
 - i -

Methods for Knowledge Discovery in

Data

University of Seville

Department of Languages and

Information Systems

Dissertation submitted in partial fulfilment of the requirements for the
degree of Doctor Europeo en Informática, presented by

Santiago Patricio Serendero Sáez

Advisor: Professor José Miguel Toro Bonilla

June, 2004

ii

The more perfect a nature is the fewer means it requires for its operation.

Aristotle's

All exact science is dominated by the idea of approximation

Bertrand Russell

iii

Agradecimientos

Agradezco muy sinceramente la ayuda prestada por mi Director de Tesis, Prof. Dr.

Miguel Toro durante todos estos años. Su contribución ha sido fundamental en la

formalización de los algoritmos de este trabajo.

Agradezco a Erika y Andrea, cuyo amor ha sido la energía elemental que ayudó a

mantener este barco contra viento y marea. Sin ellas este trabajo no habría podido ser.

Agradezco a mis padres, que me dieron los materiales esenciales para la culminación

exitosa de esta fase de mi vida, y que aquí y Allá se están todavía preguntando en que

cosas he andado metido todo este tiempo.

Agradezco a amigos y colegas que me han ayudado. A los colegas R. Martínez de la

U. de Sevilla , H. Shahbazkia y Fernando Lobo de la U. de Algarve, por la gentileza que

tuvieron de leer el manuscrito original y hacerme valiosas críticas. A G. Oliveira e A.

Jones por su corrección del manuscrito en Inglés. A J. Lima, por su ayuda en la revisión

de algunos algoritmos. A T. Boski, por su aliento permanente. A F. Saravia y a María

Pía Labbé por su entusiasta apoyo desde mi distante y querido Chile.

Una palabra especial de agradecimiento a los colegas del Departamento de Lenguajes

y Sistemas de la Universidad de Sevilla. Me han tratado de tal modo, que en todo

momento me he sentido allí como en mi tierra.

Parte del tiempo de trabajo de esta tesis, ha sido hecho con el apoyo del programa de

acción 5.2 PRODEP financiado por la Unión Europea.

 - iv -

Abstract

 This thesis contributes to the development of tools for Supervised Learning, and in

particular for the purposes of classification and prediction, a problem of interest to

everyone working with data.

After analysing some of the most typical problems found in instance-based and

decision trees methods, we develop some algorithmic extensions to some of the most

critical areas found in the process of Data Mining when these methods are used.

We begin by studying sampling data and the benefits of stratified data composition in

the training and test evaluations sets. We study next the characteristics and degree of

relevance of attributes, a problem of paramount importance in data mining. We do this

by means of identifying the discriminatory power of attributes with respect to classes.

Selecting most relevant attributes increases algorithm complexity, which is exponential

in the number of attributes. For this reason, verifying every other possible subset of

candidate attributes is sometimes out of question. In this respect, we provide a low-

complexity algorithm to help discover which attributes are relevant and which are not

[Serendero et al., 2003]. This technique forms an integral part of the classification

algorithm, and it could be utilised by rule induction algorithms using trees, as well as

instance-based methods using distance metrics for the application of the principle of

proximity.

In most instance-based methods, vector records relate to a class as a whole, i.e., each

record considered on its integrity relates to one class. The same idea is present in

decision trees, and for that reason classes appear only at tree leaves. On the contrary,

our algorithm relates class membership to cell prefixes, allowing a complete and new

approximation of sub-cell component elements to class membership. This concept is a

fundamental part of our algorithm.

Most instance based methods, and in particular, k-NN methods deal with the problem

of searching similar records to some unseen object in the data hyperspace based on

distance metrics. Selecting “close” neighbour objects from the hyperspace can be a

computationally expensive process. We contribute in this respect by offering a search

mechanism based on a tree structure with a low complexity cost and where the distance

calculation considers first attributes that are more relevant.

v

 Selecting best neighbours of representative patterns not only depends on the

proximity of similar objects. We define several selection criteria weighted according

with data characteristics, thus adapting the algorithm to different data.

For all experiments, we present a comparison of results from two different sources,

namely results from the literature and results obtained in our own hardware using a

relatively new benchmark tool. This way is possible to keep equal testing conditions, a

condition difficult to find in figures from the literature.

vi

Contents

Agradecimientos...iii

Abstract... iv

Contents .. vi

List of Tables .. xi

List of Figures... xiv

1 Introduction... 1

1.1 Motivation for this thesis. Some background.. 4

1.2 Instance-based and Decision Tree methods.. 6

1.2.3.1 Problems with Decision Trees .. 8

1.2.3.2 Problems with Instance-based methods .. 9

1.3 Objectives.. 10

1.4 Contributions of this thesis ... 11

1.5 Structure of this text .. 12

2 State-of-the-Art ... 15

2.1 Active areas of research and new challenges and directions 16

2.1.1 Active learning (AI)/experimental design (ED)... 16

2.1.2. Cumulative learning.. 17

2.1.3. Multitask learning ... 17

2.1.4. Learning from labelled and unlabeled data... 17

2.1.5 Relational learning ... 17

2.1.6 Learning from huge datasets .. 18

2.1.7 Learning from extremely small datasets .. 18

vii

2.1.8 Learning with prior knowledge.. 18

2.1.9 Learning from mixed media data ... 18

2.1.10 Learning causal relationships... 19

2.1.11 Visualization and interactive data mining.. 19

2.2 General trends... 19

2.3 Different Perspectives of Data Mining ... 22

2.4 Similarity searching in tries.. 25

2.4.1 Similarity searching metric spaces... 26

2.4.2 Some concepts for a metric space .. 26

2.4.3 Types of search .. 30

2.4.4 Equivalence relations ... 31

2.5 Searching in tries .. 32

2.6 Data Mining and Statistical Sampling .. 35

2.6.1 Random sampling .. 35

2.6.1.1 Holdout method... 36

2.6.1.2 Cross-validation method ... 37

2.6.1.3 Leave one out method ... 38

2.6.1.4 Bootstrap method ... 38

3 The Trie-Class Algorithm. Basic definitions .. 39

3.1 General overview of the algorithm ... 39

3.2 Basic definitions.. 40

3.3 Definitions on cell discretization .. 41

3.4 Exclusiveness as a measure of attribute relevance... 47

3.5 Attribute selection ... 49

3.6 Shape definitions ... 50

3.7 Searching for nearest cells.. 55

3.7.1 Selecting closest pattern... 57

3.7.2 Using look-ahead to solve ties in cell pattern selection 59

viii

3.7.3 The search algorithm in practice .. 60

3.8 Extraction of p1 is an efficient alternative to regular k-NN methods................ 61

3.9 General assumptions on some basic Principles.. 63

3.9.1 Data consistency .. 63

3.9.2 Partition granularity ... 64

3.9.3 Class membership, Patterns and the Continuity Principle 64

4 Pre-processing Data Before Mining .. 67

4.1 Converting records into discretized patterns.. 67

4.2 The special case of categorical attributes... 69

4.3 Feature reduction and elimination ... 73

4.3.1 Ordering attributes ... 75

4.3.2 Looking at sub-cells from the “clearest” viewpoint................................... 75

4.3.3 Reducing attribute numbers ... 77

5 Evaluation and Results... 81

5.1 Data used in experiments .. 81

5.1.1 Adult dataset. (Census USA 1994)... 81

5.1.2 Annealing dataset ... 82

5.1.3 Breast Cancer (Wisconsin) dataset .. 82

5.1.4 Dermatology dataset .. 83

5.1.5 Diabetes (Pima Indian) dataset .. 83

5.1.6 Forest Cover type dataset ... 83

5.1.7 Heart disease dataset (Cleveland). ... 84

5.1.8 Heart disease Statlog.. 84

5.1.9 Hypothyroid dataset ... 85

5.1.10 Iris dataset .. 85

5.1.11 Pen-Based Recognition of Handwritten Digits: “pendigits” dataset 85

5.1.12 Satellite image dataset (STATLOG version) ... 86

5.1.13 German credit dataset... 87

ix

5.2 The evaluation method used by Trie-Class ... 87

5.3 Comparison of results with other classifiers... 89

5.3.1 Results using figures from the bibliography.. 89

5.3.2 Results from experiments done in our own hardware................................ 96

5.4 Performance Conclusions ... 100

6 Choosing the best close neighbour .. 103

6.1 Decision parameters ... 105

6.1.1 Semi-exclusive values.. 105

6.1.2 Distance between selected cells ... 105

6.1.3 The shape of cells... 106

6.1.4 Cell strength ... 106

6.1.5 Frequency of cells and sub-cells .. 107

6.1.6 The Majority Class... 108

6.2 Basic functions definitions for the selection of a representative cell’s class.. 108

6.3 Obtaining the weight of decision parameters ... 110

6.4 Predicting the final output class ... 115

7 Implementation ... 119

7.1 General overview .. 119

7.2 Building a trie as the main tree structure ... 121

7.3 Insertion algorithm ... 125

7.4 Discussion on the actual implementation ... 126

7.5 Dictionary and other supporting files... 129

8 Conclusions and Future work.. 131

8.1 Conclusions... 132

8.2 Future work... 135

x

9 Bibliography .. 137

Appendix I. Example of Dictionary corresponding to the Annealing Dataset 153

Appendix II. Settings for the execution of the Naive Bayes classifier 155

Appendix III. Alpha values for Decision Parameters 159

xi

List of Tables

Table 2.1 Accepted papers in Data Mining and Machine Learning in four

International Congresses during 2002. ... 21

Table 3.1 Attributes degree of relevance values in Cancer dataset...................... 50

Table 3.2 Cell vectors and their component values.. 53

Table 3.3 Shape vectors corresponding to cells from Table 3.2............................ 53

Table 3.4 Shape distances and similarity function values 54

Table 3.5 Distance comparison using selected criteria .. 55

Table 3.6 Original search space P containing 5 cells and a new query................ 60

Table 3.7 Classification error rates comparing p1 and IBk algorithm................. 62

Table 4.1 Class distributions by value for a symbolic attribute 73

Table 4.3 Variation in predictive error rate after ordering and reduction in the

number of attributes ... 79

Table 5.1 Stratified sample characteristics in forest covert dataset..................... 89

Table 5.2 Adult dataset: Error Rate in predictive models 91

Table 5.3 Annealing dataset: Error Rate in predictive models 91

Table 5.4 Wisconsin Breast Cancer: Error Rate in predictive models 92

Table 5.5 Dermatology dataset: Error Rate in predictive models........................ 92

xii

Table 5.6 Pima Indian Diabetes: Error Rate in predictive models 92

Table 5.7 Forest cover: Error Rate in predictive models 93

Table 5.8 Heart disease, Cleveland: Error Rate in predictive models 93

Table 5.9 Statlog Heart disease: Error Rate in predictive models 94

Table 5.10 Hypothyroid dataset: Error Rate in predictive models 94

Table 5.11 Iris dataset: Error Rate in predictive models 95

Table 5.12 Pendigits dataset: Error Rate in predictive models 95

Table 5.13 Satellite image dataset (STATLOG): Error Rate in predictive models

 95

Table 5.14 German Credit dataset. Error Rate in predictive models 96

Table 5.15 Comparison in Classifiers accuracy using Weka against Trie-Class 98

Table 5.16 Comparing C 4.5 Error Rates from two sources................................. 99

Table 5.17 Classifiers execution total time for each individual fold using Weka.

 100

Table 5.18 Error Rate comparison between Trie-Class, k-NN and two versions of

C4.5 100

Table 6.1 Function criterion return values by DP ... 109

Table 6.2 Ambit and Precision values for decision parameters in various datasets

 112

xiii

Table 6.3 Decision parameters weights for different datasets 114

Table. 7.1 Pseudo-code for insertion algorithm ... 126

Table A-1 Weights (alpha) for various ambit and precision values expressed in

percentage.. 159

xiv

List of Figures

Fig. 2.1 Different contours for constant Manhattan, Euclidean, L6, L � infinity

and Mahalanobis metrics in 2D space... 29

Fig. 3.1 Attribute values projection in one-dimension to depict its relevance..... 49

Fig. 3.2 Slope intersection form of a line... 51

Fig. 3.3 A two-dimensional representation of a cell ... 52

Fig. 3.4 Shape representation of six cell vectors... 54

Fig. 3.5 Searching for close neighbours... 61

Fig. 4.1 Different views on the same set of solutions.. 76

Fig. 5.1. Flowchart for training and test sample subset selection......................... 89

Fig 6.1 Function apply() returns true if a criterion applies to a given cell 110

Fig 6.2 Function predictr() predicts the label of a given record 111

Fig 6.4 Function that predicts the label class for a new query px. 117

Fig 7.1 Trie-Class main modules ... 119

Fig. 7.2 Example of a classical trie after insertion of words................................ 122

Fig. 7.3 Section of C-trie showing 3 equal domain attribute levels 122

Fig. 7.4 Overlapped class regions in a two-dimensional space............................ 124

xv

Fig. 7.5 Overlap class regions in the hyperspace.. 125

 - 1 -

1 Introduction

The most important goal of handling data and performing computation is the

discovery of knowledge. We store data about a certain process and retrieve later that

information in order to use it in a meaningful way. To put it in the words of R. W.

Hamming, the purpose of computing is insight, not numbers. [Hamming, 1973]

Getting insight from small or moderate amounts of data was manageable until

recently. However, data collection with today’s computer technology has had such an

increment in volume in the last years that represents an explosion overwhelming all

expectations. According to a recent study “ The world produces between 1 and 2

exabytes1 of unique information per year, which is roughly 250 megabytes for every

man, woman, and child on earth.” …”It’s taken the entire history of humanity through

1999 to accumulate 12 exabytes of information. By the middle of 2002 the second dozen

exabytes will have been created”. In the conclusion of the same report, its authors say:

“ It is clear that we are all drowning in a sea of information. The challenge is to learn to

swim in that sea, rather than drown in it. Better understanding and better tools are

desperately needed if we are to take full advantage of the ever-increasing supply of

information”[Lyman, 2000].

These huge amounts of information do not only represent a challenging data

warehousing problem. In the last forty years database technology and disk capacity has

allowed the easy storage, manipulation and fast retrieval of ever growing volumes of

data, which is at the heart of today’s information society. However, much of this

increased power is wasted because humans are poor at gaining insight from data

presented in numerical form. When a database stores measurements, events, dates or

simply numbers, queries on that database return facts. Facts however are not exactly

knowledge, in the sense of concepts representing generalizations about data relations.

These concepts are the ones permitting the learning process to take place, by improving

our performance in an environment.

Congruent with the above indicated data production of the last years, the increase in

database size as well as the ever growing high dimension of records has dramatically

1 Introduction

2

expressed the idea that besides other relations than the ones defined a priori by database

designers, there was knowledge which could be extracted from databases. Moreover,

this knowledge would be crucial in the decision-making process.

With this premise in mind, the field has had a tremendous impact primarily on

industry wanting to take advantage of this hidden knowledge. The globalisation of

information through the Internet and the establishment of the e-business have increased

the need for tools and methods to elaborate knowledge from data produced massively

every second.

At the same time, the size of the problem made also clear that looking for knowledge

through tedious manual queries on large databases would have to be replaced by

advance computer algorithms running on faster hardware, as the sole possible solution.

