighted. The notation proposed in Lozano (2011) will be
used.

3.2.1 Network DEA methodology

Beyond traditional DEA models, new approaches have been developed to evaluate the ef-
ficiency of DMUs. Thus, for example, Färe and Grosskopf (2000) suggests that instead of
considering a DMU as a black box, a network DEA approach taking into consideration the
internal configuration of the DMUs is preferable. Castelli et al. (2010) has made a review of
different shared-flow, multilevel and network DEA models. The number of network DEA
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models that have been proposed in the literature is increasing rapidly, e.g. the relational net-
work DEA approach of Kao and Hwang (2008, 2010), Kao (2009a, 2009b), the weighted
additive efficiency decomposition approach of Chen et al. (2009), Cook et al. (2010), the
SBM-NDEA approach of Tone and Tsutsui (2009, 2010), Avkiran (2009), Yu (2010), the
Network Slacks-Based Inefficiency (NSBI) approach of Fukuyama and Weber (2010) and
the network DEA scale and cost efficiency approach of Lozano (2011), to name a few.

The main difference between network DEA and conventional DEA is that while con-
ventional DEA considers a single process that consumes all the inputs and produces all the
outputs, network DEA considers the existence of several stages each of which consumes its
owns set of inputs and produce its own set of outputs, in addition to consuming and pro-
ducing intermediate products. These intermediate products are defined as inputs for some
stages are outputs for others.

For each process p of DMU j , denote x
p

ij as the observed amount of input i consumed

and let y
p

kj be the observed amount of output j produced. Let z
in,p

rj be the observed amount
of intermediate product r consumed by process p of DMU j and z

out,p
rj denote the observed

amount of intermediate product r generated by process p of DMU j . Let PI (i) the set of
processes that consume the input i and PO(k) the set of processes that generate the output o.
In order to model the composition of intermediate flows inside the network, let P out(r) be
the set of stages that produce the intermediate product r and P in(r) the set of processes
that consume the intermediate product r . Also, let I (p) the set of exogenous inputs used in
process p and O(p) the set of final outputs of process p.

A radial, input-oriented VRS network DEA model can be formulated as (see Lozano
2011)

Min θ (9)

subject to
∑

p∈PI (i)

∑

j

λ
p

j x
p

ij ≤ θxi0 ∀i (10)

∑

p∈PO(k)

∑

j

λ
p

j y
p

kj ≥ yk0 ∀k (11)

∑

p∈Pout (r)

∑

j

λ
p

j z
p

rj −
∑

p∈P in(r)

∑

j

λ
p

j z
p

rj ≥ 0 ∀r (12)

∑

j

λ
p

j = 1 ∀p (13)

λ
p

j ≥ 0 ∀j ∀p θ free (14)

First of all note that a key feature of Network DEA models is that each stage or process
has its own production possibility set, which implies that the model must have a distinct
set of lambda multipliers λ

p

j for each process p. This leads to a larger overall production
possibility set which increases the discriminate power of the DEA model. Because of that, it
is very common in Network DEA that none of the DMUs is found efficient, since if a DMU
must be efficient it has to be on the efficient frontier of all its processes, something which
does not happen often.

Constraints (10) compute the radial reduction in the total amount of exogenous inputs.
Constraints (11) guarantee maintaining at least the total amount of final outputs. Constraints
(12) are a type of free-links constraints that guarantee that the total amount internally pro-
duced of each intermediate product is at least equal to the amount that is internally con-
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sumed. Finally, constraints (13) are the convexity constraints associated to assuming VRS
for each process p.

From the optimal solution to this model, denoted with an asterisk superscript, the target
operation point for each process p can be computed as

x̂
p

i =
∑

j

(
λ

p

j

)∗
x

p

ij ∀ i ∈ I (p) (15)

ŷ
p

k =
∑

j

(
λ

p

j

)∗
y

p

kj ∀k ∈ O(p) (16)

ẑp
r =

∑

j

(
λ

p

j

)∗
z
p

rj ∀r ∈ Rin(p) ∪ Rout (p) (17)

and, from that, corresponding total input and output targets for the whole system

x̂i =
∑

p∈PI (i)

x̂
p

i ≤ xi0 =
∑

p∈PI (i)

x
p

i0 ∀i (18)

ŷk =
∑

p∈PO(k)

ŷ
p

k ≥ yk0 =
∑

p∈PO(k)

y
p

k0 ∀k (19)

The use of a network DEA model is fully justified in our application. For instance, if a team
does not meet the expectations, both fans and sponsors will try to study which aspects of
the team went wrong and may not agree in the solutions. From a traditional analysis it is not
easy to decide if there is a need to change to the coach, the roster make-up or the strategies
and tactics of play. Although one of the drawbacks of network DEA is the need of internal
operations data, in our case data availability is not a problem since NBA freely provides all
the game statistics in their official website www.nba.com.

3.2.2 Network DEA approach for NBA teams

The network DEA model we propose in this paper can be seen in Fig. 1. It is a generalization
of a two-stage production process that has been applied to evaluate the DEA efficiency of
some sports (e.g. Espitia-Escuer and García-Cebrián 2006; Lewis and Sexton 2004b). These
two stages can be named as acquisition stage and the production stage itself.

The acquisition stage (1) consumes budget to sign up basketball players, who will have
a certain performance during the matches. However, with regard to inputs, a distinction
between first and bench teams is made, because of the reasons we stated in Sect. 3.1. There-
fore, as in the single-process case, there are two inputs related to the corresponding budgets,
as shown in Table 1. The outputs of this first stage will be the attacking and defensive
moves against the opposing team, as described in previous works (e.g. Boscá et al. 2009;
Espitia-Escuer and García-Cebrián 2010). The number of moves can be taken as a represen-
tative of the players’ skills and performance in the field and are measured in absolute figures.
Since these variables will be output of the first stage and input of the following ones, they are
considered to be intermediate products, and are shown in Table 3. This stage can be named:
Team-work Performance. It can be seen as a stage where the manager and their manage-
ment staff have to take decisions about the composition of the roster. Every year, there are a
limited amount of economic resources to spend on salaries, and the manager has to properly
distribute the resources between first-team players and bench team, in order to get the best
performance of the whole team in the field. As we stated before, some managers choose
to sign up top-rated players for the first team while having ordinary players in the bench,
whereas other managers decide to have a more well-balanced team.

http://www.nba.com
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Fig. 1 DMU as a network of processes

Table 3 Intermediate products when DMU is seen as a network of processes

Intermediate product Name Label

z1 2-Point shots attempted by First Team FT2PA

z2 3-Point shots attempted by First Team FT3PA

z3 Free throws attempted by First Team FTFTA

z4 Offensive Rebounds by First Team FTOffReb

z5 Assists by First Team FTAssists

z6 Inverse of Turnovers by First Team FTTO

z7 Defensive rebounds by First Team FTDefReb

z8 Steals by First Team FTSteals

z9 Blocked shots by First Team FTBlocks

z10 2-Point shots attempted by Bench Team BT2PA

z11 3-Point shots attempted by Bench Team BT3PA

z12 Free throws attempted by Bench Team BTFTA

z13 Offensive Rebounds by Bench Team BTOffReb

z14 Assists by Bench Team BTAssists

z15 Inverse of Turnovers by Bench Team BTTO

z16 Defensive rebounds by Bench Team BTDefReb

z17 Steals by Bench Team BTSteals

z18 Blocked shots by Bench Team BTBlocks

z19 Points by First Team FTPoints

z20 Points by Bench Team BTPoints

z21 Inverse of Points by Opponent InvOppPoints
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Among the intermediate products which are outputs of this first stage, note that the
turnovers made by a team is a variable that represents worse performance when it takes
higher numerical values. Traditionally, although this kind of outputs can be dealt treated
as reverse variables (Lewis and Sexton 2004a) we found it easier to take the inverse of the
quantity, as other authors have done previously (e.g. Cooper et al. 2009 in their application
to basketball).

The resulting output attacking moves of stage (1) will be inputs to the offensive systems
(2) and (4), which evaluate the efficiency of the team at transforming the available offensives
resources on the field into points. The corresponding output defensive moves of stage (1)
will be inputs to the defensive system (3) that evaluate how the team manages its defensive
resources to minimize the points made by opponents. Again, the inverse of the points made
by the opponent is considered as output, since a greater number of points surrendered will
mean less efficiency.

Note that it makes sense to have two stages related to offensive systems, because the
coach usually makes players from first team play together and plan specific offensive strate-
gies and movements for them, depending on their skills. The inputs for the first-team offen-
sive system involve the main indicators of the attacking play:

• FT2PA: number of two-point shots attempted by first team.
• FT3PA: number of three-point shots attempted by first team. Jointly with FT2PA, this

statistic can be interpreted as the number of attacking moves made by the first team.
• FTFTA: number of free-throw shots attempted by first team. This is also a measure of

personal faults made by the opponent in order to stop offensive actions.
• FTOffReb: number of offensive rebounds grabbed by first Team, allowing the team to

perform an additional offensive action.
• FTAssists: number of assists by the first team, which is a measure of the cooperation

among the players.
• FTTO: number of turnovers by the first team, allowing the opponent to perform a counter-

attack.

There are similar intermediate products referred to the bench team (with the correspond-
ing variable names starting with BT) which are inputs of the corresponding bench-team
offensive system. Each of these two offensive subsystems has as single output the points
made by the corresponding team (FTPoints, BTPoints).

Although there are two offensive systems, for both first and bench team, there is only one
defensive system, because the points made by the opponent are not differentiated for its first
and bench teams. The inputs for the sole defensive system are:

• FTDefReb: number of offensive rebounds grabbed by first team, allowing the team to stop
the opponent’s offensive action and start an attack.

• FTSteals: number of steals by the first team, usually allowing the team to subsequently
perform a counter-attack.

• FTBlocks: number of blocks by first team, allowing the team to stop the opponent’s of-
fensive action and start an attack.

There are similar intermediate products referred to the bench team (again with the corre-
sponding variable names starting with BT). The single output of this stage is the inverse of
the number of points by the opponent teams (InvOppPoints).

Moreover, the stages related to the offensive and defensive systems are under the control
of the coach. In fact, the coaches have to manage the production of their players (to maxi-
mize the number of points scored and minimize the number of points made by opponents)
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by means of strategies, tactics and planned moves. For instance, an appropriate offensive
system will allow a better shot selection, which means greater shot percentage and more
points.

The final stage (5) evaluates the ability of the team to manage the points made and re-
ceived in order to win matches, in a similar way as the integration stage in Lewis et al.
(2009). The stages related to the offensive and defensive systems and the final stage in our
five-stage approach can be seen as equivalent to their on-field sub-process, i.e. as the second
stage in a two-stage production system.

As in the single-process DEA model, in the proposed network DEA approach the SBM
efficiency score is maximized. This takes into consideration the total budget slack and the
number of victories slack. However, additional equations have to be included, since the
amount of every intermediate product produced by a stage must be equal to or greater than
the amount of that intermediate product consumed by the following stage. Also, a very
important difference with respect to the single process DEA approach is that a different
set of lambda multipliers exist for each process, since each process has its own Production
Possibility Set (PPS).

Stages (1) and (5) assume VRS. Thus, on the one hand, not always an increase in the
budget will generate a proportional increase in performance. On the other hand, the output
of the stage (5) (i.e. the number of wins) has an upper limit independently of how much its
inputs increase, i.e. that stage has a saturation limit. Stages (2), (3) and (4) assume Constant
Returns to Scale (CRS) because the number of points made is not limited and will not have
scale effects.

The proposed Network SBM Model (NSBM) is the following, where the λ
p

j are the
variables that, for each process p, allow for the computation of a target operation point
within its corresponding Production Possibility Set. As also occurred in the single-process
case, the network SBM model is not linear, so the corresponding linearized model is shown:

EfficiencyNSBM
J = Min t − s

′budget
J

x1J + x2J

(20)

s.t.

t + s ′wins
J

y1J

= 1 (21)

∑

j
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j · xij = x ′

iJ i = 1,2 (22)

x ′
1J + x ′
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∑
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∑
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∑
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∑

j

λ′5
j · y1j = t · y1J + s ′wins

J (29)

∑

j

λ′1
j = t (30)

∑

j

λ′5
j = t (31)

λ
′p
j ≥ 0 ∀p (32)

s
′budget
J , s ′wins

J ≥ 0 (33)

Constraints (21)–(23) and (29) are equivalent to those of the single-process DEA model
except for the fact that each process p has its own set of variables λ

p

j . Constraints (24)–(28)
impose that the amount of a certain intermediate product consumed within the system has
been previously produced by other stage. For instance, (24) guarantees that the offensive
stats generated as output from stage (1) are enough to fulfill the requirements in stage (2),
where those intermediate products are used as inputs. Note this type of constraints use two
different sets of lambda multiplier, one of them corresponding to the technology of the stage
which produces the product and the other one corresponding to the stage which consumes
it. Equations (30) and (31) assume VRS technology for stages (1) and (5).

4 Results

In this section the results of the proposed network DEA approach are presented and com-
pared with those of the single-process DEA. The data for all teams were obtained from
the official statistics of NBA for regular season 2009/10 available in their official website
(www.nba.com). The data for the two inputs and the single output considered are shown
in Table 4. The budget figures are in million US$. For the sake of completeness and repli-
cability of the results, the data for the 21 intermediate products used in the network DEA
approach are shown in Table 9 in the Appendix.

As for the efficiency assessment, the single-process SBM and network SBM efficiency
scores are shown for every team in Table 5. It can be noted that network DEA efficiency is
lower than the corresponding single efficiency for every team. In addition, Table 6 shows the
ranking for NBA teams ordered by single-process and by network DEA scores. Note that
the Spearman’s rank correlation coefficient between the SBM and NSBM scores is 0.886,
which means that there is a strong positive correlation between both rankings.

Figure 2 shows the SBM efficiency score of each team versus its number of wins. Note
that, in the case of single-process DEA, a substantial number of wins is usually enough to
achieve a high efficiency score. On the contrary, in the case of network DEA, even teams
with a large number of wins may end up with low efficiency scores.

The box-plots of the efficiency scores of both approaches are shown in Fig. 3, grouping
the teams according to their division. Note that the network DEA efficiency is lower in every
division. On one hand, Southeast and Pacific divisions experience the greatest reduction in
their efficiencies when the network approach is considered, whereas the rest of the divisions
do not undergo such a pronounced change. On the other hand, Northwest division has high
single-process efficiency and remains the division with the highest network DEA efficiency.

Going back to Table 5, there are 3 teams that are fully efficient when the single-process
approach is considered: Cleveland Cavaliers (CLE), Oklahoma City Thunder (OKC) and
Sacramento Kings (SAC). From Table 4 it can be noted that CLE and OKC have a high

http://www.nba.com
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Table 4 Input-output data for the regular season 2009/10

Inputs Outputs

FTBudget BTBudget Wins

NBA Eastern Atlantic Bolton Celtics 61.83 25.57 50

New Jersey Nets 15.64 36.49 12

New York Knicks 39.86 28.93 29

Philadelphia 76ers 42.99 22.18 27

Toronto Raptors 38.61 28.59 40

Central Chicago Bulls 28.53 27.68 41

Cleveland Cavaliers 49.71 35.09 61

Detroit Pistons 25.52 32.22 27

Indiana Pacers 27.29 32.44 32

Milwaukee Bucks 20.01 46.76 46

Southeast Atlanta Hawks 43.80 22.11 53

Charlotte Bobcats 38.12 31.63 44

Miami Heat 53.24 23.72 47

Orlando Magic 57.74 22.51 59

Washington Wizards 34.36 26.36 26

NBA Western Southwest Dallas Mavericks 56.52 34.72 55

Houston Rockets 19.34 31.51 42

Memphis Grizzlies 31.14 21.04 40

New Orleans Hornets 52.33 16.91 37

San Antonio Spurs 53.28 22.38 50

Northwest Denver Nuggets 54.26 18.65 53

Minnesota Timberwolves 24.99 29.40 15

Portland Trail Blazers 22.14 27.40 50

Oklahoma City Thunder 20.09 24.76 50

Utah Jazz 51.75 20.38 53

Pacific Golden State Warriors 23.79 34.44 26

Los Angeles Clippers 34.15 18.17 29

Los Angeles Lakers 51.24 30.87 57

Phoenix Suns 47.83 15.80 54

Sacramento Kings 15.05 29.32 25

number of victories, CLE has allocated the main part of its budget to the first team, and that
OKC has a more balanced team, i.e. more money goes to the bench team salaries. On the
other hand, SAC is labeled efficient without having a substantial number of victories and
that it is due to its low players’ salaries, which SAC mainly allocates to the bench team.

In Table 7, the budget and wins slacks obtained from both models are shown. These
slacks represent the amount that the team budget has to be reduced and the increase in the
number of victories that the team should obtain in order to become efficient. For instance, ac-
cording to the single-process approach, Los Angeles Lakers (LAL) obtained a great number
of victories during the regular season, but it consumed a very significant amount of budget
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Table 5 Efficiency scores for single-process and network DEA approaches

SBM
efficiency

Network SBM
efficiency

Atlantic Bolton Celtics BOS 51.31 41.71

New Jersey Nets NJ 20.65 16.79

New York Knicks NYK 37.81 30.74

Philadelphia 76ers PHI 37.16 30.21

Toronto Raptors TOR 53.39 43.40

Central Chicago Bulls CHI 65.42 53.18

Cleveland Cavaliers CLE 100.00 52.45

Detroit Pistons DET 41.94 34.10

Indiana Pacers IND 48.06 39.07

Milwaukee Bucks MIL 61.79 50.24

Southeast Atlanta Hawks ATL 84.57 58.63

Charlotte Bobcats CHA 56.58 46.00

Miami Heat MIA 54.77 44.53

Orlando Magic ORL 96.61 53.61

Washington Wizards WAS 38.40 31.22

Southwest Dallas Mavericks DAL 69.06 43.96

Houston Rockets HOU 74.09 60.23

Memphis Grizzlies MEM 68.75 55.89

New Orleans Hornets NO 47.93 38.96

San Antonio Spurs SAS 59.27 48.19

Northwest Denver Nuggets DEN 76.46 53.01

Minnesota Timberwolves MIN 24.74 20.11

Portland Trail Blazers POR 90.54 73.60

Oklahoma City Thunder OKC 100.00 81.30

Utah Jazz UT 77.28 53.58

Pacific Golden State Warriors GSW 40.05 32.56

Los Angeles Clippers LAC 49.72 40.42

Los Angeles Lakers LAL 85.59 50.62

Phoenix Suns PHO 93.32 61.88

Sacramento Kings SAC 100.00 45.79

and therefore it would need to reduce it by 11.83 millions in order to attain efficiency. Other
important teams that got a high number of victories, like Boston Celtics (BOS) and Dallas
Maverick (DAL) also would have to reduce their budgets according to the single-process
approach. On the other hand, again according to the single-process approach, New Jersey
Nets (NJ) and Minnesota Timberwolves (MIN) should have got more victories given the
salaries they pay to their players.

Regarding the results of the proposed network DEA approach, it can be seen in the last
column from Table 5 that there isn’t any efficient team. This is not uncommon in network
DEA and clearly differentiates it from conventional DEA. The team with the highest network
DEA efficiency is OKC, which was efficient according to single-process DEA. According
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Table 6 Efficiency ranking by
both approaches Teams Ranking

SBM NSBM

Bolton Celtics 20 20

New Jersey Nets 30 30

New York Knicks 27 27

Philadelphia 76ers 28 28

Toronto Raptors 19 19

Chicago Bulls 14 9

Cleveland Cavaliers 2 11

Detroit Pistons 24 24

Indiana Pacers 22 22

Milwaukee Bucks 15 13

Atlanta Hawks 8 5

Charlotte Bobcats 17 15

Miami Heat 18 17

Orlando Magic 4 7

Washington Wizards 26 26

Dallas Mavericks 12 18

Houston Rockets 11 4

Memphis Grizzlies 13 6

New Orleans Hornets 23 23

San Antonio Spurs 16 14

Denver Nuggets 10 10

Minnesota Timberwolves 29 29

Portland Trail Blazers 6 2

Oklahoma City Thunder 2 1

Utah Jazz 9 8

Golden State Warriors 25 25

Los Angeles Clippers 21 21

Los Angeles Lakers 7 12

Phoenix Suns 5 3

Sacramento Kings 2 16

to the network DEA slacks in Table 7, OKC has a well-balanced budget and number of
victories, and only has to reduce its budget by 0.37 millions and get 11 more victories
to become efficient. However, the other single-process efficient teams are very inefficient
when a network DEA approach is considered. Thus, CLE would have to reduce its budget
by 40.32 millions and SAC would have to increase its number of wins by almost 30. Despite
that fact, according to the network DEA approach, CLE has no wins slack and SAC does
not need to reduce its budget.

In Fig. 4, the slacks obtained from both models are graphically represented and grouped
by divisions. The first column, for each approach, corresponds to total budget slack whereas
the second column corresponds to wins slack. In every case, the slacks obtained from net-
work DEA model are higher, which means that the network DEA formulation identifies
more sources of inefficiency than the single-process approach. Thus, when the internal struc-
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Fig. 2 Single-process and network DEA SBM efficiency versus the number of wins of each team

Fig. 3 Box-plots of
single-process and network DEA
SBM results for NBA Divisions
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Table 7 Input and output slacks for both approaches

Slacks

Single Network

Budget Wins Budget Wins

NBA
Eastern

Atlantic Bolton Celtics 42.56 0.00 42.93 11.00

New Jersey Nets 7.28 38.00 7.65 49.00

New York Knicks 23.94 21.00 24.31 32.00

Philadelphia 76ers 20.32 23.00 20.69 34.00

Toronto Raptors 22.36 10.00 22.72 21.00

Central Chicago Bulls 11.37 9.00 11.73 20.00

Cleveland Cavaliers 0.00 0.00 40.32 0.00

Detroit Pistons 12.89 23.00 13.26 34.00

Indiana Pacers 14.88 18.00 15.24 29.00

Milwaukee Bucks 21.92 4.00 22.29 15.00

Southeast Atlanta Hawks 10.17 0.00 21.43 8.00

Charlotte Bobcats 24.90 6.00 25.27 17.00

Miami Heat 32.12 3.00 32.49 14.00

Orlando Magic 2.72 0.00 35.77 2.00

Washington Wizards 15.88 24.00 16.25 35.00

NBA
Western

Southwest Dallas Mavericks 28.23 0.00 46.76 6.00

Houston Rockets 6.00 8.00 6.36 19.00

Memphis Grizzlies 7.34 10.00 7.71 21.00

New Orleans Hornets 24.39 13.00 24.76 24.00

San Antonio Spurs 30.81 0.00 31.18 11.00

Northwest Denver Nuggets 17.17 0.00 28.43 8.00

Minnesota Timberwolves 9.54 35.00 9.91 46.00

Portland Trail Blazers 4.69 0.00 5.05 11.00

Oklahoma City Thunder 0.00 0.00 0.37 11.00

Utah Jazz 16.39 0.00 27.65 8.00

Pacific Golden State Warriors 13.39 24.00 13.75 35.00

Los Angeles Clippers 7.47 21.00 7.84 32.00

Los Angeles Lakers 11.83 0.00 37.62 4.00

Phoenix Suns 4.25 0.00 19.15 7.00

Sacramento Kings 0.00 0.00 0.00 29.60

ture of the units is taken into account, it can be seen that some teams having high single-
process efficiency like CLE, Portland Trail Blazers (POR), ORL, LAL, Phoenix Suns (PHO)
and SAC, need to increase their number of victories or to significantly reduce their roster
wages to become efficient, i.e. those teams have small slacks according to single-process
approach but there are larger hidden inefficiencies that are revealed by network DEA. Thus,
for example, SAC was single-process efficient, with one of the smallest budgets, but should
have to increase the number of victories to become network DEA efficient. Other teams
with lots of victories, like CLE, DAL, LAL and PHO, would have to reduce their wages to
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Fig. 4 Budget and wins slacks for all teams grouped by NBA Division

become network DEA efficient, even though the traditional DEA model did not identify any
budget slack.

Furthermore, in Fig. 5 network DEA efficiency versus single-process efficiency are plot-
ted for every team, tagging the teams according to the division they belong to. As all network
DEA efficiencies are lower than their single-process counterparts, all points are below the
diagonal. Notice that there are a significant number of teams very close to the diagonal,
whose efficiencies are mostly between 20 and 80 percent. However, there are several teams
relatively far from the diagonal, with single-process efficiencies very close to 100. In par-
ticular, it can be noticed the three teams with 100% single-process efficiency that are not
completely efficient according to network DEA.

Finally, the difference in the efficiency scores computed by the two approaches for each
team is shown in Fig. 6, in increasing order of that difference. It can be noted that 2 of
the 3 efficient teams by the single-process approach (CLE and SAC) have the biggest differ-
ence, which means that network DEA shows sources of inefficiency hidden to the traditional
approach. Moreover, looking back to Table 7, those inefficiencies can be traced to the cor-
responding input and output slacks.

With respect to the target values for the intermediate products, it must be taken into
account that in those network DEA models, like the one proposed, in which intermediate
products are considered as free-links (as opposed to fixed-links, see Tone and Tsutsui 2009)
the computed targets for intermediate products do not need to dominate the observed val-
ues. That prevents computing a specific efficiency score for each process. Table 8 shows the
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Fig. 5 Network DEA vs single-process efficiency

Fig. 6 Single-process efficiency minus network DEA efficiency

differences between the computed target values for the intermediate products and the corre-
sponding observed values. The analysis of these differences should allow the coach to detect
which offensive and defensive aspects to strengthen or rectify. For example, the difference
for FT2PA is less than zero for most teams, which means that first team offensive systems
must work in order to select better shooting positions because the teams could achieve the
same number of points by attempting fewer shots. On the other hand, in case that the dif-
ference is greater than zero, for instance BT3PA for OKC, the team should be able to boost
that game feature to take advantage of its resources. In that way, teams can be aware of its
defects and realize which feature needs more attention.
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Table 8 Difference between target and observed values for intermediate products

Intermediate products

FT
2PA

FT
3PA

FT
FTA

FT
OffReb

FT
assists

FTTO FT
DefReb

FT
steals

FT
blocks

BT
2PA

BT
3PA

BT
FTA

BT
OffReb

BT
assists

BTTO BT
DefReb

BT
steals

BT
blocks

FT
points

BT
points

Inv
OppPoints

BOS −402 −191 −445 22 −540 −13 −416 −150 −49 39 −136 12 140 −21 −73 47 −73 −33 −1171 −102 −230.39

NJ −2692 −405−1152 −409 −644 −131 −934 −252 −198 −1597 −515 −465 −278 −568 −142 −925 −207 −118 −3750 −2178 −950.51

NYK −1072 −642 −355 −181 −490 −114 −835 −117 −42 −1050 −862 −443 −145 −488 −72 −435 −191 −77 −2069 −2324 −544.73

PHI −1674 −299 −494 −449 −511 −72 −986 −273 −207 −1222 −484 −419 −18 −473 −137 −312 −135 −59 −2244 −2064 −506.64

TOR −998 −404 −666 −97 −271 −67 −639 −1 −69 −638 −108 −126 −7 −437 −81 −204 −85 −58 −2026 −1017 −315.46

CHI −1499 35 −335 −306 −367 −53 −738 −60 −146 −571 −194 −268 89 −214 −69 −272 −79 −69 −1534 −831 −372.94

CLE 699 −339 −206 204 −141 −7 39 34 36 −21 107 47 77 −24 −23 −193 −14 −70 0 0 0

DET −1335 −105 −481 −370 −363 −146 −476 −178 −38 −1648 −487 −622 −209 −489 −71 −643 −159 −102 −1496 −2507 −665.60

IND −850 −905 −448 −187 −384 −78 −899 −176 −164 −1199 −283 −511 −36 −470 −69 −388 −103 −69 −2121 −1749 −505.80

MIL −43 −458 113 −106 −113 −72 −303 −65 −74 −1004 −337 −264 −51 −368 −40 −343 −75 −16 −128 −1567 −308.54

ATL −667 −222 −170 −194 −299 −41 −536 −106 −97 88 −61 12 155 −39 −104 289 21 24 −1007 −56 −148.40

CHA −794 −363 −485 −134 −385 −25 −576 −186 −60 −223 6 −237 48 −69 −59 −84 −25 −104 −1455 −319 −379.61

MIA −789 −205 −366 −31 −121 −56 −298 −89 −55 −75 −182 −8 −18 −140 −60 −300 −66 −101 −1208 −255 −311.14

ORL 676 −528 −356 7 143 −4 −416 18 −61 479 −408 135 219 −143 −40 134 34 −16 −197 −131 −46.08

WAS −976 −457 −269 −38 −397 −119 −325 −80 −2 −2160 −192 −765 −472 −449 −65 −1052 −164 −252 −1548 −2775 −661.79

DAL 267 8 97 33 −87 −59 −327 −38 −33 −581 −289 −145 99 −324 −10 29 −60 −63 265 −1079 −78.01

HOU 44 −747 −105 −163 −387 −51 −568 −148 −25 −1351 −162 −525 −70 −253 −60 −156 −33 −24 −1268 −1362 −308.50

MEM −2157 −375 −871 −393 −376 −32 −867 −249 −70 −100 240 −5 25 −71 −100 35 −13 −72 −3191 278 −335.99

NO −695 −264 −209 −166 −206 −126 −519 −91 −52 −1246 −490 −225 −36 −609 −35 −392 −180 −11 −1146 −1995 −413.50

SAS 17 129 10 −21 48 −79 −259 74 −2 −631 −570 −322 12 −508 0 −282 −112 −59 244 −1693 −220.86
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Table 8 (Continued)

Intermediate products

FT
2PA

FT
3PA

FT
FTA

FT
OffReb

FT
assists

FTTO FT
DefReb

FT
steals

FT
blocks

BT
2PA

BT
3PA

BT
FTA

BT
OffReb

BT
assists

BTTO BT
DefReb

BT
steals

BT
blocks

FT
points

BT
points

Inv
OppPoints

DEN −453 −282 −720 −79 −77 −30 −301 −105 8 59 −63 −32 120 −191 −38 0 −71 −85 −1317 −137 −82.81

MIN −2557 −548 −740 −290 −661 −109 −991 −306 −108 −1835 −301 −689 −408 −554 −108 −941 −148 −102 −3448 −2540 −817.75

POR −593 −91 −337 −62 −86 −74 −89 −12 84 26 −191 −39 27 −219 −41 −214 −33 −114 −822 −360 −238.23

OKC −1110 −344 −656 −131 −267 −10 −523 −172 −74 208 221 103 49 −3 −77 −4 −4 −87 −1841 382 −198.63

UT −188 −134 −383 −24 −442 −13 −396 −67 1 −413 99 −94 82 −294 −27 12 −101 −61 −804 −468 −124.68

GSW −1969 −825 −855 −104 −683 −69 −613 −297 11 −1099 −286 −369 −193 −445 −150 −703 −215 −184 −3609 −1744 −541.15

LAC −1406 −733 −549 −129 −492 −76 −521 −120 −107 −1129 −83 −357 −288 −524 −75 −774 −134 −173 −2427 −1442 −588.20

LAL −282 −190 −315 −122 −6 −18 −187 −61 −21 96 −111 219 149 −163 −53 −104 −6 −14 −673 158 −65.37

PHO −367 −566 −307 −11 −400 −8 −505 19 −14 207 −10 −20 49 −33 −50 135 18 −58 −1619 −8 −28.38

SAC −1837 −336 −612 −285 −618 −76 −748 −169 −133 −1151 −414 −455 −210 −293 −106 −617 −137 −66 −2524 −1853 −605.02
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5 Conclusions and further research

In this paper, an efficiency analysis of NBA teams has been performed by means of con-
ventional and network DEA. Since the latter approach has never been applied to basketball,
we have developed a framework of the internal operation of a NBA team, by structuring the
production process of a DMU into acquisition, offensive, defensive and effectiveness stages.
SBM have been implemented instead of a radial adjustment in order to cover both contrac-
tion of wages and expansion of outputs. Another main feature of the proposed approach
is to consider the importance of managing properly the economical resources, in terms of
allocating the total wages salaries to the first and bench teams.

NBA is a demanding competition, where significant investments are involved. Hence,
it becomes desirable to identify additional improvement guidelines within a team. In this
paper it has been shown that Network DEA has provided a stronger assessment of the teams’
performances uncovering sources of inefficiency that can remain hidden in the conventional
DEA approach. In fact, some teams have moved from a high single-process efficiency to
average network DEA efficiency. This is not surprising since for a team to be evaluated as
network DEA efficient all its internal processes need to be efficient. It is often the case that
a team has a well-performing First Team or Bench Team or perhaps a very efficient defense
system, but it does not have all of them simultaneously then its overall efficiency decreases.

In addition to the target inputs and outputs, the intermediate products projections can also
analyzed. However, when carrying out this analysis of intermediate products targets it must
be taken into account that these intermediate products projections are not unique, i.e. there
are usually more than one configuration of the operation points of the internal processes than
lead to the same target inputs and outputs of the whole system.

With respect to topics for further research there are several. Thus, since NBA teams do
not plan for only one season but usually elaborate a project for several years (including in-
vestment in players from draft, contracts’ updates and players’ transfers to other teams in
case of not achieving short-time objectives), one topic of further research can be to evaluate
the change in efficiency for every team in a four or five periods’ time span. Another area of
research is the application of statistical methods to reduce the number of intermediate prod-
ucts when network DEA approach is considered. Some of the intermediate products may
have a high degree of correlation and by means of methodologies like Factor Analysis a
new group of reduced variables could be obtained. Another possible path is to assign differ-
ent weights to the different variables, thus reflecting their relative importance. In that case,
an extension of the Tsutsui and Goto (2009) approach to network DEA together with an
objective method for choosing these weights would be needed. Yet another feasible method-
ological development would be to adapt the SBM super-efficiency approach in Tone (2002)
to the network DEA framework, so that in case several DMUs were deemed efficient in net-
work DEA (something that does not occur easily) they can be ranked. Finally, the fact that
Network DEA always provides lower efficiency scores than single-process DEA has been
observed by other authors, e.g. Kao (2009a), and Tone and Tsutsui (2009) when analyzing
the free-link case, but it has not been proved to hold for all scenarios. Thus, a mathematical
proof would be a subject of further research.

Acknowledgements The authors would like to thank the reviewers for their constructive comments and
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Table 9 Intermediate products

Intermediate products

FT
2PA

FT
3PA

FT
FTA

FT
OffReb

FT
assists

FTTO FT
DefReb

FT
steals

FT
blocks

BT
2PA

BT
3PA

BT
FTA

BT
OffReb

BT
assists

BTTO BT
DefReb

BT
steals

BT
blocks

FT
points

BT
points

Inv
OppPoints

BOS 3288 750 1469 417 1487 123.92 1607 431 256 1573 683 621 299 443 242.72 842 270 146 5491 2645 1276.16

NJ 3385 539 1398 514 871 157.48 1220 319 248 1984 646 617 383 669 182.82 1138 254 145 4787 2788 1201.49

NYK 2746 966 949 436 1039 178.57 1526 280 162 1985 1179 810 400 733 170.07 951 306 143 4574 3799 1151.28

PHI 3233 601 1047 686 1022 132.63 1629 425 319 2092 780 761 255 701 228.31 792 242 120 4577 3437 1071.35

TOR 3307 851 1485 448 1029 156.49 1592 226 235 1927 546 633 358 775 216.92 915 243 149 5482 3052 1152.07

CHI 3866 423 1175 666 1144 143.88 1714 290 316 1893 643 787 271 560 208.33 1001 241 162 5076 2917 1230.47

CLE 2822 1021 1455 332 1296 142.45 1414 309 217 1987 561 725 459 539 229.89 1278 255 208 5270 3103 1275.84

DET 2894 407 1034 607 874 206.61 1119 330 150 2518 783 964 446 717 162.34 1123 266 163 3829 3880 1230.31

IND 2697 1263 1103 468 990 149.25 1661 356 297 2230 633 916 317 740 177.94 957 229 142 4886 3377 1175.09

MIL 2698 972 829 510 984 174.22 1399 323 265 2487 841 846 455 756 195.69 1161 257 120 4102 3907 1270.65

ATL 3726 814 1255 659 1303 159.49 1798 404 317 1620 641 659 310 486 283.29 653 188 96 5586 2752 1256.91

CHA 3334 855 1386 520 1218 123.46 1624 433 242 1641 476 794 338 440 208.33 866 199 204 5256 2557 1299.88

MIA 3502 730 1328 444 1011 160.26 1417 353 250 1590 696 603 431 537 219.78 1136 252 207 5268 2646 1294.16

ORL 2730 1187 1564 511 974 135.32 1821 313 306 1423 1054 612 299 641 240.38 915 199 150 5294 3132 1280.08

WAS 2477 748 801 266 889 177.30 944 226 110 2998 477 1094 700 668 152.67 1514 267 311 3794 4098 1207.15

DAL 2908 607 1029 450 1129 181.49 1637 347 261 2354 891 841 384 788 196.85 949 277 188 4487 3877 1228.35

HOU 2380 1216 965 532 1182 144.09 1568 384 199 2705 622 1057 439 608 202.43 903 199 119 4897 3498 1186.94

MEM 4466 822 1690 744 1134 121.36 1820 474 236 1389 198 512 326 409 235.85 676 171 163 6647 1757 1172.61

NO 2831 677 967 491 907 208.77 1400 299 205 2439 895 694 361 921 160.26 1050 326 95 4343 3877 1187.37

SAS 2869 430 1014 460 899 190.11 1450 207 209 2243 1117 955 427 930 169.49 1171 309 172 4076 4236 1266.62
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Table 9 (Continued)

Intermediate products

FT
2PA

FT
3PA

FT
FTA

FT
OffReb

FT
assists

FTTO FT
DefReb

FT
steals

FT
blocks

BT
2PA

BT
3PA

BT
FTA

BT
OffReb

BT
assists

BTTO BT
DefReb

BT
steals

BT
blocks

FT
points

BT
points

Inv
OppPoints

DEN 3512 874 1805 544 1081 147.93 1563 403 212 1649 643 703 345 638 217.39 942 280 205 5896 2833 1191.33

MIN 3423 716 1047 422 945 142.05 1348 390 170 2319 465 879 540 681 158.98 1208 207 136 4744 3307 1131.48

POR 3479 650 1361 501 1033 185.87 1280 293 123 1586 738 672 412 641 210.97 1103 230 227 5142 2903 1286.34

OKC 3996 903 1680 570 1214 121.65 1714 453 281 1404 326 530 390 425 246.91 893 201 200 6161 2161 1244.40

UT 3247 726 1468 489 1446 131.06 1658 365 219 2121 481 765 383 741 207.04 930 310 181 5383 3164 1233.20

GSW 3470 1116 1387 332 1175 127.39 1232 443 97 1937 571 698 421 664 238.66 1165 318 243 5855 3067 1084.95

LAC 3080 1057 1143 384 1041 141.04 1212 283 227 2064 400 724 543 769 173.61 1290 249 239 4932 2917 1194.74

LAL 3572 827 1482 622 1086 144.93 1545 381 257 1741 735 503 351 644 246.31 1117 231 143 5597 2742 1257.55

PHO 3484 1169 1413 485 1423 128.04 1791 284 238 1534 601 704 425 489 233.10 825 195 180 6284 2755 1157.81

SAC 3389 620 1129 526 1139 139.86 1380 312 245 2123 763 840 451 540 195.69 1138 252 121 4782 3418 1168.50



Ann Oper Res

References

Anderson, T. R., & Sharp, G. P. (1997). A new measure of baseball batters using DEA. Annals of Operations
Research, 73, 141–155.

Aoki, S., Inoue, K., Nakashima, T., & Honda, K. (2009). Efficiency measurement for agent simulation based
on DEA with imprecise data. In IEEE international conference on fuzzy systems, Korea (pp. 1563–
1567).

Avkiran, N. K. (2009). Opening the black box of efficiency analysis: an illustration with UAE banks. Omega,
37(4), 930–941.

Barros, C. P., & Douvis, J. (2009). Comparative analysis of football efficiency among two small European
countries: Portugal and Greece. International Journal of Sport Management and Marketing, 6(2), 183–
199.

Barros, C. P., Assaf, A., & Sá-Earp, F. (2010). Brazilian football league technical efficiency: a Simar and
Wilson approach. Journal of Sports Economics, 11(6), 641–651.

Barros, C. P., & Garcia-del-Barrio, P. (2011). Productivity drivers and market dynamics in the Spanish first
division football league. Journal of Productivity Analysis, 35(1), 5–13.

Boscá, J. E., Liern, V., Martínez, A., & Sala, R. (2009). Increasing offensive or defensive efficiency? An
analysis of Italian and Spanish football. Omega, 37(1), 63–78.

Cadenas, J. M., Liern, V., Sala, R., & Verdegay, J. L. (2010). Fuzzy linear programming in practice: an
application to the Spanish football league. Studies in Fuzziness and Soft Computing, 254, 503–528.

Castelli, L., Pesenti, R., & Ukovich, W. (2010). A classification of DEA models when the internal structure
of the decision making units is considered. Annals of Operations Research, 173(1), 207–235.

Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. Euro-
pean Journal of Operational Research, 2(6), 429–444.

Chen, W.-C., & Johnson, A. L. (2010). The dynamics of performance space of Major League Baseball pitch-
ers 1871–2006. Annals of Operations Research, 181(1), 287–302.

Chen, Y., Cook, W. D., Li, N., & Zhu, J. (2009). Additive efficiency decomposition in two-stage DEA. Euro-
pean Journal of Operational Research, 196(3), 1170–1176.

Cook, W. D., Zhu, J., Bi, G., & Yang, F. (2010). Network DEA: additive efficiency decomposition. European
Journal of Operational Research, 207, 1122–1129.

Cooper, W. W., Ramón, N., Ruiz, J. L., & Sirvent, I. (2011). Avoiding large differences in weights in cross-
efficiency evaluations: application to the ranking of basketball players. Journal of Centrum Cathedra,
4(2), 197–215.

Cooper, W. W., Ruiz, J. L., & Sirvent, I. (2009). Selecting non-zero weights to evaluate effectiveness of
basketball players with DEA. European Journal of Operational Research, 195(2), 563–574.

Espitia-Escuer, M., & García-Cebrián, L. I. (2006). Performance in sports teams results and potential in the
professional soccer league in Spain. Management Decision, 44(8), 1020–1030.

Espitia-Escuer, M., & García-Cebrián, L. I. (2010). Measurement of the efficiency of football teams in the
champions league. Managerial and Decision Economics, 31(6), 373–386.

Färe, R., & Grosskopf, S. (2000). Network DEA. Socio-Economic Planning Sciences, 34(1), 35–49.
Fried, H. O., Lambrinos, J., & Tyner, J. (2004). Evaluating the performance of professional golfers on the

PGA, LPGA and SPGA tours. European Journal of Operational Research, 154(2), 548–561.
Fukuyama, H., & Weber, W. L. (2010). A slacks-based inefficiency measure for a two-stage system with bad

outputs. Omega, 38(5), 398–409.
García-Sánchez, I. M. (2007). Efficiency and effectiveness of Spanish football teams: a three-stage-DEA

approach. Central European Journal of Operations Research, 15(1), 21–45.
Guzmán, I., & Morrow, S. (2007). Measuring efficiency and productivity in professional football teams:

evidence from the English Premier League. Central European Journal of Operations Research, 15(4),
309–328.

Haas, D. J. (2003a). Productive efficiency of English football teams—a data envelopment analysis approach.
Managerial and Decision Economics, 24(5), 403–410.

Haas, D. J. (2003b). Technical efficiency in the Major League Soccer. Journal of Sports Economics, 4(3),
203–215.

Kao, C. (2009a). Efficiency decomposition in network data envelopment analysis: a relational model. Euro-
pean Journal of Operational Research, 192, 949–962.

Kao, C. (2009b). Efficiency measurement for parallel production systems. European Journal of Operational
Research, 196, 1107–1112.

Kao, C., & Hwang, S. N. (2008). Efficiency decomposition in two-stage data envelopment analysis: an ap-
plication to non-life insurance companies in Taiwan. European Journal of Operational Research, 185,
418–429.



Ann Oper Res

Kao, C., & Hwang, S. N. (2010). Efficiency measurement for network systems: IT impact on firm perfor-
mance. Decision Support Systems, 48(3), 437–446.

Lewis, H. F., Lock, K. A., & Sexton, T. R. (2009). Organizational capability, efficiency, and effectiveness in
Major League Baseball: 1901–2002. European Journal of Operational Research, 197(2), 731–740.

Lewis, H. F., & Sexton, T. R. (2004a). Data envelopment analysis with reverse inputs and outputs. Journal of
Productivity Analysis, 21(2), 113–132.

Lewis, H. F., & Sexton, T. R. (2004b). Network DEA: efficiency analysis of organizations with complex
internal structure. Computers and Operations Research, 31(9), 1365–1410.

Li, Y., Liang, L., Chen, Y., & Morita, H. (2008). Models for measuring and benchmarking Olympics achieve-
ments. Omega, 36, 933–940.

Lins, M. P. E., Gomes, E. G., Soares de Mello, J. C. C. B., & Soares de Mello, A. J. R. (2003). Olympic
ranking based on a zero sum gains DEA model. European Journal of Operational Research, 148, 312–
322.

Lozano, S. (2011). Scale and cost efficiency analysis of networks of processes. Expert Systems With Applica-
tions, 38(6), 6612–6617.

Lozano, S., Villa, G., Guerrero, F., & Cortés, P. (2002). Measuring the performance of nations at the Summer
Olympics using data envelopment analysis. The Journal of the Operational Research Society, 53, 501–
511.

Pastor, J. T., Ruiz, J. L., & Sirvent, I. (1999). Enhanced DEA Russell graph efficiency measure. European
Journal of Operational Research, 115(3), 596–607.

Picazo-Tadeo, A. J., & González-Gómez, F. (2010). Does playing several competitions influence a team’s
league performance? Evidence from Spanish professional football. Central European Journal of Oper-
ations Research, 18(3), 413–432.

Sexton, T. R., & Lewis, H. F. (2003). Two-stage DEA: an application to Major League Baseball. Journal of
Productivity Analysis, 19(2–3), 227–249.

Soares de Mello, J. C. C. B., Angulo-Meza, L., & Branco da Silva, B. P. (2009). A ranking for the Olympic
Games with unitary input DEA models. IMA Journal of Management Mathematics, 20, 201–211.

Tone, K. (2001). A slacks-based measure of efficiency in data envelopment analysis. European Journal of
Operational Research, 130, 498–509.

Tone, K. (2002). A slacks-based measure of super-efficiency in data envelopment analysis. European Journal
of Operational Research, 143(1), 32–41.

Tone, K., & Tsutsui, M. (2009). Network DEA: a slacks-based measure approach. European Journal of
Operational Research, 197(1), 243–252.

Tone, K., & Tsutsui, M. (2010). Dynamic DEA: a slacks-based measure approach. Omega, 38(3–4), 145–
156.

Tsutsui, M., & Goto, M. (2009). A multi-division efficiency evaluation of U.S. electric power companies
using a weighted slacks-based measure. Socio-Economic Planning Sciences, 43(3), 201–208.

Wu, J., Zhou, Z., & Liang, L. (2010). Measuring the performance of nations at Beijing Summer Olympics
using integer-valued DEA model. Journal of Sports Economics, 11(5), 549–566.

Yu, M.-M. (2010). Assessment of airport performance using the SBM-NDEA model. Omega, 38(6), 440–
452.

Zhang, D., Li, X., Meng, W., & Liu, W. (2009). Measuring the performance of nations at the Olympic Games
using DEA models with different preferences. The Journal of the Operational Research Society, 60,
983–990.



Contents lists available at SciVerse ScienceDirect

Telecommunications Policy

Telecommunications Policy 37 (2013) 469–482
0308-59

http://d

n Corr

fax: þ3

E-m
URL: www.elsevier.com/locate/telpol
Dynamic performance analysis of U.S. wireline
telecommunication companies

Plácido Moreno n, Sebastián Lozano, Ester Gutiérrez

Department of Industrial Management, University of Seville, 41092 Sevilla, Spain
a r t i c l e i n f o

Available online 8 May 2013

Keywords:

Telecommunications

ILEC

Dynamic DEA

Network DEA

SBM
61/$ - see front matter & 2012 Elsevier Ltd.

x.doi.org/10.1016/j.telpol.2012.12.001

espondence to: Escuela Superior de Ingenie

4 954487329.

ail address: placidomb@us.es (P. Moreno).
a b s t r a c t

Assessing the changes over time in the efficiency of firms participating in competitive

markets has always been a major concern to researchers and experts alike. With respect

to the US wireline telecommunications sector, recent changes in unbundling regulations,

as well as intermodal competition and mergers, have just increased uncertainty in a

sector still marked by the Telecommunications Act of 1996. Although Data Envelopment

Analysis (DEA) has become a methodology commonly used in many efficiency assess-

ment applications, in the telecommunications context there is a need to implement an

approach that takes into account carry-over activities between consecutive years;

because of a wide customer base, financial long-term planning and investments in

network elements and facilities are crucial for Local Exchange Carriers (LECs) to succeed.

To that end, a Dynamic DEA application is formulated in this paper to evaluate the

Incumbent LECs’ (ILECs) performance from 1997 to 2007. Finally, a regression analysis

has been carried out to establish the impact of competition and regulatory schemes upon

carriers’ efficiency. The results show that local competition has worsened efficiency,

whereas neither intermodal competition nor incentive regulation has such a clear

influence.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Many authors have pointed out that productivity efficiency can be considered as a key element for obtaining greater
operating revenues and improved market position in competitive markets (Pentzaropoulos & Giokas, 2002; Tsai, Chen, &
Tzeng, 2006). The telecommunications sector has been one of the most competitive industries since the liberalization of
the market in 1996. Competitiveness requires operating efficiency. From among the different efficiency assessment
methods, Data Envelopment Analysis (DEA) is the one that has been most commonly applied in a wide range of industries,
due to its versatility.

DEA is a well-known non-parametric method that estimates the relative efficiency of similar Decision Making Units
(DMUs) (see, for example, Cooper, Seiford, & Tone, 2006; Cooper, Seiford, & Zhu, 2011; Thanassoulis, 2001; Zhu, 2002).
DEA evaluates the DMUs’ observed inputs and outputs, in order to determine which DMUs make up the efficient frontier,
and provides efficiency estimations for all units. Best-practices units are identified and become the reference sets for the
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less efficient DMUs. In the case of inefficient DMUs, DEA identifies the reduction in inputs or increase in outputs (with
respect to the observed values) that these units have to carry out in order to reach the efficient frontier.

There are a number of DEA applications to the telecommunications sector in the literature. Thus, Lien and Peng (2001)
examined the production efficiency of telecommunications in 24 OECD countries from 1980 to 1995, by applying DEA to
every year separately. In their study, total revenue is chosen as the output measure and three inputs are considered,
namely the number of telephone lines, the number of employees and the total amount of investment. With respect to the
use of investment as an input, capital expenditure and total assets are included as alternatives. Pentzaropoulos and Giokas
(2002) studied the situation of the European telecommunications market by comparing the DEA efficiency of the main
European operators. One of their conclusions is that operational efficiency can be achieved by organizations with large and
small revenues alike. Similar results were presented by Tsai et al. (2006) in their comparative analysis for global
telecommunication companies. More recently, Sadjadi and Omrani (2010) estimated the efficiency of telecommunication
companies in Iran by implementing a bootstrapped robust DEA model.

The statutory framework for the U.S. communications policy is based on the Telecommunications Act of 1996, and is
aimed at opening the local and long distance telephone markets, which were previously being operated as monopolies,
to competition, by removing barriers to entry for new incumbents. In other words, Competitive Local Exchange Carriers
(CLECs) could gain access to unbundled network elements in order to provide telecommunication services. The influence of
this deregulatory environment on the efficiency of Incumbent Local Exchange Carriers (ILECs) from 1988 to 2000 was
investigated to some extent by Resende (2008) via DEA. Sastry (2009) also used DEA to study the links between these
major changes in competition and the performance attributes of telecommunications providers, focusing on service
quality.

There are a number of DEA models that have been developed to cope with changes in time. Thus, Charnes, Clark,
Cooper, and Golany (1984) presented a Window-analysis (WA) approach that takes into account data from several years
when assessing efficiency. This WA approach was used in Yang and Chang (2009) to measure telecommunication firms’
efficiencies in Taiwan over the period 2001 to 2005.

An alternative approach is the Malquimst Productivity Index (MPI) that allows analysis of the productivity change of a
certain industry over time (Färe, Grosskopf, Lindgren, & Roos, 1992). In addition, the MPI allows decomposing this
productivity change into an efficiency change between adjacent periods of time (relative to the efficient frontier of each
period) and an efficient frontier shift (a.k.a. technological change). In the literature there are some studies regarding
productivity growth in telecommunications industry. Thus, Uri (2000) calculated the performance changes and shifts in
technology of 19 LECs for the period 1988 to 1998 and concluded that growth was due mainly to technological innovation
rather than improvements in relative efficiency. In contrast, more recent evidence (Seo, Featherstone, Weisman, and Gao
2010) shows that ILECs underperformed over the period 1996 to 2005 in terms of average productivity growth.

More recently, Sung (2012) also applied a MPI approach to evaluate the total factor productivity (TFP) of ILECs and
estimated the effects of regulatory schemes and competitive pressure on the slowdown in productivity growth of ILECs by
means of a TFP-level regression analysis. It was found that intermodal competition and incentive regulation have induced
a positive technical change but have worsened the ILECs’ performance. Other attempts have been made with the purpose
of estimating technological progress in the U.S. wireless services industry (Banker, Cao, Menon, & Natarajan 2010), which
were motivated by the expanding market share of mobile telecom firms.

Nevertheless, despite the MPI approach being able to evaluate the change effect, MPI only measures distance to the
efficient frontier in single periods of time (or at most between adjacent periods of time) and does not consider the carry-
over activities between consecutive periods of time. In most industries with economies of scale, such as the
telecommunications sector, long-term planning and investments in network infrastructure and technology are critical
to gain better positions in the market. In fact, the entry barriers in telephone markets, that the Telecommunications Act of
1996 was intended to remove, are related to the huge amounts of money that new firms had to invest in network elements
to be able to compete with the ILECs. Some authors (Ai & Sappington, 2002; Jung, Gayle, & Lehman 2008) have included
infrastructure from previous periods as an explanatory variable in their dynamic data panel models. This lagged
investment influences the network modernization in future periods. Cambini and Jiang (2009) have thus considered the
influence of investment on competition.

In order to take into account the connecting activities along multiple periods, the Dynamic DEA approach was proposed
(Tone & Tsutsui, 2010). In this paper, Dynamic DEA is used to assess the performance of wireline telecommunications firms
from 1997 to 2007, and afterwards a regression is carried out to evaluate the effects of local competition, unbundling
regulation, intermodal competition, incentive regulation, and mergers upon the carriers’ efficiency. The paper is divided
into six sections. Section 2 reviews the current state of the industry in the U.S. In Section 3 the Dynamic DEA methodology
is described. The description of the data used is presented in Section 4 with the discussion of the results Section 5. Finally,
conclusions are drawn in Section 6.

2. Background

This section addresses the features of the U.S. telecommunication sector and the issues that have arisen in the last
years. Specifically, the current state of the unbundling deregulation, the recent trends in telecommunications usage
leading to intermodal competition and the influence of price-cap regulation are reviewed. Therefore, the evaluation of the
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long range performance of firms in the wireline segment market is fully justified because of the topics listed. The last sub-
section shows a brief summary of mergers amongst Regional Bell Operating Companies (RBOCs).

2.1. Unbundling deregulation in the U.S.

After the Bell System divestiture, when AT&T split its local operating system into seven independent local exchange
operating companies known as RBOCs, the main step to deregulation was the passing of the Telecommunications Act of
1996. It was intended to open the local market, which was dominated by incumbent carriers, to new competitive carriers
known as CLECs. The Act mandated that network elements owned by ILECs had to be unbundled and the CLECs could gain
access to these Unbundled Network Elements (UNEs) under a wholesale pricing system established by the regulators.

There are two leasing types for UNEs, namely UNE-Platform (UNE-P) which accounts for the leasing of all ILEC network
elements simultaneously and UNE-Loop (UNE-L), which means leasing just a part of the local loop network. In other words,
under UNE-L entry, CLECs lease only the wires and install their own switching equipment. In exchange for the leasing of
their infrastructure, RBOCs were allowed to provide an interLATA long distance service, i.e. service across different Local
Access Transport Areas (LATAs), because, after the break-up of AT&T, RBOCs were restricted to providing an intraLATA
service only.

The telecommunications network has a specific cost structure of high fixed cost and low marginal cost which leads to
economics of scale and scope. That is why the CLECs could not bear the huge cost of entering into market competition
before the passing of the Telecommunications Act. In contrast, the Act also encouraged the CLECs to make their own
investments in the network after a period of leasing. However, Quast (2008) reported that facilities-based entry (UNE-L
entry) into the telecommunications market had actually been negatively affected by the low cost of UNE-P entry.

Unsurprisingly, ILECs were not satisfied with UNEs rules because local-loop unbundling may dampen ILECs’ incentives
to upgrade their networks and discourage CLECs to move from leasing lines to building their own infrastructure (Cambini
& Jiang, 2009). After many court appeals, the Federal Communications Commission (FCC) has been forced to adjust the
UNE policy in several ways. Thus, as far as we are concerned, ILECs are no longer required to give CLECs access to their
broadband facilities, fiber-optic networks or the transmission component of the Internet access service. Last but not least,
Dai and Tang (2009) pointed out that the switching function was removed from the list of unbundled eligible elements;
thus, leasing of all the portions of the incumbents’ network in order to provide a phone service is no longer available.

2.2. Intermodal competition

Intermodal competition accounts for the increasing importance of wireless telephony and high-speed connections.
According to FCC reports (Statistical Trends in Telephone Service), there has been a deterioration in the number of ILECs’
lines over recent years. Loomis and Swann (2005) first warned about the intermodal competition in the U.S.
telecommunications market, apart from competition between ILECs and CLECs. Both wireless development and
substitution of a high-speed service for dial-up lines have had a negative impact on incumbent line based reduction.

Zimmerman (2007) discussed the decline in overall telephone service penetration rates, naming the substitution
between wireline and wireless telephony (i.e., consumers prefer wireless services) and the high penetration of high-speed
and cable connections as the reasons for such falling trends in wireline services. Special attention should be given to cable
companies due to their ability to offer bundled voice, video and Internet access over their own networks.

In their study of the mobile market, Banker et al. (2010) highlighted the significant growth of mobile telephony, despite
the economic environment. While assessing the effects of network unbundling in telecommunications, Ware and Dippon
(2010) found that facility investment could have declined due to mandatory unbundling and pointed out the significance
of intermodal competition between video, wireless and telephone providers. Therefore, ILECs should perform as efficiently
as possible in order to be able to compete against all their rivals.

2.3. Price-cap regulation

At the beginning of the 1990s, most States changed the regulatory regime for US telecommunications firms from
traditional Rate of Return regulation (RoR) to other incentive regulations, Price Cap regulation (PCR) being the most
widespread type of incentive regulation. However, even nowadays there is a wide range of rate regulation plans of ILECs
across the different states and ILECs usually provides telecommunication services in more than one state.

Resende (2000), after employing a regression analysis of DEA efficiencies scores, determined that ILECs can achieve a
higher level of efficiency under PCR. In addition, Ai and Sappington (2002) found lower operating costs and network
modernization where incentive regulation was implemented. However, Uri (2001) did not find an enhancement of
technical efficiency over the period 1988 to 1998, when the incentive regulation was adopted.

The most recent studies have shed some light on this issue. In their review, Sappington and Weisman (2010)
summarized that PCR promotes network modernization and increases productivity rates. Majumdar (2010) reached the
same conclusions. Apart from the U.S. telecom sector, Hisali and Yawe (2011) showed how PCR implemented in Uganda’s
telecom market has advanced the technical efficiency frontier.
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2.4. Mergers

Since the break-up of AT&T in 1984, the RBOCs have undergone several processes of mergers and acquisitions amongst
them. For instance, SBC Communications acquired Pacific Telesis Group in 1997, Southern New England Telecommunica-
tions Corporation in 1998 and Ameritech in 1999, although kept them as separate reporting entities. One of the main
processes was the merger of Bell Atlantic Corporation and GTE Corporation into one company, Verizon Communications.
However, Verizon Communications kept the two separate holding companies intact; Bell Atlantic and GTE Corporation.

The two latest mergers in the period under assessment were between SBC and AT&T (December 2005) and between
AT&T and Bell South (December 2006). Although the decisions of mergers have been motivated by synergies and could
enable a share of assets and a reduction of costs, Majumdar, Yaylacicegi, and Moussawi (2012) and Seo, Featherstone,
Weisman, and Gao (2010) have reported that the performance levels of ILECs has deteriorated after mergers. In addition,
Loomis and Swann (2005) and Zimmerman (2007) highlighted the significance of mergers between wireline and wireless
carriers, because of synergies and strategic implications.
3. Methodology

The two variants used in this paper are implementations of the Dynamic DEA approach proposed by Tone and Tsutsui
(2010), which takes into account carry-over activities between consecutive periods of time. Dynamic DEA extends the
slacks-based measure of efficiency (SBM) framework presented by Tone (2001), which means that there is no radial
measure of efficiency but the model includes variable slacks. Therefore, instead of providing equi-proportional changes
applicable to the whole set of inputs or outputs, this approach computes in a separate way the excesses and shortfalls in
inputs and outputs, respectively. Dynamic DEA is also based on the SBM Network DEA of Tone and Tsutsui (2009)
considering a series of stages, i.e. as many as time periods are included in the analysis.

Let m be the number of inputs, p the number of outputs and n the number of DMUs. Let T be the number of periods of
time to be included in the analysis. Let xt

ij be the value of the input i consumed by DMU j during period t, and yt
kj the value

of the output k produced by DMU j during period t. There is one slack variable associated with each input and output,
which accounts for the difference between the target and observed values, i.e., the inefficiency in every single input and
output. These slacks represent margins for improvement in each input and output and they will be denoted as st

i and st
k, i.e.

the slacks during period t in the input i and output k, respectively.
As can be seen in Fig. 1, apart from the inputs and outputs in every period t, the Dynamic DEA approach considers carry-

over activities from one period to the next. The carry-over activity r produced at the end of period t, which is consumed at
the beginning of period tþ1, is denoted by zt

rj. Tone and Tsutsui (2010) claimed that there should be a distinction drawn
between the characteristics of the connecting activities so that they can be classified into desirable, undesirable and free
links. The number of connecting activities of each type is denoted zgood, zbad and zfree, and the different links will be
marked with a superscript pointing out the type. The slack variable corresponding to a connecting activity r produced at
the end of period t will be referred to as st

r .
It is logical to seek maximization in good links while bad links are minimized simultaneously. That is to say, desirable

links are treated as outputs and bad links as inputs, leading to the objective function shown in (1), which is an extension of
the SBM efficiency score proposed in Tone (2001) but incorporating T periods of time. The result of the metrics in (1) is an
estimation of the efficiency for every DMU. As the specific production function under assessment in this application is
considered to exhibit Constant Returns to Scale (CRS) (see Section 4), only the CRS formulation will be introduced here.
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Fig. 1. General Dynamic DEA structure.
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Constraint (2) guarantee that the targets for inputs are lower than the observed values. Similarly, constraint (3) require
that outputs targets are larger than observed ones. The difference between these targets and observed values are
computed as the corresponding input and output slacks. In these equations, lt

j represents the set of intensity weights
defining the linear combination of the observed DMUs. The DMU under assessment is henceforth labeled DMU 0. If lt

j is
greater than zero for a certain j, DMU j is said to be a member of the reference set for the DMU 0.
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Concerning carry-over activities, they are treated as intermediate products in Network DEA (Färe and Grosskopf, 2000).
Network DEA consider DMUs as a network of processes instead of ‘black boxes’, with intermediate products connecting the
internal processes. In this case, every period will function as an internal process. Network DEA provides greater insight into
the analysis and reveals more sources of inefficiency (Moreno and Lozano, in press).

Constraints (4)–(6) allow computing the slacks for all types of links, by establishing the target value for each link. All
slacks are defined positive as per (11) and (12), except for free links (13). Note the similarity among constraints (4) and (5)
and (2) and (3). Finally, constraint (7) reflects the fact that Dynamic DEA has been defined on the basis of the Network DEA.
Thus, these constraints force the amount of links produced in every period to be the same as the amount consumed in the
following period, which is the main constraint related to intermediate products in Network DEA. This idea can be seen in
Fig. 1, which shows that connecting activities are outcomes for period t but are part of the resources used in period tþ1.
The following constraints (14) and (15) impose the initial conditions, i.e., the carry-over activities values that are input for
the first period:
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Going back to Eq. (1), the objective function is non-linear, but it can be linearized by multiplying both the numerator
and the denominator by an auxiliary variable, equating the resulting denominator to unity and redefining the products of
variables as new variables (Tone, 2001). Once the optimization problem has been solved, the overall efficiency throughout
all the periods under assessment is given by (1). In addition, Eq. (16) enables us to have a specific measure of the efficiency
of period t. Moreover, the target values for all variables are given by Eqs. (20)–(60), where the superscript n refers to optimal
values of model (1)–(15).
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Since SBM computes the deviation for every variable involved in the model instead of a radial proportion, a Factor
Efficiency Index (FEI) can be provided for each input and output (Tone & Tsutsui, 2010). FEI is defined in Eq. (17) and it
implies an input excess, if positive, and an output shortfall, if negative.

FEI¼
observed_data

projection
�1 ð17Þ

4. Data

In this paper, data for the main ILECs from 1997 to 2007 are included. The data are taken from the Automated Reporting
Management Information System (ARMIS) reports (http://transition.fcc.gov/wcb/armis/) of the Federal Communications
Commission (FCC). ARMIS aims to collect financial and operational data from the largest carriers. The list of ILECs that were
required by the FCC to fill in all ARMIS reports, during the period under assessment, is included in Table 1. For every ILEC,
its corresponding label, which refers to the Company Study Area (COSA) code used in FCC reports, is also shown. A similar
choice of LECs was included in studies by Resende (2008) and Seo et al. (2010). Because of the intense competition in the
sector (see Section 2) and the fact that the firms considered are the largest carriers, it can be assumed that ILECs operate in
an optimal scale size and thus the production function exhibits CRS.

As can be seen in Fig. 2, where the model for the case under study is shown, the initial carry-over activities that are
taken into account are from 1996. Note that each process converts the input from its own period and the links from the
previous period into the output and links at the end of the period. To sum up, there are four stages corresponding to years
1997 to 2007 inclusive, each of them transforming one input into one output, while connecting activities from previous
years also influence the process of production of the single output and links at the end of that year. The names of all
variables are included in Fig. 2.

The single input considered is operating expenses; these are the costs incurred in developing the telecommunication
services, including network operations, facility maintenance and customer operations expenses. The single output
corresponds to operating revenues at the end of the period, i.e. the income that companies receive from their normal
operating activities, such as local network service revenues and long distance revenues. Both variables are taken from the
Income Statement Accounts of the largest ILECs (ARMIS Report 43-02 Table I-1). Our choice of input and output is well
supported by previous works related to DEA as applied to the telecommunications sector (e.g. Banker et al., 2010; Yang &
Chang, 2009).

With respect to carry-over activities, the four links that are taken from one year to the following are: number of
employees (Income Statement Accounts, ARMIS Report 43-02 Table I-1), number of total switched lines terminating at the
customer end (Operating Data Report, ARMIS Report 43-08 Table III), total assets, which are basically the Total
Telecommunications Plant in Service (TPIS) minus accumulated depreciation (Balance Sheet Accounts, ARMIS Report
43-02 Table B-1.A) and total liabilities at the end of the year (Balance Sheet Accounts, ARMIS Report 43-02 Table B-1.A).
Although these links have been considered by other authors as inputs for the models, such as Lien and Peng (2001)
and Pentzaropoulos and Giokas (2002), it is clear that the four variables are a result of the operation of previous
periods and have influence in the following periods, thus must be set as carry-over activities instead of inputs or outputs.
Note that capital expenditure is implicitly included in the difference amongst assets from consecutive years. Ai and

http://transition.fcc.gov/wcb/armis/


Table 1
List of ILECs.

FCC label Name of the company or study area

USTR Qwest Corporation

SWTR AT&T/Southwestern Bell Telephone

PTCA Pacific Bell—California

PTNV Nevada Bell

SNCT AT&T/Southern New England Telephone

LBIL Illinois Bell

NBIN Indiana Bell

MBMI Michigan Bell

OBOH Ohio Bell

WTWI Wisconsin Bell

BSTR AT&T/BellSouth Corporation

CDDC Verizon Washington D.C.

CMMD Verizon-Maryland

CVVA Verizon Virginia

CWWV Verizon West Virginia

DSDE Verizon Delaware LLC

PAPA Verizon Pennsylvania

NJNJ Verizon New Jersey

NETC Verizon New England

NYNY Verizon New York Telephone

GTGC Verizon California

GTFL Verizon Florida LLC

GTMW Verizon North, Inc.

GTNW Verizon Northwest, Inc.

GTSO Verizon South, Inc.

GTSW GTE of The Southwest, Inc. (dba Verizon Southwest)
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Fig. 2. Dynamic DEA model for telecom efficiency assessment.
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Sappington (2002) and Jung et al. (2008) actually established the network infrastructure from previous periods as a
variable influencing the outputs of future periods.

All data for operating expenses, revenues, assets and liabilities have been deflated; hence data shown throughout the
paper are in real terms, using 2005 as the base year. Basic statistics of all variables for the period under assessment are
included in Table 2.

As stated in Section 3, there is a need to determine the characteristics of each link (i.e. whether it is a good, bad or free
link) so that the model can be completed, depending on the specific features of the carry-over activities. First of all,
the number of employees cannot be easily classified as desirable or undesirable, thus it is established as a free link
(constraint (6)), allowing the optimal value for the size of the staff to be greater or smaller than the observed one. In other
words, the number of employees is bounded to constraint (6).