It is within the goal of addressing these challenging issues that has taken place the

development of the area of Knowledge Discovery (KDD). Although inherently

associated with the area of databases for they contain the raw material for the

elaboration of knowledge, KDD is at the confluence of other research areas as well,

such as statistics, machine learning, pattern recognition, neural networks, rough and

fuzzy sets among others.

KDD is all of them and none of them. It is all of them, because the discipline jointly

uses techniques from several of these areas in order to attack the old problem of finding

patterns in data. It is none of them, because it is something more than the simple joint

utilization of these techniques developing its own methods, data structures and

algorithms. The reason for this development came as a realization that in solving

problems, which involve thousands of high dimensional records, no single method

could be expected to work well in the face of such diversity of data.

The term Knowledge Discovery appeared around 1989 and was defined as:

“...The nontrivial process of identifying valid, novel, potentially useful, and ultimately

understandable patterns in data” [Frawley et al., 1991].

However, the name popularising the field has been Data Mining, mostly used in the

economic and financial spheres. Later, the name was extended to Knowledge Discovery

1 An exabyte is a billion gigabytes or 1018 bytes.

1 Introduction

3

in Databases or KDD [Fayyad et al., 1995] to refer to the whole process, reserving the

name Data Mining only for the central inductive task2.

For these late authors, KDD is:

“The process of using the database along with any required selection, pre-

processing, sub-sampling, and transformations of it; to apply data mining methods

(algorithms) to enumerate patterns from it; and to evaluate the products of data mining

to identify the subset of the enumerated patterns deemed ‘knowledge’”.

In general, there are three main steps in the Knowledge Discovery process. First,

target data needs to be selected whether at a raw state or already in database format. At

this pre-processing stage, data is normalized and clean. A decision needs to be made on

what to do with records exhibiting missing data or data that seems to be in error. It is

also required at this stage to deal with the various types which data can present, in

particular its domain size, ordering, boundary values, etc.

Second, a phase recognized as Data Mining, which is the central inductive process of

pattern extraction. Inductive means obtaining knowledge through the inference of a new

theory from a set of observations, which is the experience. At this stage and depending

on the method been used, global or local hypotheses are created capturing the existing

relations in patterns of data under analysis.

Third, knowledge can be extracted from the obtained patterns. However, the resulting

information is not always in an easily interpretable form. For this reason, pattern

information and relations found must be put in a textual, graphical or visual form which

is more intelligible, such that can be understood and therefore useful to the expert

domain. Still the users of the data mining process must use the resulting knowledge.

They have to determine whether the accuracy of the results, the understandability of the

extracted knowledge, the time span to produce results and its practicality is useful or not

for them, establishing new goals. Generally, at this stage, the process reiterates again to

approximate to new objectives such as improving results, simplifying already obtained

knowledge or improving its visual representation.

2 In the context of this work we used indistinctively both expressions.

1 Introduction

4

In all these three phases, the interaction between the domain expert and the

programmer is required several times. Data and its meaning is not known by the

programmer. It is the domain expert experience and knowledge, which facilitates the

work of the programmer. For knowledge always can use previous knowledge about a

domain to generate a picture closer to reality. Furthermore, algorithm development and

resulting performance are data dependent. Therefore, choosing existing or designing

new algorithms requires the programmer expertise. In many cases, the parameters used

to produce hypotheses about data need to be changed dynamically as a function of data

and the algorithm itself. Interaction between the expert of the domain and the

programmer is again required. Finally, yet important, at the very end of one iteration

cycle within this process, is the decision of the data owner to accept or not the results

produced and offered by the programmer.

1.1 Motivation for this thesis. Some background

This thesis is about Data Mining and its related field Machine Learning (ML), itself a

sub-field of Artificial Intelligence. ML is the scientific field studying how machines can

learn, which is one of the components of intelligence. [Langley, 1996] proposes the

following definition of learning:

 “Learning is the improvement of performance in some environment through the

acquisition of knowledge resulting from experience in that environment”

Both ML and Data Mining depend heavily on inductive reasoning, i.e. the reasoning

from particular observations available to the researcher leading to general concepts or

rules.

1 Introduction

5

Example 1 The following are examples of inductive reasoning and learning:

A tennis player trying to hit a forehand shot, will spend hundreds of shots learning

how to hit the ball in order to send it through the net at the desire height, speed and

direction, in order to place it far from the reach of his/her opponent. After 1000 shots,

he/she will have (hopefully) learned how to hit the ball appropriately. The knowledge

extracted from all those patterns describing the ball trajectory and place of impact, will

be then used the following time a similar shot is hit.

Someone concerned with the lack of water for human needs could measure over a

period of a year the amount of water wasted in a typical family home. This is the

experience. After observing many patterns of water consumption, this information could

be processed to demonstrate that 60% of that water contains only soap, 20% contains

other polluters and the remainder 20% contains other organic matter. This is the

knowledge. Using this knowledge in order to build houses with simple filter systems to

recycle a scarce resource such as water would mean that we have learned something.

In the context of this work, we deal only with the first subtask of the learning process,

namely the methods to acquire knowledge including the first two phases of knowledge

discovery referred to above.

Knowledge has to be extracted from data. Most of the time, we found data on its

original raw state, normally requiring a pre-process phase in order to be useful. Data has

to be clean, ordered, complete and consistent. Let us accept for the time being, that data

is ready to be processed. Records (examples, observations, objects) are usually

presented to the programmer as a sequence of vectors formed by Attribute values of

various data types. They represent the independent variables, with various degrees of

correlations between them. These attributes can be associated or not with a given label

or class, representing the dependent variable. Thus, a typical representation is the

following:

1 1 2 2| , | ,.., | ,.., | ,i i n nr A a A a A a A a c= (1.1)

 We find an ordered sequence of the pair Attribute/value and optionally a

corresponding class, a symbol representing one among a finite discrete set of values.

1 Introduction

6

Depending on the presence or absence of the class, two classical problems constitute

a central goal in Data Mining. If the class is present in the available data, the goal can be

class prediction. If there is no input of classes, the goal will be clustering: to find natural

groupings or clusters of records in order to characterize data.

In the first case, learning from examples with or without a known class is called

Supervised Learning in Machine Learning taxonomy. Its goal is to obtain relevant data

patterns from available examples. These in turn will be used to generate general or local

hypotheses representing knowledge. This knowledge is used later to predict the class for

new unseen data. This process, which organizes data into a number of predetermined

categories, is called Classification. Classification is an uncertain task by nature, aiming

at making an educated guess about the value of the dependent variable class, based on

the value of the independent variables represented by attribute values. When the

submitted examples do not exhibit class membership, and the original database has

some natural cluster structure, a clustering algorithm must be first run, in order to make

explicit to each example its associated class label. The classification algorithm can be

executed after this.

When no prior data is available for learning, we are in the world of Unsupervised

Learning or Learning from Observation. The system must discover by itself its class

membership. To do that, it must first characterize common properties and behaviour of

examples forming clusters of records. The idea is to create groups of records with the

smallest possible differences among their members and the largest possible differences

between groups. This task has no prediction to make but to discover and report to the

user about the most informative patterns found in the dataset under analysis. For this

reason, it is also known as Data Description.

It is within the framework of Supervised Learning that we have developed a

Classification tool, which is described in the following sections.

1.2 Instance-based and Decision Tree methods

Out of the many Supervised Learning methods used by Data Mining to create

knowledge from data, we have concentrated our attention into two of the most popular

inductive techniques: Decision Trees and Instance-Based methods. In the rest of this

chapter, we briefly describe both methods and some of their difficulties. We will finish

1 Introduction

7

by proposing a method that uses a) the generation of local hypotheses according to

nearby neighbours used by instance-based methods, and b) a tree structure as decision

trees do, although in our case is not the tree making any class membership decision, but

helping in the whole process.

Decision trees have been used since the 1960s for classification [Hunt, 1966] and

[Moret, 1982]. They did not receive much attention within statistics until the publication

of the pioneering work on CART [Breiman, 1984]. Independently Quinlan popularised

the use of trees in Machine Learning with his ID3 and C4.5 family of algorithms

[Quinlan, 1983, 1987, 1993]. According with [Smyth, 2001] early work on trees uses

statistics emphasizing parameter estimation and tree selection aspects of the problem,

more recent work on trees in data mining has emphasized data management issues

[Gehrke et al., 1999].

Decision trees perform classification by executing sequential tests on each of the

attributes of a new instance against known records whose patterns are used to create the

Decision Tree. While the tree’s nodes represent attribute value thresholds, the leaves

represent the attached classes to these patterns. The new instance to be classified

advances in the tree by executing attribute value comparisons at each node, with

branching based on that decision. The process is reiterated until a leaf node is reached,

assigning its class to the new instance.

The attraction of these tools comes from the fact that data semantics becomes

intuitively clear for domain experts. Much of the work on trees has been concentrated

on univariate decision trees, where each node tests the value of a single attribute.

[Breiman, 1984], [Quinlan, 1986, 1993]. The test done at each node in this type of

decision trees, divides the data into hyperactive planes, which are parallel to the axis in

the attribute space.

Instance-based learning, (also known as case-based, nearest-neighbour or lazy

learning) [Aha, 1991], [Aha, 1992], [Domingos, 1996], belongs to the inductive

learning paradigm as is the case with Decision Trees. However, contrary to these, there

is not a unique hypothesis generated before the classification phase. Rather, training

examples are simply stored and local hypotheses are generated later at classification

time for each new unseen object. The local generated hypothesis utilizes the

mathematical abstraction of distance used to implement the Principle of Similarity

1 Introduction

8

applied to objects. Consequently, the class of a new object can be disclosed by finding

an earlier object of known class, which is not perfectly symmetric but “similar” to it.

Similarity can be understood using the mathematical concept of distance. To say that

two objects are similar is the same as saying that the two objects are near to each other.

To say “near” also means that we are interested in finding existing records, which do

not necessarily produce exact matches with the unknown instance. Instead of using the

nearest example [Duda, 1973], this paradigm uses the k nearest neighbours for

classification (k-NN). There are two main methods for making predictions using k-NN:

majority voting and similarity score summing. In majority voting, a class gets only one

vote for each record of that class in the set of k top ranking nearest neighbours. The

most similar class is assumed as the one with the highest vote score. In the second case,

each class gets a score equal to the sum of the similarity scores of records of that class

in the k top-ranking neighbours. The most similar class is the one with the highest

similarity score sum.

 Methodologically, the Instance-Based approach represents the opposite when

compared with Decision Trees because there is no explicit generalization of some

general function. Rather, for each new case a specific function is locally constructed

implicitly from the similarity measure above. On the other hand, Decision Trees

methodology is a model approach. It creates a general explicit function drawn from the

available examples, which is used in all new cases to determine class membership.

These two methods present several problems, related to attributes characteristics,

algorithm complexity and accuracy in prediction.

1.2.3.1 Problems with Decision Trees

Some problems with Decision Trees described in the literature are among others:

• They offer a unique hypothesis to interpret every other possible input, which

not always fits the real class distribution of examples in the data space

[Quinlan, 1993].

• In univariate trees, tests carried on each attribute are based on a certain

threshold value calculated after some information gain criterion, which makes

them sensible to inconsistent data as well as small changes in data [Murthy,

1996].

1 Introduction

9

• The input order of attributes heavily determines the predictive skill of the

classification algorithm. Choosing the right attribute subset and its order can

be computationally expensive [Aha et al., 1994].

• The presence of irrelevant attributes increases the computational cost and can

mislead distance metric calculations [Indk, 2000]. In datasets with high

dimension, not only they do face higher computational cost problems, the

interpretation becomes cumbersome to the expert domain as well.

1.2.3.2 Problems with Instance-based methods

• They are “lazy” in the sense of storing data and not d oing much with it until a

new instance is presented for classification [Cios, 1998].

• The cost of classifying new instances can be high [Mitchell, 1997]. The running

time and/or space requirements grow exponentially with the dimension [Indyk,

1999].

• They can be very sensitive to irrelevant attributes [Domingos, 1996].

• They represent instances as points in the Euclidean space, a dimension reduction

problem that constitutes a challenge on itself.

• In k-NN methods, choosing the right value for k is not an easy task. A high

value increases computational complexity. A small value makes them very

sensible to noise data [Riquelme, 2001].

Still both of these methods face general problems common to other methods such as

irrelevant attributes, noise sensibility, overfitting and symbolic attributes. We will refer

to each one of these later.

Furthermore, it is a known fact that no induction algorithm is better than other in all

data domains [Mitchell, 1980], [Brodley, 1995]. For these reasons efforts have been

done in order to unify some classification methods as done for instance with RISE,

which tries to combine strengths and weaknesses of instance-based and rule based

methods [Domingos, 1996]. In [Quinlan, 1993], instance-based and model-based

methods are combined for classification; the method uses training data to provide both,

local information (in the form of prototypes) and a global model. Another attempt uses a

multi-strategy combining two or more paradigms in a single algorithm [Michalski,

1 Introduction

10

1994] and still an even longer process is proposed by [Schaffer, 1994] to use several

induction paradigms in turn, using cross-validation to choose the best performer.

1.3 Objectives

The point of departure for our approach has been an old programming statement by

[Dijsktra, 1972]. Essentially, it says that in developing a new algorithm, much of its

simplicity and accuracy will be obtained if we use the right structure for it. The more

powerful and appropriate is the data structure for a given problem, the better the

algorithm required to manage the data.

A second idea comes from the well-known Minimum Description Length (MDL)

principle, which roughly state that the best theory for a body of data is the one that

minimizes the size of the theory and the necessary volume of information required to

specify the exceptions relative to the theory. In other words, use the smallest amount of

information in order to develop a full concept. [Rissanen, 1978]

With these central ideas in mind our goal was to develop a classification tool able to:

• Take advantage of the model-based and instance-based approaches as well as the

general principles, to construct a combined simple, low complexity classification

algorithm.

• Pre-process available data storing not only training data from a sample but

additional information in order to avoid putting the burden on computation at

running time.

• Offer a fast searching method for a nearest neighbour approach.

• To develop a predictor within the statistical framework of a data sample stored

in a permanent structure, to deal with scalability problems.

• To use a tree structure able to avoid the Boolean decision threshold values

typical of univariate3 decision trees.

• To provide for a simple attribute selection and ordering schema able to deal to a

certain extend with the problem of irrelevant attributes.

3 Node tree holding one attribute.

1 Introduction

11

• To dynamically use decision parameters for class membership assignment of

new instances, adapting the algorithm to different data domains.

1.4 Contributions of this thesis

The main contributions of this thesis are (in no particular order of importance):

• The successful combination of elements from the model and instance-based

paradigms into a simple, low-computational and coherent classification

algorithm [Serendero et al., 2001]. This performs equally well with various

types of data, numeric or symbolic and with relative dimensional size datasets

by using a stratified sample technique.