On the one hand, a first attempt for the rest of links could set the number of switched lines and total assets as desirable
links (subject to constraint (4)), which means that both variables are to be maximized. It is logical to think that the more



Table 2
Descriptive statistics of data set.

Mean Stand. dev. (SD) Max. Min.

Input

OPEXa 3113.29 3292.62 13,732.07 181.06

Output

OPREVa 4090.68 4366.04 19,872.55 212.85

Intermediate products

Employees 12,881.29 14,434.05 61,622.00 565.00

Customersb 5387.19 5524.69 25,087.03 310.74

Assetsa 7301.35 8023.09 37,457.38 397.46

Liabilitiesa 5137.84 5588.03 23,094.25 253.69

a Dollar amounts in millions.
b Total switched access lines in thousands.

Table 3
Description of independent and explanatory variables involved in the regression.

Variable Description Cases Mean (SD)

Dependent variable
Efficiency Efficiency scores estimated by proposed Dynamic DEA approach 176 0.872 (0.095)

Explanatory variables
Mergers ¼1 If the ILEC was involved in a merger, otherwise¼0 176 0.006 (0.075)

ROR ¼1 If the ILEC was operating under Rate of Return regulation, otherwise¼0 176 0.023 (0.149)

PCR ¼1 If the ILEC was operating under Price Cap regulation, otherwise¼0 176 0.864 (0.344)

DER ¼1 If the ILEC was operating under Rate Deregulation, otherwise¼0 176 0.040 (0.196)

HighSpeed Number of high speed subscriptions (in millions) 176 3.590 (4.620)

Mobile Number of mobile telephony subscriptions (in millions) 176 12.769 (11.936)

CLECs Number of CLEC switched access lines (in millions) 176 1.915 (1.635)

CLECpercent Percentage of CLEC switched access lines 176 15.712 (4.723)

UNEpercent Percentage of CLEC access lines provisioned by UNE 176 50.070 (16.826)

Year_i ¼1 If the sample corresponds to the year i (where i varies from 1998 to 2007), otherwise¼0 176 0.148 (0.356)
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switched access lines there are connecting customers with their end-office, the better. In the same way, due to TPIS
grouping of central office equipment, switching systems, cable and wire facilities and other assets, it can also considered to
be beneficial and its maximization sought. In this sense, total assets can be seen as indicative of the long-term investment
in equipment (e.g. Jung et al., 2008). However, since liabilities oblige a company to give up economic benefits from past
transactions, this link could be set as an undesirable link to be minimized (subject to constraint (5)).

On the other hand, while ILECs investments have slowed down in recent years, some studies have questioned the
benefits of investment in TPIS by local exchange carriers. Jung et al. (2008) concluded that it was not at all clear that
competition from CLECs introduced by the unbundling leasing policy in the sector has stimulated ILECs to invest in new
infrastructure. According to Quast (2008), the price reductions in the cost of leasing the whole infrastructure necessary to
provide phone service to customers have discouraged CLECs from making their own network investments, even in
switching equipment. In addition, Cambini and Jiang (2009) argued that the incentive regulation has had an impact on
investment related to the price cap, whereas mandatory unbundling regulation can discourage firms from investing.
The same conclusion about reducing network investment because of mandatory unbundling was reached by Ware and
Dippon (2010).

Thus, since previous studies had not agreed on regarding investment as a positive decision in order to improve
efficiency, all carry-over activities are going to be considered free in this study (subject to constraint (6)). Please notice that
no link would be bounded to constraints (4) or (5) because all links can take any value. In theory, this configuration
enhances the previous configuration by providing greater flexibility for finding the sources of inefficiency because the
target values of intermediate products will be computed according to the needs for optimizing the objective function,
regardless of whether this implies a reduction or an increase in the number of switched lines or in assets, or in the
liabilities, for that matter. In addition, van Kranenburg and Hagedoorn (2008) pointed out that investments of European
incumbents were mainly restrained by their huge debt. By setting free the liabilities incurred by ILECs, it is possible to
determine if more financial flexibility would allow ILECs to expand their business.

In a second step, once the efficiency scores of the ILEC under study have been computed, a multiple regression analysis
will be conducted to establish the impact of the regulatory policies and both local and intermodal competition on ILECs’
efficiency. The explanatory variables, their description and basic descriptive statistics are shown in Table 3. As for the
number of cases, cases with missing data points have been excluded listwise. The regression model selects the efficiency
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score computed by the Dynamic DEA approach for a certain ILEC in a time period as the dependent variable, while the
regulatory scheme in which that ILEC had to operate and the competition the ILEC had to face during that year are chosen
to be the explanatory variables. Note that the time variation has been coded by using a group of dummy variables, so each
case will only have one of these dummy variables equal to one, depending on which year the corresponding observation
was taken.

The information related to the explanatory variables corresponding to the incentive regulation, namely ROR, PCR and
DER, come from the studies of Abel and Clements (1998) and Perez-Chavolla (2007), while the information about the
number and percentage of CLEC access lines, the percentage of CLEC switched access lines obtained from ILEC local loops at
cost-based UNE rates and the mobile telephony subscribers was obtained from the Local Telephone Competition reports
provided by the FCC. In a similar way, data regarding the high speed subscriptions were obtained from the High-Speed

Services reports provided by the FCC and the information about mergers from the Corporate History of the ARMIS database.
5. Results and discussion

The efficiency scores obtained for all ILECs from applying the approach of Dynamic DEA explained in Section 4 for the
period from 1997 to 2007 (see Fig. 2) are shown in Table 4. Moreover, the specific performance scores calculated for every
single year are also shown (see Eq. (16)). However, note that the score for a single year is less significant than the global
score since the former is computed with the slacks obtained in the optimization of the latter. It is important, however,
to note that a globally efficient ILEC must be efficient in every period.

An interesting observation to emerge from the analysis of Table 4 is that there is a great differentiation amongst ILECs
scores, with Indiana Bell remaining the only efficient ILECs. The explanation behind the discrimination power of the
proposed approach is the consideration of carry-over activities as free links so ILECs can compute more ambitious, efficient
targets and find more sources of inefficiency. Fig. 3 shows, in decreasing order, the efficiency of the different ILEC
computed by the proposed Dynamic DEA approach.

Fig. 4 plots Dynamic DEA efficiency versus the average number of switched lines during the assessment period, which
can be considered to be representative of a firm’s size. Note that the largest firms do not follow the same pattern: three of
five largest ILECs are close to the average efficiency score, whereas AT&T/BellSouth Corporation can be considered to be
quite efficient and Verizon New York Telephone is inefficient. Medium and smaller sized firms have average efficiency
scores except for Indiana Bell and Wisconsin Bell which are efficient and close to efficiency, respectively, and Nevada Bell
and Verizon New England which are rather inefficient. Anyway, there is no clear relation between size and efficiency,
which is consistent with the results of Pentzaropoulos and Giokas (2002), which claimed that operational efficiency could
equally be achieved by firms with large revenues and by others with smaller revenues.
Table 4
Efficiencies estimated by the proposed Dynamic DEA approach.

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 Global

USTR 0.770 0.818 0.787 0.766 0.797 0.891 0.934 0.886 0.893 1 1 0.861 USTR

SWTR 0.810 0.811 0.751 0.810 0.807 0.885 0.968 0.912 0.948 0.904 0.832 0.854 SWTR

PTCA 0.689 0.777 0.727 0.780 0.817 0.863 0.941 0.868 0.926 0.881 0.850 0.820 PTCA

PTNV 0.779 0.731 0.635 0.650 0.659 0.649 0.783 0.799 0.860 0.797 0.769 0.730 PTNV

SNCT 0.787 0.706 0.692 0.740 0.776 0.847 1 0.902 0.974 0.860 0.773 0.812 SNCT

LBIL 0.872 0.915 0.944 0.959 0.920 0.871 0.961 0.860 0.922 0.872 0.836 0.903 LBIL

NBIN 1 1 1 1 1 1 1 1 1 1 1 1 NBIN

MBMI 0.924 0.926 0.980 0.961 0.973 0.909 0.925 0.871 0.889 0.825 0.790 0.906 MBMI

OBOH 0.858 0.894 0.891 0.881 0.943 0.929 0.983 0.902 0.950 0.872 0.837 0.903 OBOH

WTWI 0.965 0.959 1 1 1 1 1 1 1 1 1 0.993 WTWI

BSTR 0.860 0.954 0.927 0.969 0.918 0.907 1 0.916 0.907 0.862 0.911 0.920 BSTR

CDDC 0.802 0.895 0.822 0.861 0.825 0.812 0.898 0.883 0.893 0.818 0.849 0.850 CDDC

CMMD 0.886 0.868 0.873 0.865 0.856 0.886 0.927 0.888 0.926 0.843 0.818 0.876 CMMD

CVVA 0.856 0.879 0.879 0.898 0.881 0.871 0.916 0.844 0.871 0.792 0.798 0.862 CVVA

CWWV 0.910 0.862 0.900 0.944 0.961 0.983 0.962 0.906 0.902 0.849 0.837 0.910 CWWV

DSDE 0.855 0.888 0.851 0.816 0.834 0.978 1 0.909 0.927 0.812 0.753 0.873 DSDE

PAPA 0.836 0.826 0.810 0.797 0.764 0.884 0.834 0.848 0.861 0.797 0.753 0.819 PAPA

NJNJ 0.883 0.853 0.853 0.849 0.807 0.895 0.883 0.845 0.887 0.804 0.735 0.845 NJNJ

NETC 0.785 0.812 0.780 0.782 0.720 0.775 0.760 0.709 0.742 0.668 0.645 0.744 NETC

NYNY 0.743 0.764 0.701 0.718 0.639 0.712 0.703 0.665 0.653 0.567 0.524 0.667 NYNY

GTGC 0.868 0.926 0.939 0.909 0.939 1 1 1 1 0.965 0.979 0.955 GTGC

GTFL 0.958 0.847 0.865 0.781 0.811 0.816 0.858 0.850 0.903 0.826 0.715 0.839 GTFL

GTMW 1 1 1 1 1 1 1 1 1 0.944 0.921 0.988 GTMW

GTNW 0.945 1 1 1 0.965 0.936 0.907 0.911 0.952 0.904 0.817 0.939 GTNW

GTSO 0.887 0.897 0.869 0.849 0.863 0.951 0.826 0.865 0.919 0.869 0.831 0.875 GTSO

GTSW 0.836 0.807 0.816 0.808 0.746 0.835 0.826 0.801 0.835 0.767 0.730 0.800 GTSW
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Fig. 3. Efficiency estimated by the proposed Dynamic DEA approach.
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The methodology Dynamic DEA provides further insight into the sources of inefficiency via the slacks computed for all
variables. Since the restrictions for carry-over activities have been lifted, it becomes more demanding for a DMU to be
efficient, so this approach must detect a large number of inefficiencies, i.e. a large number of non-zero slacks, both for each
ILEC and in total.

Regarding the slacks in OPEX and OPREV provided by Dynamic DEA, that is, the changes which ILECs should implement
in the input and output in order to be efficient, Dynamic DEA reveals the need for increasing OPREV mainly in the period
from 1997 to 2001, while OPEX should have been decreased after 2001. This trend is particularized in Fig. 5 for Nevada
Bell, where the FEI of the input and output variables (see Eq. (17)) are shown. Note the shift from an OPREV shortfall in first
years (FEI negative) to an OPEX excess (FEI positive) in the following years. The same trend is followed by most ILECs. It is
confirmed again that Dynamic DEA provides great discriminatory power in assessing the efficiency and further insight into
OPEX and OPREV slacks.
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Fig. 6. Boxplots of changes in carry-over activities estimated by Dynamic DEA. (Dollar amounts in billions. Total switched access lines in millions.
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Finally, changes in carry-over activities are shown in Fig. 6 by boxplot graphics. Since all links, namely employees,
customers, assets and liabilities, have been defined as free links in this application, there can be positive and negative
changes in the carry-over activities.

Note also that ILECs should reduce their staff numbers, except for the first year after the Telecommunication Act was
passed. That is, most ILECs employ many more workers than necessary. In contrast, although the customer base could
remain the same in most cases, it should be expanded for some ILECs. These changes in both employees and access lines



Table 5
Summary of multiple regression model with correction of heteroscedasticity.

Explanatory variable Standardized coefficient

CLECpercent
�0.474nn

(0.172)

UNEpercent
0.281nn

(0.035)

Mobile
0.250nn

(0.044)

y2005
0.263nn

(1.159)

y2003
0.213nn

(1.872)

y2004
0.148n

(1.759)

R-squared 0.368

Adjusted R-squared 0.345

F-ratio 16.376nn

No. observations 176

White-corrected standard errors for the unstandardized coefficients are

reported in parentheses.
n Indicates statistical significance at the 95% level.
nn Indicates statistical significance at the 99% level.
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are mainly due to the decreasing trend observed in the decline of incumbent line based, having a negative effect on
business size.

Regarding the assets and liabilities’ boxplot, two trends can be identified: one from 1998 to 2002 and the other from
2003 to 2007. During the former period, the observed values for the network infrastructure remained very close to the
optimal ones while only some ILECs should have cut their debt. However, during the latter period, the computed targets
for assets suggest a significant increase for most ILEC, which means that, in general, much more investment should have
been done in the telecommunications network and equipment for the last years under assessment. Logically, if the
investment in assets increases, the liabilities necessary to fund the investment would have to increase as well. Apart from
these two periods, the year 1997 stands alone, in that there was also a need for more investment in assets.

To sum up, it can be concluded that there is a continuous shortage in investment during last years, mainly because
UNEs rules could have discouraged ILECs to upgrade their network infrastructure, and that ILECs should start to reverse
this decreasing trend in capital expenditure in order to become more efficient. These results are useful to answer the
questions raised by many authors (Cambini & Jiang, 2009; Jung et al., 2008; Ware & Dippon, 2010) about the need for
investment in ILECs.

Results from the stepwise multiple regression analysis commented in previous section are included in Table 5.
The second column of Table 5 shows the standardized regression coefficients and the White-corrected robust standard
errors for the unstandardized coefficients. The overall F test suggests that the regression is meaningful in the sense that the
efficiency of the ILEC does actually depend on the set of explanatory variables. Regression diagnostic indicated that
residuals are normally distributed (Shapiro–Wilk statistic: 0.991; p-value: 0.341) with no serial autocorrelation (Durbin–
Watson statistic: 2.083)

Note that local competition, expressed through the percentage of CLEC switched access lines out of total switched
access lines, has a negative effect on ILEC efficiency, which is consistent with results from previous studies. That is, the
increasing CLEC market share implies a worsening in the incumbent carrier efficiency.

At the same time, the provision of services by CLECs by means of leasing of the Unbundled Network Elements has a
positive effect on ILEC efficiency, meaning that, given a certain percentage of switched lines provided by CLECs, if CLECs
had made more investment in their own network and equipment instead of equipping ILEC UNE loops as CLEC switched
access lines, ILECs would have decreased their efficiency. From other point of view, if there was an increase in the
percentage of switched lines held by CLECs and those lines were provisioned by leasing UNE loops, there would be a net
negative effect on ILEC efficiency. However, if the same increase in switched lines held by CLECs was due to CLEC-owned
local loops, ILEC efficiency would undergo a more significant drop. These conclusions can be seen as incentives for CLECs to
build their own infrastructure.

The rest of the regression results point out that intermodal competition with mobile telephony does not have a negative
influence, suggesting that mobile and wireline telephony are becoming complementary markets. Also, it can be seen that
the period from 2003 to 2005 was especially beneficial to efficiency. Surprisingly, none of the explanatory variables related
to incentive regulation was found to be able to predict any variance of the efficiency scores, which can be connected with
the results of Uri (2001), whose study did not find an improvement of carrier efficiency when PCR was adopted. Mergers
did not have any influence on technical efficiency either.
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6. Summary and conclusions

The telecommunications sector is one of the most dynamic and competitive industries. That is why aiming at efficiency
is a must for the involved companies. In this paper, a Dynamic DEA approach has been used to assess the efficiency of the
23 largest ILECs during the period 1997 to 2007. The main feature of this approach is that carry-over activities from one
period to the next are taken into account so that a global assessment of the performance along the whole horizon is carried
out. The results show that the Dynamic DEA application has quite discriminatory power, assessing just one company,
namely Indiana Bell, as being efficient in the whole period under study. The proposed approach also computes challenging
input and output targets and uncovers existing sources of inefficiencies. In particular, in general, the first years (from 1997
to 2001) revenues (OPREV) should have been larger than they were, while in the remaining years (from 2001) it was the
operating expenses (OPEX) which should have been reduced.

Another advantage of the implemented approach is that its increased modeling flexibility allows for computing target
values for the carry-over activities without being constrained by the observed values. That allows determining the optimal
values of these carry-over activities, thus confirming that network investments have a positive influence in the
performance of ILECs and are constrained by the liabilities incurred. In general, it seems that there was an excess of
employees and a significant lack of investment in TPIS during the last period. This is consistent with what has been
reported in the literature.

In addition, a regression analysis has been conducted to determine the impact of the regulatory policies and both local
and intermodal competition on the ILECs’ efficiency. On the one hand, the regression analysis has pointed out the adverse
impact of local competition from CLECs in the ILECs’ efficiency, which could have been worse if CLECs had made more
investments in their own infrastructure instead of leasing UNE loops. On the other hand, the broadband deployment and
incentive regulation policies do not seem to have had a clear influence on the dynamic performance of wireline companies.

To sum up, had the ILECs reduced their workforce and made additional investments during the last few years, they may
have maintained their number of customers, which is being threatened by the increasing local competition from CLECs.
Those changes would have put the ILECs on a strong position to be able to face the financial crisis that came afterwards.

Concerning further research, future work could explore the dynamic performance of CLECs by applying a similar
methodology to that presented here, so the significance of investments in networks by CLECs and the relevance of the
latest regulation to their behavior might be revealed. Furthermore, due to the fact that Dynamic DEA, based on SBM, allows
incorporating weights in the objective function, another issue could be to take into account the different relative
significance of carry-over activities when assessing efficiency. Another continuation of this research can be to extend it to
the telecommunications sector of other countries.

Finally, the analysis could include an adjustment in the costs faced by the ILECs depending on the different territorial
conditions. That is, the population density of the areas served by every ILEC is not homogenous and there are some ILECs
whose serving territory is mainly rural or mountainous, implying higher costs on local loops, among other costs. The
territorial conditions could also be considered as environmental variables, which cannot be changed but may have an
important effect on efficiency.
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Abstract 

The aim of this work is to evaluate the productivity change of the NBA teams during 

the last seven seasons (from 2006/2007 to 2012/13). Within that period of time, a new 

collective bargaining agreement (CBA) of the National Basketball Association (NBA) 

was ratified before season 2011/12, ending a 161-day lockout. The Malmquist 

Productivity Index (MPI) has been used to measure the total factor productivity, while 

an input-oriented Network DEA approach is used to compute the distance of each 

observation to the corresponding frontier. The results reveal that there has been 

technological progress for the last few seasons, excluding that of the 2011 lockout, and 

an increasing efficiency change. This means that best practices are improving and that 

most teams have been reducing their payrolls to catch up with these practices, thus 

backing up the owners’ proposal to reduce players’ income. Also regression results 

show that changes in the number of wins are more dependent upon scale efficiency 

change than upon budget or efficiency changes. 

Keywords: NBA; productivity change; Malmquist Productivity Index; Network DEA 
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Estimation of productivity change of NBA teams from 
2006/07 to 2012/13 season 

1. Introduction 

The National Basketball Association (NBA) is one of the most important sport 

franchises in the world and every NBA team is able to generate substantial revenues 

through merchandising, tickets sales, TV rights, etc. NBA actually handles billions of 

dollars every year. But, at the same time, costs are increasing, mainly because players’ 

contracts are becoming more and more expensive every year.  

 

During the first five seasons covered in this study (2006/2007 to 2010/2011) the NBA 

lived under the 2005 Collective Bargaining Agreement (CBA). The CBA is the contract 

between the NBA (the commissioner and the 30 team owners) and the NBA Players’ 

Association that states the business rules about players’ contracts, trades, revenue 

distribution, salary caps, etc. The 2005 CBA expired on 30th June 2011, leading the 

NBA to a ‘lockout’, where the owners proposed to reduce players’ income. Later that 

year, on 8th December 2011, the NBA Board of Governors ratified a new 10-year CBA 

after the played had accepted less money (Berri, 2012). 

 

Some researchers have been concerned about the economic losses due to sports’ 

lockouts (e.g. Coates and Humphreys, 2001). On the one hand, even before the lockout 

and according to the NBA commissioner, the owners claimed that NBA teams had lost 

more than $1 billion dollars during the validity of the 2005 CBA, mainly due to 

increasing players’ salaries and guaranteed contracts, which are the most relevant points 

having been discussed in the negotiations to set up the 2011 CBA.  

 

On the other hand, it has been questioned the need and incentives of the new agreement 

and its impact on competitive balance (Berri, 2012). Therefore, the negative criticism 

against the 2011 CBA justifies the need for an assessment of the teams’ efficiency in 

economic resources management, since an analysis of the productivity change before 

and after the 2011 CBA will prove if owners had reasonable grounds for requesting a 

salary cut. 
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With that objective in mind, this paper estimates productivity change evolution of NBA 

teams during the five seasons prior to and the two seasons after the 2011 CBA. It makes 

sense to evaluate the changes in performance along a number of seasons, since players’ 

contracts last for several years, and managers make the financial planning and coaches 

build the roster with a view to future seasons. 

 

The productivity change between two periods can be estimated through the Malmquist 

Productivity Index (MPI), which is decomposed into two components: efficiency 

change and technology change (Färe et al., 1992). Färe et al. (1994) further include a 

third component (related to scale change) in what is known as FGNZ decomposition. 

 

To project the observations onto the corresponding efficient frontier, Data Envelopment 

Analysis (DEA) has been used (e.g. Cooper et al., 2007). DEA has been applied to 

many different sectors, sports among them, e.g. Spanish soccer teams’ efficiency 

assessment (González-Gómez et al., 2010; Barros and Garcia-del-Barrio, 2011), 

estimation of efficiency scores for Germany’s premier league football players 

depending on their playing positions (Tiedemann et al., 2011), ranking of professional 

tennis players by deriving a common set of weights (Ramón et al., 2012), efficiency 

assessment of local entities in the provision of public sports facilities (Benito et al., 

2012) or performance evaluation of each country in the 2008 Beijing Summer Olympic 

Games (Wu et al., 2010).  

 

Moreover, DEA has been recently used to reveal that most Portuguese football clubs are 

spending more money in players’ wages than they need to (Ribeiro and Lima, 2012). In 

relation to basketball, Aizemberg et al. (2011) use DEA to analyze the efficiency of 

NBA teams. Also the effectiveness of basketball players (Cooper et al., 2009) and their 

ranking (Cooper et al., 2011) have been studied using DEA. 

 

In order to gain a better understanding of the sources of inefficiency, Network DEA 

(e.g. Färe and Grosskopf, 2000) has been applied so that the internal processes can be 

identified and the internal links (a.k.a. intermediate products) included in the model. 
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Network DEA has been applied to the study of efficiency in sports. Thus, Sexton and 

Lewis (2003), Lewis and Sexton (2004a, 2004b) and Lewis et al. (2009) and study the 

performance of baseball teams. Moreno and Lozano (in press) study the performance of 

NBA teams in the regular season 2009/2010 distinguishing between first and bench 

teams. The Network DEA approach proposed in Moreno and Lozano (in press) is the 

starting point for this research work, where the model itself has been revised and refined 

to consider several NBA seasons so that productivity changes (computed through MPI) 

could be estimated. NBA teams usually elaborate plans for several years, mainly due to 

the length of players´ contracts, thus analyzing the productivity changes in the different 

periods becomes relevant. 

 

The structure of the paper is the following. The Malmquist Productivity Index, its 

decomposition and main Network DEA concepts are reviewed in section 2. Section 3 

presents the processes and variables considered in the proposed approach together with 

the specific input-oriented Network DEA model used. Section 4 presents the results 

obtained using data from regular seasons 2006/2007 to 2012/13. Finally, section 5 

summarizes and concludes. 

 

2. Methodology 

This section first reviews the Malmquist Productivity Index (MPI) and how it can be 

decomposed into the usual two components, namely technical and efficiency change, 

plus a scale change component. This decomposition can be used when there exist 

Variable Returns to Scale (VRS). Also, the main concepts of Network DEA are 

introduced. 

 

2.1. MPI and FGNZ decomposition 

MPI has been used to measure the variation of productive efficiency between two 

periods of time (Färe et al., 1992). The input-oriented MPI of a certain Decision Making 

Unit (DMU) labeled 0 is defined as the geometric mean 
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where t1
0x  and t1

0y  represent respectively the inputs and outputs of DMU 0 observed in 

period t1, while ( )I t2 t2
t1 0 0DF x ,y  stands for the proportional reduction of the inputs of 

DMU 0 observed in period t2, assuming that the production technology is constructed 

from the observations (of the different DMUs) in period t1. Note that t1 can correspond 

to period t or to period t+1 and the same applies for t2. Normally ( )I t2 t2
t1 0 0DF x ,y  is 

computed using a radial, input-oriented DEA model (Charnes et al., 1978). However, in 

this paper, instead of a conventional, single-process DEA, a Network DEA model, as 

formulated below, will be used. 

 

MPI is commonly decomposed into efficiency change (EFFCH) and technical change 

(TECCH) as 
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DF (x , y )

+ +
+

+ =
 (3) 

1
I t t I t 1 t 1 2I t 0 0 t 0 0

t,t 1 I t t I t 1 t 1
t 1 0 0 t 1 0 0

DF (x , y ) DF (x , y )TECCH
DF (x , y ) DF (x , y )

+ +

+ + +
+ +

 
= ⋅ 
  

 (4) 

The first term, efficiency change (3), measures the magnitude of the change in technical 

efficiency between periods t and t+1. An improvement in I
t,t 1EFFCH +  can be interpreted 

as evidence of catching-up with the frontier for that DMU. In other cases, production is 

moving farther from the frontier. Concerning the second term, technical change (4) 
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measures the shift in the frontier over time. In that way, an improvement in 

I
t,t 1TECCH +  implies progress in the technology under study and a worsening in 

I
t,t 1TECCH +  implies technological regress. 

 

An improvement in productivity corresponds to a Malmquist index greater than unity. 

In case MPI is less than unity, productivity has declined over time. Analogously, 

improvements and worsening in its two components are also associated with values 

greater and less than unity, respectively. 

 

When the problem under study exhibits VRS, the following FGNZ decomposition (Färe 

et al., 1994) can be used 

I t t t 1 t 1 I,VRS I I
t,t 1 0 0 0 0 t,t 1 t,t 1t,t 1M (x , y ; x , y ) EFFCH TECCH PURESCACH+ +
+ + ++= ⋅ ⋅  (5) 

where 

I,VRS t 1 t 1
0 0I,VRS t 1

t,t 1 I,VRS t t
0 0t

DF (x , y )
EFFCH

DF (x , y )

+ +
+

+ =
 (6) 

1
I t t I t 1 t 1 2I t 0 0 t 0 0

t,t 1 I t t I t 1 t 1
t 1 0 0 t 1 0 0

DF (x , y ) DF (x , y )TECCH
DF (x , y ) DF (x , y )

+ +

+ + +
+ +

 
= ⋅ 
  

 (7) 

I t 1 t 1
t 1 0 0

I,VRS t 1 t 1
0 0I t 1

t,t 1 I t t
t 0 0

I,VRS t t
0 0t

DF (x , y )
DF (x , y )

PURESCACH
DF (x , y )

DF (x , y )

+ +
+

+ +
+

+ =  (8) 

 

In the above expressions, ( )I,VRS t2 t2
0 0t1DF x ,y  corresponds to the radial efficiency of 

DMU 0 in period t2 evaluated by using the VRS production technology of the period t1. 

Note that the basic difference between (1) and (5) is that the efficiency change is 

divided into a VRS efficiency change term and a pure scale efficiency change 
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component (PURESCACH). The former measures the change in technical efficiency 

assuming VRS technology, while the latter detects differences over time in the distance 

between the efficient frontiers of the VRS and CRS technologies. 

 

2.2. Network DEA 

In this section, an input-oriented Network DEA model to compute the radial efficiency 

scores ( )I t2 t2
t1 0 0DF x ,y  and ( )I,VRS t2 t2

0 0t1DF x ,y  is presented. This formulation is an 

extension of the relational Network DEA model proposed by Kao (2009) to general 

networks of processes. The notation used is the one proposed in Lozano (2011). 

 

The main difference between Network DEA and conventional DEA is that while the 

latter considers a single process that consumes all the inputs and produces all the 

outputs, the former considers the existence of several processes each of which consumes 

its own set of inputs and produces its own set of outputs, in addition to consuming and 

producing intermediate products that are internal to the system under study. 

For each process p of DMU j, denote p
ijx  as the observed amount of input i consumed 

and let p
kjy  be the observed amount of output j produced. Let in,p

rjz  be the observed 

amount of intermediate product r consumed by process p of DMU j and out,p
rjz denote 

the observed amount of intermediate product r generated by process p of DMU j. 

 

Let ( )IP i be the set of processes that consume the input i and ( )OP k  the set of 

processes that generate the output o. In order to model the composition of intermediate 

flows inside the network, let ( )outP r  be the set of stages that produce the intermediate 

product r and ( )inP r  the set of processes that consume the intermediate product r. 

 

In addition, p
jλ  stands for the set of multipliers that define the production possibility set 

of the process p, while θ  symbolizes the proportional reduction of inputs of the DMU 
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under assessment. Hence the input-oriented, Network DEA model to compute the 

maximal feasible radial reduction of inputs can be formulated (see Lozano, 2011) as 

 

I
0DF  = Min θ  (9) 

s.t. 

( )I

p p
i0j ij

p P i j
x x

∈
λ ≤ θ⋅∑ ∑  i∀  (10) 

( )O

p p
k0j kj

p P k j
y y

∈
λ ≥∑ ∑  k∀  (11) 

( ) ( )out in

p out,p p in,p
j rj j rj

j jp P r p P r
z z 0

∈ ∈

λ − λ ≥∑ ∑ ∑ ∑    r∀  (12) 

p
j 0λ ≥  j p∀ ∀     θ  free (13) 

 

The above model corresponds to assuming Constant Returns to Scale (CRS). In the 

VRS case the following constraints should be added. 

 

p
j

j
1λ =∑   p∀  (14) 

 

Note that a characteristic feature of Network DEA models is that each process has its set 

of variables p
jλ  and the reason is that each process has its own technology. This leads to 

a larger overall production possibility set which increases the discriminatory power of 

the DEA model, so much so that it is very common in Network DEA to find that none 

of the DMUs is found to be efficient. That is so because in order for a DMU to be 

efficient, all its processes must be efficient – something which does not occur easily. 
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Another feature of Network DEA models is the intermediate products balance 

constraints (12). They guarantee that the amounts of intermediate products internally 

generated by the system are enough to satisfy the consumption of these intermediate 

products by those processes that require them. 

 

3. Network DEA model for NBA teams 

As stated previously, Network DEA has been developed to deal with the existence of 

multiple, linked processes inside a DMU. The network of processes used in this work is 

shown in Figure 1 and consists of four processes or stages. Process PERF (team-work 

performance) can be interpreted as an acquisition process, where the teams use the 

budget spent to sign up players. In an intuitive way, the more salary a player is paid, the 

better he should perform during matches. Therefore, the input of this first stage will be 

the total payroll of the team, while the number of attacking and defensive (against the 

opposing team) moves of the team are the corresponding outputs. The outputs of 

process PERF are actually intermediate products that are inputs for the two following 

stages, representing the offensive (OFF) and defensive (DEF) subsystems. Each of these 

processes generates one additional intermediate product which represents the number of 

points scored by the team and the inverse of the number of points scored by the 

opposing team, respectively.  

 

The final stage (Wins Generation, WG) transforms the points scored by the team and by 

the opponent team into victories, which is the final output of the DMU. The choice of 

team payroll and points in the league as an input and output, respectively, can be 

regarded as a constant feature in works related to sports efficiency (e.g. Barros et al., 

2010, in their estimation of efficiency scores for Brazilian soccer teams). Table 1 shows 

the definition and label assigned to each of the variables. These labels are used in Figure 

1 and in the mathematical model below. 

 

=========================== Figure 1 ============================ 
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=========================== Table 1 ============================ 

 

There are several points to be clarified. First of all, the number of moves is measured in 

absolute figures, i.e. the sum of the moves by all players in all matches of the regular 

season. Furthermore, the turnovers made by a team are an intermediate product that 

involves worse performance when it takes higher numerical values. Although 

traditionally these kinds of variables have coped with dummy variables or been treated 

as reverse products (Lewis and Sexton, 2004a), the easiest way to handle them is to 

work with the inverse of the quantity, in the same way as other authors have done 

previously (e.g. Cooper et al., 2009).  

 

The offensive subsystem (OFF) evaluates the efficiency of the team in transforming the 

available offensive resources on the field into points while the defensive subsystem 

(DEF) evaluates how the team manages its defensive resources to minimize the points 

received. Robst et al. (2011) found no evidence that sports teams benefit from focusing 

on offense or defense, so both subsystems have being considered to be equally 

important in this paper.    

 

Offensive and defensive subsystems are associated with the decisions of the coach, who 

has to plan proper strategies and tactics in order to maximize the number of points 

scored and minimize the number of points received, taking advantage of the skills and 

production abilities of his own players. The role of head coaches in team performance 

has been discussed in previous studies (e.g. Berri et al., 2009). As in the case of 

turnovers, and for the points made by the opponent, the inverse is taken as output, since 

a greater number of points received means worse performance. 

 

With respect to the win generation stage (process WG), this assesses the competence of 

the team to administer the differences in points (points scored minus points received), 

so that the team would win the largest possible number of matches. The number of 

victories has many additional benefits, like a significant increase in attendance (Morse 

et al., 2008). 
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The proposed Network DEA model is the particularization of the model formulated in 

section 2.2 to the network shown in Figure 1. Note that this formulation corresponds to 

the CRS case, while in the VRS case the corresponding constraints (14) are considered. 

 

( )2 2
1

t tI
0 0tDF x , y Min= θ  (15) 

s.t. 

1 2ttPERF
j 0j

j
Budget Budgetλ ⋅ ≤ θ⋅∑  (16) 

1 1t tPERF OFF
j jj j

j j
2PA 2PA 0λ ⋅ − λ ⋅ ≥∑ ∑  (17) 

1 1t tPERF OFF
j jj j

j j
3PA 3PA 0λ ⋅ − λ ⋅ ≥∑ ∑  (18) 

1 1t tPERF OFF
j jj j

j j
FTA FTA 0λ ⋅ − λ ⋅ ≥∑ ∑  (19) 

1 1t tPERF OFF
j jj j

j j
OffReb OffReb 0λ ⋅ − λ ⋅ ≥∑ ∑  (20) 

1 1t tPERF OFF
j jj j

j j
Assists Assists 0λ ⋅ − λ ⋅ ≥∑ ∑  (21) 

1 1t tPERF OFF
j jj j

j j
InvTO InvTO 0λ ⋅ − λ ⋅ ≥∑ ∑  (22) 

1 1t tPERF DEF
j jj j

j j
DefReb DefReb 0λ ⋅ − λ ⋅ ≥∑ ∑  (23) 

1 1t tPERF DEF
j jj j

j j
Steals Steals 0λ ⋅ − λ ⋅ ≥∑ ∑  (24) 

1 1t tPERF DEF
j jj j

j j
Blocks Blocks 0λ ⋅ − λ ⋅ ≥∑ ∑  (25) 



 12 

1 1t tOFF WG
j jj j

j j
Points Points 0λ ⋅ − λ ⋅ ≥∑ ∑  (26) 

1 1t tDEF WG
j jj j

j j
InvOppPoints InvOppPoints 0λ ⋅ − λ ⋅ ≥∑ ∑  (27) 

1 2t tWG
j 0j

j
Wins Winsλ ⋅ ≥∑  (28) 

PERF OFF DEF WG
j j j j, , , 0λ λ λ λ ≥  (29)  

4. Results and discussion 

The approach described in the previous sections has been applied to all 30 NBA teams 

using data corresponding to the regular seasons 2006/2007 to 2012/13. Each regular 

season consists of 82 matches, except for season 2011/12, when only 66 matches were 

played due to the lockout. Teams are grouped in two conferences, each conference 

consisting of three divisions. If the team performs well during the regular season, not 

only can it gain access to playoffs for the title, but it can also achieve a good ranking in 

the team’s conference and thus have home ground advantage and play against less 

competitive teams in the first rounds of playoffs. 

 

The data about the intermediate products and the output for all teams were taken from 

official statistics of NBA, available from their official website www.nba.com. Data 

corresponding to teams’ budgets were extracted from 

http://www.storytellerscontracts.com, which is considered to be the most reliable 

website about NBA players’ contracts. For the seven seasons included in this work, the 

input (Budget) and output (Wins) data are shown in Table 2. The budget data have been 

deflated, so budget data shown in Table 2 are in millions of constant 2009 dollars. 

Moreover, budget data have been normalized by computing the relative measure to the 

average budget from the corresponding season. Note that each season is identified by 

the year when the season finished. Thus, for example, the season 2008/2009 is referred 

to as season 2009 in the tables and figures. In addition, although the team OKC 

(Oklahoma City Thunder) was previously located in Seattle (and was known as the 
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Seattle Supersonics) before season 2008/2009 and the team NJ (New Jersey Nets) has 

been moved to New York (and is now known as the Brooklyn Nets) during season 

2012/13, we refer to them as OKC and NJ respectively, during all seven seasons, to 

keep homogeneity within the tables and figures.  

 

=========================== Table 2 ============================ 

 

Regarding the results, first of all, let us take a look at the efficiency scores of the 30 

NBA teams in each season, computed using the network DEA approach proposed in 

section 3. These efficiency values are included in Table 3. When CRS scores differ from 

VRS ones, there is scale inefficiency and this means that the team is operating away 

from the Most Productive Scale Size (MPSS) (Banker, 1984). Thus, for instance, 

Memphis Grizzlies (MEM) is VRS efficient in 2008 but has a CRS efficiency score of 

just 0.335. 

 

=========================== Table 3 ============================ 

 

Figure 2 shows, for each season, the average of the relative target budgets of all 30 

teams computed using the proposed Network DEA approach. The relative target budget 

for every team is the relative budget of the corresponding projected point on the 

efficient frontier. In other words, it represents the normalized budget that the team 

would have consumed, had it been efficient. Note that the average normalized observed 

budget is constant and equal to unity. Moreover, it is larger than the average normalized 

VRS target budget which is, in its turn, larger than the average normalized CRS target 

budget. Note also that both relative target values decreased in the season prior to the 

lockout. 

 

=========================== Figure 2 ============================ 
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Note further that because this application considers just one exogenous input and one 

final output, the overall efficient frontier is a straight line (passing through the origin) in 

the case of CRS technology. Figure 3 shows the efficient projections of every team, for 

both Network DEA and conventional (i.e. single-process) DEA, thus revealing the 

corresponding efficient frontiers for every season under CRS. Since the frontier is a 

straight line, it means that the ratio of the target budget to target wins is the same for 

every team and represents the optimal (i.e. minimum) “effective cost” of a victory in 

each regular season. That means the optimal effective cost of a victory is defined as the 

proportional amount of non-normalized target budget consumed for achieving a single 

victory. Such a ratio corresponds to the inverse of the slope of the frontiers shown in 

Figure 3 times the average observed budget of that season. These optimal effective costs 

are shown in Figure 4. Note that the optimal effective costs estimated with Network 

DEA are lower than by conventional DEA. This results from the fact that the network 

DEA efficient frontier has a larger slope than the conventional DEA. Analogous to the 

evolution of the average normalized target budget, the “effective cost” increased in the 

2009 and 2010 seasons, but decreased in the 2011 and 2013 seasons, i.e. the slope of the 

efficient frontiers in Figure 2 decreased for the 2009 and 2010 seasons, whereas it 

increased in 2011 and 2013. 

 

=========================== Figure 3 ============================ 

 

=========================== Figure 4 ============================ 

 

Concerning the MPI results, Figure 5 includes the evolution of the (geometric) mean of 

the MPI of the 30 teams for the different periods computed using Network and single-

process DEA. Furthermore, the evolution of the mean MPI components (as per the 

FGNZ decomposition) is also shown. Note that the mean MPI takes the same value for 

both Network and single-process DEA approaches. This is no coincidence. Actually, the 

MPI computed by both Network DEA and conventional DEA coincide for all teams. 

The reason must be that this application considers a single input and an input-

orientation. Looking at the mean MPI, an slightly increasing pattern is evident prior to 

the lockout, with values less than unity in periods 2007-2008 and 2008-2009, and 
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greater than unity in 2009-2010 and 2010-2011. Right after the lockout there was a 

dramatic decrease in productivity, due to the fewer number of games played in season 

2011-12. Productivity recovered during the last season.  

 

=========================== Figure 5 ============================ 

 

Although the MPI computed by Network and single-process DEA are the same, the 

MPI components differ. Thus, for instance, according to Network DEA results, the 

slight productivity growth (on average) in the period 2009-2010 is explained by a 

positive scale efficiency change (i.e. PURESCACH>1) and a positive VRS efficiency 

change, hindered by small a technological regress. The conventional DEA approach, on 

the other hand, does not indicate any scale efficiency change (on average) in that period 

and attributes the productivity growth to a technological progress hindered by a 

worsening VRS efficiency change. This clearly shows that the results from the two 

approaches are dissimilar. Our claim is that those obtained by the Network DEA 

approach are more reliable than those of conventional DEA because Network DEA is a 

more fine-grained analysis that uses more information and therefore its results should be 

more informative and valid. 

 

Looking again at the mean values of the MPI components (in Figure 5), the two periods 

in which there have been a large technological progress (positive frontier shift) have 

been the last one and the one previous to the lockout (explained by a significant drop in 

target budgets, as commented above). In other words, the best performing teams are 

increasing their efficiency by achieving better results while spending less money. Hence 

the fall in the season where the lockout occurred can be explained by the fewer number 

of matches played.  

 

Not only has the technical change improved, but also there has been a steady increase in 

the VRS efficiency change during the last few seasons (Figure 5). Hence most teams are 

trying to catch up with the best practices, i.e. managing their economic resources in a 

more efficient way. 
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=========================== Figure 6 ============================ 

 

With respect to the variation for individual teams, Figure 6 shows the evolution of the 

MPI and its components for the NBA champions for the last six seasons (Boston Celtics 

in 2008, Los Angeles Lakers in 2009 and 2010, Dallas Mavericks in 2011 and Miami 

Heats in 2012 and 2013). Note the high MPI value for Boston Celtics (BOS) in 2007-

2008 due to the significant positive scale change that took place because the team 

achieved a greater number of wins (66) in 2008 without increasing its budget 

proportionally. Regarding the high MPI for Miami Heat (MIA) in 2008-2009, the team 

went through a significant development from season 2008 to 2009, becoming a top team 

and shaping one of the best rosters in the NBA without increasing its investment.   

 

=========================== Table 4 ============================ 

 

The specific MPI for each team in each period are shown in Table 4 while the MPI 

components estimated for each team are shown in Table 5. The (geometric) mean of the 

different divisions and of the whole league are also shown. Note that the technical 

change component takes the same value for each team in a given period. This is due to 

the fact that there is only one input and one output, and the CRS efficient frontiers in 

both periods (t and t+1) are a straight line. 

 

=========================== Table 5 ============================ 

 

Concerning the period 2010-2011 (right before the 2011 CBA), let us emphasize the 

fact that most teams underwent a worsening in their technical efficiency (VRS EFFCH 

less than unity) due in part to a significant technological progress (TECHCH=1.22). 

First, this finding shows that the production possibility set allowed the teams to reduce 

their payrolls, thus being able to cope with the economics losses – results that were in 

line with the negotiation of the 2011 CBA. Second, it can be deducted from the decrease 

in efficiency change that most teams were far away from the best practice frontier. 

However, according to the results from the following two periods, i.e. 2011-12 and 
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2012-13, after the lockout teams’ managers must have worked hard to make up a roster 

with payroll and results able to catch up with the new frontier, since there is an 

increasing efficiency change pattern. To sum up, the 2011 CBA has set up a proper 

environment which has lead teams to control their budgets in a much more efficient 

way. 

 

A least squares linear regression analysis has been performed in order to establish the 

effects of the different MPI components and of the normalized budget change on the 

wins change between two seasons. The standardized regression coefficients presented in 

Table 6 correspond to setting the change in wins as the independent variable while 

taking the normalized budget change, the VRS efficiency change and the scale change 

as the dependent variables. Since technology change does not vary across teams, its 

effect on win change is included in the estimated intercept of the regression. 

 

=========================== Table 6 ============================ 

 

Note that the influence of all three variables is significant and that the estimated 

coefficients are rather similar for both Network and single-process DEA. Moreover, it 

can be concluded from Table 6 that a budget change has little importance in the number 

of wins, i.e. a team would hardly get more wins by just spending more money on more 

expensive contracts. In the same way, improving efficiency to catch up with the frontier 

also has a relative effect on wins. However, the scale change is very relevant to achieve 

a greater number of wins, i.e., teams should aim to operate in the Most Productive Scale 

Size (MPSS) by managing their current resources to increase the number of victories in 

the regular season. 

 

Finally, for comparison, as suggested by one of the reviewers, the network DEA 

approach proposed in Lewis et al. (2009) has been also applied to this dataset. The main 

advantage of their approach is that it allows computing explicitly the efficiency of every 

process (sub-DMU in their terminology). The adaptation of their approach to the present 

application is described in the Appendix. Table 7 shows the differences between the full 
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efficiency computed by the Lewis-Lock-Sexton approach and the approach proposed in 

this paper. 

 

=========================== Table 7 ============================ 

 

Note that the efficiencies of both approaches differ, with the proposed approach 

computing stricter efficiency scores. However, the Pearson´s correlation coefficient 

between the results of both approaches ranges from 0.878 to 0.965, which implies a 

rather high positive correlation between both Network DEA results. Due to lack of 

space, the efficiencies of the sub-DMUs computed by the Lewis-Lock-Sexton approach 

are displayed only for the Pacific Division in Figure 7. The results from other divisions 

are similar and are available from the authors upon request.  

 

=========================== Figure 7 ============================ 

 

OFF and DEF efficiencies are very close to 1 for all teams and seasons, which implies 

that transforming offensive resources into points and defensive resource in minimizing 

received points is relatively straightforward, revealing the lesser extent of the influence 

of the coach decisions. Although PERF sub-system also exhibit an efficiency close to 

one, Los Angeles Lakers (LAL) have undergone a fall in PERF efficiency during the 

last few years, because of the relative poor performance of highly-paid players. In 

contrast, WG sub-system seems to be decisive to the overall efficiency, which makes a 

lot of sense, since the best teams master how to administer the differences in points in 

order to win the largest possible number of matches.  

 

5. Summary and conclusions 

In this paper an analysis of productivity change of NBA teams during the last seven 

years has been carried out. The results have shed light on the path taken by each team 

(and the NBA in general) in terms of the efficient use of its economic resources, 

specifically as regards the players’ payroll. The research uses an innovative Network 
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DEA approach to assess the efficiency of teams and measure the distance to the 

corresponding efficient frontier. In general, although Network DEA models require 

much more data (e.g. about internal links and intermediate products) than the 

conventional DEA approach, the results obtained are more accurate and valid. In 

particular, the network of process considered consists of four stages: team performance 

(that uses the budget and produces offensive and defensive actions), offensive and 

defensive subsystems (that transform the offensive and defensive actions into points 

scored and points received, respectively) and a final wins generation stage (that 

produces the victories from the points scored and received). In total, a number of eleven 

intermediate products are considered thus increasing the complexity, but also the power, 

of the analysis with respect to the conventional DEA approach that, in this case, would 

involve a simple single-input, single-output problem. 

 

It can be concluded from the study that during the last seasons there has been a 

technological progress consisting of a reduction in the budgets of the efficient teams. 

Although before the lockout there were teams that did not act accordingly and 

experienced an efficiency worsening, after the 2011 CBA was signed most teams have 

caught up with the best practices the most efficient teams have established, slashing 

their budgets without a significant drop in performance. Hence, the course of action 

towards efficiency is clear: budget reductions while maintaining (or improving) 

performance.  

 

These conclusions also match up with regression results, that is, change in wins between 

seasons is mainly affected by the shift in scale efficiency, and thus managers should 

adjust their resources properly in order to operate in their MPSS. Concerning the 2011 

CBA, this information supports the team owners’ claims when negotiations took place 

and encourage players to adapt to the new realities of a changing world. 
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Appendix 

In this appendix, the approach in Lewis et al. (2009) is adapted to the network DEA 

model shown in Figure 1. For a certain sub-DMU, an input-oriented CCR model is 

applied taking into account only the inputs and outputs of the sub-DMU under 

assessment. Note that the inputs and outputs of a sub-DMU may be intermediate 

products in the network DEA approach, e.g. the variables “Points” and “InvOppPoints” 

are intermediate products within the DMU but inputs for the process “Wins generation” 

(WG). 

 

The input-oriented CCR model to compute the maximal feasible radial reduction of 

inputs for process WG in time period t1 can be formulated as: 

 

1tWG _ Eff Min= θ  (30) 

s.t. 

1 1ttWG
j 0j

j
Points Pointsλ ⋅ ≤ θ⋅∑  (31) 

1 1ttWG
j 0j

j
InvOppPoints InvOppPointsλ ⋅ ≤ θ⋅∑  (32) 

1 1t tWG
j 0j

j
Wins Winsλ ⋅ ≥∑  (33) 

WG
j 0λ ≥  (34) 

 

The input-oriented CCR model to compute the maximal feasible radial reduction of 

inputs for process OFF in time period t1 can be formulated as: 

 

1tOFF _ Eff Min= θ  (35) 

s.t. 
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1 1ttWG
j 0j

j
2PA 2PAλ ⋅ ≤ θ⋅∑  (36) 

1 1ttWG
j 0j

j
3PA 3PAλ ⋅ ≤ θ⋅∑  (37) 

1 1ttWG
j 0j

j
FTA FTAλ ⋅ ≤ θ⋅∑  (38) 

1 1ttWG
j 0j

j
OffReb OffRebλ ⋅ ≤ θ⋅∑  (39) 

1 1ttWG
j 0j

j
Assists Assistsλ ⋅ ≤ θ⋅∑  (40) 

1 1ttWG
j 0j

j
InvTO InvTOλ ⋅ ≤ θ⋅∑  (41) 

1 1ttWG
j 0j

j
Points Pointsλ ⋅ ≥∑  (42) 

OFF
j 0λ ≥  (43) 

 

The input-oriented CCR model to compute the maximal feasible radial reduction of 

inputs for process DEF in time period t1 can be formulated as: 

 

1tDEF _ Eff Min= θ  (44) 

s.t. 

1 1ttWG
j 0j

j
DefReb DefRebλ ⋅ ≤ θ⋅∑  (45) 

1 1ttWG
j 0j

j
Steals Stealsλ ⋅ ≤ θ⋅∑  (46) 

1 1ttWG
j 0j

j
Blocks Blocksλ ⋅ ≤ θ⋅∑  (47) 
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1 1ttWG
j 0j

j
InvOppPoints InvOppPointsλ ⋅ ≥∑  (48) 

DEF
j 0λ ≥  (49) 

 

The input-oriented CCR model to compute the maximal feasible radial reduction of 

input for process PERF in time period t1 can be formulated as: 

 

1tPERF _ Eff Min= θ  (50) 

s.t. 

1 1ttWG
j 0j

j
Budget Budgetλ ⋅ ≤ θ ⋅∑  (51) 

1 1ttWG
j 0j

j
2PA 2PAλ ⋅ ≥∑  (52) 

1 1ttWG
j 0j

j
3PA 3PAλ ⋅ ≥∑  (53) 

1 1ttWG
j 0j

j
FTA FTAλ ⋅ ≥∑  (54) 

1 1ttWG
j 0j

j
OffReb OffRebλ ⋅ ≥∑  (55) 

1 1ttWG
j 0j

j
Assists Assistsλ ⋅ ≥∑  (56) 

1 1ttWG
j 0j

j
InvTO InvTOλ ⋅ ≥∑  (57) 

1 1ttWG
j 0j

j
DefReb DefRebλ ⋅ ≥∑  (58) 

PERF
j 0λ ≥  (59)  
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The efficiency for the entire DMU is computed in three steps according to the 

methodology proposed by Lewis et al. (2009). First, the optimal values for the inputs 

consumed by the WG process are computed using model (30)-(34). Second, using those 

optimal values in the models (35)-(43) and (44)-(49), instead of the corresponding 

observed values, the OFF and DEF efficiencies, respectively, are computed. Finally, the 

optimal values for the inputs consumed by the OFF and DEF processes are used in the 

model (50)-(59), instead of the observed values, and the efficiency score of process 

PERF, which will be the efficiency for the entire DMU, is computed. Note that the 

described method is just the opposite of the one described in Lewis et al. (2009), since 

the model used in that paper was output-oriented. 
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Figure 1. DMU as a network of processes 
 
 

Figure 2. Average normalized budgets (observed and target) 
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 Figure 3. Observed DMUs and 

efficient VRS projections (y-axis 
= wins, x-axis = target 
standardized budget). 
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Figure 4. CRS effective cost per victory in each regular season (in thousands of dollars). 
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Figure 5. Evolution of mean MPI and its FGNZ components 
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Figure 6. Evolution of MPI and its FGNZ components for the last four NBA champions. 
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Figure 7. Efficiency of the four sub-DMUs for the Pacific Division according to the Lewis-Lock-Sexton methodology. 
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Name Label Type of variable 
Total salaries of all players in the team Budget Input 
Number of team victories Wins Output 
2-Point shots attempted 2PA Intermediate product 
3-Point shots attempted 3PA Intermediate product 
Free throws attempted FTA Intermediate product 
Offensive Rebounds OffReb Intermediate product 
Number of Assists Assists Intermediate product 
Inverse of Turnovers InvTO Intermediate product 
Defensive rebounds DefReb Intermediate product 
Number of Steals Steals Intermediate product 
Blocked Shots Blocks Intermediate product 
Points by the team Points Intermediate product 
Inverse of Points by opponents  InvOppPoints Intermediate product 

Table 1. Model variables 
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Note: Abs. budget data in millions of US$ 
 

Table 2. Input-output data for the NBA regular seasons from 2006/2007 to 2012/2013. 

2007 2008 2009 2010 2011 2012 2013
Division Teams Abs Norm Abs Norm Abs Norm Abs Norm Abs Norm Abs Norm Abs Norm Abs Abs Abs Abs Abs Abs Abs

BOS 70.4 0.99 77.3 1.10 80.1 1.11 85.1 1.21 75.2 1.12 107.8 1.59 88.1 1.33 24 66 62 50 56 39 41
NJ 71.7 1.01 64.1 0.91 59.3 0.82 61.1 0.87 58.2 0.87 59.2 0.87 79.2 1.19 41 34 34 12 24 22 49
NYK 127.1 1.79 98.9 1.41 94.2 1.31 75.1 1.07 65.6 0.98 61.4 0.91 77.5 1.17 33 23 32 29 42 36 54
PHI 77.5 1.09 72.8 1.04 68.9 0.95 62.3 0.89 67.6 1.01 76.6 1.13 62.1 0.93 35 40 41 27 41 35 34
TOR 57.5 0.81 68.1 0.97 70.7 0.98 67.6 0.96 68.3 1.02 60.6 0.89 64.0 0.96 47 41 33 40 22 23 34
CHI 58.8 0.83 64.1 0.91 69.8 0.97 67.8 0.97 54.9 0.82 67.1 0.99 71.5 1.08 49 33 41 41 62 50 45
CLE 68.9 0.97 83.7 1.19 94.6 1.31 85.9 1.22 69.0 1.03 53.1 0.78 52.7 0.79 50 45 66 61 19 21 24
DET 61.7 0.87 68.2 0.97 71.8 0.99 58.6 0.83 64.2 0.96 63.2 0.93 70.6 1.06 53 59 39 27 30 25 29
IND 67.7 0.95 69.0 0.98 69.6 0.96 66.9 0.95 65.1 0.97 50.6 0.75 63.6 0.96 35 36 36 32 37 42 49
MIL 68.1 0.96 65.7 0.94 69.9 0.97 68.5 0.98 70.2 1.05 60.1 0.89 58.7 0.88 28 26 34 46 35 31 38
ATL 55.6 0.78 57.6 0.82 69.5 0.96 65.1 0.93 69.4 1.04 71.7 1.06 67.7 1.02 30 37 47 53 44 40 44
CHA 58.2 0.82 55.7 0.79 64.1 0.89 68.6 0.98 63.3 0.94 61.7 0.91 55.4 0.83 33 32 35 44 34 7 21
MIA 70.1 0.99 76.3 1.09 71.0 0.98 71.5 1.02 65.6 0.98 75.0 1.11 79.5 1.20 44 15 43 47 58 46 66
ORL 65.1 0.92 76.3 1.09 74.5 1.03 82.1 1.17 88.8 1.33 82.0 1.21 63.9 0.96 40 52 59 59 52 37 20
WAS 66.9 0.94 70.4 1.00 70.5 0.98 74.5 1.06 57.7 0.86 56.5 0.83 58.0 0.87 41 43 19 26 23 20 29
DAL 102.2 1.44 108.4 1.54 95.5 1.32 87.8 1.25 87.9 1.31 68.8 1.01 57.8 0.87 67 51 50 55 57 36 41
HOU 69.7 0.98 70.6 1.01 71.9 1.00 69.3 0.99 68.8 1.03 58.7 0.87 53.8 0.81 52 55 53 42 43 34 45
MEM 68.8 0.97 52.5 0.75 55.8 0.77 57.1 0.81 68.9 1.03 76.3 1.13 70.2 1.06 22 22 24 40 46 41 56
NO 58.1 0.82 64.4 0.92 67.4 0.93 69.6 0.99 67.4 1.01 76.0 1.12 60.8 0.91 39 56 49 37 46 21 27
SAS 72.6 1.02 62.6 0.89 71.5 0.99 79.4 1.13 67.9 1.01 81.6 1.20 76.1 1.14 58 56 54 50 61 50 58
DEN 72.3 1.02 85.4 1.22 70.9 0.98 75.3 1.07 66.6 0.99 57.1 0.84 66.9 1.01 45 50 54 53 50 38 57
MIN 72.5 1.02 68.1 0.97 70.6 0.98 63.2 0.90 54.8 0.82 56.3 0.83 58.9 0.89 32 22 24 15 17 26 31
OKC 62.2 0.88 59.7 0.85 67.7 0.94 56.7 0.81 57.4 0.86 59.4 0.88 65.0 0.98 31 20 23 50 55 47 60
POR 80.7 1.14 64.6 0.92 77.1 1.07 57.8 0.82 73.3 1.09 66.5 0.98 55.6 0.84 32 41 54 50 48 28 33
UT 68.1 0.96 60.5 0.86 66.3 0.92 72.0 1.03 74.4 1.11 90.9 1.34 72.5 1.09 51 54 48 53 39 36 43
GSW 59.0 0.83 64.6 0.92 66.8 0.93 68.6 0.98 67.5 1.01 56.8 0.84 67.1 1.01 42 48 29 26 36 23 47
LAC 69.3 0.98 66.0 0.94 62.4 0.86 59.2 0.84 52.6 0.78 67.5 1.00 67.1 1.01 40 23 19 29 32 40 56
LAL 84.6 1.19 74.8 1.07 78.8 1.09 91.3 1.30 89.3 1.33 96.2 1.42 108.1 1.63 42 57 65 57 57 41 45
PHO 70.0 0.99 65.4 0.93 74.8 1.04 75.0 1.07 65.3 0.97 69.5 1.02 50.7 0.76 61 55 46 54 40 33 25
SAC 70.5 0.99 69.4 0.99 69.0 0.96 62.6 0.89 45.3 0.68 45.5 0.67 51.0 0.77 33 38 17 25 24 22 28

70.9 1.00 70.2 1.00 72.2 1.00 70.2 1.00 67.0 1.00 67.8 1.00 66.5 1.00 41 41 41 41 41 33 41

2012
WinsBudget

2007 2008 2009 2010

Average

2013

Central

South-
east

South-
west

North-
west

Pacific

Atlantic

2011
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Table 3. Efficiency scores for CRS and VRS Network DEA approaches 

 
 

Division Teams CRS VRS CRS VRS CRS VRS CRS VRS CRS VRS CRS VRS CRS VRS
BOS 0.29 0.79 0.68 0.71 0.70 0.75 0.55 0.67 0.54 0.60 0.33 0.42 0.37 0.58
NJ 0.48 0.77 0.42 0.82 0.52 0.95 0.18 0.93 0.30 0.78 0.34 0.77 0.49 0.64
NYK 0.22 0.44 0.19 0.53 0.31 0.60 0.36 0.75 0.46 0.69 0.54 0.74 0.55 0.65
PHI 0.38 0.72 0.42 0.69 0.54 0.82 0.40 0.91 0.44 0.67 0.42 0.59 0.43 0.82
TOR 0.68 0.97 0.48 0.77 0.42 0.80 0.55 0.84 0.23 0.66 0.35 0.75 0.42 0.79
CHI 0.70 0.95 0.41 0.82 0.53 0.81 0.56 0.84 0.82 0.98 0.68 0.69 0.50 0.71
CLE 0.61 0.81 0.43 0.63 0.63 0.70 0.66 0.66 0.20 0.66 0.36 0.86 0.36 0.96
DET 0.72 0.91 0.69 0.77 0.49 0.79 0.43 0.97 0.34 0.71 0.36 0.72 0.33 0.72
IND 0.43 0.82 0.42 0.76 0.47 0.81 0.44 0.85 0.41 0.70 0.76 0.90 0.61 0.80
MIL 0.34 0.82 0.32 0.80 0.44 0.81 0.62 0.83 0.36 0.65 0.47 0.76 0.51 0.86
ATL 0.45 1.00 0.51 0.91 0.61 0.82 0.76 0.87 0.46 0.65 0.51 0.63 0.51 0.75
CHA 0.47 0.95 0.46 0.94 0.49 0.88 0.60 0.83 0.39 0.72 0.10 0.74 0.30 0.91
MIA 0.52 0.79 0.16 0.69 0.55 0.80 0.61 0.79 0.64 0.69 0.56 0.61 0.66 0.66
ORL 0.51 0.85 0.70 0.88 0.71 0.80 0.67 0.69 0.42 0.51 0.41 0.55 0.25 0.79
WAS 0.51 0.83 0.49 0.75 0.24 0.79 0.32 0.76 0.29 0.79 0.32 0.80 0.40 0.87
DAL 0.55 0.56 0.38 0.48 0.47 0.60 0.58 0.65 0.47 0.52 0.48 0.66 0.56 0.88
HOU 0.62 0.80 0.62 0.74 0.67 0.81 0.56 0.82 0.45 0.66 0.53 0.77 0.66 0.94
MEM 0.27 0.81 0.33 1.00 0.39 1.00 0.65 0.99 0.48 0.66 0.49 0.60 0.63 0.72
NO 0.56 0.96 0.70 0.82 0.66 0.85 0.49 0.81 0.50 0.67 0.25 0.60 0.35 0.83
SAS 0.67 0.77 0.65 0.76 0.68 0.81 0.59 0.71 0.65 0.67 0.56 0.57 0.60 0.67
DEN 0.52 0.77 0.47 0.61 0.69 0.82 0.65 0.75 0.54 0.68 0.61 0.80 0.67 0.76
MIN 0.37 0.77 0.26 0.77 0.31 0.79 0.22 0.90 0.22 0.83 0.42 0.81 0.42 0.86
OKC 0.42 0.89 0.26 0.84 0.31 0.82 0.82 1.00 0.70 0.79 0.72 0.77 0.73 0.79
POR 0.33 0.69 0.50 0.80 0.63 0.75 0.80 0.98 0.47 0.62 0.39 0.68 0.47 0.91
UT 0.63 0.82 0.71 0.87 0.65 0.86 0.68 0.79 0.38 0.61 0.36 0.50 0.47 0.70
GSW 0.60 0.94 0.59 0.81 0.39 0.84 0.35 0.83 0.39 0.67 0.37 0.80 0.55 0.76
LAC 0.48 0.80 0.28 0.80 0.28 0.90 0.46 0.96 0.44 0.86 0.54 0.67 0.66 0.76
LAL 0.42 0.66 0.61 0.70 0.74 0.77 0.58 0.62 0.46 0.51 0.39 0.47 0.33 0.47
PHO 0.73 0.81 0.60 0.72 0.56 0.76 0.67 0.76 0.44 0.69 0.44 0.65 0.39 1.00
SAC 0.39 0.79 0.47 0.81 0.22 0.81 0.37 0.91 0.38 1.00 0.44 1.00 0.43 0.99

2012 2013

South-
east

South-
west

North-
west

Pacific

2010 2011

Atlantic

Central

2007 2008 2009
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Division Teams 2007-
2008

2008-
2009

2009-
2010

2010-
2011

2011-
2012

2012-
2013

BOS 2.483 0.932 0.739 1.209 0.492 1.262
NJ 0.919 1.111 0.333 2.005 0.912 1.632
NYK 0.887 1.502 1.105 1.585 0.925 1.166
PHI 1.151 1.167 0.708 1.336 0.762 1.176
TOR 0.729 0.797 1.233 0.520 1.192 1.373
Mean 1.112 1.077 0.750 1.217 0.823 1.311
CHI 0.612 1.174 1.002 1.781 0.668 0.827
CLE 0.733 1.334 0.991 0.370 1.452 1.129
DET 0.996 0.646 0.824 0.968 0.857 1.019
IND 1.000 1.020 0.898 1.135 1.478 0.911
MIL 0.953 1.265 1.341 0.709 1.047 1.230
Mean 0.843 1.055 0.997 0.875 1.052 1.013
ATL 1.177 1.083 1.172 0.743 0.891 1.142
CHA 1.004 0.978 1.142 0.800 0.213 3.274
MIA 0.310 3.166 1.056 1.283 0.702 1.327
ORL 1.402 0.935 0.883 0.778 0.780 0.680
WAS 0.987 0.454 1.260 1.092 0.898 1.384
Mean 0.873 1.073 1.095 0.917 0.622 1.361
DAL 0.711 1.145 1.164 0.988 0.816 1.328
HOU 1.034 0.974 0.799 0.984 0.937 1.417
MEM 1.298 1.055 1.584 0.911 0.814 1.457
NO 1.283 0.861 0.711 1.226 0.409 1.577
SAS 1.000 0.962 0.811 1.362 0.690 1.220
Mean 1.041 0.995 0.968 1.081 0.706 1.394
DEN 0.931 1.339 0.898 1.019 0.896 1.255
MIN 0.724 1.082 0.679 1.248 1.506 1.118
OKC 0.636 1.092 2.526 1.038 0.834 1.144
POR 1.567 1.148 1.202 0.722 0.650 1.383
UT 1.180 0.834 0.989 0.680 0.764 1.469
Mean 0.955 1.087 1.129 0.917 0.890 1.267
GSW 1.034 0.601 0.849 1.345 0.768 1.694
LAC 0.598 0.899 1.564 1.186 0.984 1.381
LAL 1.520 1.113 0.736 0.977 0.675 0.958
PHO 0.859 0.837 1.138 0.812 0.785 1.018
SAC 1.244 0.431 1.577 1.265 0.924 1.112
Mean 1.001 0.736 1.119 1.099 0.820 1.205

0.9663 0.995 1.0002 1.0104 0.8077 1.2517

Network Malmquist Index

Mean

Southwest

Northwest

Pacific

Atlantic

Central

Southeast

 
 

Table 4. MPI computed using the proposed Network DEA approach 
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Table 5. Components from MPI decomposition obtained by Network DEA