• The development of a sub-cell concept and its relationship with labels is

essential in our framework. A sub-cell corresponds to the prefix of a cell,

which we define as a vector formed by n attributes representing a hypercube

in the data space. Sub-cells allow a very precise identification of various types

of areas regarding class distribution in the data space, thus contributing to help

with a cell’s class membership. We have no knowledge to this date of this

concept being used before for this purpose. Beside the fundamental use in our

algorithm, this concept eventually would allow the development of easy

clustering techniques, which constitutes one of the traditional goals of

scientists analysing data. Using sub-cells would be also beneficial in the

application of the technique known as tree pruning. This could be achieved by

keeping in the data structure prefixes only associated with just one class. The

remaining portion of cell vectors known as its suffix, could be “pruned” , thus

reducing feature dimensions, tree size and algorithm complexity as a direct

consequence.

• Related to the previous point, is the development of an alternative search

method in the hyperspace looking for nearest neighbours. This method is

better than standard k-NN methods in terms of error classification rate as well

as execution time. Using a simple distance mechanism working on restricted

data spaces, it takes advantage of the triangle inequality principle for pruning

most of the tree from unnecessary search. The net result is a sub-linear

1 Introduction

12

complexity algorithm, for nearest neighbour search, thus improving the

algorithm’s complexity, a key problem with these methods.

• The dynamic and combined utilization of weighted decision parameters in the

selection of a best neighbour allows the algorithm to follow closely the

specific characteristics of a given dataset. Decision parameter weights are

obtained from an evaluation set depending on its classification skills. This

approach represents a step forward into the solution of the known problem

that any classification tool does not perform equally well in all data domains.

• Relevant and irrelevant attributes are identified using a simple low-

computational mechanism [Serendero et al., 2003]. All values corresponding

to each attribute are projected into a one-dimension projection using the

attribute’s previously discretized intervals. Using the concept of semi-

exclusive intervals for a user-defined threshold value, sub-cell frequencies are

used to help with the determination of relevant and irrelevant attributes.

• The use of a permanent trie structure to hold training data vectors (that we call

cells) represents a class spatial map, which keeps within reasonable

boundaries search times.

1.5 Structure of this text

The following is the structure of this text: In Section 2 we describe the State of the

Art of Supervised Learning methods, in particular the method used as a basis for this

thesis: instance-based methods. Considering the use of a tree structure, which holds

training data, we elaborate on the various types of search using these types of structures

in inductive methods.

Section 3 is the core of this thesis. We give a general overview of the algorithm and

provide most of the basic definitions used throughout this thesis. We also include a

description of the search mechanism of most representative patterns, as well as present

the basic assumptions about input data.

In Section 4 we describe data pre-processing main tasks carried out before tree

growth, namely sampling, and the basic ideas behind the method used for ordering

attributes. This section also includes data discretization and the effect of modifying the

size of intervals in attribute’s partitions.

1 Introduction

13

In Section 5 we briefly describe all datasets used in our experiments and present all

results done while testing our classification tool. These results comes from two different

sources, namely the bibliography as well as results originated running a popular

benchmark tool in our own software. We discuss these results ending the section with

general conclusions.

In Section 6, we define and explain the use of decision parameters, which help to

select most representative patterns, a process which is at the heart of the classification

algorithm. Weights for each decision parameter are previously calculated by running the

algorithm using as input a subset of the training examples known as evaluation set.

Together these weighted parameters are used in the final selection process of the best

example when classifying new instances through a merit function. The section supplies

some figures on the contribution of these decision parameters and explains the

implementation of required functions.

In Section 7 we explain the actual implementation of Trie-Class, including data

structures, tree building, a comparison of our search method with others, and a required

dictionary file and other supporting files used to capture attribute class distributions. In

Section 8 we offer some general conclusions. A Bibliography and Appendixes

completes this thesis.

1 Introduction

14

 - 15 -

2 State-of-the-Art

Characterizing the state-of-the-art in Data Mining is not an easy endeavour, as this

fast growing area of knowledge receives contributions from many different

communities such as machine learning, statistics, databases, visualization and graphics,

optimisation, computational mathematics and the theory of algorithms. In front of this

rainbow of different views, as we show later, there is the additional difficulty in

choosing objectively what to report as the most rapidly growing sub-areas, most

remarkable success stories as well as the prominent future trends of research. For all

this, the choice is subjective and reflects our personal views on what seems to be the

most important aspects of the state-of-the-art in Data Mining at this stage.

“The main reason for this fast developing pace of Data Mining in the research,

engineering and business communities is the explosion of digitalized data in the past

decade or so, and at the same time, the fact that the number of scientists, engineers, and

analysts available to analyse it has been rather static”. This comment was done at a

workshop meeting leading scientists in the field in 1999 and it seems to be valid today

[Grossman, 1999]. To recall what was said in the introductory section, the world

produces between 1 and 2 exabytes of unique information per year [Lyman, 2000].

Moreover, the speed at which this information spreads around the world will also

skyrocket. The coming generation Internet will connect sites at OC-3 (155 Mbits/sec)

[Grossman, 1999]. In October 2002 the wireless Internet service provider Monet Mobile

Networks launched the first wireless broadband Internet service in the USA that lets

users surf the Web via laptop, handheld and desktop computers at speeds more than 10

times faster than dial-up modems. This service is based on Qualcomm Inc.'s

CDMA2000 1xEV-DO wireless technology for data, and offers peak speeds of 2.4

megabits per second compared to the previous version's peak speed of 144 kilobits per

second [Forbes, 2002]. Around the same time, a USA Congress Commission was

reporting 7.4 million users of high-speed lines in that country at speeds exceeding 200

Kbits/sec during the second half of 2001[FCC, 2002].

The consequence to this bottleneck of huge masses of information requiring to be

analysed represents an enormous pressure on the data mining community in general to

2 State-of-the-Art

 16

produce better, larger scale, and more automatic and reliable tools to extract knowledge

from this data.

2.1 Active areas of research and new challenges and directions

The scope of research topics in Data Mining is very broad, challenging scientists

working on various communities.

In 1997 [Dietterich, 1997] did a survey on the area of machine learning and suggests

four current directions for the field as a reflex of the previous five years of research. His

main selected topics where: (a) ensembles of classifiers, (b) methods for scaling up

supervised learning algorithms, (c) reinforcement learning, and (d) learning complex

stochastic models. He did still mention other active topics such as learning relations

expressed as Horn clause programs, area also known as Inductive Logic Programming,

the visualization of learned knowledge, neural networks methods, algorithms for dealing

with overfitting, noise and outliers4 in data and easy-to-understand classification

algorithms.

All of these areas where included later in a broader report on Data Mining from 1998,

produced at a state-of-the-art workshop done at the Centre for Automated Learning and

Discovery at Carnegie Mellon University (CONALD), which brought together an

interdisciplinary group of scientists including approximately 250 participants [Thrun,

1998]. In their final report they were able to recognize eleven active areas of promising

research, which in our opinion give the broader picture of present research in Data

Mining. For this reason, in the following lines we enumerate and briefly describe each

one of them.

2.1.1 Active learning (AI)/experimental design (ED)

Known by these two names depending on whether the area is referred from the

Artificial Intelligence of Statistics community, the area addresses the question of how to

explore, i.e., choosing which experiment to run during learning. This is done under the

assumption that during learning, there is an opportunity to influence data collection.

4 In statistics, an outlier refer as the case that does not follow the same model as the rest of the data. [Weisberg, 1985]

2 State-of-the-Art

 17

Business-customer relations and robot training are two examples of choosing correctly

the learning data.

2.1.2. Cumulative learning

 Many learning problems relate to a continuum of data growing incrementally,

which can change patterns in non-obvious ways. The problem is that often, data

complexity and volume and the statistical algorithm used for analysis makes almost

prohibitive daily evaluation over the entire existing data starting from scratch. For

instance customer behaviour can represent roughly steady patterns over a period of

time, changing afterwards under influences such as fashion changes, social concerns or

just new government regulations.

2.1.3. Multitask learning

The main question posed in this area is whether we can devise effective multi-task

learning algorithms, which generalize more accurately through transferring knowledge

across learning tasks. This situation is the result of several domains characterized by

families of highly related (but not identical) learning problems. Consumer behaviour on

specific industry products shows similar attitudes. People’s different diseases share

similar symptoms, making it a promising possibility of transferring knowledge on

people patterns across domains.

2.1.4. Learning from labelled and unlabeled data

The problem addressed in this area, is the fact that we do not always dispose of

labelled data. Trying to filter e-commerce data and typifying customers on the fly in a

busy Internet site is an expensive process. Can we afford to try labelling all customers?

Is it possible to devise algorithms that exploit unlabeled data when learning a new

concept?

2.1.5 Relational learning

It refers to the fact that in many learning environments, instances are not presented as

an already arranged vector of attributes in a static form. Rather, the relation exists

2 State-of-the-Art

 18

between whole entities sitting in different files, as is the case with intelligent relational

databases. And it is this relation the one that is important for learning new knowledge.

For instance, being able to cross information of people among their jobs, their assets

and bank situation together with their tax profile is crucial in tax evasion applications.

Devising algorithms of the same relational nature of the data structure is here the

challenge.

2.1.6 Learning from huge datasets

Large data renders impossible the use of algorithms that require reading data files

several times. For instance, astronomical web traffic and grocery data are among other

areas where this situation forces to devise algorithms that can scale up extremely large

databases.

2.1.7 Learning from extremely small datasets

This is the opposite situation to the one describe above. Some datasets are just too

small for current learning algorithms. Robotics and face recognition problems are

examples of application areas with a very limited number of training cases. How can

learning be done in these situations, other than resorting to prior knowledge?

2.1.8 Learning with prior knowledge

This is one of the solutions referring to the problem above described of working with

scarce training data. Specially, when there is available solid prior knowledge about

certain pattern behaviours. The question is then how to incorporate this prior knowledge

in statistical methods, and how to devise flexible tools that ease the insertion of this

knowledge, sometimes uncertain and abstract.

2.1.9 Learning from mixed media data

Existing algorithms cope in general with just a few types of data. The fast

development of multimedia databases poses the challenge of learning from image,

acoustic, numerical and nominal data together. Algorithms in this area will have to be

able to integrate all these within the learning process, solving first the design problem of

2 State-of-the-Art

 19

whether to learn separately for each data type as a first step, or handling all these

different types on a feature level.

2.1.10 Learning causal relationships

 How do we know that a person’s obesity, which represents a massive problem in rich

countries today, is not due to the consumption of diet colas or the absence of sugar in

their daily diet?

How do we separate correlation from causality? The challenge in this respect is in the

development of algorithms able to learn causality, the necessary assumptions to be

made and the implications they have.

2.1.11 Visualization and interactive data mining

Visualization of data patterns takes an important part in the learning process of many

domains. The owner of data participates interactively in the data mining process,

observing partial results, rearranging data and reprocessing again until finding desired

patterns. The problem is that high-dimensional data as well as some type of data such as

text are hard for human visualization. So the problem is how can we devise algorithms

able to look at these large and sometimes obscure datasets and how to incorporate in the

learning cycle the knowledge of the expert “taking a look” at data?

2.2 General trends

 In 1999 a workshop took place on mining large distributed data, bringing together

scientists working on information and data management, algebra and number theory,

and statistics and probabilities [Grossman, 1999]. Their goal was to discuss the current

state-of-the-art of data mining and data intensive computing, as well as opportunities

and challenges for the future. The focus of their discussion was on mining large,

massive, and distributed data sets.

 After confirming the explosion in the amount of digital data and the rather static

growth of scientists, engineers and analysts available to work on this data, they

conclude that the way to bridge the gap required the solution of the following

fundamental new research problems: (a) developing algorithms and systems to mine

2 State-of-the-Art

 20

large, massive and high dimensional data sets; (b) developing algorithms and systems to

mine new types of data; (c) developing algorithms, protocols, and other infrastructure to

mine distributed data; (d) improving the easy of use of data mining systems; and (e)

developing appropriate privacy and security models for data mining. With the exception

of the last topic, there is an agreement on all others as areas of interest in new research.

Perhaps more interesting in this report is a chapter in advances on new applications,

which is always a strong force for the discipline of Data Mining to advance. The list of

these new applications at the time of the report are included in the following categories:

(a) Business & E-commerce Data; (b) Scientific, Engineering & Health Care Data; and

(c) Web Data. Several applications from each of these categories were reported:

Business Transactions, Electronic Commerce, Genomic Data, Sensor Data, Simulation

Data, Health Care Data, Multimedia Documents and The Data Web. These topics

coincide with those indicated by [Witten, 1999] on his book. The book’s chapter

“Looking forward” largely refers to these same topics.

One simple way of verifying actual trends observed in Data Mining research is to

look at research production presented on most recent international congresses of

renowned prestige in the field. Obviously there is the risk of bias at various levels when

using this method. First, one has to determine what constitutes a leading congress.

Another area of potential bias is represented by the fact that a congress organizing

committee uses its own criteria to define the areas of research that are important at

present time. Still another element of bias is the classification of articles as full papers,

short presentations or posters. In some cases, a crowded area of research reaching

already the maximum number of articles defined by the organizing committee would

end up classifying as a poster an article that in a normal situation would have been

accepted. In view of these difficulties, one has to be careful when drawing conclusions

from such an exercise. Nevertheless this method still allows us to see which research

areas capture most attention, provided that we assume that organizing committees

selection criteria represent a good sample of trends in the entire field. This is what we

have done, selecting as input four international congresses [ICDM 2002], ICML-2002],

[KDD 2002] and [ECML/2002] grouping together research topics roughly

corresponding to coincident sub-areas. Table 2.1 shows a quantified volume of articles

accepted by area of research in decreasing order. They are classified in one of two

2 State-of-the-Art

 21

categories: full articles and posters/short presentations. We did assume that these last

two were more the less equivalent, material still not mature enough but important to

publish.

Table 2.1 Accepted papers in Data Mining and Machine Learning in four International

Congresses during 2002.

Articles by Area of research Number and Type
 Full Short Total

Statistical Methods 27 6 33
Clustering & Similarity 19 9 28
Graphs, Trees & Hierarchical

structures 20 5 25
Text Classification 21 4 25
Rule Learning 16 6 22
Reinforcement Learning 22 0 22
Ensembles of Classifiers 20 1 21
Streams, Time series/Temporal Data 15 4 19
Support Vector Machines (SVM) 18 1 19
Theoretical Foundations 17 2 19
Web Mining 11 6 17
Frequent patterns/item sets/Sequential

patterns 11 2 13
Sampling & Feature Selection 6 4 10
Classification / Evaluation 5 5 10
Intrusion Detection and Security 6 2 8
Bio informatics 6 2 8
Other 1 7 8
E-business. Market & cost. Analysis 2 5 7
Relational Learning 5 1 6
Visualization 2 2 4
Active Learning 3 0 3
Neural Networks 1 2 3
Medical Applications 3 0 3
Applications of Learning 3 0 3
ILP 3 0 3
Cost-sensitive learning 3 0 3
Outlier detection 1 2 3
Distributed Data Mining 0 2 2
Learning from examples 0 2 2
High Performance D.M. 0 1 1
Performance Evaluation 0 1 1
 Total 351

We have grouped these publications following the structure adopted in the congresses

themselves, putting together those that seem reasonably similar. This grouping still

2 State-of-the-Art

 22

presents an additional bias, as some publications could perfectly be classified into two

or more groups. To avoid this, we did follow the grouping use by congresses.