Division Teams EFFCH 
VRS TECCH PURE 

SCACH
EFFCH 
VRS TECCH PURE 

SCACH
EFFCH 
VRS TECCH PURE 

SCACH
EFFCH 
VRS TECCH PURE 

SCACH
EFFCH 
VRS TECCH PURE 

SCACH
EFFCH 
VRS TECCH PURE 

SCACH

BOS 0.90 1.04 2.66 1.05 0.91 0.97 0.89 0.94 0.88 0.90 1.22 1.09 0.70 0.80 0.88 1.36 1.13 0.81
NJ 1.06 1.04 0.84 1.16 0.91 1.05 0.98 0.94 0.36 0.84 1.22 1.95 0.99 0.80 1.15 0.83 1.13 1.73
NYK 1.21 1.04 0.70 1.12 0.91 1.47 1.26 0.94 0.93 0.92 1.22 1.41 1.07 0.80 1.08 0.88 1.13 1.16
PHI 0.96 1.04 1.16 1.19 0.91 1.07 1.11 0.94 0.68 0.74 1.22 1.48 0.89 0.80 1.07 1.38 1.13 0.75
TOR 0.80 1.04 0.88 1.03 0.91 0.85 1.05 0.94 1.24 0.79 1.22 0.54 1.13 0.80 1.32 1.06 1.13 1.15
CHI 0.86 1.04 0.68 0.99 0.91 1.30 1.03 0.94 1.03 1.17 1.22 1.25 0.71 0.80 1.18 1.03 1.13 0.71
CLE 0.77 1.04 0.91 1.12 0.91 1.31 0.94 0.94 1.11 0.99 1.22 0.31 1.30 0.80 1.39 1.12 1.13 0.89
DET 0.85 1.04 1.13 1.02 0.91 0.69 1.23 0.94 0.71 0.73 1.22 1.08 1.02 0.80 1.05 1.00 1.13 0.90
IND 0.93 1.04 1.04 1.07 0.91 1.05 1.04 0.94 0.91 0.82 1.22 1.13 1.29 0.80 1.43 0.89 1.13 0.90
MIL 0.98 1.04 0.94 1.01 0.91 1.38 1.03 0.94 1.38 0.78 1.22 0.74 1.17 0.80 1.11 1.14 1.13 0.95
ATL 0.91 1.04 1.25 0.90 0.91 1.32 1.06 0.94 1.17 0.75 1.22 0.81 0.97 0.80 1.14 1.18 1.13 0.85
CHA 0.99 1.04 0.98 0.93 0.91 1.15 0.94 0.94 1.29 0.87 1.22 0.75 1.03 0.80 0.26 1.24 1.13 2.33
MIA 0.87 1.04 0.35 1.16 0.91 2.99 0.99 0.94 1.13 0.87 1.22 1.20 0.88 0.80 1.00 1.09 1.13 1.08
ORL 1.03 1.04 1.31 0.90 0.91 1.13 0.87 0.94 1.08 0.74 1.22 0.86 1.09 0.80 0.90 1.43 1.13 0.42
WAS 0.90 1.04 1.06 1.06 0.91 0.47 0.96 0.94 1.39 1.03 1.22 0.86 1.02 0.80 1.09 1.09 1.13 1.12
DAL 0.87 1.04 0.79 1.24 0.91 1.01 1.07 0.94 1.15 0.80 1.22 1.01 1.28 0.80 0.80 1.33 1.13 0.88
HOU 0.93 1.04 1.08 1.08 0.91 0.99 1.01 0.94 0.83 0.81 1.22 1.00 1.18 0.80 1.00 1.22 1.13 1.03
MEM 1.24 1.04 1.01 1.00 0.91 1.16 0.99 0.94 1.69 0.66 1.22 1.12 0.91 0.80 1.12 1.21 1.13 1.06
NO 0.85 1.04 1.45 1.04 0.91 0.91 0.96 0.94 0.78 0.83 1.22 1.21 0.89 0.80 0.57 1.39 1.13 1.00
SAS 0.98 1.04 0.99 1.07 0.91 0.98 0.88 0.94 0.98 0.93 1.22 1.19 0.85 0.80 1.01 1.18 1.13 0.91
DEN 0.80 1.04 1.13 1.34 0.91 1.10 0.92 0.94 1.04 0.91 1.22 0.92 1.17 0.80 0.96 0.95 1.13 1.16
MIN 1.01 1.04 0.70 1.03 0.91 1.16 1.13 0.94 0.63 0.92 1.22 1.11 0.98 0.80 1.93 1.07 1.13 0.92
OKC 0.94 1.04 0.65 0.98 0.91 1.22 1.21 0.94 2.20 0.79 1.22 1.07 0.97 0.80 1.08 1.03 1.13 0.98
POR 1.17 1.04 1.30 0.94 0.91 1.34 1.30 0.94 0.98 0.63 1.22 0.94 1.10 0.80 0.73 1.33 1.13 0.91
UT 1.06 1.04 1.08 0.99 0.91 0.92 0.91 0.94 1.15 0.77 1.22 0.72 0.82 0.80 1.16 1.40 1.13 0.93
GSW 0.86 1.04 1.16 1.03 0.91 0.64 0.98 0.94 0.91 0.81 1.22 1.35 1.19 0.80 0.80 0.94 1.13 1.58
LAC 0.99 1.04 0.58 1.12 0.91 0.88 1.07 0.94 1.55 0.90 1.22 1.08 0.78 0.80 1.57 1.12 1.13 1.09
LAL 1.07 1.04 1.37 1.10 0.91 1.11 0.81 0.94 0.97 0.82 1.22 0.98 0.93 0.80 0.91 0.99 1.13 0.85
PHO 0.90 1.04 0.92 1.05 0.91 0.87 0.99 0.94 1.21 0.92 1.22 0.72 0.94 0.80 1.04 1.53 1.13 0.59
SAC 1.03 1.04 1.16 1.00 0.91 0.48 1.12 0.94 1.49 1.10 1.22 0.94 1.00 0.80 1.15 0.99 1.13 0.99

2011-12 2012-132007-08 2008-09 2009-10 2010-11

North-
west

Pacific

Atlantic

Central

South-
east

South-
west
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Component Network Single Network Single Network Single

Budget Change 0.079 0.444* 0.236* 0.212* 0.275* 0.300*

EFFCH VRS 0.077 0.575* 0.229* 0.293* 0.302* 0.393*

PURESCACH 0.995* 0.715* 0.979* 0.883* 0.983* 0.915*

Component Network Single Network Single Network Single

Budget Change 0.297* 0.289* 0.238 0.427* 0.029 0.460*

EFFCH VRS 0.348* 0.425* 0.265 0.403* 0.028 0.428*

PURESCACH 0.986* 0.861* 0.994* 0.927* 0.999* 0.915*

2007-08 2008-09 2009-10

2010-11 2011-12 2012-13

 
* p-value ≤ 0.001 

 
Table 6. Standardized regression coefficients for the change in the variable Wins between 

seasons. 
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Division Teams 2007 2008 2009 2010 2011 2012 2013
BOS 0.12 0.23 0.29 0.24 0.29 0.30 0.23
NJ 0.36 0.18 0.19 0.05 0.13 0.21 0.26
NYK 0.20 0.20 0.41 0.31 0.51 0.41 0.45
PHI 0.37 0.30 0.38 0.14 0.23 0.31 0.42
TOR 0.32 0.26 0.20 0.21 0.16 0.16 0.20
CHI 0.30 0.22 0.27 0.21 0.18 0.31 0.32
CLE 0.34 0.24 0.24 0.15 0.08 0.16 0.18
DET 0.28 0.31 0.35 0.20 0.18 0.15 0.17
IND 0.20 0.23 0.24 0.22 0.27 0.24 0.39
MIL 0.38 0.18 0.24 0.34 0.17 0.25 0.28
ATL 0.28 0.31 0.24 0.22 0.19 0.23 0.27
CHA 0.23 0.18 0.21 0.21 0.14 0.05 0.17
MIA 0.18 0.06 0.29 0.20 0.26 0.27 0.25
ORL 0.35 0.30 0.29 0.33 0.42 0.41 0.21
WAS 0.30 0.26 0.12 0.08 0.19 0.15 0.24
DAL 0.16 0.21 0.20 0.19 0.29 0.28 0.35
HOU 0.37 0.28 0.29 0.29 0.34 0.27 0.34
MEM 0.18 0.22 0.20 0.35 0.42 0.35 0.37
NO 0.29 0.30 0.34 0.29 0.24 0.18 0.22
SAS 0.22 0.30 0.32 0.16 0.34 0.28 0.28
DEN 0.37 0.35 0.31 0.25 0.39 0.39 0.33
MIN 0.23 0.15 0.15 0.11 0.20 0.22 0.20
OKC 0.30 0.22 0.27 0.18 0.30 0.28 0.27
POR 0.13 0.27 0.28 0.20 0.30 0.21 0.26
UT 0.37 0.29 0.35 0.32 0.17 0.28 0.21
GSW 0.40 0.41 0.27 0.26 0.36 0.24 0.36
LAC 0.37 0.13 0.15 0.12 0.27 0.31 0.34
LAL 0.22 0.28 0.26 0.16 0.17 0.22 0.19
PHO 0.27 0.40 0.28 0.33 0.40 0.20 0.21
SAC 0.41 0.28 0.11 0.11 0.26 0.24 0.24

0.28 0.25 0.26 0.21 0.26 0.25 0.27
0.12 0.06 0.11 0.05 0.08 0.05 0.17
0.41 0.41 0.41 0.35 0.51 0.41 0.45

0.878* 0.965* 0.946* 0.933* 0.889* 0.941* 0.958*

Mean
Min
Max

Spearman coef.

Atlantic

Central

Southeast

Southwest

Northwest

Pacific

 
* p-value ≤ 0.01 

 
Table 7. Differences between Lewis-Lock-Sexton approach and the proposed approach from 

2007 to 2013 seasons. 
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a b s t r a c t

In this paper, a directional distance approach is proposed to deal with network DEA prob-
lems in which the processes may generate not only desirable final outputs but also unde-
sirable outputs. The proposed approach is applied to the problem of modelling and
benchmarking airport operations. The corresponding network DEA model considers two
process (Aircraft Movement and Aircraft Loading) with two final outputs (Annual Passen-
ger Movement and Annual Cargo handled), one intermediate product (Aircraft Traffic
Movements) and two undesirable outputs (Number of Delayed Flights and Accumulated
Flight Delays). The proposed approach has been applied to Spanish airports data for year
2008 comparing the computed directional distance efficiency scores with those obtained
using a conventional, single-process directional distance function approach. From this
comparison, it can be concluded that the proposed network DEA approach has more dis-
criminatory power than its single-process counterpart, uncovering more inefficiencies
and providing more valid results.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Data Envelopment Analysis (DEA) is a non-parametric tool for assessing the relative efficiency of homogeneous Decision
Making Units (DMU). A DMU is commonly modelled as a single process that transforms inputs into outputs. The mathemat-
ical function for this transformation is unknown and the relative efficiency of the DMUs is assessed based only on the input
and output data of the observed DMUs. From this, assuming certain technology assumptions, a Production Possibility Set
(PPS) is inferred which contains all feasible input–output combinations. A DMU is labelled relative efficient if it cannot be
found a feasible operation point (i.e. within the PPS) that produces more output without consuming more inputs or that con-
sumes less input without producing less output. On the contrary, if the amounts of inputs consumed to produce the current
outputs can be reduced or if the amount of outputs produced with the current inputs can be increased then the DMU is rel-
ative inefficient and an efficiency score based on the estimated potential improvements is computed.

It occurs often that, apart from consuming inputs and producing desirable outputs, the DMUs also generate undesirable
outputs. That is rather common in many production settings in which pollution, noise, etc., are unwillingly but inevitably
generated. There are many DEA approaches that can handle this situation basically through the assumption of an appropriate
technology. The basic assumption in these cases is the joint weak disposability of desirable and undesirable outputs [1]. This
implies that a reduction of the amount of undesirable outputs reduces also the desirable outputs because of the required
diversion of productive resources to that end. A common way of handling efficiency assessment when there are undesirable
. All rights reserved.
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outputs is through the Directional Distance Function (DDF) [2]. Such approach is a generalization of the common radial input
or output-oriented efficiency measures and allows a simultaneous reduction both of inputs and of undesirable outputs as
well as an increase in the desirable outputs. This type of DEA approaches has been widely used in environmental efficiency
assessment (e.g. [3,4]).

Also, conventional DEA approaches consider the production process of a DMU as a black box. There are, however, other
DEA applications in which instead of considering just a single process, a finer analysis is done which considers different
interrelated processes each one with its own exogenous inputs and final outputs and also with intermediate products that
are generated and consumed within the system. This type of DEA approaches are generally known as network DEA (e.g. [5]).

In this paper we present a Directional Distance Function (DDF) network DEA approach that takes into account undesirable
outputs, applying it to assess the efficiency of airports. The structure of the paper is the following. Section briefly reviews the
related literature on network DEA. Section 3 introduces the notation and defines the network technology concept. In section
4 the proposed directional distance network DEA approach is presented. Section 5 presents the application of the proposed
approach to the relative efficiency assessment of airports, using data from the 39 Spanish airports for year 2008. Finally, Sec-
tion 6 summarizes and concludes.

2. Brief network DEA literature review

As it has been mentioned above, network DEA approaches take into consideration the internal configuration of the DMUs
instead of considering them as black boxes. Thus, while conventional DEA considers a single process that consumes all the
inputs and produces all the outputs, network DEA considers the existence of several processes each of which consumes its
owns set of inputs and produce its own set of outputs, in addition to consuming and producing intermediate products. These
intermediate products are considered as inputs for some stages are outputs for others.

Most network DEA papers deal with series-of-processes systems (e.g. [6,7]), although parallel-processes (e.g. [8]) and gen-
eral networks of processes have also been studied (e.g. [9,10]). Also, although most approaches use a radial input or output
orientation (e.g. [6,7], etc.), other approaches such as Slacks-Based Measure (SBM) (e.g. [11,12]), Slacks-Based Inefficiency
(SBI) [13] and cost efficiency (e.g. [14,15]) have also been proposed. The number of applications of network DEA has also grown
and spans transportation (e.g. [16,17]), banking (e.g. [13,14]), utilities (e.g. [11,18]) and sports (e.g. [19,20]), among others.

In this paper, we present a novel network DEA approach that can handle the case in which some processes may generate
undesirable outputs. To the best of our knowledge, there are just a few network DEA approaches that consider undesirable
factors. Thus, Kordrostami and Amirteimoori [21] consider a multistage system and take into account the undesirable factors
(which can also be intermediate products) with a minus sign in the computation of the virtual inputs and virtual outputs of a
multiplier formulation. Hua and Bian [22] extend the approach to a more general network of processes, not necessarily in
series. In both papers, a multiplier DEA form is used. Fukuyama and Weber [13] consider a two-stage series system and pre-
sents an application to assess the efficiency of banks.

Therefore, the network DEA approach proposed in this paper makes two main methodological contributions. One is to de-
fine formally the PPS of a general network of processes with undesirable outputs. The other is the use of a DDF efficiency mea-
sure computed on an envelopment form DEA model. In addition, the proposed approach has been applied to an important
sector allowing more valid airports efficiency estimates than those computed by conventional, single-process DEA approaches.

3. Network technology including undesirable outputs

Network DEA considers that there are n DMUs which are structurally homogeneous, i.e. they consist of the same types of
processes with the same interrelationships among them. Let P be the number of processes. Let I(p) the set of exogenous in-
puts used in process p and, for each i 2 I(p), let xp

ij denote the observed amount of exogenous input i consumed by process p of
DMU j. Let PI(i) the set of processes that consume the exogenous input i and xij ¼

P
p2PIðiÞx

p
ij the total amount of exogenous

input i consumed by all processes of DMU j. Similarly, let O(p) the set of final (hence desirable) outputs of process p and,
for each k 2 O(p), let yp

kj denote the observed amount of final output k produced by process p of DMU j. Let PO(k) the set
of processes that produce the final output k and ykj ¼

P
p2POðkÞy

p
kj the total amount of final output k produced by all processes

of DMU j. Also, let U(p) the set of undesirable outputs of process p and, for each b 2 U(p), let up
bj denote the observed amount

of undesirable output b produced by process p of DMU j. Let PU(b) the set of processes that produce the undesirable output b
and ubj ¼

P
p2PU ðbÞu

p
bj the total amount of undesirable output k produced by all processes of DMU j. Let also PU = [bPU(b) the

set processes that generate undesirable outputs of any kind.
In addition to these exogenous inputs, final outputs and undesirable outputs, there exist R intermediate products inter-

nally generated and consumed. Thus, let Pout(r) the set of processes that generate the intermediate product r and for each
p 2 Pout(r) let zp

rj the observed amount of intermediate product r generated by process p of DMU j. Also, let Pin(r) the set of
processes that consume the intermediate product r and for each p 2 Pin(r) let zp

rj the observed amount of intermediate prod-
uct r consumed by process p of DMU j. Finally, let Rout(p) and Rin(p) be the sets of the intermediate products produced and
consumed, respectively, by a certain process p. Without loss of generality we may assume that
X

p2PoutðrÞ

zp
rj ¼

X
p2PinðrÞ

zp
rj 8r 8j ð1Þ
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i.e. the intermediate products consumed by a DMU are completely generated within the system.
In order to be able to formulate a network DEA model it is convenient to first establish the corresponding network tech-

nology, i.e. the network PPS, with all the feasible, i.e. attainable, (inputs, final outputs, undesirable outputs) combinations. To
that end let us first consider the PPS of an individual process p. We should distinguish between processes which do not gen-
erate undesirable outputs and those that do. In the former case the PPS is given by
Tp ¼ xp
i ; y

p
k ; z

p
r

� �
:

9kp
j 2 Kp 8j xp

i P
X

j

kp
j xp

ij 8i 2 IðpÞ yp
k 6

X
j

kp
j yp

kj 8k 2 OðpÞ

zp
r P

X
j

kp
j zp

rj 8r 2 RinðpÞ zp
r 6

X
j

kp
j zp

rj 8r 2 RoutðpÞ

8>><
>>:

9>>=
>>;
where, as in conventional DEA, the set Kp represent the Returns to Scale (RTS) assumption for process p.
In the case of processes that generate undesirable outputs, i.e. p 2 PU, the corresponding PPS should incorporate the joint

weak disposability of desirable (both final and intermediate products) and undesirable outputs, thus leading to
bT p ¼ xp
i ; y

p
k ;u

p
b; z

p
r

� �
:

90 6 hp 6 1 9kp
j 2 Kp 8j xp

i P
X

j

kp
j xp

ij 8i 2 IðpÞ

yp
k 6 hp �

X
j

kp
j yp

kj 8k 2 OðpÞ up
b ¼ hp �

X
j

kp
j yp

kj 8b 2 UðpÞ

zp
r P

X
j

kp
j zp

rj 8r 2 RinðpÞ zp
r 6 hp �

X
j

kp
j zp

rj 8r 2 RoutðpÞ

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
Note that when there are undesirable outputs the variable hp is not needed (or equivalently it takes its maximum allowed
value, i.e. hp = 1) in the case of a Constant Returns to Scale (CRS) process (see e.g. [23,1]).

Using the PPS of the individual processes, the corresponding network PPS can be defined as
T ¼ ðxi; yk;ubÞ :

9 xp
i ; y

p
k ;u

p
b; z

p
r

� �
2 bT p 8p 2 PU 9 xp

i ; y
p
k ; z

p
r

� �
2 Tp 8p R PU

xi P
X

p2PIðiÞ
xp

ij 8i yk 6
X

p2POðkÞ
yp

kj 8k

ub ¼
X

p2PU ðbÞ
up

bj 8b

X
p2PoutðrÞ

zp
rj �

X
p2PinðrÞ

zp
rj P 0 8r

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;
4. Proposed directional distance approach

Once the network technology has been appropriately defined, in this section a directional distance network DEA approach
is proposed. The Directional Distance Function (DDF) measures the distance from a certain operation point (e.g. DMU 0) to
the weakly efficient subset of the network PPS along a given direction vector g ¼ gx

i ; g
y
k; g

u
b

� �
[2]. It is, therefore, the largest

step size that can be given along that direction from that operation point without abandoning the network PPS. The DDF
approach is a common approach when undesirable outputs are present (e.g. [2,1,24–27], etc.) and it includes as particular
cases the pure input and pure output orientations.

Because the resulting model is a Linear Program (LP) we will first formulate the proposed approach for the case that all
processes exhibit CRS. Let b the DDF of DMU 0 along direction vector g ¼ gx

i ; g
y
k; g

u
b

� �
which can be computed as
Max b

subject to

X
p2PIðiÞ

X
j

kp
j xp

ij 6 xi0 � b � gx
i 8i ð3Þ

X
p2POðkÞ

X
j

kp
j yp

kj P yk0 þ b � gy
k 8k

X
p2PU ðbÞ

X
j

kp
j up

bj ¼ ub0 � b � gu
b 8b

ð4Þ

X
p2PoutðrÞ

X
j

kp
j zp

rj �
X

p2PinðrÞ

X
j

kp
j zp

rj P 0 8r ð5Þ

kp
j P 0 8j 8p b free ð6Þ
Constraints (3) and (4) respectively impose the corresponding exogenous input reductions and final outputs increases. For
each input i, the left hand size of the corresponding constraint (3) computes the sum, for all the processes that consume that
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input, of the target input of the operation points of these processes. The corresponding right hand size relates the target total
input consumption to the current input consumption thus bounding from below the maximum step size b that can be
achieved along the direction given by vector g ¼ gx

i ; g
y
k; g

u
b

� �
. Similarly, for each output k, the left hand size of the correspond-

ing constraint (4) computes the sum, for all the processes that produce that output, of the target output of the operation
points of these processes. The corresponding right hand size relates the target total production of output k to the current
production of output k, also bounding from below the maximum step size b that can be achieved along g ¼ gx

i ; g
y
k; g

u
b

� �
.

Constraints (5) impose, for each undesirable output, the possible reduction that can be obtained using that reduction, as
before, to bound the maximum step size along direction g ¼ gx

i ; g
y
k; g

u
b

� �
. An important difference with the previous con-

straints is that, due to the weak disposability of undesirable outputs assumption, these constraints are equalities.
Finally, constraints (6) are global balance constraints imposing that the amount of each intermediate product produced in

the system is sufficient to satisfy the amount of that intermediate product that is consumed. Thus, for each intermediate
product, the first term in the constraint represents the sum of the target production of that intermediate product by the pro-
cesses that produce it while the second terms computes the sum of the target consumption of that intermediate product by
the processes that consume it.

The optimal solution to the above model, denoted with an asterisk superscript, gives the target operation point for each
process p
x̂p
i ¼

X
j

kp
j

� ��
xp

ij 8i 2 IðpÞ ð7Þ

ŷp
k ¼

X
j

kp
j

� ��
yp

kj 8k 2 OðpÞ ð8Þ

ûp
b ¼

X
j

kp
j

� ��
up

bj 8b 2 UðpÞ ð9Þ

ẑp
r ¼

X
j

kp
j

� ��
zp

rj 8r 2 RinðpÞ [ RoutðpÞ ð10Þ
From the targets of the different processes, the targets for the system total exogenous inputs, final outputs and undesirable
outputs can then be computed as
x̂i ¼
X

p2PIðiÞ
x̂p

i 6 xi0 ¼
X

p2PIðiÞ
xp

i0 8i ð11Þ

ŷk ¼
X

p2POðkÞ
ŷp

k P yk0 ¼
X

p2POðkÞ
yp

k0 8k ð12Þ

ûb ¼
X

p2PU ðbÞ
ûp
0b 6 ub0 ¼

X
p2PU ðbÞ

up
b0 8b ð13Þ
The above model assumes that CRS prevails for all processes. If that is not the case, the resulting model is generally a Non-
Linear Program (NLP). In order to formulate this non-CRS case, let PCRS, PVRS and PNIRS be the sets of processes with CRS, Var-
iable Returns to Scale (VRS) and Non-Increasing Returns to Scale (NIRS) PPS respectively. The corresponding DDF network
DEA model is
Max b ð14Þ
subject toX
p2PIðiÞ

X
j

kp
j xp

ij 6 xi0 � b � gx
i 8i ð15Þ

X
p2POðkÞ
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X

j
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j yp

kj P yk0 þ b � gy
k 8k ð16Þ

X
p2PU ðbÞ

hp �
X

j

kp
j up

bj ¼ ub0 � b � gu
b 8b ð17Þ

X
p2PoutðrÞ

hp �
X

j

kp
j zp

rj �
X

p2PinðrÞ

X
j

kp
j zp

rj P 0 8r ð18Þ

X
j

kp
j ¼ 1 8p 2 PVRS ð19Þ

X
j

kp
j 6 1 8p 2 PNIRS ð20Þ

hp ¼ 1 8p R PU ð21Þ
hp ¼ 1 8p 2 ðPU \ PCRSÞ ð22Þ
0 6 hp 6 1 8p 2 ðPU \ PVRSÞ [ ðPU \ PNIRSÞ ð23Þ
kp

j P 0 8j 8p b free ð24Þ
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The interpretation of constraints (15)–(18) is similar to that of constraints (3)–(5) with the added feature of the variable hp

that is required to account for the weak disposability of undesirable outputs. Although such variable is only required for
those processes that generate undesirable outputs (i.e. p 2 PU) and only in the case that the Returns to Scale (RTS) of the pro-
cess is not CRS, in order to simplify the formulation, a variable hp has been assumed for each process p, although, through
constraints (21) and (22) the variable is set to unity for those processes for which it is not required. In other words, con-
straints (21) and (22) indicate that variable hp does not intervene for those processes that do not generate undesirable out-
puts or generate undesirable outputs but exhibit CRS. For the processes p that generate undesirable outputs and do not
exhibit CRS, constraints (3) bound the variable hp below unity, consistent with the definition of the corresponding PPS bT p.

Constraints (19) and (20) impose the RTS constraints on the sum of the intensity variables of the different processes. Note
that the above model reduces to model (2)–(6) in the case that all processes belong to PCRS (i.e. PVRS = PNIRS = £).

After solving the above NLP, the target operation point for each process can be computed as
x̂p
i ¼

X
j

kp
j

� ��
xp

ij 8i 2 IðpÞ ð25Þ

ŷp
k ¼ h�p �

X
j

kp
j

� ��
yp

kj 8k 2 OðpÞ ð26Þ

ûp
b ¼ h�p �

X
j

kp
j

� ��
up

bj 8b 2 UðpÞ ð27Þ

ẑp
r ¼ h�p �

X
j

kp
j

� ��
zp

rj 8r 2 RoutðpÞ ð28Þ

ẑp
r ¼

X
j

kp
j

� ��
zp

rj 8r 2 RinðpÞ ð29Þ
leading to the corresponding system targets as per (11)–(13).

5. Application to airports efficiency assessment

The motivation for this paper is the application of network DEA to modelling airport operations where in addition to the
desirable outputs (Annual Passenger Movement and Total Cargo handled) there are also some undesirable outputs (Number
of Delayed Flights and Accumulated Flight Delays). There are many airports benchmarking studies that have used DEA (e.g.
[28–34]). However almost all these DEA studies consider a DMU as a single process. An exception is Yu [16] which presents a
SBM network DEA approach to airports operations, although it does not consider undesirable outputs. The undesirable out-
puts considered in DEA applications to airports are aircraft noise [24,27] and airplanes delays [26,35]. Taking into account
the undesirable effects of airport operations not only increases the realism of the analysis but also contributes to a fairer
performance assessment. Thus, when undesirable outputs are ignored, DEA models tend to label as efficient those airports
with a higher activity level, some of which may be oversaturated and causing excessive pollution, noise and inconveniences
to passengers. When such saturated airports are considered as efficient then all airports are projected using them as bench-
marks which means that the targets thus computed would also suffer from those drawbacks. It makes more sense to include
undesirable outputs in the DEA model, provided the data are available, in which case the DEA model will not only reduce the
inputs and increase the desirable outputs but also reduce the undesirable outputs thus detecting inefficiencies with respect
to the latter variables. Thus, for an airport to be considered efficient it must happen that its undesirable outputs level cannot
Fig. 1. DMU as two-stage system.



Table 1
Inputs and outputs (desirable and undesirable) with their abbreviations.

Variable Units Label

Inputs Total runway area Square meters RUNAREA
Apron capacity Number of stands APRON
Number of boarding gates Number of gates BOARDG
Number of baggage belts Number of belts BAGB
Number of check-in counters Number of counters CHECKIN

Intermediate product Aircraft Traffic Movements Thousand operations ATM
Outputs (desirable) Annual Passenger Movements Thousand passengers APM

Cargo handled Tonnes CARGO
Outputs (undesirable) Number of Delayed Flights Number of flights NDF

Accumulated Flight Delays Min AFD

Table 2
Observed data for 39 Spanish airports for year 2008.

Airport IATA RUNAREA APRON BOARDG ATM NDF AFD CHECKIN BAGB APM CARGO

A Coruña LCG 87,300 5 4 17.719 1218 23783.4 10 3 1174.970 283.571
Albacete ABC 162,000 2 2 2.113 58 1376.5 4 1 19.254 8.924
Alicante ALC 135,000 31 16 81.097 7642 142445.8 42 9 9578.304 5982.313
Almeria LEI 144,000 15 5 18.280 1114 20149.1 17 4 1024.303 21.322
Asturias OVD 99,000 7 9 18.371 1310 23893.5 11 3 1530.245 139.465
Badajoz BJZ 171,000 1 2 4.033 137 2365.4 4 1 81.010 0.000
Barcelona BCN 475,020 121 65 321.693 33,036 645924.6 143 19 30272.084 103996.489
Bilbao BIO 207,000 21 12 61.682 4592 80848.2 36 7 4172.903 3178.758
Cordoba ODB 62,100 23 1 9.604 14 254.4 1 0 22.230 0.000
El Hierro VDE 37,500 3 2 4.775 27 641.6 5 1 195.425 171.717
Fuerteventura FUE 153,000 34 10 44.552 3920 72179.7 34 8 4492.003 2722.661
Girona-Costa Brava GRO 108,000 17 7 49.927 4992 100305.6 18 3 5510.970 184.127
Gran Canaria LPA 139,500 55 38 116.252 7463 136380.7 86 19 10212.123 33695.248
Granada-Jaen GRX 134,550 11 3 19.279 951 17868.8 12 3 1422.014 66.889
Ibiza IBZ 126,000 25 12 57.233 6193 152840.1 48 8 4647.360 3928.387
Jerez XRY 103,500 9 5 50.551 1174 19292.2 13 3 1303.817 90.428
La Gomera GMZ 45,000 3 2 3.393 17 420.7 5 1 41.890 7.863
La Palma SPC 99,000 5 5 20.109 423 8286.0 13 2 1151.357 1277.264
Lanzarote ACE 108,000 24 16 53.375 5104 101685.6 49 8 5438.178 5429.589
Leon LEN 94,500 5 2 5.705 442 7191.5 3 1 123.183 15.979
Madrid Barajas MAD 927,000 263 230 469.746 52,526 908360.0 484 53 50846.494 329186.631
Malaga AGP 144,000 43 30 119.821 15,548 277663.8 85 16 12813.472 4800.271
Melilla MLN 64,260 5 2 10.959 218 2979.6 4 1 314.643 386.340
Murcia MJV 138,000 5 5 19.339 1344 24103.1 18 4 1876.255 2.730
Palma de Mallorca PMI 295,650 86 68 193.379 26,038 501486.0 204 16 22832.857 21395.791
Pamplona PNA 99,315 7 2 12.971 666 11691.8 4 1 434.477 52.942
Reus REU 110,475 5 5 26.676 943 18240.8 8 3 1278.074 119.848
Salamanca SLM 150,000 6 2 12.450 427 6626.1 4 2 60.103 0.000
San Sebastian EAS 78,930 6 3 12.282 713 11184.0 6 2 403.191 63.791
Santander SDR 104,400 8 5 19.198 1004 17842.0 8 2 856.606 37.482
Santiago SCQ 144,000 16 12 21.945 2007 34322.3 19 5 1917.466 2418.798
Saragossa ZAZ 302,310 12 3 14.584 1095 19547.6 6 2 594.952 21438.894
Seville SVQ 151,200 23 10 65.067 2567 51084.9 42 6 4392.148 6102.264
Tenerife North TFN 153,000 16 16 67.800 1783 32637.0 37 5 4236.615 20781.674
Tenerife South TFS 144,000 44 22 60.779 5254 110818.9 87 14 8251.989 8567.093
Valencia VLC 144,000 35 18 96.795 4998 102719.2 42 8 5779.343 13325.799
Valladolid VLL 180,000 7 5 13.002 843 14760.6 8 2 479.689 34.650
Vigo VGO 108,000 8 6 17.934 1535 25593.6 12 3 1278.762 1481.939
Vitoria VIT 157,500 18 3 12.225 669 11585.8 7 2 67.818 34989.727
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be reduced without sacrificing output. Otherwise, if its undesirable outputs level is excessive the airport will be labeled as
inefficient and potential improvements will be computed.

In order to carry out a network DEA approach to airports two processes can be distinguished: one related to the move-
ment of the aircrafts (and therefore aimed at maximizing its throughput given the available resources) and a second one
related to the airplanes load factors (both in terms of passengers and cargo). The distinction between these two processes
has already been considered in the literature. Thus, Gillen and Lall [28,36] and Pels et al. [29,30] present the results of
two separate DEA models each. Gillen and Lall [28,36] call them Movements (or Airside) and Terminal services (passengers
and cargo) and do not establish any links between both models except their sharing some inputs. Pels et al. [30] refer to the
two DEA models as an airport model (oriented to aircraft movement) and an airlines model (oriented towards selling aircraft



Table 3
Results of proposed DDF network DEA approach.

Airport b⁄ h�S1 ATM�
0 NDF�0 AFD�0 APM�

0 CARGO�0 D ATM�
0 D NDF�0 D AFD�0 D APM�

0 D CARGO�0

A Coruña 0.648 1.000 18.5 429 8382.1 1935.8 533.3 0.7 �789 �15401.3 760.9 249.8
Albacete 0.000 1.000 2.1 58 1376.5 19.3 8.9 0.0 0 0.0 0.0 0.0
Alicante 0.014 1.000 85.1 7537 140497.8 9709.3 8677.9 4.0 �105 �1948.0 131.0 2695.6
Almeria 0.786 1.000 16.0 238 4310.9 1829.5 1534.2 �2.3 �876 �15838.2 805.2 1512.9
Asturias 0.626 1.000 23.4 490 8940.0 2487.9 381.5 5.0 �820 �14953.5 957.7 242.1
Badajoz 0.197 0.803 3.2 110 1898.7 97.0 11.6 �0.8 �27 �466.7 16.0 11.6
Barcelona 0.000 1.000 321.7 33,036 645924.6 30272.1 103996.5 0.0 0 0.0 0.0 0.0
Bilbao 0.676 1.000 59.5 1490 26231.5 6991.9 5326.2 �2.2 �3102 �54616.7 2819.0 2147.4
Cordoba 0.000 1.000 9.6 14 254.4 22.2 0.0 0.0 0 0.0 0.0 0.0
El Hierro 0.081 0.919 4.4 25 589.7 211.2 185.6 �0.4 �2 �51.9 15.8 13.9
Fuerteventura 0.565 1.000 59.6 1706 31409.9 7029.3 4534.3 15.1 �2214 �40769.8 2537.3 1811.6
Girona-Costa Brava 0.000 1.000 49.9 4992 100305.6 5511.0 184.1 0.0 0 0.0 0.0 0.0
Gran Canaria 0.171 1.000 104.7 6186 113043.8 11959.6 39461.1 �11.6 �1277 �23336.9 1747.5 5765.8
Granada-Jaen 0.529 1.000 20.1 448 8424.6 2173.6 1120.6 0.8 -503 �9444.2 751.6 1053.7
Ibiza 0.223 1.000 45.2 4813 118783.7 5682.9 4803.7 �12.0 �1380 �34056.4 1035.5 875.3
Jerez 0.673 1.000 19.9 384 6310.9 2181.1 1,387.4 �30.7 �790 �12981.3 877.3 1297.0
La Gomera 0.264 0.736 2.5 13 309.7 52.9 9.9 �0.9 �4 �110.9 11.1 2.1
La Palma 0.329 1.000 14.9 284 5563.9 1529.6 1696.9 �5.2 �139 �2722.1 378.2 419.6
Lanzarote 0.409 1.000 64.3 3014 60047.7 7665.0 7652.9 10.9 �2090 �41637.9 2226.8 2223.3
Leon 0.799 1.000 7.3 89 1446.3 221.6 28.7 1.6 �353 �5745.2 98.4 12.8
Madrid Barajas 0.000 1.000 469.7 52,526 908360.0 50846.5 329186.6 0.0 0 0.0 0.0 0.0
Malaga 0.060 1.000 117.5 14,621 261116.1 13577.1 13491.8 �2.3 �927 �16547.7 763.6 8691.5
Melilla 0.281 0.719 7.9 157 2141.2 403.2 495.0 �3.1 �61 �838.4 88.5 108.7
Murcia 0.522 1.000 25.0 643 11529.9 2855.0 1966.1 5.7 �701 �12573.3 978.7 1963.4
Palma de Mallorca 0.000 1.000 193.4 26,038 501486.0 22832.9 21395.8 0.0 0 0.0 0.0 0.0
Pamplona 0.450 1.000 11.0 366 6430.7 630.0 76.8 �2.0 �300 �5261.1 195.5 23.8
Reus 0.515 1.000 20.8 458 8851.9 1935.9 181.5 �5.9 �485 �9389.0 657.9 61.7
Salamanca 0.910 0.569 3.5 38 596.6 114.8 12.7 �9.0 �389 �6029.5 54.7 12.7
San Sebastian 0.840 1.000 8.4 114 1784.1 742.1 117.4 �3.9 �599 �9399.9 338.9 53.6
Santander 0.744 1.000 14.9 257 4564.7 1494.1 155.9 �4.3 �747 �13277.4 637.5 118.4
Santiago 0.707 1.000 29.2 588 10059.7 3272.9 4128.7 7.2 �1419 �24262.7 1355.5 1709.9
Saragossa 0.000 1.000 14.6 1095 19547.6 595.0 21438.9 0.0 0 0.0 0.0 0.0
Seville 0.358 1.000 51.5 1647 32781.1 5965.9 8288.7 �13.6 �920 �18303.7 1573.7 2186.4
Tenerife North 0.262 1.000 52.2 1315 24076.6 5347.8 26232.6 �15.6 �468 �8560.5 1111.2 5450.9
Tenerife South 0.234 1.000 80.8 4025 84890.9 10182.7 10571.5 20.0 �1229 �25928.1 1930.7 2004.4
Valencia 0.404 1.000 72.4 2979 61218.3 8114.3 18709.7 �24.4 �2019 �41500.9 2335.0 5383.9
Valladolid 0.862 1.000 9.2 117 2042.1 893.0 590.7 �3.8 �726 �12718.5 413.3 556.0
Vigo 0.731 1.000 20.9 412 6876.5 2213.9 2565.7 3.0 �1123 �18717.1 935.2 1083.8
Vitoria 0.000 1.000 12.2 669 11585.8 67.8 34989.7 0.0 0 0.0 0.0 0.0
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seats). They go as far as stating Aircraft Traffic Movements can be considered as an intermediate good that is ‘produced’ and
then ‘consumed’ in the production of Annual Passenger Movements. That is exactly what we have done in this paper.