Although these figures do not allow us to declare that these are the trends in research

at present time, due to the difficulties in classifying this material and the inherent bias in

their selection, they are still useful to visualize the big picture. The first one is to

confirm that the traditionally developed areas in Data Mining and Machine Learning

such as statistical methods (with a strong emphasis on Bayesian methods among them),

clustering, decision trees, and rule learning are still leading the volume of activity.

Secondly, there are other areas that show also growing activity such as text mining,

ensemble of classifiers, time series, Support Vector Machines and Web mining. These

trends cannot be a surprise as they were announced five years ago as reported earlier in

this section.

Coincident with these general trends, a recent article on the state-of-the-art by [Flach,

2001] identified similar trends after reviewing around a dozen books in the area of

Machine Learning. These include: a trend towards combining approaches that were

hitherto regarded as distinct and were studied by separate research communities; a trend

towards a more prominent role of representation; and a tighter integration of machine

learning techniques with techniques from application areas such as Bio informatics.

2.3 Different Perspectives of Data Mining

The richness and fast evolving of the Data Mining discipline not only comes from its

large variety of research areas of interest as reported in the previous section. Depending

whether you look at Data Mining from the database, the statistical or machine learning

perspectives, it exists in the field three strong and different perspectives of development

and paradigms.

In a recent work by [Zhou, 2003] in his own words he goes "mining" on Data Mining

books. The author analyses three leading and popular authors in the field [Han et al.,

2001], [Witten et al., 2000] and [Hand, 2001] whose academic books on Data Mining

take respectively the three perspectives mentioned above. The observed differences are

put in evidence from the very definition of Data Mining from each of these authors. In

the Han and Kamber book [Han et al., 2001] data mining is defined as:

2 State-of-the-Art

 23

“The process of di scovering interesting knowledge from large amounts of data stored

either in databases, data warehouses, or other information repositories”.

In Witten and Frank’s book [Witten et al., 2000], Data Mining is defined as:

“The extraction of implicit, previous ly unknown, and potentially useful information

from data” ([9], pp. xix)

In D. Hand book [Hand et al., 2001], the authors define it as:

“The analysis of (often large) observational data sets to find unsuspected

relationships and to summarize the data in novel ways that are both understandable and

useful to the data owner” ([6], pp.1).

Others such as [Zhou, 2003] put next in evidence other differences among these

views, such as the concept of Knowledge Discovery in Databases (KDD) and the whole

theme of the chapters covered in all three books to finally suggest (rather than conclude

as put it by the author) that:

“…thus from the difference in the coverage of these books, it could be perceived that

the database, machine learning and statistics perspectives of data mining put particular

emphases on efficiency, effectiveness and validity, respectively” (Ibid, page 4).

To our understanding, there are perhaps less differences between the Database and

Machine Learning perspectives when compared against the Statistics view of the

problem. The reason for this is that both approaches emphasize algorithms and data

structures, bringing together the objectives of efficiency and effectiveness. In fact,

machine learning and database scientists share a common core of computer science

courses, which naturally bring close their views to solutions on data mining problems.

On the other hand, they both lack a strong background on statistics, a deficiency that

only interdisciplinary approaches can help solving. The difference between computer

scientists and statisticians is precisely the subject of [Smyth, 2001] which devotes an

2 State-of-the-Art

 24

entire chapter of a recent book dedicated to scientific and engineering applications

[Grossman, 2001]. Beginning with a common understanding among statisticians that

“data mining is not much more than the scaling up of conventional statistical methods

to massive data sets”, this author explain which are the popular techniques in data

mining that have their roots in applied statistics. Among them, nearest neighbours, naïve

Bayes and logistic regression for prediction models, and k-means and mixture models

using expectation-maximization for clustering and segmentation. The one exception to

this rule is association rules [Agrawal et al, 1993], a technique that have no clear

“ancestors” in the statistics literature, although the author immediately declares that is

arguably that how many real-world data mining applications rely on association rules

for their success. Nevertheless, while there is some truth in this view of data mining as

an extension of applied statistics, this author clearly states that while there is some truth

in this viewpoint, “ a more accurate reflection of the state of affairs is that data mining

(and more generally computer science) has indeed introduced a number of new ideas

within the general realm of data analysis, ideas that are quite novel and distinct from

any prior work in statistics” [Smyth, 2001].

There is one very important aspect that should be emphasized. For a data miner to

understand the fundamental role of Statistics in data analysis, requires at the very least

some minimal exposure to statistical concepts. Rather than learning a set of specific

detailed models it is probably more important to appreciate the general mindset of

statistical thinking. For instance, computer scientists are quite aware of the problems

posed by very large datasets for analysis, and their efforts will concentrate on structures

offline, parallel processing and other software and hardware resources to face the

problem, rather than focusing their attention in the theory of sampling for instance and

the search of a solution to develop their models with less but more representative data of

the problem at hand. To over simplify this point, tell for instance to a computer scientist

that the problem is to mine people’s opinion on the next national election. They will be

thinking on how to hold and structure million of voters as part of the problem to solve.

On the contrary, the statistician will focus on the sample size and quality in terms of

people’s view representation. This is the sensibility lacking in many computer scientists.

This lack of understanding from many computer scientists and engineers working in

data mining comes from a limited exposure to statistical ideas in their undergraduate

2 State-of-the-Art

 25

curriculum, although engineers are better prepared with this respect than computer

scientists. [Lam, 2000]. After analysing several success stories of the joint efforts by

data miners and statisticians working together, Smyth concludes correctly in our opinion

that for data miners the message is clear:

“S tatistics is an essential and valuable component for any data mining exercise. The

future success of Data Mining will depend critically on our ability to integrate

techniques for modelling and inference from statistics into the mainstream of data

mining practice” [Smith, 2001].

The figures from table 2.1 seem to confirm this assertion.

2.4 Similarity searching in tries

Searching constitutes a fundamental problem not only in Data Mining techniques but

also in computer science as a whole. Most computer programs search for specific data

in order to execute their algorithms. For this reason, a good indicator of the state-of-the-

art in Machine Learning and Data Mining techniques using distance metrics is to take

the pulse to these algorithms. In this chapter we review a unifying view to these

techniques, in relation to our own search mechanism.

 The search operation can be applied to structured (database) data or to unstructured

repositories of information, developed in the evolution of information and

communication technologies. For this last type of scenario, required search algorithms

can no longer be those of exact search applied in structured data, where the answer

represented by a key formed by a number or string, is identical to the one given in the

query. Traditional database query languages were built around this principle. With the

evolvement of unstructured data though, the concept of “similarity searching” or

“pro ximity searching” has been developed. This is to say, searching for objects or

elements which are similar or closer to a given query element. Within this framework

searching in tries or multi-way trees takes advantage of its structure. In the rest of this

section we explain the general concept and related algorithms in this area.

2 State-of-the-Art

 26

2.4.1 Similarity searching metric spaces

The fundamental idea of the principle of similarity is that while symmetry is a

measure of indistinguishability5, similarity is a continuous measure of imperfect

symmetry [Lin, 2001]. Consequently the class of a new object can be disclosed by

finding an earlier object of known class, which is not perfectly symmetric but “similar ”

to it. The degree of similarity between two objects is implemented using the

mathematical abstraction of distance.

A work representing a vast survey on search algorithms demonstrate that all existing

algorithms for proximity searching consist in building a set of equivalence classes,

discarding some classes, and searching exhaustively the rest [Chavez, 2001]. Some

applications where this concept appears are among others: unstructured text retrieval,

query by content in multimedia objects as well as in structured databases, computational

biology and our own area, pattern recognition and function approximation. For all these

methods and applications two main techniques seems to cover the entire spectrum,

namely pivoting and Voronoi partitions [Aurenhammer, 1991].

2.4.2 Some concepts for a metric space

A non-negative function d (x, y) describing the distance between neighbouring points

constitutes a metric. A metric space is then a set possessing a metric. In general, a

metric space is formed by a set of valid objects with a global distance function (the

metric d) which, for every point x, y � gives the distance between them as a

nonnegative real number d (x, y). A finite subset of set that we could call % with size

n =]%] is the search of objects where we search. Then function d (x, y) can also be

express as d: X l �. The smaller the distance d (x, y), the closer x is from y.

For a metric to be considered as such, it must satisfy:

5 Impossible to differentiate or tell apart.

2 State-of-the-Art

 27

If the distance does not satisfy the strict positiveness property IV, then the space is

called a pseudo-metric. Also, in some cases property II does not hold. It then receives

the name of quasi-metric. This is the case if for instance you are taking corners in a city

as objects, and you want to measure travelling distances for a car. The existence of one-

way streets would make the distance asymmetric.

The above axioms express intuitive notions about the concept of distance: distances

between different objects are positive and the distance between x and y is the same as

the distance between y and x. The triangle inequality means roughly that the distance

from x to z to y is never shorter than going directly from x to y. As we show later, this

property is crucial in some search algorithms using trie structures.

Some typical distance functions used in distance calculations are shown in the

following table. Among them, most used ones belong to the Minkowski family of

distances also known as the L metric.

 Euclidean distance: 2

1

(,) ()
m

i i
i

d x y x y
=

= −∑ (2.2)

 Manhattan or City-block
1

(,)
m

i i
i

d x y x y
=

= −∑ (2.3)

 Chebychev distance [Michalsky, 1981]:
1

(,) max
m

i ii
d x y x y

=
= − (2.4)

The above distances belong to the Minkowski [Batchelor, 1978] family of distances

Lm, which can be express as:

 (I) sspositivene 0y)d(x, S,yx, ≥∈∀

 (II) symmetry x)d(y,y)d(x, S,yx, =∈∀

 (III) yreflexivit 0x)d(x, S,x =∈∀

 (IV) sspositivenestrict 0 x)d(y, yx S,yx, >⇒≠∈∀

 (V) inequality triangular y)d(z, z)d(x,y)d(x, S,zy,x, +≤∈∀

(2.1)

2 State-of-the-Art

 28

1

1

(,)
m r

r
i i

i

d x y x y
=

 = −  
∑ (2.5)

Other distances are,

Canberra distance: [Michalsky, 1981]

1

(,)
m

i i

i i i

x y
d x y

x y=

−=
+∑ (2.6)

Quadratic distance [Michalsky, 1981]:

() () () ()
1 1

(,)
T

m m

i i ji j j
j i

d x y x y Q x y x y q x y
= =

= − − =
 − − 
 

∑ ∑ (2.7)

Where Q is a problem-specific positive definite m x n weight matrix.

Mahalanobis distance [Nadler, 1993]:

[] () ()1/ 1(,) det V
m Td x y x y V x y−= − − (2.8)

V is the covariance matrix of A1..Am. and Aj is the vector of values for attribute j

occurring in the training set instances 1..n

Correlation distance [Michalsky, 1981] :

()()

() ()
1

2 2

1 1

(,)

m

i i i i
i

m m

i i i i
i i

x x y y

x x y y
d x y =

= =

− −

− −

∑
=

∑ ∑
 (2.9)

where ix = iy and is the average value for attribute i occurring in the training set.

Chi-square distance:

sumi is the sum of all values for attribute i occurring in the training set, and sizex is the

sum of all values in the vector x.

Kendall’s Rank Correlation:

2

1

1(,)
m

i i

i i x y

x y
sum size size

d x y
=

 
−   

= ∑ (2.10)

2 State-of-the-Art

 29

In all Equation above distance functions x and y are vectors of m attribute values.

Fig. 2.1 Different contours for constant Manhattan, Euclidean, L6, L � infinity and

Mahalanobis metrics in 2D space.

Fig. 2.1 shows graphically in two dimensions some of the L family of distances.

When r =1, it correspond to the Manhattan or City-block distance. For r =2

corresponds to the Euclidean distance. When the value of r tends to infinity d, it

corresponds to the Chebychev distance or max distance.

In many applications the metric space in a vector space, where the objects are k-

dimensional points and where the similarity is interpreted geometrically. Also known as

k-dimensional vector space, this is a particular metric space where objects have k real-

valued coordinates (x1, x2,…,xk). Having the chance of using geometric and coordinate

information gives to this metric a certain advantage over general metric spaces, which

do not dispose of this information. Among the most popular search structures for vector

() ()
() () ()

1

1 1

(,) 1
2

1
T

m i

i j i j
i j

d x y x y Q x y sign x x sign y y
n n

−

= =

= − − = − − −
− ∑∑ (2.11)

L6 distance

2 State-of-the-Art

 30

spaces are kd-trees [Bentley, 1975], R-trees [Guttman, 1984], Quad-trees [Samet,

1984], X-trees [Berchtold, 1996] and others.

2.4.3 Types of search

Typically most similarity methods use three types of query within their metric spaces:

1) Range query, where d (q, r) for a query of all elements x within a certain distance r

from q, { }X / (,) .u d q u r∈ ≤ A plethora of tree algorithms can be included into this

group, whether they work on discrete or continuous distance functions. A not exhaustive

list includes: BKT (Burhkard-Keller Tree) [Burkhard, 1973], FQT (Fixed-Queries

Tree)[Baeza-Yates, 1994], MT (Metric Tree) [Uhlmann, 1991), SM (Slim Tree)

[Traina, 2000], VPT (Vantage Point Trees) [Yianilos, 1993], BST (Bisector Trees)

[Kalantari, 1983], VT (Voronoi Tree) [Dehne, 1987], M-tree [Ciaccia, 1997]. And still

some of them that can be extended to m-ary trees such as: MVPT (Multi-Vantage-Point

Tree) [Bozkaya, 1997] and GNAT (Geometric Near-neighbour Access Tree) [Brin,

1995].

2) Nearest Neighbour query, or NN. Here to goal is to retrieve the closest elements to

query q in %, which is;

{ }X / X, (,) (,) .u v d q u d q v∈ ∀ ∈ ≤

3) k-Nearest Neighbour query (k-NN). Similar to the query in (b), but referred to the

k closest objects to q in %. This is, retrieve a set B ⊆ % such that |B| = k and

, , (,) (,).u B v S B d q u d q v∀ ∈ ∈ − ≤

The last two groups are called in general NN queries or k-NN queries (case (b) been

assimilated when k equals 1). Most of the existing solutions for NN queries uses range-

searching techniques and can be found in most of the tree structures listed under that

query type above.

In all the above types of queries the number of distance evaluations performed gives

the algorithm complexity. At one extreme, all these queries can evaluate all distances

for all objects. In many cases this is impossible to achieve in a reasonable span of time.

2 State-of-the-Art

 31

For this reason, most of the time search algorithms pre process an index structure for

data storage, with the goal of saving distance computations when answering similarity

queries. Sometimes there is a high cost in building this structure although this is

balanced with less distance calculations at query time and hence, lower algorithmic

complexity. Some results for IBk, the Weka implementation of an instance-based

learner are presented in Section 7 as a comparison with our own classifier.

2.4.4 Equivalence relations

Search algorithms using an index structure partition the set % into subsets providing a

mapping between data and their classes. At query time some of these are selected to

determine the location of relevant elements; those elements are inspected to provide the

required answer.

In most algorithms this partitioning of the data space generates equivalence relations

between objects in a partition, where partitions, given a set , are denoted as partition

ϕ() = {ϕ1, ϕ2…}. This relation, denoted by ~, is a subset of the cross product x ,

the set of ordered pairs of . Two objects x, y � are said to be related, denoted by x ~

y, if they belong to the same partition. This relation is equivalent if it satisfies for all x,

y � the properties of reflexivity (x~x), symmetry (x~y ⇔ y~x) and transitivity (x~y ∧

y~z ⇒ x~z). Every partition ϕ() induces an equivalence relation and conversely, every

equivalence relation induces a partition. Hence, an element ϕi of a partition is called an

equivalent class. According with [Chavez, 2001]:

All existing indexing algorithms for proximity searching consist in building an

equivalence relation, so that at search time some classes are discarded and the others

are exhaustively searched. (p.27)

A large class of algorithms to build the equivalence relations are based on pivoting,

which consist in defining a number of representative objects or “pivots” and doing

distance calculation between any object and a given pivot. These receive different

names in the literature: points [Arya, 1998], vantage points [Yianilos, 1993], key

[Bergman, 1999]. The equivalence relation is defined in terms of distance calculations

2 State-of-the-Art

 32

between the objects and the pivots: two elements are equivalent if their distance to all

pivots is the same.

Instead of using “pivots”, another large class of algorithms use a different type of

equivalence relation based on “groups”, meaning the proximity to a set of elements.

This algorithms use the Voronoi equivalence relation based on groups {g1, g2,…,gm} is:

x~(gi) y ⇔ closest (x, {gi} = closest (y, {gi})

 where closest (x, S) = {w ∈ S, ∀w’ ∈ S, d (z, w) ≤ d (z, w’)} .

The associated partition is the Voronoi partition [Aurenhammer, 1991]. In other

words, in these class of algorithms, the space is divided with one partition for each

group gi and the class of ci is that of the points that have ci as their closest centre.

2.5 Searching in tries

Most trie structures use for searching one of the two mechanisms described in the

previous subsection, namely pivoting or Voronoi “centers”. Next, we give the general

context for searching in tries and talk about some of these algorithms in no particular

order.

Tries are perhaps most widely used in text processing applications, such as string

matching, approximation string matching and compression schemes [Andersson et al.,

1994], as well as in algorithms with genetic sequences, data structures of dynamic

hashing tables, remote sensing imagery, etc [Aoe et al., 1996; Bergman, 1994; Alber et

al., 2001]

Often, when searching in databases, people are often interested in close but not

necessarily exact matches. The problem consist in finding “approximate” matches, such

as spell checking, fingerprint analysis, voice recognition, image understanding and

DNA sequences. These processes use some distance measure to compare how close or

far are objects among themselves. For this reason they are in general computationally

expensive. Therefore, the need for sub linear search is mandatory, hopefully using a

mechanism where most of the database is never directly examined.

Close objects in tries can be searched using a distance metric satisfying the

mathematical equivalent of the triangle inequality, first introduced by [Burckhard et al.,

1973] avoiding complex comparisons to each object in the database. Suppose that given

2 State-of-the-Art

 33

objects x, y, z from a dataset R, an integer k, and some distance metric d, it is required to

find all objects in the database with a distance from x of not more than k. The triangle

inequality states that:

�x, y, z ° R, d(x, y) � | d(x, z) - d(y, z)| (2.12)

If we assume now a node p at level l in the trie with value D, every object at leaves

descendant from p has a distance d from the key object keyl. Thus, if |D – d(x, keyl)| > k,

then we know from the triangle inequality above that d(x, s’) is greater than k for all

objects s’ which are descendants of p. Thus search node can be pruned at p.

Taken advantage of this property several search algorithms using tries defined some

set of key objects or central objects from the universal set, being representative for some

data clusters in the data space. Then, as the case for instance of the Triangulation Trie in

[Berman, 1994], the trie becomes a representation of the distances from the objects in

the database to this set of keys. In some remote sensing image problems the

straightforward application of the triangle inequality theorem allows the search

algorithm to discard a substantial number of images to compare in the feature space

[Alber et al., 2001].

In [Berman, 1994] a Triangulation Trie is defined using only a distance measure as a

tool. The only requirement being that this satisfies the triangle inequality property, in

order for the algorithm compares distances only for a selected object’s subset. The

construction of the trie is done first choosing a set of keys from the universal set, that

can be chosen according to some arbitrary convenient criteria. This is important because

the performance of searches in the trie depends on the choice of these keys. For each

object in the database is created a vector consisting of the ordered set of distances to the

key objects. These vectors are input into the trie. Hence, the trie is a compact

representation of the distances from the objects in the database to this set of “keys”.

In [Heinz, 2002], a Burst trie is proposed for searching string text, in which strings

are maintained in order for faster access. Because tries and ternary search trees

[Bentley, 1997], [Clement, 2001] are fast but space-intensive, the proposed structure

compress data into so-called containers linked to a regular trie called access trie.

Searching involves using the first few characters of a query string to identify a particular

container. A list structure or a binary search tree can be used to give form to containers,

2 State-of-the-Art

 34

so search within its boundaries is fast. When the container becomes inefficient, it is

burst, that is, replaced by a trie node and a set of child containers holding each one half

of the previously contained strings.

The concept of containers is similar to the previous idea of super nodes developed in

[Berchtold, 1996] on the structure called the X-tree. Observing the problem with the R*-

tree [Beckmann, 1990] consisting in the overlap of the bounding boxes in the directory,

which increases with higher dimensions, the authors proposed a split algorithm

minimizing overlap by the use of super nodes for high dimensional spaces. Overlap is

the percentage of the volume of data that is covered by more than one directory hyper

rectangle. This is correlated to the query performance since in processing queries,

overlap of directory nodes results in the necessity to follow multiple paths, thus

increasing search time.

More formally, the overlap of an R-tree node containing hyper rectangles

{R1,R2,…,Rn} is defined as:

()
.

, {1.. },

, {1.. }

i j

i

R R

i j n i j
overlap

R
i j n

∩∪
∈ ≠

=
∪

∈

 (2.13)

||A|| denotes the volume covered by A.

The X-tree consists of three different types of nodes: data nodes, normal directory

nodes and super nodes. Super nodes are large directory nodes of variable size (such as

multiple of the usual block size). The basic goal of these super nodes is to avoid splits in

the directory that result in an inefficient structure.

The LC-trie or level-compressed trie is introduced in [Andersson, 1993, 1994]

corresponding to a compact version of the standard trie data structure. The central idea

in this structure is that the highest complete levels of a trie can be replaced-without

losing any relevant information- by a single node of degree mi, the replacement being

made top-down. If it is assumed that the input consists of independent random strings

from a Bernoulli-type process [Flajolet, 1983], the expected search cost in an LC-trie is

O(log log n), which is significantly better than O(log n), achieved by the conventional

trie.

2 State-of-the-Art

 35

2.6 Data Mining and Statistical Sampling

Inductive learning supposes the prior existence of a dataset with records of known

class. Depending on the size of the target population the study of a sample from this

population is sometimes required. Sampling is the subject of this sub-section.

Let us begin by agreeing with [Smyth, 1999] on his assertion that the appreciation of

the fundamental role of statistics in data analysis and in general about statistical ideas is

an aspect often overlook by computer scientists simply by their lack of understanding.

This is due in part by the fact that most courses in computer science give little room for

anything other than a cursory introduction to statistics. This does not mean that our

approach belongs to the stream of statistical data mining, neither that we share the view

of some statisticians that might argue that data mining is not much more than the scaling

up of conventions statistical methods to massive data sets. Indeed Data Mining has

introduced its own ideas for data analysis, which are quite novel and distinct from any

prior work on statistics.

2.6.1 Random sampling

Simply stated, in statistical terms a random sample is a set of items that have been

drawn from a population in such a way that each time an item was selected, every item

in the population had an equal opportunity to appear in the sample This implies that (1)

measurements taken on different items (or trials) are unrelated to one another and (2)

the joint distribution of all variables remains the same for all items [Johnson, 1998].

Choosing a sample, and more specifically a statistical sample as define above is

crucial for instance-based methods. This is particularly true today, in the presence of

huge terabyte databases representing the size of available data we are planning to work

with. It would take long hours if not days to execute the training phase without selecting

just a small subset for this purpose. For this reason sampling is a good solution. But the

results of the algorithm obtained from a sample must be representative for the whole

population. With this in mind the goal consist in selecting a sample from the population,

such that the performance of the mining algorithm is probably close to what it would be

if we run it on the entire database [John, 1996]. At the very least, the selected records to

form the sample should fulfil the requirements of a statistical simple random sample

2 State-of-the-Art

 36

(SRS): “A SRS of size n is taken when every possible subset of n units in the populatio n

has the same chance of being the sample” [Lohr, 1999]. This sample set sometimes

called “evaluation” set (often confused in the literature with the “test” set), is used in the

generation of the model function and permits also carrying out the evaluation of the

mining algorithm.

The final goal of evaluation is to measure the accuracy of the algorithm, which is the

probability of correct classification of previously unseen randomly selected records.

These records, only used for this purpose throughout the entire mining process are

known as the test set, and they do not form part of the working sample. Sample records

form the evaluation set, generally called the training set, which is mined to “ learn”

about data patterns, thus allowing the development of the classification algorithm. To

preserve the validity of the estimation, these two sets must be mutually exclusive during

the whole classification process.

Out of the many possible existing bias in selecting sample records, we had two main

concerns in creating the sample. First, the sample should have the characteristics of a

SRS. Second, we want a sample that incorporates class distribution knowledge existing

in the whole population database. The reason for this is obviously related to the final

goal of building a class predictive model.

When not available, information on class distribution can be collected from the

evaluation set, calculating simple probabilities for each class. In some other cases prior

knowledge from the expert domain exists, as is the case with several of available

datasets from the UCI data repository [Murphy, 1994].

It is desirable that the final accuracy of a classifier be estimated using a method with

low variance and bias. For this reason, several accuracy estimation methods exist:

Holdout or Sub-sampling, k-fold Cross-validation, Leave-one-out, Stratification,

Bootstrap [Kohavi, 1995], [Efron et al., 1993], [Mitchell, 1997].

2.6.1.1 Holdout method

The holdout method sometimes called test sample estimation, divide data into two

mutually exclusive subsets called a training set and a test set, or holdout set. It is

common to designate 2/3 of the data as the training set and the remaining 1/3 as the test

2 State-of-the-Art

 37

set. The training set is used in the “learning” process while the test set serves t o measure

the quality of the induced classifier.

Formally, let 0 = , q$ be the space of labelled records and R = {r1, r2,...,rn} a

dataset, where ri = <vi � ,i, ci � $>. An inducer I maps a given dataset R into a

classifier � and this in turn maps an unknown record v � , to a class label c � $. The

accuracy of classifier � is the probability of correctly classifying a randomly selected

record:

Acc = P (�(r) = c) for a randomly selected instance <r, c> � 0.

Further let Rh be the holdout set, which is a subset of R of size h, and let *t = R / Rh.

The holdout estimated accuracy is defined as:

()
(,)

1
(, ,),

i i h

h t i i
v c R

Acc C R v c
h

ϕ
∈

= ∑ (2.14)

where K(i, j)=1 if i = 0, and 0 otherwise [Kohavi, 1995].

2.6.1.2 Cross-validation method

Cross validation is a method aiming to estimate the error of a given hypothesis

generated by a concept-learning algorithm (classifier). The method specifically refers to

generalization error, which is the error on data that has not been seen during training.

The method is called sometimes k-fold-cross-validation or rotation estimation to

indicate that the inducer is trained and tested k times.

Given a set of training data and a concept learner this is how cross validation

estimates the accuracy of the hypothesis gained by running the learning algorithm on

the data set:

Randomly divide the training data in k mutually exclusive sub-sets, called the “ folds”

R1, R2, R3, Rk of approximately equal size. For each one of the k folds t = {1,2,k} the

classifier is trained using R/ Rt and tested on Rt. The resulting cross-validation accuracy

estimation is the average of the k times the classifier is tested.

Formally, let R (i) be the test set that include record ri = <vi, c>. Also let I(R, v) be the

label assigned to an unlabelled instance v by the classifier build by inducer I on dataset

R. Then the accuracy of a cross-validation estimate is given by:

2 State-of-the-Art

 38

()()
(,)

1
(/ , ,).

i i

h i i i
v c R

Acc I R R v c
h

ϕ
∈

= ∑ (2.15)

2.6.1.3 Leave one out method

A special case of cross validation is the so-called leave one out method, where k is

chosen as the cardinality of the training set. In other words, for each given example

another run of learning is performed using all training data except for this example and

the correctness of the classification of the single example left out is checked.

For efficiency reasons leave one out is unusual in practice, although in general it will

be closest to the real error. Instead, k=10 is a frequently chosen compromise between

computational effort and quality of estimation results.

2.6.1.4 Bootstrap method

Bootstrap was introduced by [Efron et al., 1993], and consists in given an evaluation

file of size n, to create a so-called bootstrap sample by sampling n records uniformly

from data with replacement. This is the training set. All other records form the test set.

Since the sample is obtained with replacement, the probability of not being part of this

list is (1 – 1/n)n � e-1 � 0.368, and the expected number of distinct objects from the

original dataset appearing in the test set is 0.632n. For instance, consider a dataset R =

{1,2,3,4,5,6,7,8,9,10,11,12}. Randomly sampling n instances with replacement would

produce the following training set D = {1,2,10,7,10,5,6,10,5,1}. The remaining

instances would form the test set T = {3,4,8,9}.

 - 39 -

3 The Trie-Class Algorithm. Basic definitions

In this Section we provide a general overview of the Trie-Class algorithm and most of

the basic definitions and functions used throughout this thesis, including some

examples. We also explain in detail the search mechanism used to extract nearest

neighbours and compare its classification skills with a regular k-NN algorithm.

3.1 General overview of the algorithm

Our approach to induction is partially based on the instance-based methodology or

Nearest Neighbours (NN) [Cover, 1967; Salzberg, 1990; Aha, 1991], sometimes also

known as case-based reasoning (CBR) [Aha, 1998]. In general, the basic notions of NN

and instance-based methods are the storage of learning data, the use of some metric to

carry out similarity computations by means of calculating distances, and some indexing

scheme to help the searching mechanism. A distinctive characteristic of NN and CBR in

particular is its “ lazy” approach to problem solving. According to [Aha, 1998] pure lazy

problem solvers exhibit three typical behaviours:

• They defer processing the input until they receive a query request. They just

store input examples.

• They are data-driven, meaning that they respond to requests by combining

information from the stored data and,

• They discard any temporary intermediate results created during problem

solving.

NN methods also present a more eager approach, resembling to a certain extent some

model-based approaches in that they retain their inputs into an intensional6 data

structure, reply to queries using this structure and keep it for future requests.

Combining elements that characterize these methods along with ideas from Decision

Trees our approach uses a tree structure as an index to store cells from training data in

order to “learn” , permitting at the same time a very fast search of “ similar” instances.

In a second thinking phase, queries on unseen instances are answered using training

instances as model. Two of these instances will be selected from the data structure,

6 Including the rules that describe the inner structure of objects

3 The Trie-Class Algorithm. Basic definitions

 40

using a non-Euclidean distance on an attribute-by-attribute basis without normalization.