Hence, the intermediate product linking the two processes considered in this paper is the variable ATM that represents
the aircraft movements in and out of the airport. That the movement of aircraft is considered an intermediate product in-
stead of a final output makes sense since the movement of aircraft (in civilian airports of course) is not an end in itself
but a means of providing the service of air transporting people and goods. This intermediate product is therefore produced
in stage S1 and ‘‘consumed’’ in stage S2. As a consequence of the aircraft traffic generating unwanted flight delays, stage S1
also generates two undesirable outputs. The final outputs are produced in stage S2. Thus, we propose the two-stage network
shown in Fig. 1. Table 1 lists the definition and units of measurement of the different variables. Note that a specific feature of
this DEA model is that all the inputs are non-discretionary. This means that the DEA model used should not aim at reducing
them below their current, observed levels (see [37]).

Table 2 shows the dataset for 39 Spanish airports for year 2008. The data have been obtained from the Spanish Airport
and Air Navigation Authority (AENA, http://www.aena.es/csee/Satellite?pagename=Estadisticas/Home, last accessed 2012–
03-30) except the flights delays data which have been kindly provided by the CODA (Central Office for Delay Analysis) ser-
vice of Eurocontrol (http://www.eurocontrol.int/eatm/public/standard_page/coda.html, last accessed 2012–03-30). As the
sample includes airports of very different sizes and since the airports do not operate in a perfectly competitive market
(something that could guarantee that they have optimal scale sizes), it is safer to assume that the two processes have VRS.

Note that, although in general, as discussed in the previous section, when the processes have RTS different to CRS, the
proposed approach leads to an NLP model, in this specific application the model can be linearized as shown in the Appendix.
This is due to two concurring facts. One is that there is only one process that generates undesirable outputs (i.e. PU = {S1})
and the other is that the exogenous inputs consumed in that process are not considered as inputs to the other process. Note
also that since all the inputs are non-discretionary the corresponding components of the direction vector g ¼ gx

i ; g
y
k; g

u
b

� �
should be zero, i.e. g ¼ 0; gy

k; g
u
b

� �
. As for the components corresponding to the final and the undesirable outputs, we have

http://www.aena.es/csee/Satellite?pagename=Estadisticas/Home
http://www.eurocontrol.int/eatm/public/standard_page/coda.html


Table 4
Results of DDF network DEA approach with non-worsening-ATM constraint.

Airport b⁄ h�S1 ATM�
0 NDF�0 AFD�0 APM�

0 CARGO�0 D ATM�
0 D NDF�0 D AFD�0 D APM�

0 D CARGO�0

A Coruña 0.648 1.000 18.5 429 8382.1 1935.8 533.3 0.7 �789 �15401.3 760.9 249.8
Albacete 0.000 1.000 2.1 58 1376.5 19.3 8.9 0.0 0 0.0 0.0 0.0
Alicante 0.014 1.000 85.1 7537 140497.8 9709.3 8677.9 4.0 �105 �1948.0 131.0 2695.6
Almeria 0.731 1.000 18.3 299 5417.0 1773.2 76.2 0.0 �815 �14732.1 748.9 54.9
Asturias 0.626 1.000 23.4 490 8940.0 2487.9 381.5 5.0 �820 �14953.5 957.7 242.1
Badajoz 0.000 1.000 4.0 137 2365.4 81.0 79.2 0.0 0 0.0 0.0 0.0
Barcelona 0.000 1.000 321.7 33,036 645924.6 30272.1 103996.5 0.0 0 0.0 0.0 0.0
Bilbao 0.627 1.000 61.7 1713 30160.0 6789.1 5171.7 0.0 �2879 �50688.2 2616.2 1992.9
Cordoba 0.000 1.000 9.6 14 254.4 22.2 0.0 0.0 0 0.0 0.0 0.0
El Hierro 0.000 1.000 4.8 27 641.6 195.4 171.7 0.0 0 0.0 0.0 0.0
Fuerteventura 0.565 1.000 59.6 1706 31409.9 7029.3 4534.3 15.1 �2214 �40769.8 2537.3 1811.6
Girona-Costa Brava 0.000 1.000 49.9 4992 100305.6 5511.0 184.1 0.0 0 0.0 0.0 0.0
Gran Canaria 0.000 1.000 116.3 7463 136380.7 10212.1 33695.3 0.0 0 0.0 0.0 0.0
Granada-Jaen 0.529 1.000 20.1 448 8424.6 2173.6 1120.6 0.8 �503 �9444.2 751.6 1053.7
Ibiza 0.000 1.000 57.2 6193 152840.1 4647.4 3928.4 0.0 0 0.0 0.0 0.0
Jerez 0.000 1.000 50.6 1174 19292.2 1303.8 90.4 0.0 0 0.0 0.0 0.0
La Gomera 0.000 1.000 3.4 17 420.7 41.9 7.9 0.0 0 0.0 0.0 0.0
La Palma 0.000 1.000 20.1 423 8,286.0 1151.4 1277.3 0.0 0 0.0 0.0 0.0
Lanzarote 0.409 1.000 64.3 3014 60047.7 7665.0 7652.9 10.9 �2,090 �41637.9 2226.8 2223.3
Leon 0.799 1.000 7.3 89 1446.3 221.6 28.7 1.6 �353 �5745.2 98.4 12.8
Madrid Barajas 0.000 1.000 469.7 52,526 908360.0 50846.5 329186.6 0.0 0 0.0 0.0 0.0
Malaga 0.000 1.000 119.8 15,548 277663.8 12813.5 4800.3 0.0 0 0.0 0.0 0.0
Melilla 0.000 1.000 11.0 218 2979.6 314.6 386.3 0.0 0 0.0 0.0 0.0
Murcia 0.522 1.000 25.0 643 11529.9 2855.0 1966.1 5.7 �701 �12573.3 978.7 1,963.4
Palma de Mallorca 0.000 1.000 193.4 26,038 501486.0 22832.9 21395.8 0.0 0 0.0 0.0 0.0
Pamplona 0.000 1.000 13.0 666 11691.8 434.5 52.9 0.0 0 0.0 0.0 0.0
Reus 0.000 1.000 26.7 943 18240.8 1278.1 119.8 0.0 0 0.0 0.0 0.0
Salamanca 0.000 1.000 12.5 427 6626.1 111.3 6.3 0.0 0 0.0 0.0 0.0
San Sebastian 0.692 1.000 12.3 219 3439.9 682.4 108.0 0.0 �494 �7744.1 279.2 44.2
Santander 0.631 1.000 19.2 371 6586.4 1397.0 61.1 0.0 �633 �11255.7 540.4 23.6
Santiago 0.707 1.000 29.2 588 10059.7 3272.9 4128.7 7.2 �1419 �24262.7 1355.5 1709.9
Saragossa 0.000 1.000 14.6 1095 19547.6 595.0 21438.9 0.0 0 0.0 0.0 0.0
Seville 0.004 1.000 65.1 2556 50859.1 4411.6 6129.2 0.0 �11 �225.8 19.4 27.0
Tenerife North 0.000 1.000 67.8 1783 32637.0 4236.6 20781.7 0.0 0 0.0 0.0 0.0
Tenerife South 0.234 1.000 80.8 4025 84890.9 10182.7 10571.5 20.0 �1229 �25928.1 1930.7 2004.4
Valencia 0.000 1.000 96.8 4998 102719.2 5779.3 13325.8 0.0 0 0.0 0.0 0.0
Valladolid 0.746 1.000 13.0 214 3743.8 837.7 60.5 0.0 �629 �11016.8 358.0 25.9
Vigo 0.731 1.000 20.9 412 6876.5 2213.9 2565.7 3.0 �1123 �18717.1 935.2 1083.8
Vitoria 0.000 1.000 13.5 669 11585.8 67.8 34989.7 1.3 0 0.0 0.0 0.0
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Fig. 2. Proposed network DDF approach versus single-process DDF approach.
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adopted a proportional directional distance vector g = (0,yk0,ub0). This means that the computed optimal step size b⁄ can be
interpreted as the percentage that all output variables can be simultaneously improved, where improvement means reduc-
tion in the case of undesirable outputs and increase in the case of desirable outputs.
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Fig. 3. Overall results.
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Table 3 shows the optimal step size b⁄ computed by the proposed approach together with the optimal value of h�S1 and the
output values for the computed targets and the change those targets represent from the corresponding observed values. Note
that there are seven airports for which b⁄ = 0. Note also that since the variable ATM is considered in principle as an interme-
diate output the only requirement that the model imposes on the corresponding target value is just that enough of this inter-
mediate product is produced in stage S1 to satisfy the amount consumed in stage S2. This means that it is possible for some
DMUs that the target for this variable be lower that the observed value, i.e. ATM�

0 < ATM0. This means that the optimal value
of that variable, i.e. the one that leads to the largest proportional increase in the final outputs and simultaneous proportional
decrease of the undesirable outputs requires sometimes that the level of the aircraft movement operations be downscaled
(thus reducing congestion), downscaling that is more than compensated with an improvement in the efficiency of the air-
craft loading operations, so that in the end APM and CARGO increase and NDF and AFD decrease.
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Since voluntarily reducing the level of aircraft operations is a recommendation that, even when optimal, may not be
agreeable to many airport managers and as an example of the flexibility of the proposed approach we have also solved
the model imposing the additional constraint that the target of variable ATM cannot be lower than the observed value,
i.e. ATM�

0 P ATM0. In this way, the target values not only of APM and CARGO but also of ATM are guaranteed to be higher
than the observed values (or at least stay the same) while the target values for NDF and AFD are guaranteed to be lower
than the observed values (or at least stay the same, if ). Note that, because of a reduction in the feasibility region, imposing
the above constraint always leads to a smaller value, which means that smaller improvements are achieved for the final and
the undesirable outputs. In particular, the number of airports for which b⁄ = 0 has increased to 22, which is more than half
of the airports. For those airports for which improvements are feasible, the magnitude of the estimated improvements is
significant, as indicated by the relatively large b⁄ values.

In order to compare the proposed network DEA approach with the conventional (i.e. single-stage) DDF approach and to be
consistent with the assumptions of Table 4 the direction vector that has been considered has a zero value for the component
corresponding to ATM output, i.e. gy

ATM ¼ 0. Fig. 2 shows the corresponding values of the two approaches. It can be seen that
the number of weakly efficient DMUs increases (from 22 to 30) when DMUs are modelled as single processes and that the
improvement possibilities are much reduced. Thus, b�NETWORK P b�SINGLE PROCESS for all DMUs with average b⁄ decreasing from
0.236 to 0.051 and the average (b⁄jb⁄ > 0) decreasing from 0.542 to 0.223. The most important conclusion that can be
extracted from these results is that the single-process conventional DEA approach has less discriminatory power that the
network DEA approach.

Finally, the overall potential improvements (i.e. aggregated for the whole Spanish airport system) uncovered by the pro-
posed network DDF approach and by the single-process DDF approach are presented in Fig. 3 which shows the total improve-
ments in the final outputs (APM and CARGO) and in the intermediate product (ATM) as well as the reductions in the two
undesirable outputs (NFD and AFD). These aggregated improvements are of interest because the 39 airports are under the
responsibility of AENA, which in addition to holding the managers of the different airports accountable of its performance
can also look for system-wide improvements. It can be noted that both approaches estimate almost equivalent aggregated
APM increases but the network DEA approach leads to a much bigger increase in CARGO and much bigger reductions in the
flight delays than the single-process DEA approach, and this without increasing ATM much more.

6. Conclusions

In this paper a network DEA approach considering that some or all of the processes generate undesirable outputs has been
proposed. The proposed approach is based on the definition of the network technology resulting from the composition of the
PPS of the individual process, some of which are assumed to produce undesirable outputs. The proposed approach has been
applied to the benchmarking of airports operations, modelled as two serial stages corresponding to aircrafts movements and
aircrafts loading respectively. The aircrafts movements stage is the one that generates the undesirable outputs related to
flights delays.

Using a dataset of 39 Spanish airports for year 2008 the corresponding DDF efficiency scores have been computed and
compared with those of the corresponding single-process DDF approach leading to the important conclusion that the sin-
gle-process conventional DEA approach has less discriminatory power that the network DEA approach. In other words,
the network DEA approach uncovers much larger inefficiencies in the current operation points than does the single-process
approach. This translates in that the network DEA approach is able to compute much larger improvements (especially for
CARGO and for the two undesirable outputs) than the single-process approach. In addition, our claim is that the network
DEA analysis is more valid because it represents a more fine-grained approach than just considering all inputs and outputs
ascribed to a single, aggregated process.

About possible continuations of this research we may mention that since the DDF approach only guarantees weakly effi-
cient targets, an SBM-like approach (like that of [11] or [12]) could be used to handle the undesirable outputs considered in
this paper albeit possibly leading to a slightly more complex model formulation. Another interesting line of research is that
of using the DDF approach proposed in this paper with panel data to compute the equivalent to Malmquist–Luenberger Pro-
ductivity indicators for network DEA systems.
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Appendix A

The particular DDF network DEA model for the airports benchmarking application presented in Section 5 is:
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Max b ð30Þ
subject toX

j

kS1
j � RUNAREAj 6 RUNAREA0 ð31Þ

X
j

kS1
j � APRONj 6 APRON0 ð32Þ

X
j

kS1
j � BOARDGj 6 BOARDG0 ð33Þ

hS1 �
X

j

kS1
j � ATMj �

X
j

kS2
j � ATMj P 0 ð34Þ

hS1 �
X

j

kS1
j � NDFj ¼ NDF0 � ð1� bÞ ð35Þ

hS1 �
X

j

kS1
j � AFDj ¼ AFD0 � ð1� bÞ ð36Þ

X
j

kS2
j � CHECKINj 6 CHECKIN0 ð37Þ

X
j

kS2
j � BAGBj 6 BAGB0 ð38Þ

X
j

kS2
j � APMj P APM0 � ð1þ bÞ ð39Þ

X
j

kS2
j � CARGOj P CARGO0 � ð1þ bÞ ð40Þ

X
j

kS1
j ¼ 1 ð41Þ

X
j

kS2
j ¼ 1 ð42Þ

0 6 hS1 6 1 ð43Þ

kS1
j P 0 kS2

j P 0 b free ð44Þ
This model takes into account that only the process S1 generates undesirable outputs, that only process S2 generates
desirable outputs and that both processes are VRS. Note also that, as commented in section 5, a direction vector
g ¼ 0; gy

k; g
u
b

� �
has been considered. Hence, the step size b is bounded from above only by the desirable and undesirable out-

puts potential improvements.
The above NLP can be linearized defining new variables k̂S1

j ¼ hI � kS1
j . This allows substituting the corresponding con-

straints involving kI
j by these new all-linear ones:
X
j

k̂S1
j � RUNAREAj 6 hS1 � RUNAREA0 ð45Þ

X
j

k̂S1
j � APRONj 6 hS1 � APRON0 ð46Þ

X
j

k̂S1
j � BOARDGj 6 hS1 � BOARDG0 ð47Þ

X
j

k̂S1
j � ATMj �

X
j

kS2
j � ATMj P 0 ð48Þ

X
j

k̂S1
j � NDFj ¼ NDF0 � ð1� bÞ ð49Þ

X
j

k̂S1
j � AFDj ¼ AFD0 � ð1� bÞ ð50Þ

X
j

k̂S1
j ¼ hS1 ð51Þ

k̂S1
j P 0 kS2

j P 0 b free ð52Þ
The corresponding final and undesirable outputs system targets can be computed as
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NDF�0 ¼
X

j

k̂S1
j

� ��
� NDFj ¼ NDF0 � ð1� b�Þ ð53Þ

AFD�0 ¼
X

j

k̂S1
j

� ��
� AFDj ¼ AFD0 � ð1� b�Þ ð54Þ

APM�
0 ¼

X
j

kS2
j

� ��
� APMj P APM0 � ð1þ b�Þ ð55Þ

CARGO�0 ¼
X

j

kS2
j

� ��
� CARGOj P CARGO0 � ð1þ b�Þ ð56Þ
and for the key intermediate product the computed target is
ATM�
0 ¼

X
j

k̂S1
j

� ��
� ATMj ¼ h�S1 �

X
j

kS1
j

� ��
� ATMj ð57Þ
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Chapter 10
Network Fuzzy Data Envelopment
Analysis

Sebastián Lozano and Plácido Moreno

Abstract In this chapter a general approach to handle fuzzy data when the units
under analysis are formed by a network of processes is presented. Conventional
DEA assumes a single-process that consumes all the different inputs and produces
all the different outputs. Network DEA, on the contrary, considers different
interrelated processes, each one with its own inputs, its own outputs and, very
important, its own technology. This allows a more fine-grained analysis although
at the expense of requiring more data. Conventional Network DEA approaches
assume crisp data although recently two proposals have been made that can pro-
cess fuzzy data in the special cases of a serial two-stage system and of parallel
production processes. There is, however, a need to deal with general networks of
processes which can have fuzzy input or output data. In this chapter, several Fuzzy
DEA approaches are extended to Network DEA. The resulting models are illus-
trated on a dataset from the literature.

Keywords Efficiency assessment � Network DEA � Fuzzy data

1 Introduction

Network DEA refers to a growing number of DEA approaches that instead of
assuming that all inputs and outputs are consumed and produced, respectively, by a
single process, the system can be modelled as formed by distinct sub-processes.
Each sub-process is in itself a process that consumes a subset of the inputs and
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produces a subset of the outputs. A feature of Network DEA is the possible
existence of intermediate products that are produced by a process and consumed
by another. These endogenously generated-and-consumed products represent the
links between the different stages or processes. Another key feature of Network
DEA is that the technology, i.e. the production possibility set, is modelled at the
process level. Thus, each process will have its own technology, with, for example,
its own returns to scale assumption.

The number of Network DEA approaches has grown in the last decade, both at
the theory and at the application level. Seminal works were those of Färe and
Grosskopf [3, 4], Sexton and Lewis [24] and Lewis and Sexton [17, 18]. The field,
however, did not gain momentum until the relational network DEA approach of
Kao and Hwang [12, 13] and Kao [10, 11] as well as the Network SBM approach
of Tone and Tsutsui [25]. There are other Network DEA approaches like the
weighted additive efficiency decomposition approach of Chen et al. [5] and Cook
et al. [6] or the Network Slacks-Based Inefficiency (NSBI) approach of Fukuyama
and Weber [7] as well as many applications in different sectors, such as manu-
facturing (e.g. [19]), supply chain management [1], transportation (e.g. [27]),
tourism (e.g. [28]), finance (e.g. [2]), management (e.g. [8]), education (e.g. 22)
and sports (e.g. [21]).

Although, in principle, different technologies, metrics and orientations can be
used in Network DEA, for the sake of simplicity we will assume a Variable
Returns to Scale (VRS) radial, input-oriented approach. First we will present
the crisp data model formulation but, before, it is important to introduce appro-
priate notation (see [20]). Thus, let us assume that there exist n DMUs all of which
are structurally homogeneous, i.e. all of them have the same number and type of
processes. Each process consumes a different subset of inputs and produces a
different subset of outputs. Let I pð Þ be the set of exogenous inputs used in process
p and, for each i 2 I pð Þ, let xp

ij denote the observed amount of exogenous input i

consumed by process p of DMU j. Similarly, let O pð Þ the set of final outputs of
process p and, for each k 2 O pð Þ, let yp

kj denote the observed amount of final output
k produced by process p of DMU j. Let PI ið Þ be the set of processes that consume
the exogenous input i and xij¼

P
p2PI ið Þ

xp
ij the total amount of exogenous input i

consumed by all processes of DMU j. Let PO kð Þ be the set of processes that
produce the final output k and ykj¼

P
p2PO kð Þ

yp
kj the total amount of final output k

produced by all processes of DMU j.
In addition to exogenous inputs and outputs, there exist R intermediate prod-

ucts. Let Pout rð Þ be the set of processes that generate the intermediate product r so
that for each p 2 Pout rð Þ let zp

rj the observed amount of intermediate product r

generated by process p of DMU j. Analogously, let Pin rð Þ be the set of processes
that consume the intermediate product r and for each p 2 Pin rð Þ let zp

rj the observed

amount of intermediate product r consumed by process p of DMU j. Let us assume
that an intermediate product r cannot be consumed and produced simultaneously
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by a process, i.e. Pout rð Þ \ Pin rð Þ ¼ ; 8r. Also, without loss of generality, let us
assume that X

p2Pout rð Þ
zp

rj ¼
X

p2Pin rð Þ
zp

rj 8r 8j

i.e. the intermediate products are completely generated and consumed within the
own DMU. Finally, to facilitate the model formulation it is convenient to define
the sets Rout pð Þ and Rin pð Þ corresponding to the intermediate products produced
and consumed, respectively, by a certain process p.

Note that the sets Pout rð Þ and Pin rð Þ (or, equivalently, Rout pð Þ and Rin pð Þ) jointly
determine all the structure of intermediate flows within the system. Thus, for
example, a system consisting of just parallel process with no intermediate flows
(R = 0) would have Rout pð Þ ¼ Rin pð Þ ¼ ; 8p. On the contrary, a typical multi-
stage series system would have RoutðpÞ ¼ Rinðpþ 1Þ 1\p\P and Rin 1ð Þ ¼
Rout Pð Þ ¼ ;.

To formulate the multiplier VRS radial input-oriented multiplier formulation of
relational Network DEA model, let
J index of specific DMU being assessed
ui weight of exogenous input i
vk weight of final output k
wr weight of intermediate product r
gp VRS free intercept variable
EJ Efficiency of DMU J

1.1 Model I: Multiplier Form of Crisp Network DEA

EJ ¼ Max
X

k

X
p2PO kð Þ

vk yp
kJ þ

X
p

gp

s:t:
X

i

X
p2PI ið Þ

ui xp
iJ ¼ 1

X
k2O pð Þ

vkyp
kj þ

X
r2Rout pð Þ

wrz
p
rj þ gp �

X
i2I pð Þ

uix
p
ij �

X
r2Rin pð Þ

wrz
p
rj � 0 8j 8p

ui; vk;wr � 0 8i 8k 8r gp free 8p

This model looks for the values of the weights of the inputs, outputs and
intermediate products that maximize the virtual output of the DMU J under
assessment. A basic feature of the relational network DEA approach is that all
processes that consume an input or intermediate product or produce an output or
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intermediate product use the same weight for that input, output or intermediate
product. As for the constraints, there are two types. One is that the virtual input of
the DMU J is set to unity, as it is common in input-oriented DEA models. The
second set of constraints guarantees that the efficiency of all processes is bounded
by unity. Adding these constraints for the different processes of each DMU leads to
a set of constraints (not included in the model because they are redundant) which
guarantee that, with the weights chosen by DMU J, the efficiency of every DMU is
not greater than unity. Finally, note that, for each process p only its own subsets of
inputs, output and intermediate products are taken into account. Analogously, to
compute the virtual input and output only the processes that consume an input or
produce an output are taken into account.

To formulate the dual of model I, let
h Uniform reduction factor of the inputs consumption of DMU J
kp

j
Intensity variable of process p of DMU j

1.2 Model II: Envelope Form of Crisp Network DEA

EJ ¼ Min h

s:t:
X

p2PI ið Þ

X
j

kp
j xp

ij � h
X

p2PI ið Þ
xp

iJ 8i

X
p2PO kð Þ

X
j

kp
j yp

kj �
X

p2PO kð Þ
yp

kJ 8k

X
p2Pout rð Þ

X
j

kp
j zp

rj �
X

p2Pin rð Þ

X
j

kp
j zp

rj � 0 8r

X
j

kp
j ¼ 1 8p

kp
j � 0 8j8p h free

This envelopment form Network DEA model finds the maximum radial con-
traction of the inputs consumed by DMU J by looking for an appropriate point
within the overall Production Possibility Set (PPS) [20]. Thus, the projected
operation point must maintain the total amount of outputs produced by DMU J and
be such that for each intermediate product the total amount produced by the
different processes must be sufficient to satisfy the amounts needed by the different
processes that consume it. A basic feature of this type of Network DEA models is
that each process p has its own set of intensity variables kp

j . In other words, each

process has its own process PPS with its own Returns To Scale assumption. In the
above model it has been assumed that all processes operate under VRS.
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2 Extension of Kao and Liu Approach to Network
Fuzzy DEA

Kao and Liu [16] and Kao and Lin [14] have extended Kao and Liu [15] Fuzzy
DEA approach to two-stage serial systems and to parallel production systems. In
this section, the approach is extended to general networks of processes such as
those described in the previous section. The difference with the crisp Network
DEA models I and II will lay on the consideration of fuzzy data for the inputs,
outputs and intermediate products. Thus, let us assume that the inputs, outputs and
intermediate products consumed or produced by each process are given as LR-type
Fuzzy Numbers (LRFN)

eXp
ij ¼ xp

ij

� �L

; xp
ij

� �R

; bp
ij

� �L

; bp
ij

� �R
� �

L
p

i
;Rp

i

eYp
kj ¼ yp

kj

� �L

; yp
kj

� �R

; bbp
kj

� �L

; bbp
kj

� �R
� �

L̂
p

k;R̂
p

k

eZp
rj ¼ zp

rj

� �L

; zp
rj

� �R

;
^̂b

p

rj

� �L

;
^̂b

p

rj

� �R
� �

^̂L
p

r ;
^̂R

p

r

where Lp
i ;R

p
i ;
bLp

k;
bRp

k;
^̂L

p

r ;
^̂R

p

r : 0; 1½ � ! 0; 1½ � are non-increasing, continuous shape
functions and

Lp
i 0ð Þ ¼ Rp

i 0ð Þ ¼ bLp
k 0ð Þ ¼ bRp

kð0Þ ¼
^̂L

p

r 0ð Þ ¼ ^̂R
p

r 0ð Þ ¼ 1 8i8k8r8p

Lp
i 1ð Þ ¼ Rp

i 1ð Þ ¼ bLp
k 1ð Þ ¼ bRp

k 1ð Þ ¼ ^̂L
p

r 1ð Þ ¼ ^̂R
p

r 1ð Þ ¼ 0 8i8k8r8p

The corresponding membership functions are of the type

leX xð Þ ¼

1 if xð ÞL� x� xð ÞR

L xð ÞL�x

bð ÞL
� �

if xð ÞL� bð ÞL� x� xð ÞL

R x� xð ÞR
bð ÞR

� �
if xð ÞR� x� xð ÞRþ bð ÞR

0 otherwise

8>>>><
>>>>:

The a-cuts of eXp
ij, eYp

kj and eZp
rj are the intervals

eXp
ij

� �
a
¼ eXp

ij

� �L

a
; eXp

ij

� �U

a

� �

eXp
ij

� �L

a
¼ xp

ij

� �L

�Lp�

i að Þ � bp
ij

� �L

eXp
ij

� �U

a
¼ xp

ij

� �R

þRp�

i að Þ � bp
ij

� �R
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eYp
kj

� �
a
¼ eYp

kj

� �L

a
; eYp

kj

� �U

a

� �

eYp
kj

� �L

a
¼ yp

kj

� �L

�bLp�

k að Þ � bbp
kj

� �L

eYp
kj

� �U

a
¼ yp

kj

� �R

þbRp�

k að Þ � bbp
kj

� �R

eZp
rj

� �
a
¼ eZp

rj

� �L

a
; eZp

rj

� �U

a

� �

eZp
rj

� �L

a
¼ zp

rj

� �L

�^̂L
p�

r að Þ � ^̂b
p

rj

� �L

eZp
rj

� �U

a
¼ zp

rj

� �R

þ^̂R
p�

r að Þ � ^̂b
p

rj

� �R

where the inverse shape functions are defined as

L� að Þ ¼ sup h:L hð Þ� af g

R� að Þ ¼ sup h:R hð Þ� af g

For example, for trapezoidal and triangular fuzzy numbers

L hð Þ ¼ R hð Þ ¼ 1� h

L� að Þ ¼ R� að Þ ¼ 1� a

The Kao and Liu [15, 16] approach is a-level based, according to the classifi-
cation of Fuzzy DEA approaches given by Hatami-Marbini et al. [9]. For each

a 2 0; 1½ � the corresponding a-cut of the efficiency of DMU J eEJ can be expressed as

eEJ

� �
a
¼ eEJ

� �L

a
; eEJ

� �U

a

� �

where the upper and lower limits can be computed using the following pair of
models.

2.1 Model III: Kao and Liu Upper Limit

eEJ

� �U

a
¼ max

X
k

X
p2PO kð Þ

vk � eYp
kJ

� �U

a
þ
X

p

gp

s:t:X
i

X
p2PI ið Þ

ui � eXp
iJ

� �L

a

¼ 1
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X
k2O pð Þ

vk � eYp
kJ

� �U

a
þ

X
r2Rout pð Þ

wr � zp
rJ þgp

�
X

i2I pð Þ
ui � eXp

iJ

� �L

a
�

X
r2Rin pð Þ

wr � zp
rJ � 0 8p

X
k2O pð Þ

vk � eYp
kj

� �L

a
þ

X
r2Rout pð Þ

wr � zp
rj þ gp

�
X
i2I pð Þ

ui � eXp
ij

� �U

a
�

X
r2Rin pð Þ

wr � zp
rj � 0 8j 6¼ J 8p

eZp
rj

� �L

a
� zp

rj � eZp
rj

� �U

a
8j8p8r 2 Rin pð Þ [ Rout pð Þ

ui; vk;wr � 0 8i 8k 8r

The above model corresponds to

eEJ

� �U

a
¼ max

x
p

ij

� 	L

a
� x

p

ij
� x

p

ij

� 	U

a

y
p

kj

� �L

a
� y

p

kj
� y

p

kj

� �U

a

z
p

rj

� �L

a
� z

p

rj
� z

p

rj

� �U

a

EJ

where the efficiency EJ is computed as per model I. The model takes into account
that the maximum efficiency for DMU occurs when

xp
iJ ¼ xp

iJ

� 	L

a 8p8i 2 I pð Þ

xp
ij ¼ xp

ij

� �U

a
8j 6¼ J8p8i 2 I pð Þ

yp
kJ ¼ yp

kJ

� 	U

a 8p8k 2 O pð Þ

yp
kj ¼ yp

kj

� �L

a
8j 6¼ J8p8k 2 O pð Þ

Since for the intermediate products it is not known in advance which value,
between the corresponding lower and upper limits, leads to the maximum effi-
ciency the corresponding amounts are left as variables in the model. Unfortunately,
this makes model III non-linear although it can be easily linearised introducing the
new variables

bzp
rj ¼ wr � zp

rj 8j 8p 8r 2 Rin pð Þ [ Rout pð Þ

and reformulating the corresponding constraints as
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X
k2O pð Þ

vk � eYp
kJ

� �U

a
þ

X
r2Rout pð Þ

bzp
rJ þ gp �

X
i2I pð Þ

ui � eXp
iJ

� �L

a
�
X

r2R pð Þ
bzp

rJ� 0 8p

X
k2O pð Þ

vk � eYp
kj

� �L

a
þ

X
r2Rout pð Þ

bzp
rj þ gp �

X
i2I pð Þ

ui � eXp
ij

� �U

a
�
X

r2Rin pð Þ
bzp

rj � 0 8j 6¼ J 8p

wr � eZp
rj

� �L

a
�bzp

rj�wr � eZp
rj

� �U

a
8j 8p 8r 2 Rin pð Þ [ Rout pð Þ

2.2 Model IV: Kao and Liu Lower Limit

fEJ

� �L

a
¼ min h

s:t:X
p2PI ið Þ

kp
J � eXp

iJ

� �U

a
þ
X

p2PI ið Þ

X
j 6¼J

kp
j � eXp

ij

� �L

a
� h

X
p2PI ið Þ

eXp
iJ

� �U

a
8i

X
p2PO kð Þ

kp
J � eYp

kJ

� �L

a
þ
X

p2PO kð Þ

X
j 6¼J

kp
j � eYp

kj

� �U

a
�

X
p2PO kð Þ

eYp
kJ

� �L

a
8k

X
p2Pout rð Þ

X
j

kp
j � z

p
rj�

X
p2Pin rð Þ

X
j

kp
j � z

p
rj� 0 8r

eZp
rj

� �L

a
� zp

rj� eZp
rj

� �U

a
8j 8p 8r 2 Rin pð Þ [ Rout pð Þ

X
j

kp
j ¼ 1 8p

kp
j � 0 8j 8p h free

The above model corresponds to

eEJ

� �L

a
¼ min

x
p

ij

� 	L

a
� x

p

ij
� x

p

ij

� 	U

a

y
p

kj

� �L

a
� y

p

kj
� y

p

kj

� �U

a

z
p

rj

� �L

a
� z

p

rj
� z

p

rj

� �U

a

EJ
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where the efficiency EJ is computed as per model II. In model IV it has been taken
into account that the minimum efficiency for DMU J occurs when

xp
iJ ¼ xp

iJ

� 	U

a 8p8i 2 I pð Þ

xp
ij ¼ xp

ij

� �L

a
8j 6¼ J8p8i 2 I pð Þ

yp
kJ ¼ yp

kJ

� 	L

a 8p8k 2 O pð Þ

yp
kj ¼ yp

kj

� �U

a
8j 6¼ J8p8k 2 O pð Þ

Again, since for the intermediate products it is not known in advance which
value, between the corresponding lower and upper limits, leads to the minimum
efficiency the corresponding amounts are left as variables in the model. Unfortu-
nately, this makes model III non-linear although it can be easily linearised
introducing the new variables

bzp
rj ¼ kp

j � z
p
rj 8r 8j 8p

and reformulating the corresponding constraints asX
p2Pout rð Þ

X
j

bzp
rj �

X
p2Pin rð Þ

X
j

bzp
rj� 0 8r

kp
j � eZp

rj

� �L

a
�bzp

rj� kp
j � eZp

rj

� �U

a
8j 8p 8r 2 Rin pð Þ [ Rout pð Þ

Kao and Liu [15, 16], in addition to estimating the overall efficiency of each
DMU, indicate how to estimate also the efficiency of the different processes.
However, since one of the characteristics of multiplier-form DEA models (like
Model I or Model III) is that there can be alternative optimal solutions then it is not
clear how to compute the efficiency of individual processes. Since this issue is
open and requires further research (even in the crisp data case) we will not try to
compute process efficiencies.