Later, we use different criteria to select one of them as the best available pattern

representation of the new unseen instance, as will be explained in Section 6.

3.2 Basic definitions

Notation {r R, c L | exp1(r,c) exp2(r,c)}∈ ∈ • stand for the set of values of exp2

when r and c take values in R and L, and exp1 is true. If exp2(r,c) = r then the

expression is reduced to {r ∈ R | exp1(r)}.

Definition 1. Let’s consider the closed universe formed by a data file R composed of

a finite set of N records r.

R = {r1, r2,..,rN } . (3.1)

In Supervised Machine Learning we find data containing a set of instances, each one

described by a vector of attributes and a class label. Attributes are considered to be

predictor or relevant attributes. They are used as independent variables to induce a

certain classification hypothesis, which in turn is used to predict the class of an instance,

considered the dependent variable. Therefore, much of this thesis is referred to attributes

(or features as they are also called), its characteristics, types and values, and the way

they can be used to generate the description of the concept, which is at the centre of the

learning process.

Definition 2. In any given record r we find a finite set of Ai attributes belonging to set

S,

1 2 i nS = {A ,A ,..A ,..,A }, a nonempty set. (3.2)

Definition 3. Each record r is formed by the Cartesian product of n attribute values

A1|a1 x A2|a2 x...x An|an and a class label c. Each attribute Ai has its corresponding value

ai, which belongs to domain Ti, such that:

3 The Trie-Class Algorithm. Basic definitions

 41

1 2 = , ,.., , , (1..), , .n i ir a a a c i n a T c L∈ ∈ ∈ (3.3)

Definition 4. Every record r is associated with one of c class labels belonging to a set

L.7

{ }1 2, ,.., lL c c c .= (3.4)

Definition 5. Each class label c belonging to records r is obtained by the following

function:

label(r) = c if r = <a, c> . (3.5)

3.3 Definitions on cell discretization

In many Data Mining applications large amounts of data as well as large instance

vector dimensions demand some form of data reduction. This is particularly true for

methods based on instances or Nearest Neighbours. One of the aspects of the problem

attacked by Trie-Class, is to reduce the dimension of each feature by reducing the

number of possible values an attribute can take. This goal can be reached by applying

discretization to data domains, particularly interesting in attributes exhibiting continue-

value types. At the same time, discretization is required in order to work with metric

spaces and distance calculations. Discretization has the disadvantage of a potential

information loss, allowing two different attribute values to coexist within a given

interval thus increasing entropy, a measure of the degree of purity of a given interval

with respect to the class. However, the advantage of reducing the search space, a

fundamental problem facing almost all algorithms in Data Mining, many times is not

harmful for real-world applications [Weiss et al., 1998]. In Trie-Class, discretization is

applied to numeric attributes whether discrete or continuous. In the case of nominal

attributes, simply each nominal value is assigned a partition of its own.

7 In this thesis we use indistinctively the words class label, class or just label.

3 The Trie-Class Algorithm. Basic definitions

 42

Definition 6. The domain of each attribute Ai can be partitioned into a finite number

of user-defined intervals within domain Ti. The number of these intervals can range

from 1 to si. We assume the existence of function ordi(), which converts the value of an

attribute into its corresponding discrete value vi, which is an ordinal representing the

interval value:

 (), (0..), .i i i i i iv ord a v s a Ti= = ∈ (3.6)

We call value vi a cell component, which along with other components form cell p as

shown later in Equation (3.10).

Definition 7. Let Mi and mi, be the maximum and minimum attribute values within

domain Ti, where wi is the size of each interval si. The number of intervals si is simply

the ratio of the number of elements in the attribute domain over wi, a real number.

() 1
, 0 .i i

i i
i

M m
s w

w

− + 
= > 

 
 (3.7)

Definition 8. Each numerical attribute value ai fits into an interval represented by the

discrete cell component vi, which is computed using the following floor function:

() .i i
i i i i

i i

a m
v ord a s

M m
 −= = × − 

 (3.8)

If ai = mi, then the value of vi will fit into interval zero.

Definition 9. For categorical or symbolic attributes, attribute ai has its corresponding

interval value simply calculated as:

 vi = ordi(ai) . (3.9)

If a priori knowledge domain information exists on the actual order of symbolic

attributes, then vi represents the corresponding order number, which in Trie-Class is set

3 The Trie-Class Algorithm. Basic definitions

 43

in a dictionary file (described in Section 7). If the interval value calculation for a

symbolic attribute does not represent a problem, the same is not true when we want to

calculate de distance between these types of values. This is the topic of Section 4.2.

Notice that the number of intervals si is not the same for all attributes. They depend

on values Mi and mi, as well as the interval size. These parameters are user-defined. In

our implementation, they are declared in the dictionary file. Although not implemented,

parameter si, could be automatically computed by the system given the simple

mechanism we use for domain partitioning as explain above.

Example 3.1

Imagine that a certain record r exhibit the value for attribute ai = 9. Let’s assume that

the domain for this attribute is formed by discrete values ranging from mi =1 to Mi =10;

with wi = 2. Applying Equation (3.7) we obtain si = 5. Then, applying function ordi()

from Equation (3.8) we would obtain vi = ordi(9) = 4. Every vi value will fit into one of

si intervals belonging to the partition of attribute Ai. In this case, interval number 4

corresponds to the fifth interval, as they begin with interval 0.

If we convert all attribute values from a record into its corresponding interval values

vi we obtain cell p.

Definition 10. All vi elements together form a cell vector p containing n component

element values vi. We call P the set of all cells p obtained from set R.

Example 3.2

Imagine that we have the following record vector containing five attribute/value

pairs: r = <a1=9, a2=3,a3=5 , a4=6, a5=1>.

()1 2 1 = , ,.., ,.., , , 0.. .i n i ip v v v v p P v s −∀ ∈ ∀ ∈ (3.10)

3 The Trie-Class Algorithm. Basic definitions

 44

As in the previous example the values for the following variables are: mi =1, Mi =10,

wi = 2 and si = 5. Applying functions ordi() from Equation (3.8) to each attribute value

ai and arranging according with Equation (3.10) we convert record r into cell p:

p = < v1= 4, v2 = 1, v3 = 2, v4 = 2, v5 =0>

Some specific cells used in this thesis are px, p1, p2, etc. Cell px is a new cell from an

instance of unknown class. Cells p1 and p2 are cells belonging to the training set with

known class.

Definition 11. A multi-attribute-value vector cell p is obtained from its corresponding

instance vector r from Equation (3.3) using function cel(r) such that:

()(), (1..)1 n i i ip = cel(r) with p = <v ,..,v >, v ord a r i n= = (3.11)

Most classification algorithms and in particular k-NN algorithms consider instance

vectors relating to a given label as a whole. In Trie-Class we develop the idea of sub-

cell or prefix (as known in text data), which can be associated with one or more classes.

In this way, it is possible an “earl ier” class membership identification using just a subset

of the entire cell, which allows data compression for concept description, a desired goal

for the attribute selection problem. Sub-cells are define as follows:

Definition 12. In every cell p we find n sub-cells qi, which correspond to its prefix:

1 2, ,.., , (1..). So ,i i iq v v v i n p q u= = = (3.12)

where u is the suffix portion. Therefore, we find sub-cells containing 1, 2,..n

component elements, where the last of them, called qn is identical to the full cell p.

The number of records in the dataset exhibiting cell vector p are returned by calling

function freq(p):

{ }() # | () .freq p r R cel r p= ∈ = (3.13)

Function freq can be equally applied to any sub-cell qi:

3 The Trie-Class Algorithm. Basic definitions

 45

{ }() # | () ,i ifreq q r R cel r q u= ∈ = (3.14)

Definition 13. We define function kfreq() as the total number of records where its ith

value falls into interval k.

{ } (,) # | v with (()) .i i ir Rkfreq i k k v ord a r∈= = = (3.15)

Hereafter we will just write vi to indicate the full expression vi = ord(ai(r)).

A restricted variation of the previous function includes the additional argument c

meaning that a restriction is imposed to objects in interval k: they must belong to class

c. Next function measures the number of sub-cells in a given interval relating to just one

label.

Definition 14. Function lfreq() produce as result the number of records in a dataset

where its vi cell component is k and its label is c:

{ } ()(, ,) # | vir R k label r clfreq i k c ∈ = ∧ == (3.16)

Definition 15. We define function labels(p) as the set of labels found in the subset of

records with cell p.

{ }() , | () () labels p r R c L cel r p label r c c= ∈ ∈ = ∧ = • (3.17)

Definition 16. The number of class labels attached to a given cell p is given by the

following function:

()() #nlabels p labels p= (3.18)

the same function can be applied to sub-cells:

3 The Trie-Class Algorithm. Basic definitions

 46

()() #i inlabels q labels q= (3.19)

In most evaluation sets R there is a predominant class label, meaning that most

records hold that class. In the literature this is known as “ default rule” [Domingos,

1996; Brodley, 1996].We call this “majority class ” as explained in Section 6.

Definition 17. The class frequency of a given class correspond to the number or

records in a dataset associated with that class.

{ }() # | ()cfreq c r R label r c= ∈ =
(3.20)

Using the previous function we define function lmaj() as the function that returns the

majority class, which is the predominant class in a set R.

We now turn our attention to a characteristic aspect of sub-cells, namely its degree of

relationship to one or more classes. The intuition here is that we are interested in sub-

cells formed by a minimum number of cell component elements relating to one class

only. This idea comes from a fundamental concept in Information Theory known as the

Minimum Description Length (MDL) principle [Risannen, 1978].

Roughly speaking, the MDL principle states that the “best” theory t o induce from

training data is the one that minimizes the complexity of the theory and the length of the

data encoded with respect to the theory. In terms of the sub-cells defined by Trie-Class,

the shorter the number of attributes in a sub-cell sequence identifying just one class, the

strongest this sub-cell is in terms of concept description. We call this the strength of a

cell and we measure it using the following function.

Definition 18. The strength of a cell corresponds to the size of some sub-cell qi, at the

ith component element where it becomes associated with just one label:

{ }() # 1 | () 1istrength p i n nlabels q= ≤ ≤ = (3.21)

Vector cells with greater strength represents vectors located in larger homogeneous

areas of the nth dimensional space. Therefore, a strong cell means that more of its vi

values belong to the subset of values associated with a given class. For this reason we

3 The Trie-Class Algorithm. Basic definitions

 47

are interested in strong cells as their predictive capability has more confidence when

compared with others of less strength.

3.4 Exclusiveness as a measure of attribute relevance

Using some of the functions from the previous subsection, we define now some

additional concepts, helping to define the criterion used to determine how relevant a

given attribute is.

Whether the discretization method takes or not into account an instance’s class

membership, all intervals present some class distribution. Our interest is to discover

class distribution information within sub-cells, in order to get the kind of information

that might be hidden due to a non-supervised discretization process like ours. If

intervals belonging to some attribute exhibit a class distribution where one of the

existing classes is predominant in relative terms compared with the others, then we are

in the presence of semi-exclusive attributes, which we define next.

Definition 19. Attribute Ai is said to be semi-exclusive for interval k, if function

semk() is true. Parameter M is a user-defined value representing the fraction of records in

interval k with class c. Function semk() is defined as:

(, ,) (((, ,) / (,)))semk i k c L lfreq i k c kfreq i kϕ ϕ= ∃ ∈ • ≥ (3.22)

If function semk() is true when M equals 1, then we have an exclusive interval, i.e. all

vi values in interval k belongs to the same class. In the literature these intervals are

known as primary [Turney, 1996], [Kohavi et al., 1997] or pure intervals [Holte, R.,

1993]. The opposite is the concept of maximum impurity, indicating that all classes are

equally represented on each interval of a given partition [Brodley, 1995]. Modifying the

value of M allows function semk() to return true in more or less homogeneous class

regions of the instance space. This would be the case for instance of a dataset with four

classes with one of them say cj representing 60% of the class distribution in a given

interval k. Setting the value of parameter M to 1 in function semk() would provided no

information for the region covering that interval. Setting the value of M = 60 instead,

3 The Trie-Class Algorithm. Basic definitions

 48

function semk() would return true allowing to visualize the predominance of class cj,

thus allowing using this information regarding the class at the sub-cell level.

Finding how many of these semi-exclusive intervals exist in whole cells is calculated

using the function from next Definition 20:

Definition 20. The degree of exclusiveness of a cell p corresponds to the fraction i of its

n cell component values falling into intervals conforming to the semi-exclusive property.

This property is calculated with the following function:

(){ }(,) # 1.. | semk(, ,) /isemp p i n i v i nϕ ϕ= ∈ • (3.23)

We are interested in the fraction of intervals belonging to a given cell complying with

the semi-exclusive property when this refers to the same class, so we can have consistent

information. Used this way, the presence of one or more intervals of this type increases

the probability for the cell to be associated with a given class. Hence, cells having

intervals exhibiting this property constitute important class pattern predictors.

Definition 21. If all discrete vi values belonging to attribute Ai � R are projected into

its corresponding intervals, then the degree of relevance of attribute Ai with value ai

denoted with symbol Gi, correspond to the fraction of records falling into those intervals

where function semk() is true with respect to the total number of records in R.

()(){ }i i# | (, ,) /ir R k ord a r semk i k r Nδ ϕ= ∈ = ∧ • (3.24)

Parameter N represents the total number of records in set R..

Large values for / means a more relevant attribute when compared with others. The

opposite represents irrelevant attributes. The next example illustrates this.

Example 3.3

 Let’s calculate the value of parameter / for two attributes, A1 and A2, each having

domain si partitioned in ten equal sized intervals as in Fig. 3.1. The dataset has two

classes: A and B. Frequencies for each interval are shown in the row labelled “ freq”.

3 The Trie-Class Algorithm. Basic definitions

 49

Notice that in this case it does not matter which is the predominant class in the set of

semi-exclusive intervals included in the calculation of parameter /�as it is the case with

function semp(). This is so because it is perfectly possible for the same attribute to have

different values that can be associated with different classes. This is precisely what

matters for attribute relevance. How many values determine cell class membership.

Projecting attribute A1 values into intervals vi , with � = 0.75

 vi 0 1 2 3 4 5 6 7 8 9 Total �
freq 77 32 62 49 79 20 12 23 11 43 408
Class * * * * * * * * A A 54

54/408=0.132

Projecting attribute A2 values into intervals vi , with � = 0.75

 vi 0 1 2 3 4 5 6 7 8 9 Total �
freq 227 23 35 17 17 14 12 13 5 45 408
class * A * * B B * B * B 112

112/408=0.274

Note: An asterisk means intervals where function semk() is false. Shadow areas represent intervals

where semk() is true with � = 0.75.

Fig. 3.1 Attribute values projection in one-dimension to depict its relevance

3.5 Attribute selection

Trie-Class uses a tree structure to hold cell patterns as a mean of speeding up

searching most similar objects. As search begins in the root of the tree, the input order

of attributes is fundamental if we want most similar instances to remain close to each

other in the data hyperspace. For this reason determining the order of attributes is a pre-

processing phase executed before tree insertion. (Tree build is explained in Section 7).