3 Extension of Saati et al. Approach to Network
Fuzzy DEA

Saati et al. [23] propose a Fuzzy DEA approach that considers Triangular Fuzzy
Numbers (TFN). Therefore, let us assume that the inputs, outputs and intermediate
products consumed or produced by each process are given as

eXp
ij ¼ xp

ij

� ��
; xp

ij

� �0
; xp

ij

� �þ� �
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eYp
kj ¼ yp

kj

� ��
; yp

kj

� �0
; yp

kj

� �þ� �

eZp
rj ¼ zp

rj

� ��
; zp

rj

� �0
; zp

rj

� �þ� �

whose corresponding a-cuts are

eXp
ij

� �
a
¼ eXp

ij

� �L

a
; eXp

ij

� �U

a

� �

eXp
ij

� �L

a
¼ a � xp

ij

� �0
þ 1� að Þ � xp

ij

� ��
eXU

a ¼ a � xp
ij

� �0
þ 1� að Þ � xp

ij

� �þ

eYp
kj

� �
a
¼ eYp

kj

� �L

a
; eYp

kj

� �U

a

� �

eYp
kj

� �L

a
¼ a � yp

kj

� �0
þ 1� að Þ � yp

kj

� ��
eYp

kj

� �U

a
¼ a � yp

kj

� �0
þ 1� að Þ � yp

kj

� �þ

eZp
rj

� �
a
¼ eZp

rj

� �L

a
; eZp

rj

� �U

a

� �

eZp
rj

� �L

a
¼ a � zp

rj

� �0
þ 1� að Þ � zp

rj

� ��
eZp

rj

� �U

a
¼ a � zp

rj

� �0
þ 1� að Þ � zp

rj

� �þ
Of course, TFNs are just a special case of LRFNs where

xp
ij

� �0
¼ xp

ij

� �L

¼ xp
ij

� �R

xp
ij

� ��
¼ xp

ij

� �0
� bp

ij

� �L

xp
ij

� �þ
¼ xp

ij

� �0
þ bp

ij

� �R

and

L hð Þ ¼ R hð Þ ¼ 1� h

L� að Þ ¼ R� að Þ ¼ 1� a

This approach is also a-level based. For each a 2 0; 1½ � an efficiency score
EJ að Þ can be computed using the following model
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3.1 Model V: Saati et al.

EJ að Þ ¼ max
X

k

X
p2PO kð Þ

vk yp
kJ þ

X
p

gp

s:t:X
i

X
p2PI ið Þ

ui xp
iJ ¼ 1

X
k2O pð Þ

vk yp
kj þ

X
r2Rout pð Þ

wr � zp
rj þ gp �

X
i2I pð Þ

ui xp
ij �

X
r2Rin pð Þ

wr � zp
rj� 0 8j8p

eXp
ij

� �L

a
� xp

ij� eXp
ij

� �U

a
8j 8p8i 2 I(p)

eYp
kj

� �L

a
� yp

kj� eYp
kj

� �U

a
8j 8p8k 2 O(p)

eZp
rj

� �L

a
� zp

rj� eZp
rj

� �U

a
8j 8p 8r 2 Rin pð Þ [ Rout pð Þ

ui; vk;wr� 0 8i 8k 8r

Same as with the Kao and Liu upper limit model III, this corresponds to

eEJ

� �U

a
¼ max

x
p

ij

� 	L

a
� x

p

ij
� x

p

ij

� 	U

a

y
p

kj

� �L

a
� y

p

kj
� y

p

kj

� �U

a

z
p

rj

� �L

a
� z

p

rj
� z

p

rj

� �U

a

EJ

but maintaining xp
ij and yp

kj as variables also. Introducing new variables

bxp
ij ¼ ui xp

ij 8j8p 8i 2 I pð Þ

byp
kj ¼ vk yp

kj 8j 8p 8k 2 O pð Þ

bzp
rj ¼ wr zp

rj 8j 8p 8r 2 Rin pð Þ [ Rout pð Þ

leads to the following Linear Program (LP)

EJ að Þ ¼ max
X

k

X
p2PO kð Þ

byp
kJ þ

X
p

gp

s.t.
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X
i

X
p2PI ið Þ

bxp
iJ ¼ 1

X
k2O pð Þ

byp
kj þ

X
r2Rout pð Þ

bzp
rj þ gp �

X
i2I pð Þ

bxp
ij �

X
r2Rin pð Þ

bzp
rj� 0 8j 8p

ui � eXp
ij

� �L

a
� bxp

ij� ui � eXp
ij

� �U

a
8j 8p 8i 2 I pð Þ

vk � eYp
kj

� �L

a
� byp

kj� vk � eYp
kj

� �U

a
8j8p 8k 2 O pð Þ

wr � eZp
rj

� �L

a
�bzp

rj�wr � eZp
rj

� �U

a
8j 8p 8r 2 Rin pð Þ [ Rout pð Þ

Summarising, the efficiency score computed by the Saati et al. approach
coincides with the Kao and Liu upper limit of model III. This is something that
will be confirmed in the numerical results section.

4 Extension of Wang et al. Approach to Network
Fuzzy DEA

Wang et al. [26] proposed an a-level set approach which, contrary to the Kao and
Liu [15] approach, uses the same crisp production frontier as reference for all
DMUs and for all values of a. Such fixed production frontier is inferred from the
best performing values of the DMUs, which correspond to the a ¼ 0:0 upper limit
for the outputs and the a ¼ 0:0 lower limit for the inputs. For the intermediate
outputs the data are not fixed but they can vary between their a ¼ 0:0 lower and
upper limits. For each a 2 0; 1½ � the corresponding a-cut of the efficiency of DMU

J eEJ can be expressed as

eEJ

� �
a
¼ eEJ

� �L

a
; eEJ

� �U

a

� �

where the upper and lower limits can be computed using the following pair of
models.

218 S. Lozano and P. Moreno



4.1 Model VI: Wang et al. Upper Limit

eEJ

� �U
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X
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� �L

0:0
�
X

r2Rin pð Þ
wr � zp
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ui; vk;wr� 0 8i 8k 8r

4.2 Model VII: Wang et al. Lower Limit
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X
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X
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X
j

kp
j ¼ 1 8p

kp
j � 0 8j 8p h free
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The above two models can be linearised exactly the same as Kao and Liu
models III and IV, respectively.

5 Numerical Experiments

In this section the proposed models will be applied to a dataset from the literature.
Although this chapter deals with general networks of processes, the only published
Network Fuzzy DEA datasets are those in Kao and Liu [16] and Kao and Lin [14].
However, although Kao and Lin [14] considers a parallel production system
problem with fuzzy data, the specific dataset used to illustrate their approach is of
a shared-inputs type, i.e. the actual amounts of an input consumed by each process
is not known but it is left to the DEA model the task of determining, within certain
bounds, the share of the inputs that is supposedly consumed by each process. Since
that type of Network DEA models is different to the one considered here the
corresponding dataset cannot be used for our purpose.

The dataset in Kao and Liu [16] corresponds to a simple two-stage system with
two inputs, two intermediate products and two outputs, as shown in Fig. 1.
Although the models formulated in this chapter can deal with VRS, for comparison
with Kao and Liu [16] Constant Returns to Scale (CRS) will be assumed, which
means that variables gp should be dropped from multiplier formulations and

accordingly the convexity constraints on the intensity variables kp
j should also be

dropped from the envelope formulations.
Tables A.1, A.2, and A.3, in the appendix, show the TFN corresponding to the

inputs, intermediate products and outputs, respectively, of the 24 DMUs in Kao and
Liu [16]. Tables 1 and 2 show, for different values of a 2 0; 1½ � the lower and upper
limits of the corresponding a-cuts computed by Kao and Liu models III and IV,
respectively. There are some minor differences with respect to the results reported
by Kao and Liu [16]. The results obtained have been calculated with the dataset
shown in Tables A.1, A.2 and A.3, which corresponds exactly to the dataset that
appears in Kao and Liu [16]. It seems that the results reported in that paper were
obtained using a dataset with more precision, as in Kao and Hwang [12].

Direct writen 
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1 2
1j 1jZ Z=

Underwriting 
profits 2

1jY

Process 2

(Profit 

generation)

Operating 
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1jX
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2 jX

Reinsurance 
premiums 

1 2
2 j 2 jZ Z=

Investment 
profits 2

1jY

Process 1
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acquisition)

Fig. 1 Two-stage system from Kao and Liu [16]
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Table 1 Upper limit of a-cuts of efficiency as per model III Kao and Liu

DMU a ¼ 0:0 a ¼ 0:2 a ¼ 0:4 a ¼ 0:6 a ¼ 0:8 a ¼ 1:0

1 0.904 0.862 0.820 0.779 0.741 0.700
2 0.795 0.759 0.724 0.691 0.659 0.626
3 0.861 0.824 0.788 0.754 0.721 0.690
4 0.426 0.399 0.373 0.348 0.326 0.304
5 1.000 1.000 0.968 0.905 0.847 0.792
6 0.510 0.487 0.465 0.444 0.416 0.389
7 0.375 0.353 0.332 0.313 0.295 0.277
8 0.371 0.350 0.329 0.310 0.292 0.275
9 0.294 0.278 0.263 0.249 0.236 0.224
10 0.636 0.598 0.562 0.529 0.497 0.468
11 0.217 0.204 0.192 0.181 0.170 0.159
12 0.942 0.902 0.864 0.828 0.793 0.760
13 0.276 0.260 0.246 0.232 0.219 0.207
14 0.392 0.369 0.347 0.327 0.307 0.289
15 0.794 0.753 0.715 0.678 0.644 0.612
16 0.433 0.408 0.383 0.361 0.339 0.319
17 0.484 0.456 0.430 0.406 0.383 0.361
18 0.350 0.330 0.310 0.292 0.275 0.259
19 0.497 0.480 0.464 0.448 0.433 0.413
20 0.725 0.685 0.647 0.609 0.573 0.539
21 0.247 0.235 0.223 0.212 0.201 0.191
22 0.783 0.743 0.706 0.671 0.638 0.606
23 0.556 0.522 0.489 0.459 0.431 0.404
24 0.176 0.166 0.156 0.147 0.139 0.131
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Table 2 Lower limit of a-cuts of efficiency as per model IV Kao and Liu

DMU a ¼ 0:0 a ¼ 0:2 a ¼ 0:4 a ¼ 0:6 a ¼ 0:8 a ¼ 1:0

1 0.500 0.535 0.572 0.612 0.654 0.700
2 0.447 0.478 0.511 0.547 0.585 0.626
3 0.549 0.575 0.603 0.632 0.661 0.690
4 0.213 0.229 0.246 0.265 0.284 0.304
5 0.563 0.603 0.646 0.692 0.741 0.792
6 0.279 0.298 0.319 0.341 0.364 0.389
7 0.203 0.216 0.230 0.245 0.261 0.277
8 0.203 0.215 0.229 0.243 0.259 0.275
9 0.163 0.174 0.185 0.198 0.211 0.224
10 0.337 0.360 0.385 0.411 0.439 0.468
11 0.116 0.124 0.132 0.141 0.150 0.159
12 0.559 0.595 0.634 0.676 0.720 0.760
13 0.153 0.163 0.173 0.184 0.195 0.207
14 0.212 0.225 0.240 0.256 0.272 0.289
15 0.460 0.489 0.520 0.551 0.580 0.612
16 0.233 0.248 0.264 0.281 0.300 0.319
17 0.266 0.283 0.301 0.320 0.340 0.361
18 0.189 0.202 0.215 0.229 0.243 0.259
19 0.309 0.328 0.348 0.368 0.391 0.413
20 0.395 0.421 0.448 0.476 0.507 0.539
21 0.145 0.154 0.162 0.171 0.181 0.191
22 0.510 0.528 0.547 0.566 0.586 0.606
23 0.291 0.311 0.332 0.355 0.379 0.404
24 0.095 0.101 0.108 0.115 0.123 0.131
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Table 3 Upper limit of a-cuts of efficiency as per model VI Wang et al

DMU a = 0.0 a = 0.2 a = 0.4 a = 0.6 a = 0.8 a = 0.10

1 0.792 0.773 0.754 0.736 0.719 0.702
2 0.707 0.691 0.674 0.658 0.642 0.627
3 0.779 0.761 0.743 0.725 0.708 0.691
4 0.344 0.336 0.328 0.320 0.312 0.305
5 0.897 0.876 0.855 0.835 0.815 0.795
6 0.441 0.431 0.421 0.411 0.401 0.391
7 0.309 0.303 0.297 0.291 0.286 0.280
8 0.308 0.302 0.296 0.290 0.284 0.278
9 0.249 0.244 0.239 0.235 0.230 0.225
10 0.519 0.509 0.499 0.489 0.479 0.469
11 0.179 0.175 0.172 0.168 0.165 0.162
12 0.841 0.825 0.809 0.793 0.777 0.761
13 0.233 0.228 0.224 0.220 0.215 0.211
14 0.322 0.316 0.309 0.303 0.297 0.292
15 0.681 0.667 0.654 0.641 0.629 0.616
16 0.354 0.347 0.340 0.333 0.327 0.320
17 0.404 0.396 0.388 0.380 0.373 0.366
18 0.288 0.282 0.276 0.271 0.266 0.261
19 0.460 0.451 0.443 0.434 0.426 0.418
20 0.609 0.597 0.585 0.573 0.561 0.550
21 0.205 0.203 0.200 0.198 0.196 0.193
22 0.709 0.690 0.672 0.654 0.637 0.621
23 0.446 0.438 0.429 0.421 0.413 0.405
24 0.147 0.144 0.141 0.138 0.135 0.132
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Table 4 Lower limit of a-cuts of efficiency as per model VII Wang et al

DMU a ¼ 0:0 a ¼ 0:2 a ¼ 0:4 a ¼ 0:6 a ¼ 0:8 a ¼ 1:0

1 0.494 0.506 0.519 0.531 0.544 0.557
2 0.440 0.450 0.461 0.473 0.484 0.496
3 0.487 0.499 0.511 0.523 0.536 0.549
4 0.213 0.219 0.224 0.230 0.235 0.241
5 0.563 0.577 0.591 0.605 0.620 0.635
6 0.279 0.286 0.293 0.300 0.307 0.315
7 0.203 0.207 0.212 0.216 0.220 0.225
8 0.203 0.207 0.211 0.215 0.219 0.224
9 0.163 0.166 0.169 0.173 0.176 0.180
10 0.337 0.344 0.351 0.358 0.365 0.372
11 0.116 0.119 0.121 0.124 0.126 0.129
12 0.554 0.565 0.576 0.588 0.600 0.612
13 0.153 0.156 0.160 0.163 0.166 0.169
14 0.212 0.216 0.220 0.224 0.229 0.233
15 0.449 0.458 0.467 0.476 0.486 0.496
16 0.233 0.238 0.243 0.248 0.253 0.258
17 0.266 0.271 0.276 0.282 0.287 0.293
18 0.189 0.193 0.197 0.201 0.205 0.209
19 0.304 0.310 0.316 0.322 0.329 0.335
20 0.395 0.403 0.412 0.420 0.429 0.438
21 0.145 0.147 0.149 0.151 0.153 0.155
22 0.478 0.482 0.486 0.490 0.494 0.498
23 0.291 0.297 0.303 0.309 0.315 0.321
24 0.095 0.097 0.099 0.101 0.103 0.105
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As advanced in Sect. 3, the efficiency scores computed by the Saati et al. model
V coincide with the upper limits of Kao and Liu shown in Table 1.

Tables 3 and 4 show the upper and lower limits, respectively, of the efficiency
scores, for the different possibility values a 2 0; 1½ �, computed by the Wang et al.
models VI and VII. Note that for a = 1, the upper and lower limits in these tables
do not coincide between themselves.

Let us make one final remark about a fact that may have been noticed by the
reader and it is that, for almost none of the different approaches tried, no DMU is
assessed as efficient, i.e. almost all efficiency scores are below unity, even for
a ¼ 0:0 upper limits. This is not surprising and, actually, it is quite common in
Network DEA because when each DMU consists of several processes then all of
them must be efficient for the overall DMU to be efficient. That is a tall order that
does occur often. It occurs more often that one process of a DMU may be efficient
but not all the others.

6 Conclusions

This chapter has shown how to extend several Fuzzy DEA approaches to the
Network DEA context. It has helped greatly the fact that the notation used for the
crisp Network DEA approach allows for a rather simple formulation of the model
for general networks. Extending those formulations to handle fuzzy data is not
straightforward but not difficult, as the approaches shown in this chapter show.

Since Network DEA represents, in general, a more fine-grained level of analysis
which can lead to more valid results (although at the expense of requiring more
detailed data), the possibility of applying a Network Fuzzy DEA approach for
those problems in which the data are uncertain contributes to enhance the use-
fulness of the approach.
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See Tables A.1, A.2, and A.3.
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Table A.1 Inputs data of Kao and Liu [16] problem

DMU x1
1j

� ��
x1

1j

� �0
x1

1j

� �þ
x1

2j

� ��
x1

2j

� �0
x1

2j

� �þ
1 1113 1178 1256 636 673 717
2 1305 1381 1472 1278 1352 1441
3 1112 1177 1255 559 592 631
4 568 601 641 561 594 633
5 6331 6699 7141 3167 3351 3572
6 2483 2627 2800 631 668 712
7 1853 1942 2047 1377 1443 1521
8 3615 3789 3994 1787 1873 1974
9 1495 1567 1652 906 950 1001
10 1243 1303 1373 1238 1298 1368
11 1872 1962 2068 641 672 708
12 2473 2592 2732 620 650 685
13 2481 2609 2739 1301 1368 1436
14 1328 1396 1466 940 988 1037
15 2077 2184 2293 619 651 684
16 1152 1211 1272 395 415 436
17 1382 1453 1526 1032 1085 1139
18 720 757 795 520 547 574
19 151 159 167 173 182 191
20 138 145 152 50 53 56
21 80 84 88 25 26 27
22 14 15 16 9 10 10
23 51 54 57 27 28 29
24 155 163 171 223 235 246
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Table A.2 Intermediate products data of Kao and Liu [16] problem

DMU z1
1j

� ��
z1

1j

� �0
z1

1j

� �þ
z1

2j

� ��
z1

2j

� �0
z1

2j

� �þ
1 7041 7451 7943 809 856 912
2 9469 10020 10681 1712 1812 1932
3 4513 4776 5091 529 560 597
4 2999 3174 3383 351 371 395
5 35335 37362 39680 1657 1753 1869
6 9211 9747 10390 900 952 1015
7 10193 10685 11262 613 643 678
8 16473 17267 18199 1082 1134 1195
9 10945 11473 12093 521 546 575
10 7832 8210 8653 481 504 531
11 6890 7222 7612 613 643 678
12 9000 9434 9943 1067 1118 1178
13 13239 13921 14617 771 811 852
14 7034 7396 7766 442 465 488
15 9911 10422 10943 712 749 786
16 5331 5606 5886 382 402 422
17 7318 7695 8080 325 342 359
18 3453 3631 3813 946 995 1045
19 1083 1141 1196 458 483 506
20 300 316 331 124 131 137
21 214 225 236 38 40 42
22 49 52 54 13 14 15
23 233 245 257 47 49 51
24 452 476 499 611 644 675
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Table A.3 Outputs data of Kao and Liu [16] problem

DMU y1
1j

� ��
y1

1j

� �0
y1

1j

� �þ
y1

2j

� ��
y1

2j

� �0
y1

2j

� �þ
1 930 984 1049 644 681 726
2 1160 1228 1309 788 834 889
3 277 293 312 622 658 701
4 234 248 264 167 177 189
5 7419 7851 8369 3709 3925 4184
6 1619 1713 1826 392 415 442
7 2136 2239 2360 419 439 463
8 3720 3899 4110 593 622 656
9 995 1043 1099 252 264 278
10 1619 1697 1789 529 554 584
11 1418 1486 1566 17 18 19
12 1502 1574 1659 867 909 958
13 3432 3609 3789 212 223 234
14 1332 1401 1471 316 332 349
15 3191 3355 3523 528 555 583
16 812 854 897 187 197 207
17 2990 3144 3301 353 371 390
18 658 692 727 155 163 171
19 493 519 544 44 46 48
20 337 355 372 25 26 27
21 48 51 53 6 6 6
22 78 82 86 4 4 4
23 1 1 1 17 18 19
24 135 142 149 15 16 17
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EFFICIENCY ASSESSMENT OF US STATES USING NETWORK 
DEA ANALYSIS 

 
PLÁCIDO MORENO AND SEBASTIÁN LOZANO 

 
 
 

Abstract 
 

The current financial and economic crisis has brought into focus the 
sustainability of public finances and the need for efficiency in the provision 
of public services both at the national and state level. Thus, the aim of this 
this chapter is to assess the relative efficiency of the 50 U.S. states, as well 
as estimating for each of them feasible reductions in taxes, debt and public 
expenditures, by applying a two-stage network data envelopment analysis 
(DEA) approach. The more recently available data, namely those of fiscal 
years 2007-2011, have been used. The results show that almost half of the 
states were relatively efficient and were consistently so during this period. 
Other states, however, such as New Jersey, Pennsylvania, Massachusetts, 
Michigan and Maryland, not only had more debt than necessary but also had 
higher taxes to finance their excessive expenditures. It also seems from the 
results that, on average, states governed by the Democratic Party, showed 
greater inefficiencies relative to GDP than those governed by the 
Republican Party. 
 

20.1 Introduction 
 

The current economic and financial crisis has hit a number of countries 
(mainly the U.S. and Europe) in a way that has not been witnessed since the 
Great Depression. The first response of most countries was aimed at 
maintaining liquidity and sustaining economic activity through government 
spending. The sharp decrease in tax revenues has meant that some 
governments have had to run large deficits and increase their debt to 
unsustainable levels. Worried about the risks of sovereign debt defaults, the 
financial markets have reacted in some cases by raising debt yields and 

credit default swap prices and forcing many countries onto a deficit-
reduction path that jeopardizes the possibility of an economic recovery. 

It is against this background of watchful financial markets overseeing the 
sustainability of public finances and indebted governments forced to raise 
taxes and enact cutbacks in many programmes (including education, health 
care and welfare) that the present study can be framed. In order to keep 
governments providing essential public services it is necessary that they do 
so in a sustainable way, which means that inefficiencies, in their many 
forms (i.e. overspending, higher than necessary taxes, excessive borrowing), 
must be removed from the system. 

The relevance of improving public sector efficiency has long been 
emphasized by Organisation for Economic Co-operation and Development  
(OECD) policy analysts (e.g. Curristine, Lonti, & Joumard, 2007), who 
pointed out that governments should increase the use of performance 
information in budget processes, focusing on results instead of each 
government department trying to obtain as much money as possible. Many 
studies have been published assessing the efficiency of governments 
managing the public expenditure. Afonso, Schuknecht, and Tanzi (2005) 
computed (i) public sector performance (PSP), defined as the outcome of 
public sector activities (i.e., several economic indicators as outputs) and (ii) 
public sector efficiency (PSE), defined as the outcomes relative to the 
resources employed. As well as PSP and PSE indicators, the non-parametric 
technique Free Disposal Hull (FDH) was applied to assess the public sector 
efficiency of 23 industrialized countries, concluding that countries with 
small public sectors report higher efficiency. Angelopoulos, Philippopoulos, 
and Tsionas (2008) also used PSE indicators and Stochastic Frontier 
Analysis (SFA), along with an econometric model, to study the relationship 
between growth and the size of the government for 52 countries. This 
relationship depends on the technical efficiency of the public spending of 
each country.  

Newer studies are moving towards the using of DEA for the assessment 
of efficiency via appropriate cost and outcome measures of public policies 
(Afonso, Schuknecht, & Tanzi, 2010; Hauner & Kyobe, 2010). Adam, 
Delis, and Kammas (2011) proposed computing measures of efficiency 
using SFA and DEA that are able to remove socio-economic and exogenous 
factors across different countries.  

However, these previous papers failed to take into account that not only 
public expenditure but also tax affects the efficiency of public finances. 
Therefore, the composition of tax revenue should not be ignored, as stated 
by Afonso et al. (2005) and Bierbrauer and Sahm (2010). The latter actually 



studied the interdependence of optimal tax and expenditure policies in a 
democratic mechanism framework. 

Although there have been many studies about optimal taxation, such as 
Golosov, Kocherlakota, and Tsyvinski (2003), where the capital and 
commodity taxations are examined, or Bierbrauer (2009), who proposed an 
incentive to eliminate biases which arise when tax revenues are devoted to 
public goods, there appears to be a paucity of literature heeding both tax 
revenues and public expenditure to evaluate the sustainability of public 
finances. Within this context, the proposed network DEA methodology 
arises as a way to take into account the full process for the provision of 
public services.   

Thus the main objective of the chapter is to compute feasible reductions 
in tax revenues and debt incurred, and to identify overspending in the 
provision of public services by U.S. states. Although the methodology can 
be also apply to other governments, at regional or national levels, the U.S. 
states have been selected for reasons of data standardization and availability.  

The structure of the paper is the following. In section 2 the methodology, 
i.e. network DEA, is introduced, together with the specific model 
implemented and the data used. In section 3, the results of the efficiency 
assessment are presented and discussed. Finally, section 4 summarizes and 
concludes. 

 
 

20.2 Methodology 
 

This section presents the mathematical tool used to measure the states’ 
inefficiency, namely Network DEA, which can be used to gauge how the 
states’ efficiencies evolve and how they impact on their finances. First of 
all, an introduction reviewing some of the literature on Network DEA and 
its foundations is presented. Second, the proposed approach is formulated, 
explaining all the variables included in the model. Lastly, there is an 
overview of the specific data used. 
 

20.2.1 Introduction to network DEA 
 

DEA is a non-parametric mathematical tool commonly used to assess the 
relative efficiency of a number of similar (i.e. homogeneous) Decision 
Making Units (DMUs). Among many other applications, DEA has been 
applied extensively to assess the efficiency of public services and 
administrations such as, for example, education (e.g. Avkiran, 2001), 

hospitals (e.g. Caballer-Tarazona et al., 2010), police stations (e.g. García-
Sánchez, Rodríguez-Domínguez, & Parra-Domínguez, 2013), justice courts 
(e.g. Pedraja-Chaparro & Salinas-Jimenez, 1996), public transport (e.g. 
Hilmola, 2011), municipal services (e.g. Benito-López, Moreno-Enguix, & 
Solana-Ibañez, 2011), national governments (e.g. Adam et al., 2011), etc. 

Traditionally DEA has considered the units under assessment as black 
boxes, consisting of a single process that uses inputs to produce outputs. 
There exist, however, situations in which multiple, interrelated stages can be 
distinguished. This has given rise to the emergence of network DEA 
approaches (e.g. Färe & Grosskopf, 1996, 2000; Löthgren & Tambour 1999; 
Färe, Grosskopf, & Whittaker, 2007). Since the literature on network DEA 
has increased substantially in recent years, a review of that literature is 
outside the scope of this paper. Suffice it to say that most approaches and 
applications correspond to two-stage or multi-stage serial systems (e.g. 
Liang, Cook, & Zhu, 2008; Cook et al., 2007; Chen et al., 2009), although 
parallel and general networks of processes have also been considered (Kao, 
2009a, 2009b; Kao & Hwang, 2010). Not only have radial models been used 
but also non-radial (e.g. Tone & Tsutsui, 2009; Fukuyama & Weber, 2010), 
dynamic (e.g. Chen, 2009; Tone & Tsutsui, 2010) and cost efficiency 
models (e.g. Fukuyama & Matousek, 2011; Lozano, 2011) have been 
developed. 

As for applications, network DEA has been mainly used in 
transportation (e.g. Yu, 2010; Bichou, 2011; Lozano, Gutiérrez, & Moreno, 
2013), sport (Lewis, Lock, & Sexton, 2009; Moreno & Lozano, 2012) and 
finance (e.g. Kao & Hwang, 2008; Avkiran, 2009). Particularly interesting, 
however, in our case, is the application of network DEA to the assessment 
of the macroeconomic efficiency of OECD countries using the input-output 
data of the different sectors of the economy (Prieto & Zofío, 2007). 
 

20.2.2 Proposed network DEA approach 
 

Figure 20-1 shows the two stages which have been considered. The first 
is labelled Public Finance and corresponds to state revenue collection, 
basically from tax receipts. Different taxes have been included, although for 
most states the biggest shares correspond to income tax (personal and 
corporate) and sales taxes. Seven states (namely, Alaska, Florida, South 
Dakota, Nevada, Texas, Washington and Wyoming) do not have personal 
income tax with the last four also lacking corporate income tax; five states 
(namely Alaska, Delaware, Montana, New Hampshire and Oregon) do not 
have sales tax. Another important fraction, about 25% on average, of state 
funds comes from the federal government. The basic outputs of this stage 



are the different state expenditures that are financed with these tax receipts. 
Again, six expenditure concepts have been included with, approximately, 
about half of the total expenditures going to education (K-12 and college) 
and health care. What is more important is that all these expenditures are 
inputs to the second stage, which has the state population and GDP as non-
discretionary outputs, and has been labelled Public Services Provision. 
Thus, all expenditures are treated as intermediate products. 

For the sake of completeness, it has to be said that the input Other 
Revenue groups together the inter-governmental revenue, current charges, 
miscellaneous general revenue, utility revenue, liquor stores revenue and 
insurance trust revenue. Similarly while the intermediate product Other 
Expenditure groups together other and unallocable expenditures, utility 
expenditure, liquor store expenditure and insurance trust expenditure. 

Note that, apart from the revenue inputs, the Public Finance stage has 
two additional inputs which correspond to the Cash and holdings from the 
previous year on the one hand and, on the other, the Debt from the previous 
year. Although both are non-discretionary they differ in that Debt is 
considered a normal (i.e. undesirable) input while Cash and holdings is 
considered a desirable input (i.e. the larger the better). Moreover, three final 
outputs of that stage have been considered: one of them desirable, namely 
Cash and holdings at the end of the year, and the other two undesirable, 
namely Interest on general debt and Debt at the end of the year. Table 20-1 
list and summarizes the inputs and outputs of each stage. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20-1 Proposed two-stage approach 
 

 
 
Inputs:    Intermediate products: 

1x General sales taxes (GenSalTax) 1z Education expenditure (EduExp) 

2x Selective sales taxes (SelSalTax) 2z Public welfare expenditure (WelExp) 

3x Licence taxes (LicenTax)  3z Health care expenditure (HealthExp) 

4x Individual income tax (IndInTax) 4z Public safety expenditure (SafeExp) 

5x Corporate income tax (CorInTax) 5z Governmental administration  
expenditure (GovExp) 

6x Other taxes (OthTax)  6z Other expenditure (OthExp) 

7x Other revenue (OthRev)   

8x Debt previous year (DebtPrev)   

d Cash and holdings previous year   
            (CashPrev) 
       
Outputs: 
y Cash and holdings at the end of the year (Cash) 

1u Interests on general debt (IntDebt) 

2u Debt at the end of the year (Debt) 

1w State population  (Pop) 

2w State Gross Domestic Product (GDP) 

Table 20–1 Inputs and outputs of each stage 
 

Stage I: 
Public 

Finance 

Stage II: 
Public 
Service 

Provision 



Stage I (Public Finance) 
Input Non-discretionary Desirable 

GenSalTax   
SelSalTax   
LicenTax   
IndInTax   
CorInTax   
OthTax   
OthRev Yes  
DebtPrev Yes  
CashPrev Yes Yes 

Output Non-discretionary Undesirable 
Cash   
IntDebt  Yes 
Debt  Yes 

Stage II (Public Service Provision) 
Input Non-discretionary Desirable 

EduExp   
WelExp   
HealthExp   
SafeExp   
GovExp   
OthExp   

Output Non-discretionary Undesirable 
Pop Yes  
GDP Yes  

 
With respect to the network DEA model to be used, there are several 

issues that have to be answered. One of these is the assumed technology. In 
this respect, since it seems reasonable to expect the existence of scale effects 
in the Public Service Provision stage Variable Returns to Scale (VRS) have 
been assumed in that stage while Constant Returns to Scale (CRS) have 
been assumed in the Public Finance stage. The two undesirable outputs of 
the Public Finance stage are assumed to be jointly and weakly disposable 
with the other (desirable) outputs. Also, there is the issue of the intermediate 
products between stages (i.e. the expenditures); they have been considered 
as free links (Tone & Tsutsui, 2009). 

Another issue is the model orientation and distance function. In this 
paper, the Directional Distance Measure (DDM) of efficiency proposed in 
Färe and Grosskopf (2010) is used. This efficiency measure corresponds to 

the sum of multiple directional distance functions along the different inputs 
and outputs. Note that neither the non-discretionary inputs of stage I nor the 
population output of stage II is assigned a directional distance function. Also 
note that, for the two undesirable outputs of stage I, the directional distance 
function aims at reducing the amounts of those outputs that are produced. 
This DDM efficiency score is particularly suited to this application since all 
the inputs and outputs involved are measured in the same units (constant 
US$) which means that each directional distance corresponds to the absolute 
US$ amount that the corresponding input (i.e. tax receipt) or output (i.e. 
cash, debt or debt interest payment) can be feasibly improved. The resulting 
efficiency score represents the sum of all those amounts since all those input 
and output improvements are assumed to be made simultaneously. Thus, the 
computed DDM is a measure of the total relative inefficiency of the 
assessed DMU and the corresponding targets lie on the efficient frontier. 

Let 0 be the index of the DMU being assessed and the multipliers 
corresponding to stages I and II respectively. The proposed network DEA 
model is: 

 

0
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where all variables are non-negative and 1 2 6kjz , k , ,..., , refers to the 
expenditures in Figure 20-1. Note the different sign of the inequality for the 
case of the constraint corresponding to the desirable input CashPrev and also 
the equal sign of the constraints corresponding to the two undesirable 
outputs IntDebt and Debt. Finally, note the VRS constraint associated with 
stage II. 

In summary, the proposed approach considers that an efficient state is 
one that, in order to provide its public services, spends what is necessary but 
without burdening taxpayers, either directly (through taxes) or indirectly 
(through debt), more than is required. 

 
20.2.3 Data 

 
Before analyzing the results obtained, let us comment first about the 

data. Note that in most states the fiscal year runs from July 1st to the 
following June 30th. The only exceptions are New York (whose fiscal year 
starts on April 1st), Texas (September 1st) and Alabama and Michigan 
(October 1st). Therefore, when this research was carried out, the states were 

in fiscal year 2013. However, the most recent data available correspond to 
fiscal year 2011 – a two-year lag. Those of fiscal year 2012 are scheduled to 
be published in winter 2014. Once they are available, the proposed approach 
can, of course, be applied to them. The data used in this study include the 
first years of the current economic crisis. Note, in this respect, that in those 
years, in order to close their budget shortfalls, many states have had to 
implement a mixed strategy that combined cutting expenditures, raising 
taxes, drawing down reserve funds and using federal aid from the American 
Recovery and Reinvestment Act of 2009 (ARRA). Although tax revenues 
have risen lately, the state budget problems are not yet solved, due to the 
continuing high unemployment and economic uncertainty and the end of the 
exceptional federal assistance previously provided by the ARRA. 

About the source of the data: most of them come from the U.S. Census 
Bureau, which publishes an Annual Survey of State Government Finances 
(http://www.census.gov/govs/state/), accompanied by the corresponding 
Survey Methodology (http://www2.census.gov/govs/state/11_ 
methodology.pdf) and Technical Documentation (http://www2.census. 
gov/govs/state/statetechdoc2011.pdf). Population data come from the 
Population Estimates Program of the U.S. Census Bureau 
(http://www.census.gov/popest/estimates.html). GDP data were obtained 
from the Regional Economic Accounts published by the Bureau of 
Economic Analysis (http://www.bea.gov/regional/index.htm). GDP deflator 
values (used to express all monetary amounts in constant 2005 US$) were 
obtained from the corresponding National Economic Accounts 
(http://www.bea.gov/national/index.htm#gdp). 

Figure 20-2 shows the distribution of the revenues and expenditures in 
each fiscal year. It also shows the cash and holding balance, interest debt 
and outstanding debt. Note that, apart from federal transfers (included as 
other revenue), the major sources of revenue for state governments are 
individual income tax and general sales tax, both of which have declined in 
recent years. Note also the significant increase in the federal transfers to the 
states in fiscal year 2010 due to the ARRA. As regards expenditures, 
Education and welfare (which includes Medicaid expenditure) are the 
largest spending categories for state governments, with the latter having 
significantly increased in recent years. Finally, note the increase of debt in 
this period; however, compared with outstanding federal government debt, 
the states’ debt is relatively modest. 

 
Figure 20-2 Revenue and expenditure distribution and evolution 
 



 

 

 
20.3 Results and discussion 

 

Regarding the results, Figure 20-3, Figure 20-4 and Figure 20-5 show, in 
decreasing order, the DDM efficiency scores of the relatively inefficient 
states for each fiscal year. Note that a contemporaneous approach has been 
adopted, i.e. the states’ efficiencies for each year are computed using only 
the observations for that year. Adopting an inter-temporal approach, i.e. 
jointly benchmarking all observations in all the periods, would result in a 
stricter efficiency assessment but one that may be unfair, since the economic 
and budgetary circumstances in each year are different which would render 
the comparisons meaningless. 

 
Figure 20-3 DDM efficiency scores for fiscal year 2007 
 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 20-4 DDM efficiency scores for fiscal years 2009–2010 
 



 
 

 
 
 
 
 
 
 
 
 
Figure 20-5 DDM efficiency scores for fiscal years 2010–2011 

 

 
 

 
 

 
 
 
 
 
 
 
 
Note how certain states, such as New Jersey, Pennsylvania, 

Massachusetts, Michigan and Maryland, are highly inefficient year after 



year. Another group of states, such as Kentucky, Kansas, Minnesota and 
West Virginia, also have significant inefficiencies every year. Some states 
(such as Illinois, Connecticut, Louisiana, Oklahoma and Virginia) have been 
inefficient some years but seem to have improved lately. Also a number of 
states have occasional or relatively minor (i.e. below 10 billion US$) 
inefficiencies. Finally, there 22 states (namely Alaska, California, Colorado, 
Delaware, Florida, Georgia, Idaho, Missouri, Nebraska, Nevada, New 
Hampshire, New Mexico, New York, Ohio, Oregon, Rhode Island, South 
Dakota, Tennessee, Texas, Washington, Wisconsin and Wyoming) that have 
been relatively efficient all the years of the period under study. More 
detailed results showing the decomposition of the DDM efficiency score 
according to the different sources of inefficiency are shown in Table 20-2, 
Table 20-3 and Table 20-4. Note that the rows corresponding to those states 
that have been relatively efficient in all these years are not shown. 

Figure 20-6 shows the states’ total inefficiency as well as the 
decomposition of that inefficiency. It can be seen that the total states’ 
inefficiency represents a huge amount (around 500 billion US$) and that it 
increased significantly in 2009 although it has decreased sharply in the last 
two years. More than half the total inefficiency is related to maintaining 
low, system-wide, liquidity levels. The second source of inefficiency is 
excessive borrowing, which is more than 100 billion US$ higher than 
necessary. Debt inefficiency (i.e. excess debt) increased in 2009 and 2010 
but has decreased lately. The third source of inefficiency is the excessively 
high taxes, overall around 50 billion US$ each year. The last, and minor, 
source of inefficiency is excessive interest payments, related obviously to 
the excess debt held which was commented on above. 

 
 
 
 
 
 
 
 
 
 
 
 

Table 20–2 Decomposition of DDM efficiency scores (billions US$) for 
year 2007 
 

  Fyear 2007 
    CASH  INT  CASH  
Alabama AL 1.014 3.004 0.000 1.073 
Arizona AZ 3.677 12.657 0.040 0.594 
Arkansas AR 2.365 7.556 0.000 0.763 
Connecticut CT 0.000 0.000 0.000 0.000 
Hawaii HI 0.000 0.000 0.000 0.000 
Illinois IL 6.175 5.060 1.688 30.216 
Indiana IN 0.000 0.000 0.000 0.000 
Iowa IA 1.207 7.483 0.065 0.837 
Kansas KS 1.652 9.735 0.047 0.000 
Kentucky KY 2.462 14.073 0.000 1.710 
Louisiana LA 0.871 20.380 0.210 0.737 
Maine ME 1.178 0.319 0.074 1.858 
Maryland MD 4.754 16.269 0.344 7.551 
Massachusetts MA 6.409 6.987 2.246 44.680 
Michigan MI 5.113 62.842 0.000 3.684 
Minnesota MN 7.428 8.256 0.090 0.973 
Mississippi MS 0.000 0.000 0.000 0.000 
Montana MT 0.000 0.000 0.000 0.000 
New Jersey NJ 10.983 13.553 1.008 31.275 
North Carolina NC 4.489 0.000 0.000 2.320 
North Dakota ND 0.138 2.102 0.054 0.000 
Oklahoma OK 1.774 17.535 0.094 1.474 
Pennsylvania PA 6.619 35.974 0.679 13.262 
South Carolina SC 0.914 5.930 0.000 3.802 
Utah UT 1.660 2.440 0.048 1.200 
Vermont VT 0.887 3.469 0.039 0.423 
Virginia VA 3.889 16.999 0.000 1.065 
West Virginia WV 1.375 9.969 0.000 1.772 
 Total 77.034 282.592 6.726 151.271 
 
 
 
 
 
 
Table 20–3 Decomposition of DDM efficiency scores (billions US$) for 
years 2008 and 2009 
 



 Fyear 2008 Fyear 2009 
   CASH  INT  CASH    CASH  INT  CASH  
AL 0.000 0.000 0.000 0.000 1.224 4.037 0.009 0.000 
AZ 2.140 15.105 0.000 0.203 1.516 8.594 0.028 1.057 
AR 2.258 9.230 0.000 0.000 2.087 2.388 0.000 0.706 
CT 0.000 0.000 0.000 0.000 3.204 18.088 0.596 10.303 
HI 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
IL 0.000 0.000 0.000 0.000 2.868 45.572 1.338 22.699 
IN 3.466 24.320 0.123 2.171 4.339 8.759 0.161 7.421 
IA 0.736 14.096 0.046 0.193 1.630 4.467 0.000 0.832 
KS 2.366 16.314 0.048 0.000 0.685 14.286 0.063 0.000 
KY 2.705 18.258 0.000 1.594 1.485 19.155 0.003 0.379 
LA 0.929 24.390 0.135 1.396 1.161 9.842 0.261 1.918 
ME 0.706 6.235 0.038 0.589 0.240 6.132 0.022 0.000 
MD 3.766 28.724 0.217 5.854 0.950 41.788 0.053 0.000 
MA 6.559 7.116 2.236 44.631 3.461 11.696 2.093 40.069 
MI 3.375 45.519 0.000 1.657 2.799 53.146 0.000 4.563 
MN 7.471 3.337 0.070 0.000 6.510 14.403 0.033 0.342 
MS 1.252 0.374 0.000 0.305 1.768 1.474 0.000 0.408 
MT 0.000 0.000 0.000 0.000 0.246 2.112 0.012 0.709 
NJ 5.179 52.545 0.171 13.873 2.287 45.302 0.314 15.070 
NC 6.331 0.000 0.000 3.400 0.000 0.000 0.000 0.000 
ND 0.205 3.346 0.070 0.023 0.288 2.719 0.054 0.000 
OK 0.837 25.657 0.075 0.000 1.345 21.307 0.012 0.126 
PA 2.198 54.707 0.278 6.783 2.368 57.756 0.201 7.462 
SC 0.388 4.907 0.000 2.796 0.000 0.000 0.000 0.000 
UT 0.878 5.648 0.002 0.000 1.196 3.944 0.000 0.041 
VT 0.732 5.732 0.068 0.914 0.696 3.753 0.016 0.098 
VA 0.000 0.000 0.000 0.000 1.435 11.445 0.106 2.425 
WV 1.247 12.865 0.000 1.105 0.853 8.751 0.000 0.533 
Total 55.722 378.426 3.575 87.487 46.642 420.916 5.376 117.162 
 
 
 
 
 
 
Table 20–4 Decomposition of DDM efficiency scores (billions US$) for 
years 2010 and 2011 
 

 Fyear 2010 Fyear 2011 
   CASH  INT  CASH    CASH  INT  CASH  
AL 1.405 9.834 0.011 0.036 0.000 0.000 0.000 0.000 
AZ 1.379 16.931 0.048 0.611 0.930 16.257 0.057 0.605 
AR 1.623 5.258 0.000 0.421 1.925 5.230 0.000 0.328 
CT 3.033 0.000 0.561 11.196 0.000 0.000 0.000 0.000 
HI 2.034 0.194 0.129 2.919 2.009 0.000 0.144 3.108 
IL 3.679 3.817 1.842 31.726 0.000 0.000 0.000 0.000 
IN 3.999 4.597 0.408 9.260 3.400 8.139 0.243 6.171 
IA 1.747 2.816 0.000 0.951 1.621 2.675 0.000 0.234 
KS 2.167 11.280 0.078 0.204 1.879 12.509 0.000 0.329 
KY 3.197 17.679 0.156 2.613 1.686 22.378 0.116 1.354 
LA 1.028 10.656 0.441 2.821 0.000 0.000 0.000 0.000 
ME 1.257 2.099 0.083 1.313 0.130 4.001 0.020 0.629 
MD 4.819 20.235 0.269 7.298 3.520 26.103 0.238 6.377 
MA 5.597 1.836 1.844 39.926 6.727 2.304 1.964 47.750 
MI 5.342 59.432 0.140 4.130 5.847 52.934 0.097 6.670 
MN 6.908 17.036 0.003 0.256 7.471 16.888 0.039 1.106 
MS 1.365 0.475 0.000 0.756 1.299 3.672 0.000 0.089 
MT 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
NJ 9.324 10.856 1.075 33.204 5.183 26.821 0.578 28.697 
NC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
ND 0.000 0.000 0.000 0.000 1.408 4.415 0.010 0.000 
OK 0.886 18.050 0.040 0.750 0.870 16.819 0.046 1.581 
PA 8.217 37.295 0.598 13.162 3.647 63.129 0.033 4.915 
SC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
UT 0.895 4.155 0.000 0.000 0.593 2.971 0.000 0.863 
VT 0.000 0.000 0.000 0.000 0.575 7.428 0.031 1.003 
VA 2.850 5.052 0.344 8.468 0.000 0.000 0.000 0.000 
WV 1.600 10.273 0.033 1.083 1.408 7.670 0.023 2.124 
Total 74.350 269.856 8.104 173.106 52.127 302.345 3.639 113.933 
 
 
 
 
 
 
Figure 20-6 Total states’ inefficiency and its decomposition 
 



 
 

The proposed approach not only identifies the amount and sources of the 
states’ financial inefficiencies but also quantifies the reductions (in some 
cases, increases) in expenditures that might have been made. Thus, Table 
20-5, Table 20-6, Table 20-7, Table 20-8 and Table 20-9 in the appendix, 
show the reductions/increases in each of the six expenditure concepts for 
each of the inefficient states in each fiscal year. Note that, as in Table 20-2, 
Table 20-3 and Table 20-4, the states that have been consistently efficient 
during this period are not shown because their target values coincide with 
the observed values, and therefore no changes in expenditure are deemed 
necessary. Looking at the weighted average row, it can be seen that in the 
first year of the period under study all expenditures seem to have been in 
need of important reductions (between 5% and 10%). The need for 
expenditure reductions was smaller in 2008. In 2009, welfare and 
government expenditure reductions were still possible although at a lower 

rate while expenditure in education, health care and public safety should 
have slightly increased. In the last two years the expenditures were again 
excessive, with the largest potential reductions (around 7%) in welfare and 
government expenditures and smaller reductions (below 5%) in education 
and health care. 

It is also interesting to analyze the sum of the absolute expenditure 
changes for all the states. The aggregate results are shown in Figure 20-7. It 
is noticeable how the aggregated observed expenditures were well above (of 
the order of 100 billion US$) those computed by the model for the first year 
of the crisis, were then significantly reduced in the following two years and 
have come back again to their usual values in 2010 and 2011. The reduction 
in the estimation of the aggregated overspending of the states during years 
2008 and 2009 occurred for all expenditure categories. It is significant that 
the model estimates that the expenditures on education, health care and 
public safety have been cut excessively so that in 2009 3.1 billon US$ more, 
1.1 billion US$ more and 1.2 billions US$ more, respectively, should have 
been spent on these three areas. Note also how in that year the overspending 
in welfare was still high (16.3 billion U$) but much lower than its usual 
level (of around 30 billion US$). In the last year, except for health care, 
relative overspending has almost returned to pre-recession levels. Note that 
we are not saying that health care spending is not high in absolute terms, but 
that since it has increased for all states, in relative terms the excess health 
care expenditures for the inefficient states are not as high as, for example, 
those on welfare. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 20-7 Projected aggregate states’ expenditures changes 
 

 
 

In order to study the distribution of total inefficiencies according to 
economic regions, Figure 20-8 shows a boxplot of the states’ inefficiencies 
grouped according to the economic regions defined by the Bureau of 
Economic Analysis and corresponding to the five years covered. Note that 
total inefficiency has been normalized by GDP, to take into account 
differences across states and regions in terms of their economic size. Note 
also that whereas the Mideast and New England show the larger feasible 
reductions, fewer sources of inefficiency have been detected for the Far 
West and Rocky Mountains.     

 
 
 
 
 
 
 

 
Figure 20-8 Total states’ inefficiency for all years normalized by GDP and 
grouped into economic regions 
 

 
 
Although some previous studies, such as Hauner and Kyobe (2010) and 

Afonso et al. (2010) have applied a regression with explanatory variables, 
identifying the determinants of inefficiencies is beyond the aim of this 
paper. However, it is interesting to plot the inefficiencies revealed by the 
model versus population or GDP so that any pattern of influence can be 
studied. Figure 20-9 shows the average aggregate inefficiencies (normalized 
by GDP) from 2007 to 2011 versus average population in that period. 
Similarly, Figure 20-10 shows the average aggregate inefficiency versus 
average GDP. It can be seen that the most inefficient states (relative to their 
GDP), such as West Virginia and Vermont, have a low population and that 



no feasible reductions are detected in large states, such as Texas and 
California. This may be an effect of the VRS assumption considered in the 
model, which tends to assess as relatively efficient those states having the 
minimum value of an input or the maximum value of an output. In general, 
except for the above effect, no clear relationship between GDP and 
inefficiency can be inferred. 

 
Figure 20-9 Average states’ inefficiency normalized by GDP versus average 
population 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 20-10 Average states’ inefficiency versus average GDP 
 

 
 
Finally, there is some room for discussion about the influence of political 

ideology on tax burdens, size of governments’ budgets and overspending. 
Thus, Potrafke (2011) found, by means of a dynamic panel data model, that 
government ideology, namely left- or right-wing parties, hardly influenced 
the allocation of public expenditures in OECD countries. On the other hand, 
Adam et al. (2011) found that countries with right-wing governments have 
higher efficiency. In our case, a non-parametric t-test has been carried out to 
compare the average inefficiency of the states governed by the Democratic 
and Republican parties. The t-test points out that, on average, states 
governed by the Democratic Party, showed greater inefficiencies relative to 
GDP (mean = 6.85, standard error = 0.72) than states governed by the 
Republican Party (mean = 3.89, standard error = 0.55). This difference was 
significant at the p = 0.001 level; however, it did not represent a large effect 
(r = 0.21). These findings are more in line with Adam et al. (2011), implying 
that states governed by the Republican Party should better control public 
expenditure thus reducing the tax burden. 

Some words of caution and caveats about the assumptions and 
limitations of the study are due. An important assumption in DEA is that the 
units under assessment are homogeneous. That can be argued to hold in the 
case of U.S. states but only up to a point. Thus, it has been commented 



above that states’ fiscal years are not always coincident and that their 
legislatures have the freedom and power to tax people differently. They can 
also decide which specific programmes to finance, which additional funds to 
set up, etc. Moreover states are very diverse, in terms of population size, 
demographics, geographical extension, natural resources, etc. It is logical to 
expect that the wealth and needs of (and services demanded by) their 
citizens may be different. In summary, there is therefore much built-in 
heterogeneity in the system. Through aggregation into broad tax and 
expenditure classes, the effects of this heterogeneity are alleviated but may 
not disappear completely. That is why, for example, the efficient targets for 
the expenditures would have to be assessed in the light of the political 
process of each state. It would be unreasonable to expect from such a simple 
methodology as DEA, which uses just a table of tax receipts and 
expenditures figures, to reach target levels that are consistent with the 
priorities and specific circumstances of each state. 

In addition to the above, it must be acknowledged that the proposed 
approach considers a simplified view of the state finances and budgeting 
processes, which are more complex in reality and involve multiple players, 
revenue projections, negotiations and compromises, mid-year revisions, etc. 
The proposed approach just represents an attempt to use the officially 
approved figures to compare, ex post, how efficient the states have been in 
managing the sources and uses of available funds and resources, and to what 
extent, in relative terms, the spending that has taken place relates to the 
population and GDP of each state. 
 

20.4 Summary and conclusions 
 

In this paper, a network DEA approach has been applied to assess the 
efficiency of U.S. states. The analysis is based on a two-stage network, with 
a first process labelled Public Finance (aimed at collecting tax receipts and 
other revenue in order to finance expenditures obtaining, as by-products, 
liquidity and debt levels) and a second process labelled Public Services 
Provision (that actually transforms the state budget expenditures into 
services to the people and to the economy). This viewpoint sees 
expenditures as intermediate products, i.e. as means to support the ends of 
the system, and taxes as the basic inputs that feed the overall system. As 
such, and consistent with the conventional DEA efficiency goal of reducing 
the amounts of inputs required to maintain output levels, higher than 
necessary taxes are considered as inefficiencies. Also considered to be 
inefficiencies are excessive borrowings and their corresponding interest 

payments. Finally, treated as a desirable variable (the larger the cash and 
liquid assets, the better) maintaining a low liquidity level is also considered 
to be a source of inefficiency.  

The proposed approach has been applied to the period 2007-2011 and 
the results show that 22 states have managed their finances in a relatively 
efficient way during this period. However, unfortunately, not all states have 
performed so well. Some seem to have overspent, taxing the people 
excessively and/or financing expenditures through borrowing. Between the 
best and the worst performers there are degrees in the level of relative 
efficiency of the public finances of the states during this period. Also some 
states have been more efficient in some years and less so in others. In 
general, the estimated total inefficiency of the states, including excess debt 
(and debt service), excess taxes and insufficient cash holdings, is about 500 
billion US$ and although it increased 20% in the first two years of the crisis 
it has come back to its “normal” level. The results also suggest that, on 
average, states governed by the Democratic Party, showed greater 
inefficiencies relative to GDP than those governed by the Republican Party. 

An interesting feature of the proposed network DEA model is that it is 
able to compute target levels not only for the inputs and outputs but also for 
the intermediate products. That allows the setting of efficient targets for the 
expenditures of a state. All these targets take into account the population and 
GDP of a state, and the expenditure levels of their peer states. In this way, it 
can be said that the best state budgeting practices would be spread and the 
efficiency of the whole system improved. Analysis of the aggregated 
discrepancies between the target and observed expenditures sheds much 
light on the evolution of these expenditures over these years. It has been 
found that excess expenditures were reduced during the first two years of 
the crisis but have since then almost returned to their previous levels. 

Although identification of the inefficient states may not be news, in the 
sense that the general public and the media already know about the budget 
problems of many states, the quantification of these states’ inefficiencies 
through a benchmarking exercise such as the one carried out in this study 
may be relevant and contribute to the debate. Also, as a tool to analyze state 
budgets and help prevent an inefficient use of taxpayers’ money, we believe 
that the proposed network DEA model and the DEA methodology in 
general, may represent a useful first step. 

Finally, as mentioned in the results discussion, as a topic for further 
research, it may be interesting to study the determinants of the estimated 
inefficiencies. It is a common limitation of DEA that, although 
inefficiencies are uncovered, it does not provide many clues about the 
reasons that may explain those inefficiencies. Thus, a regression analysis 



could be carried out to identify some economic, institutional, demographic 
and geographical explanatory variables that may influence the performance 
of taxation and expenditure of the states (e.g. Hauner & Kyobe, 2010). 
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Table 20–5 Reductions/increases in expenditures for year 2007 (%) 
 
 Fyear 2007 

 EduExp WelExp HealthExp SafeExp GovExp OthExp 
Alabama -30.9 -16.2 -52.7 9.2 -18.7 1.2 
Arizona -5.2 -24.6 -9.4 -19.4 -13.6 -15.4 
Arkansas -32.2 -36.6 -26.9 11.1 -38.2 13.0 
Connecticut 0.0 0.0 0.0 0.0 0.0 0.0 
Hawaii 0.0 0.0 0.0 0.0 0.0 0.0 
Illinois 21.5 -24.4 -4.6 31.4 5.6 -26.1 
Indiana 0.0 0.0 0.0 0.0 0.0 0.0 
Iowa -24.3 -22.8 -30.5 36.8 -15.8 -0.1 
Kansas -26.4 -18.9 -43.1 6.9 -31.9 -0.4 
Kentucky -30.3 -37.4 -39.5 1.9 -20.0 -13.5 
Louisiana 11.3 15.0 -16.0 -9.2 6.4 -30.7 
Maine -7.8 -48.9 -39.7 7.0 -32.9 -10.5 
Maryland -19.1 -27.7 -43.1 -49.1 -41.7 -17.2 
Massachusetts 3.2 -44.0 31.2 -23.4 -25.7 -25.5 
Michigan -38.6 -25.2 -18.3 -18.8 66.3 3.6 
Minnesota -33.7 -36.9 59.2 -12.4 -24.5 -13.8 
Mississippi 0.0 0.0 0.0 0.0 0.0 0.0 
Montana 0.0 0.0 0.0 0.0 0.0 0.0 
New Jersey -4.2 -22.4 -24.9 -14.6 -29.0 -35.9 
North Carolina -19.5 -17.7 -13.7 -15.9 -1.8 -5.3 
North Dakota -15.5 6.8 100.0 60.0 13.6 -10.4 
Oklahoma -23.5 -27.2 8.3 -19.2 -0.5 10.3 
Pennsylvania 2.2 -37.0 -17.5 -6.4 -32.2 -16.4 
South Carolina -17.5 -23.1 -40.2 0.4 -48.5 -32.0 
Utah -33.4 10.4 -38.3 -4.1 -54.9 15.3 
Vermont -50.9 -37.0 -1.2 -34.5 -4.4 30.0 
Virginia -9.6 5.6 -39.9 -30.6 -5.4 10.7 
West Virginia -25.2 -31.1 34.6 8.6 -37.0 -10.6 
Weighted aver. -6.2 -10.2 -8.2 -4.8 -7.2 -5.9 
 

 
 
 
 
 
 
 

Table 20–6 Reductions/increases in expenditures for year 2008 (%) 
 



 Fyear 2008 
 EduExp WelExp HealthExp SafeExp GovExp OthExp 
Alabama 0.0 0.0 0.0 0.0 0.0 0.0 
Arizona 0.0 -24.6 -4.6 -17.4 -6.1 -19.5 
Arkansas -34.1 -36.6 -33.0 12.7 -36.1 18.9 
Connecticut 0.0 0.0 0.0 0.0 0.0 0.0 
Hawaii 0.0 0.0 0.0 0.0 0.0 0.0 
Illinois 0.0 0.0 0.0 0.0 0.0 0.0 
Indiana -15.8 -28.2 91.5 19.9 41.7 -0.3 
Iowa -15.7 -5.8 -16.9 32.2 -11.8 26.9 
Kansas -25.7 -10.3 -26.8 -2.7 -12.3 5.6 
Kentucky -19.5 -25.7 -6.0 1.4 -11.6 -8.3 
Louisiana 7.5 10.1 -17.1 -10.1 5.1 -38.4 
Maine 25.0 -36.7 -19.1 47.8 -19.0 11.6 
Maryland -10.7 -11.6 -18.2 -40.0 -29.3 2.0 
Massachusetts 16.0 -40.2 47.4 -17.1 -29.7 -24.1 
Michigan -34.8 -24.3 -15.0 -19.0 54.5 10.5 
Minnesota -29.5 -44.5 39.8 7.4 -24.9 -27.1 
Mississippi -21.9 -26.6 -28.9 -2.0 16.3 -28.3 
Montana 0.0 0.0 0.0 0.0 0.0 0.0 
New Jersey 28.3 5.6 22.9 8.4 -18.8 -12.1 
North Carolina -20.9 -12.9 -18.6 -11.6 6.3 4.8 
North Dakota -0.5 -0.1 174.7 72.1 45.2 -0.9 
Oklahoma -11.8 -22.5 31.8 -2.7 37.1 38.2 
Pennsylvania 13.5 -14.2 -1.5 -10.8 -22.2 3.6 
South Carolina -16.7 -16.1 -39.5 2.4 -51.6 -36.4 
Utah -24.8 33.1 -29.6 16.2 -42.4 17.1 
Vermont -39.8 -39.2 16.3 -22.0 14.8 42.7 
Virginia 0.0 0.0 0.0 0.0 0.0 0.0 
West Virginia -5.3 -11.4 85.1 18.7 -15.2 1.9 
Weighted aver. -3.7 -6.8 -1.4 -2.3 -4.2 -2.6 
 
 
 
 
 
 
 
 
Table 20–7 Reductions/increases in expenditures for year 2009 (%) 

 
 Fyear 2009 
 EduExp WelExp HealthExp SafeExp GovExp OthExp 
Alabama -39.0 -8.2 -47.4 7.0 9.8 -3.1 
Arizona 4.4 -22.4 -4.0 -26.1 8.7 -16.9 
Arkansas -31.2 -19.9 -34.7 34.6 -23.2 -2.3 
Connecticut 41.0 -22.1 -35.5 27.8 -19.8 -7.4 
Hawaii 0.0 0.0 0.0 0.0 0.0 0.0 
Illinois 37.5 -15.7 24.0 45.7 35.8 -9.2 
Indiana -23.8 -17.8 110.9 25.0 35.9 2.4 
Iowa -21.5 -14.6 -33.5 23.0 -42.2 -11.7 
Kansas -3.4 12.4 -36.6 28.1 -23.1 11.1 
Kentucky -1.7 -14.0 -1.6 35.2 17.7 15.0 
Louisiana 0.3 -0.7 -27.2 -10.3 3.1 -30.4 
Maine 50.0 -29.6 1.9 65.5 -9.8 18.6 
Maryland 31.6 18.4 17.0 -10.7 17.1 35.0 
Massachusetts 33.2 -27.5 114.8 2.5 -16.2 -11.8 
Michigan -11.6 0.9 17.6 -5.9 103.9 27.1 
Minnesota -34.9 -31.1 66.3 -4.1 -16.7 -10.7 
Mississippi -25.1 -39.2 -41.5 2.3 24.2 -34.4 
Montana -6.7 -5.3 57.1 -4.2 -26.2 0.2 
New Jersey 43.9 24.5 56.1 35.5 -0.4 -9.7 
North Carolina 0.0 0.0 0.0 0.0 0.0 0.0 
North Dakota 10.9 6.1 183.6 82.6 61.9 0.1 
Oklahoma -23.1 -18.4 17.7 -20.3 10.9 21.0 
Pennsylvania 13.3 -15.6 -4.9 -4.8 -41.1 0.3 
South Carolina 0.0 0.0 0.0 0.0 0.0 0.0 
Utah -36.7 13.9 -35.2 0.4 -45.3 8.8 
Vermont -37.9 -26.0 22.1 -19.8 28.8 31.0 
Virginia -1.3 15.8 -37.5 -22.5 -9.6 6.8 
West Virginia 5.7 -5.5 107.4 24.1 -0.3 10.4 
Weighted aver. 0.6 -4.1 1.0 2.0 -1.1 -0.6 
 
 
 
 
 
 
 
 



Table 20–8 Reductions/increases in expenditures for year 2010 (%) 
 
 Fyear 2010 
 EduExp WelExp HealthExp SafeExp GovExp OthExp 
Alabama -29.7 -14.4 -48.3 6.3 0.2 4.0 
Arizona 11.6 -18.9 4.1 -19.3 28.0 -14.6 
Arkansas -30.7 -29.7 -11.8 3.4 -12.2 5.4 
Connecticut 14.6 -12.2 -49.2 -9.0 -43.7 -19.8 
Hawaii -14.0 1.4 -48.3 11.2 -40.7 -24.9 
Illinois 31.0 -19.9 5.7 34.8 -2.5 -35.6 
Indiana -27.9 -17.2 110.7 20.0 52.2 -6.7 
Iowa -17.7 -25.7 -25.9 27.2 -39.5 -12.1 
Kansas -25.4 -8.6 -40.3 4.2 -16.6 -5.3 
Kentucky -27.8 -27.3 -8.1 7.4 -4.1 -11.9 
Louisiana -7.7 1.6 -30.9 -21.5 -12.1 -28.2 
Maine 4.5 -43.1 -7.9 12.5 0.9 -4.8 
Maryland -10.8 -26.5 -19.3 -35.7 -25.2 -5.6 
Massachusetts 12.4 -35.9 76.0 -11.4 -26.3 -21.6 
Michigan -17.3 -5.0 15.6 1.5 121.0 -3.5 
Minnesota -21.3 -40.6 83.5 2.3 -28.7 -19.5 
Mississippi -13.0 -35.4 -45.5 6.4 -18.8 -32.6 
Montana 0.0 0.0 0.0 0.0 0.0 0.0 
New Jersey 7.3 -10.9 1.9 -5.2 -19.9 -38.4 
North Carolina 0.0 0.0 0.0 0.0 0.0 0.0 
North Dakota 0.0 0.0 0.0 0.0 0.0 0.0 
Oklahoma -26.8 -20.1 29.8 -22.9 -7.8 12.9 
Pennsylvania 10.8 -26.7 -6.9 -11.3 -45.6 -29.0 
South Carolina 0.0 0.0 0.0 0.0 0.0 0.0 
Utah -32.2 9.8 -32.6 7.3 -54.6 4.5 
Vermont 0.0 0.0 0.0 0.0 0.0 0.0 
Virginia 7.7 6.6 -43.4 -27.1 -28.4 5.7 
West Virginia -6.6 -4.2 132.6 11.4 9.2 -10.0 
Weighted aver. -2.6 -7.9 -3.5 -2.2 -6.5 -7.7 
 
 
 
 
 
 
 

 
Table 20–9 Reductions/increases in expenditures for year 2011 (%) 
 
 Fyear 2011 
 EduExp WelExp HealthExp SafeExp GovExp OthExp 
Alabama 0.0 0.0 0.0 0.0 0.0 0.0 
Arizona 9.4 -22.4 3.0 -8.3 36.5 -10.8 
Arkansas -38.5 -28.7 -28.4 -3.4 -29.7 -0.7 
Connecticut 0.0 0.0 0.0 0.0 0.0 0.0 
Hawaii -26.7 -19.6 -58.4 15.7 -49.1 -34.4 
Illinois 0.0 0.0 0.0 0.0 0.0 0.0 
Indiana -26.7 -18.9 125.6 29.4 39.6 0.6 
Iowa -22.9 -25.7 -14.3 24.9 -25.7 -11.7 
Kansas -26.1 -8.7 -42.7 5.7 -21.6 0.8 
Kentucky -18.2 -16.1 -6.9 14.7 -12.9 -2.8 
Louisiana 0.0 0.0 0.0 0.0 0.0 0.0 
Maine 34.4 -30.9 1.0 38.2 -19.6 13.3 
Maryland -14.7 -18.2 -19.2 -43.7 -37.3 7.6 
Massachusetts 9.8 -33.9 57.9 -17.9 -35.2 -21.9 
Michigan -34.2 -21.4 -13.6 -19.5 59.0 -6.2 
Minnesota -23.9 -35.5 92.4 -0.7 -31.0 -13.3 
Mississippi -15.9 -31.8 -37.8 4.6 -3.6 -24.6 
Montana 0.0 0.0 0.0 0.0 0.0 0.0 
New Jersey 3.7 -9.0 -10.9 -12.2 -31.4 -28.6 
North Carolina 0.0 0.0 0.0 0.0 0.0 0.0 
North Dakota -17.5 -0.8 40.0 38.5 24.1 -14.7 
Oklahoma -23.9 -17.0 15.6 -24.8 -21.6 10.9 
Pennsylvania 0.2 -25.3 -34.2 -11.7 -48.5 -14.1 
South Carolina 0.0 0.0 0.0 0.0 0.0 0.0 
Utah -29.8 12.0 -38.4 12.4 -59.1 -3.6 
Vermont -39.6 -36.8 8.8 -27.8 37.8 30.4 
Virginia 0.0 0.0 0.0 0.0 0.0 0.0 
West Virginia -10.7 -15.3 88.5 9.1 -8.6 -16.7 
Weighted aver. -4.7 -6.7 -2.5 -2.8 -7.0 -3.6 
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