Definition 22. The predictive skill of attributes is a measure of its degree of

relevance as defined in Equation (3.24). According with this relevance attributes can be

ranked in decreasing order of relevance.

1 2 1, ,.., ,.., , | | | (1..).i n i i i nβ δ δ δ δ δ δ += 〈 〉 ≥ ∈ (3.25)

Attributes where its relevance /i = 0, are orderly pushed to the list’s end. These are

candidates for elimination (“pruning”), which can be done to improve algorithm

3 The Trie-Class Algorithm. Basic definitions

 50

complexity at the expense of some loss in accuracy as shown in Section 4.. An example

of a dataset features ordered by its degree of relevance is shown next in Example 3.4.

Example 3.4

Let’s consider the Cancer -Wisconsin dataset from Section (5.1.3). It contains nine

working numeric attributes representing patient data for cancer diagnosis. Applying

formula from Equation (3.24) for each attribute in this dataset, we obtain the following

/�values shown in Table 3.1 below. They are ranked by its degree of relevance.

Table 3.1 Attributes degree of relevance values in Cancer dataset

Nº Attribute name Frequency Gi
1 Uniformity of Cell Size 89 0.218
2 Uniformity of Cell Shape 69 0.169
3 Marginal Adhesion 59 0.145
4 Normal Nucleoli 58 0.142
5 Clump Thickness 54 0.132
6 Bland Chromatin 34 0.083
7 Mitosis 22 0.054
8 Single Epithelial Cell Size 16 0.039
9 Bare Nuclei 9 0.022

We show results later in Section 4 showing how classification accuracy changes with

changes in accuracy using only relevant attributes.

3.6 Shape definitions

The similarity hypothesis sustains that what defines a class is that its members are

similar to each other and not similar to member of other classes. Therefore, object

similarity is determined using distance calculation between corresponding attribute

values using functions such as Euclidean or Manhattan.

We are now interested in exploring additional information that might be useful to

describe the similarity concept. One such case is constituted by the information

concerning intra-attribute relationships within a cell. One of these is the relationship

between consecutive attributes belonging to the same cell, which can be represented

using the slope representation between these two points.

3 The Trie-Class Algorithm. Basic definitions

 51

Fig. 3.2 Slope intersection form of a line

For a given line in the xy-plane making angle R with the x-axis, the slope m is a constant

given by tan ,
y

m
x

θ∆≡ =
∆

 where �x and �y are changes in the two coordinates over some

distance. In general, a slope represents a quantity, which gives the inclination of a curve

or line with respect to another curve or line such as the one in Fig. 3.2.

 We could graphically represent the shape form of a given n-dimensional cell p

drawing in two-dimensions all segment lines between pairs of consecutive attributes.

We do this by converting each a cell component element into a point. We use the actual

attribute value as the y-coordinate and we assign the attribute’s order numb er as the x-

coordinate. Hence, we could draw all segment lines between the discrete points (1,v1),

(2,v2),..,(n,vn). As we keep constant �x each segment, segment �y = (yi – yi-1)

corresponds to a slope between consecutive cell values. An example of such shape

representation can be seen in Figure 3.3. In total we would have n-1 line segments to

represent a given shape.

Designing a shape retrieval method involves other than shape representation, the

definition of some similarity measure and the way these shapes will be accessed or

retrieved. [Mehrotra, et al., 1995]. To answer this we first define the space H as the

space of all h shapes. Within this space shape similarities are found using some distance

x

b

y

�

y = mx + b

3 The Trie-Class Algorithm. Basic definitions

 52

d(h1,h2) in order to compare two shapes. Within this framework we propose the

following definitions:

Fig. 3.3 A two-dimensional representation of a cell

Definition 23. The shape of a cell is defined as the sequence of its m slope

components between consecutive values:

1 2 1 1 1, ,.., ,.., , m (), , with ,..,i n i i i nh m m m m v v h H p v v− +=< > = − ∈ =< > (3.26)

This newly created shape vector contains positive and negative slope values and is

one dimension shorter than the cell vector from which is built. The new space H

represents a space change with respect to space Rn. As can be easily seen this space is

not metric as some of its properties are not satisfied, namely, positiveness and

symmetry. Within this space we can use a distance measure to determine how close or

similar two shapes are from each other. We do that using the following function.

Definition 24. The shape similarity between two cells, corresponds to the distance

between its corresponding shapes:

' '(,) (,)sp p p d h h= (3.27)

Distance d(h’, h) can be any of the standard distances belonging to the Minkowski

family explained earlier in Section 2.4.2.

(5,v5)

(1,v1)

y

 x

shape of p

(2,v2)
(4,v4)

(3,v3)

(6,v6)

3 The Trie-Class Algorithm. Basic definitions

 53

Using shape distances to represent cell similarities can help identifying shape

patterns in a shape data space. If similar shapes relate to the same class, then this

information can enrich the similarity concept.

The degree of shape similarity between two shapes is affected by the actual value of

each slope and the slope sign itself, which indicates the relationship between two

consecutive attribute values. We illustrate in example 3.5 shape construction and a

similarity function.

Example 3.5

Imagine a dataset containing five cells p1,p2,..,p5, belonging to some training set, each

one formed by seven cell components. Cell values are indicated in Table 3.2.

Table 3.2 Cell vectors and their component values

 Cell component values
Cells v1 v2 v3 v4 v5 v6 v7

p1 3 6 4 9 4 1 9
p2 17 10 14 9 9 11 6
p3 1 19 13 23 10 2 3
p4 12 9 7 4 8 15 19
p5 15 5 13 8 7 13 4
px 19 9 15 8 9 12 5

The task consists in classifying a new cell px from the test set using the shape

similarity function. Let’s first convert all cell vectors from Table 3.2 into shape vectors

applying the shape formula in (3.26). We obtain the shapes and its values indicated in

Table 3.3.

Table 3.3 Shape vectors corresponding to cells from Table 3.2

1()i iv v+ −
 h1 3 -2 5 -5 -3 8

h2 -7 4 -5 0 2 -5
h3 18 -6 10 -13 -8 1
h4 -3 -2 -3 4 7 4
h5 -10 8 -5 -1 6 -9
hx -10 6 -7 1 3 -7

3 The Trie-Class Algorithm. Basic definitions

 54

If we draw the two-dimensional representation of these h vectors, we have the figure

shown next in Fig. 3.4

-15

-10

-5

0

5

10

15

20

order position values

h1 h2 h3 h4 h5 hx

Fig. 3.4 Shape representation of six cell vectors

In this graphical representation, the y-coordinate corresponds to the m values and the

x-coordinate corresponds to the corresponding mi order number within shape h.

Next, apply the shape similarity function from Equation (3.27) to calculate distances

between each shape and hx using values from Table 3.3 above. Using the Manhattan

distance we obtain the following results with the sp value shown in the last column on

Table 3.4.

Table 3.4 Shape distances and similarity function values

 xm m− sp(hx
, hi)

d(hx,h1) 13 8 12 6 6 15 60
d(hx,h2) 3 2 2 1 1 2 11
d(hx,h3) 28 12 17 14 11 8 90
d(hx,h4) 7 8 4 3 4 11 37
d(hx,h5) 0 2 2 2 3 2 11

As visually observed in the graphic of Fig. 3.4, the smallest sp values correspond to

those were shapes h2 and h5 are involved, (represented by segments with small triangles

3 The Trie-Class Algorithm. Basic definitions

 55

on its ends) meaning that the distances amongst these shapes are the smallest ones with

respect to hx.

Obviously distance measures between shapes applied in the new shape space,

although similar, do not yield the same results as the corresponding cell distances

applied in the original record space. This can be seen in next Table 3.5, where we show

the result of applying Euclidean and Manhattan distances to cells from Table 3.2, and its

comparison with shape distances after changing space values. As it was in Example 3.4,

all distance calculations are from px to all other points.

Table 3.5 Distance comparison using selected criteria

Total distance values by criterion

 Manhattan Euclidean Shapes
d(px,p1) 51 549 60

d(px,p2) 7 9 11

d(px,p3) 58 758 90

d(px,p4) 37 335 37

d(px,p5) 14 42 11

As observed, in relative terms distance from p2 to px is the smallest for the Euclidean

and Manhattan distances. As for the shape distance, distances to p2 and p5 are equally

the smallest from px as confirmed by its graphical shapes from Fig. 3.4. Using shapes as

a classification criterion yields good results as indicated later in Table 6.2 from Section

6. As will be seen, its class prediction capabilities are better that those of using a

standard distance for the same purpose, when applied to contending pre-selected close

neighbour cells p1 and p2. We have no formal demonstration at this point for the reason

for this. Intuitively we believe that additional inter-attribute relationship information,

besides attribute value information makes this difference.

3.7 Searching for nearest cells

In this section we introduce the search mechanism done by Trie-Class to extract close

neighbours with respect to some unknown instance. This is the first approach we use to

determine similarity. A second approach will be done afterwards, where these pre-

3 The Trie-Class Algorithm. Basic definitions

 56

selected cell patterns are carefully inspected through the use of Decision Parameters

explained in Section 6.

Eventually, the number of close neighbours selected could be any. We have chosen to

implement our algorithm for just two of them, and we have kept this number in view of

our results.

The method we propose here to find nearest neighbours does not use the standard

family of distances used by regular k-NN methods. It corresponds to a “greedy” search

method in general, as the best solution at each point is taken using only available

information at each node of the tree structure. To illustrate this, lets assume the

existence of a new query cell px with format as in Equation (3.10). Lets call p+ the ideal

closest object to px in the entire dataset. The algorithm’s task consists in extracting the

closest cell to p+ and as a result the algorithm will obtain a cell we call p1

In the original NN algorithm this is done using a “brute force” method or some type

of index, applying to them the Euclidean distance from px to considered objects. In our

case distance calculation proceeds attribute by attribute, restricting the allowable search

space for a given attribute based on previous attribute values. The allowable search

space keeps cell component values in order, so the closest elements to px
i are searched

starting at px
i-1 and px

i+1 respectively. The search proceeds to both “sides” of px
i looking

for the closest element. As soon as one of these values is closer to px
i it is selected. Trie-

Class uses a tree structure, which exactly allows doing this.

If we call cells p1 and p2 the two “closest” objects to px found in a space with those

characteristics, then it will be always true that:

1 2(,) (,) and (,) (,)x x x xd p p d p p d p p d p p+ +≤ ≤

We argue later in Section 7 that objects p1 and p2 are more rapidly extracted using this

structure when compared with regular NN methods, and also that they are better class

predictors. In the next subsections we explain the way this is done introducing a general

search algorithm for a closest cell, which is the same independently of the number of

cell patterns that might be extracted.

3 The Trie-Class Algorithm. Basic definitions

 57

3.7.1 Selecting closest pattern

The algorithm extracts close cells one by one. In our case it first get cell p1. To do this

initially dispose of the entire set P as its search data space. The extraction of cell p1

progress adding one more cell component at a time, where these cell components are the

ones found closer to its corresponding px elements. As the search progresses, smaller

and smaller subsets of P constitute the allowable search space to obtain the next cell

component element. For each one of these Pi spaces its dimension and location is given

by the values forming the corresponding sub-cell qi. We explain next the way this space

is defined.

The extraction of any cell is done attribute by attribute, with the algorithm proceeding

incrementally. Any sub-cell qi is of the form qi = �qi-1, k! where k is the next cell

component element. Starting with i = 1, assuming an empty sub-cell q0= <�> and

knowing element qi-1, the problem consist in finding some interval k1 representing the

next cell component, which is the closest value to the unknown element kx. The found

element k1 must satisfy the following property:

() () ()1 1
1

x x
ik K q k k k k−∀ ∈ • − ≤ − (3.28)

Where the set K(qi) is defined by:

() { },i i
iK q k | q k P= < >∈ (3.29)

Cell component k1 is the closest element to kx among the elements in K(q) and Pi

correspond to its search space. As each new cell component element ki is added, the

search space for next element k1+1 is further restricted to the space defined by the

previous sub-cell qi which is Pi. So the search space of the last element gets confined to

space Pn, thus avoiding the search of most of the total data space.

Notice that as it happens with decision trees, the selection of each new k element

divides the space into axis-parallel hyper planes.

From the class viewpoint, as long as the search process does not reach the last cell

component member, or sub-cell qi is not associated with just one class, the selection of

3 The Trie-Class Algorithm. Basic definitions

 58

the next k element does not impose a class restriction. What matters is to find each time

the closest cell component element to the corresponding query element.

What happens if two k values are equidistant from kx?

In this case frequencies are used as the first option to break this tie. Including

frequency as part of the search criterion mechanism aims to avoid outliers8. It also helps

avoiding overfitting, defined as the case of a hypothesis that fits the training data and

exists another hypothesis that fits less well the same data which performs better over the

entire distribution of instances [Mitchell, 1997].

Therefore, the algorithm chooses the k value where freq(q1) is maximum including

the new potential element k. A larger frequency in this context is interpreted as an

indication of a close distance, as done in some k-NN algorithms [Dasarathy, 1991].

After cell p1 has been selected the algorithm proceeds searching for cell p2. The

search mechanism is the same as the one already described, except that this time set

K(q) has an additional restriction: all objects considered must belong to a class which

must be different from the one in p1.

Originally, cell p1 with class say c1 was extracted from some set R. As the class

associated with p1
 cannot be in any other subsequent cell extracted p2, p3,.., pn, we

remove from the original set R all cells having class c1. We call R1 this new subset,

which correspond to the complimentary search space where cell p2
 will be extracted. No

cells with the class of the already extracted p1 form part of this space. Follows that if

subsequent cells were extracted after extracting p2, the restricted space would become

R2, R3,..,Rm, reducing each time the allowable search space, where Rm is the data space

corresponding to the search space for cell pattern pm+1.

This entire operation is equivalent to have training records belonging to the same

class inserted in different trees and executing sequentially the search on each tree.

The following definition represent the above described search process.

Definition 25.

We define function neighbours() as the function that returns two cells p1 and p2

representing the closest neighbours found with respect to some unknown cell px using

the search process already described.

3 The Trie-Class Algorithm. Basic definitions

 59

(p1, p2) = neighbours(px) (3.30)

It is worth noticing the fact that restricting search spaces starting from the first

attribute is equivalent to give more eliminatory power to more relevant attributes.

Search spaces allowed for less relevant attributes are restricted. As a greedy search

selects the best path based solely on tree node information, more precise solutions could

be lost. And in this sense, relevant attributes do not have more weight in this process but

just the power to eliminate some options.

3.7.2 Using look-ahead to solve ties in cell pattern selection

It is known that greedy search produces sub-optimal solutions [Goodman et al.,

1988]. In view of cheap available computing power, is worth trying to improve these

solutions without much extra algorithmic complexity. For this reason, if frequencies in

candidate cell component elements are also equal, the algorithm applies a “look ahead ”

mechanism. This consists in looking for next closest element ki+1
 on each conflicting

sub-cell with ki as the next potential component. The process is repeated until is found

some component is closer to the respective kx
j component, or until the end of the cell is

reached. When such element is found along this path, the algorithm chose it as the new

component element, along with all k values in the path all the way up to the conflicting

parent component ki.

Using this type of limited look-ahead search although it produces an increase on

algorithmic complexity, it is controlled by the fact that it is only applied as a last

resource to solve tie situations. However, in datasets with larger intervals where chances

of equal sub-cells increase, execution times will increase. In general, our results show

that limited look-ahead as the one used here produced acceptable execution times.

As a last resort, if ties persist and the last cell component has been reached, the

algorithm chooses arbitrarily one of the conflicting k values as the new component. At

the end of this process, any selected full cell close to px is associated with just one class.

Trie-Class never fails to find an identical full cell to px, if such cell exists in the

training file as the search process for the next bigger and smaller values with respect to

8 See subsection 3.9.1

3 The Trie-Class Algorithm. Basic definitions

 60

px for each attribute begins with this value. In this special case, if cell p1 equals px, the

search algorithm stops looking for other close cells. It simply assigns the class of the

identical pattern found to px. This also means that running against training records, Trie-

Class classifies without errors.

3.7.3 The search algorithm in practice

Example 3.6

Lets assume the existence of a dataset with the following five cell patterns:

Table 3.6 Original search space P containing 5 cells and a new query

cell v1 v2 v3 v4 v5 v6 v7 class
p2 3 1 1 1 3 2 1 A
 p1 3 1 1 2 1 1 3 A
p4 3 1 1 2 5 6 9 B
p5 3 5 3 4 1 2 1 A
p3 8 5 4 7 9 6 3 B
px 4 3 2 5 3 1 5 ?

The last row contains the unknown cell px. In order to search for the closest cell to px,

the algorithm proceeds as follows:

__

Set q1 = <�>
Search for the closest value to px

1 = 4. The algorithm finds values 3 and 8. Value 3
is selected after comparison. Incorporate value, so q1 = <3>.
Next, look for next elements closest to px

2 = 3. Elements 1 and 5 are found, which
are equidistant. So we use the frequency criterion. Sub-cell <3,1> has larger
frequency than sub-cell <3,5>. Therefore, insert new cell component giving q1 =
<3,1>
Repeat the process looking for closer element to target px

3 =2 among v3 values.
The only available option is again 1. After insertion we have q1 = <3,1,1>.
The closest elements to qx

4 = 5 is 2 so q1 = <3,1,1,2>.
At this stage there are two possible candidate elements: p1

5 =1 and p4
5 = 5. Both are

equidistant from qx
5 = 3 (a distance of 2 units). Which one to chose?

As frequency is equal in both conflicting sub-cells apply look ahead technique.
Then look into each of corresponding 6th elements, p1

6 = 1 and p4
6 = 6.

Calculate distances between them and chose the closest one. As d(px
6, p1

6) = 0 then
this element is chosen and also its parent. So now q1 = <3,1,1,2,1,1>.

3 The Trie-Class Algorithm. Basic definitions

 61

Get the last element. There is only one member available p1
7 = 3. After insertion the

final sub-cell extracted is q1 = <3,1,1,2,1,1,3>, which corresponds to the full cell p1.
Finally, As the class of cell p1 = A, this will be assigned to the new cell px.

Fig. 3.5 Searching for close neighbours

Table 3.7 in next Section compares the efficiency in classification between cell

pattern p1 against the equivalent k-NN version implemented by the Weka benchmark

[Witten, et al., 2000].

3.8 Extraction of p1 is an efficient alternative to regular k-NN methods.

We have already explained k-NN methods for classification of new objects of

unknown class. We have also explained in Section 3.7.1 the alternative method of

extraction of a close pattern represented by the extraction of cell p1. We believe this

alternative method is faster and at least as good as the regular k-NN methods, when

these use only one close neighbour as pattern model for classification. To support our

argument we present next a table to compare classification error rates and execution

time when using for classification cell pattern p1 and the pattern extracted using IBk, the

k-nearest neighbour implementation done by Weka. This classifier use the Euclidean

distance, which is normalized in order to equally treat attributes with different domains,

thus controlling the influence they would have in the final distance value. Normalization

is done using the known formula:

()
() ()

min
max min

i i
i

i i

v v
a

v v

−
=

−

Variable vi is the value of attribute i, and the maximum and minimum are taken over

all instances in the training set [Witten et al., 2000]. Recall that in Equation (3.8) we do

a similar normalization at the time we fit the value of an attribute into its corresponding

interval. Algorithm IBk applies distances to symbolic or nominal attributes according

with the Heterogeneous Euclidean Overlap Metric (HEOM) described in Section 4.2.

For the sake of our comparison, all tests with IBk were done using one nearest

neighbour (k = 1) so no weight requires to be done with distances. As the time taken to

3 The Trie-Class Algorithm. Basic definitions

 62

classify a test instance increases linearly with the number of training instances that are

kept in the classifier, sometimes is required to restrict this number, which in Weka is

done by setting up a window size option.

In our case this option has not been used. Instead, and for both algorithms we do a

dataset split of 60% of records for training and 40% for test.

Table 3.7 Classification error rates comparing p1 and IBk algorithm

Dataset % Error Difference Time
(s)9 Difference

 Nº recs.test Name p1

Trie-Class
IBk

Weka % p1

Trie-Class IBk seconds

1 17637 Adult 18.3 21.2 2.9 309 4080 3771
2 360 Annealing 2.3 1.4 -0.9 45 4 -41
3 280 Breast-cancer-W 5.5 4.6 -0.9 1 1 0
4 144 Dermatology 7.5 6.3 -1.2 2 1 -1
5 308 Pima Diabetes 24.0 29.5 5.5 2 1 -1
6 21556 Forest cover 24.9 11.7 -13.2 2400 6600 4200
7 122 Heart disease Cl. 30 22.1 -7.9 1 1 0
8 108 Heart Statlog 22.4 27.8 5.4 1 1 0
9 1509 Hypothyroid 1.0 9.7 8.74 30 60 30
10 60 Iris 2.4 5.0 2.6 1 1 0
11 4397 Pendigits 2.3 0.8 -1.5 120 348 228
12 1774 Satimage 12.0 18.4 6.4 25 33 8
13 400 German credit 27.4 27.5 0.1 3 3 0
 Average gain of p1 in error rates and execution time 6.0 8194

All execution times are expressed in seconds10. In the case of IBk figures comes from

the tool itself. As can be seen in Table 3.7, on thirteen datasets Trie-Class is on average

6% better and it took over two hours less time to execute than IBk. Error figures for IBk

are less good if we compared with those obtained doing 10-fold cross-validation from

Table 5.15. As the execution time goes up, Trie-Class executes better than IBk. Initially

Trie-Class is better in 7 out of 13 cases, which represents 54% of cases. When execution

time goes over 15 seconds, Trie-Class is better in 71% of cases and this percentage

further increases to 75% for the case of datasets where the running time took more than

25 seconds. In other words, as complexity goes up, Trie-Class almost constant search

procedure shows its value. In datasets Adult, Forest cover and Pendigits, execution time

9 Wall clock time measured as running time in a standard PC with a single process running.

3 The Trie-Class Algorithm. Basic definitions

 63

took over 2 minutes. In all of them IBk takes at least 3 times more execution time than

Trie-Class.

Trie-Class classification error increases using only p1 as the sole criterion for

classification when compared with figures using the full algorithm, as will be show in

Table 5.15 on Section 5.

3.9 General assumptions on some basic Principles

In this thesis, we adopt assumptions on data, which follow some general accepted

principles. We enumerate and briefly explain each one of them.

3.9.1 Data consistency

A basic assumption in this thesis is that the overwhelming majority of instances in N

are consistent, i.e. each unique cell vector gets associated with only one class, which is a

standard assumption as found in [Everitt, 1981;Titterington, 1985; Cios, 1998; Quinlan,

1996].

All training cells where nlabels(p) > 1 represent two or more cells with identical cell

component values, but with different class. Therefore these cell patterns provide no

information class-wise. The cause for this might be that at least one of these cells

constitute noise, which corresponds to instances for which either the class label is

incorrect, some number of the attribute values are incorrect or a combination of the two

[Brodley, 1995]. In some other cases noise data can correspond to a type of data called

outliers, data items lying very far from the main body of the data [Kaski, 1997].

In any case, conflicting cells still are located within the same area in the nth-

dimensional data space. This brings us back to the basic assumption of the nearest

neighbour paradigm: instances that are close to each other will have similar posterior

class probabilities [Dasarathy, 1991]. For this reason, in these cases Trie-Class eliminate

from the search the identical conflicting cells looking for the next close cell pattern in

the same area.

10 Trie-Class is implemented in C, not in Java as Weka, So part of time differences can be attached to this factor.

3 The Trie-Class Algorithm. Basic definitions

 64

3.9.2 Partition granularity

As we will explain in Section 4, Trie-Class pre-process data before tree building, in

such a way that independently of the data type of attributes, their values are discretized.

Discretization is the process by which the domain of a continuous attribute is partitioned

into a finite number of intervals. This discretization is done using Equations (3.7), (3.8)

and (3.9).

In general, small numeric attributes domain, whether discrete or continuous are not

discretized at all and the corresponding unit of the domain is used as a default partition,

as in Trie-Class this is more a data structure requirement rather than a step in the

classification process itself.

In any case, for any cell p � P we assume that the granularity of all partitions

generated by the discretization process is such, that allows every cell in the training set

to have a known label, making function nlabels(p) = 1.

3.9.3 Class membership, Patterns and the Continuity Principle

Which is the spatial class distribution of object in Supervised Learning?

Are similar classes distributed into continuous areas in that space or rather they are

scattered throughout that space at random?

 Intuitively, one might think that class distribution in real data tend to be

characterized by continuity, meaning that there exists some correlation between

attribute values and its mapping to classes, and therefore there are data areas of

continuous class distribution. Many classification algorithms compress the feature space

based on the certainty that just a few attributes bear the key to class membership. If this

is the case, then class distribution indeed presents spatial continuity.

We apply this principle to rather small regions of the dimensional R space covered by

cells of the same class. If a new cell of unknown class falls into one of these regions,

and existing training cells of the same class are located at distances representing upper

and lower boundary values with respect to the unknown object, then we assume that its

class is the same as the one hold by cells in that neighbour area.

In Trie-Class specifically we apply this principle to sub-cells q as defined in Equation

(3.12).

3 The Trie-Class Algorithm. Basic definitions

 65

For instance, lets suppose the existence of sub-cells: <qi-1, k1> ° P and <qi-1, k2> ° P

Applying function labels from Equation (3.17) to sub-cells we obtain:

labels(<qi-1, k1>) = {c} and labels(<qi-1, k2>) = {c} then, for a new interval k °

[k1,k2] labels(<qi-1, k>) = {c}

Thus, in interval k sub-cells will also exhibit class c. This criterion is applied in Trie-

Class for all spatial areas with no available pattern information provided that cells with

the same class bound those regions. In that sense, every other possible new query cell px

is always approximated to some of the existing classes in the dataset.

 - 67 -

4 Pre-processing Data Before Mining

The task of extracting knowledge cannot even begin without preparing data to fulfil

the requirements of a particular mining algorithm.

Preparation time taken before mining data represents a considerable portion of the

whole knowledge extraction process. This fact is often overlooked by researchers

fighting for a split second of execution time, forgetting the hours if not days spent in the

preparation of data. For a given algorithm, the number of tasks involved in pre-

processing data is independent of the size of the database. In any case, the farther apart

the data format is with respect to the needs of the algorithm, the longer the time it takes

to complete pre-processing it.

Preparation time must not only be considered as the manipulation of data itself, but as

their overall comprehension and meaning. Before anything else we have to know about

data characteristics and its representation, including type of variables and their meaning,

the type of noise and missing data which we might expect, information about the classes

and its distribution, the frequency of updates and the cost of misclassification among

others. But most important of all, we definitely have to know the purpose of the data

owner, and the exact notion of the problem he/she wants to solve. This is fundamental,

if we are planning to make any sense out of data.

In the rest of this section, we explain the data preparation needed prior to tree

construction and execution including sample selection, attribute value discretization, the

treatment of categorical attributes, attribute selection and the effects of changing

interval size after discretization.

4.1 Converting records into discretized patterns

Attribute values belong to one of several data types: qualitative or non-numerical

(symbolic, linguistic), quantitative or numerical (continuous, discrete). Because our

classification algorithm and the ranking of attributes are based in a nominal space, all

continuous attributes are first discretized. This is done, based on the information taken

from a user-supplied dictionary file11.

11 For a layout of the dictionary, see Annex I.

4 Pre-processing Data Before Mining

 68

Discretization is the process of partitioning the domain of a continuous attribute into a

finite number of intervals [Lebowitz, 1985].

There are three criteria to classify discretization methods: global vs. local, supervised

vs. unsupervised, and static vs. dynamic [Dougherty, 1995]. Numerous discretization

methods used to induce one-level decision trees and instance-based methods utilize the

class label in the partitioning of the data space [Payne, 1998]. Others use domain

specific information [Lebowitz, 1985; Aha, 1995]. Still in some other cases the

discretization process consider the number of instances in the interval [Cattlet, 1991].

We use the Equal Interval Width (EIW) single feature discretization method (sometimes

called binning) [Wong et al., 1987], which do not make use of instance classes in the

discretization process. For this reason sometimes it is called unsupervised discretization

method.

Intervals are represented by discrete integers using the symbol si, which corresponds

to the number of intervals within a given domain. Function ord() described in (3.8) does

this conversion. Notice that when ai and mi
 are equal, vi equals zero, which corresponds

to the first possible interval value. The number of intervals obtained on each partition,

are given by Equation in (3.7). For attributes represented by rational numbers the

corresponding interval value is calculated according to Equation (3.8). For categorical

attributes this simply corresponds to its ordinal value, as described in Equation (3.9).

If a priori knowledge on domain information exists on the actual order of symbolic

attributes, as done in some discretization methods [Kerber, 1992], then the interval

value represents the corresponding order number, which is set in the dictionary (see

Appendix I). Next section specifically deals with symbolic attributes. If this information

does not exist, one has to be careful of not imposing any order on these values. In

[Brodley, 1995a], when a feature has more than two observed values, then each feature-

value pair can be mapped to a prepositional feature, which becomes true if and only if

the feature has the particular value in the instance. We explain in Section 4.2 the

distance between two unordered symbolic values done in Trie-Class.

It could be argued that using binning as discretization method causes us to lose

information about the class distribution in the nth dimensional space. This effect is even

more negative, in methods where discretization is done with the purpose of identifying

class membership, using the so-called impurity or goodness measures. [Murthy et al.,

4 Pre-processing Data Before Mining

 69

1994]. The goal of most of these methods is to use discretization as an important

component of the classification model. Some examples of these methods are Gini Index

criterion [Breiman et al., 1984], Minimum Description Length [Rissanen, 1978],

information gain [Quinlan, 1986], ChiMerge system [Kerber, 1992], recursive entropy

discretization [Fayyad et al., 1993], Max minority [Heath et al., 1993], maximal

marginal entropy [Chmielewski et al, 1994], StatDisc [Richeldi et al., 1995].

Although inferior to the entropy family of methods as shown in [Fayyad et al., 1993],

the difference in performance between equal width discretization and some of these

methods is small [Dougherty et al., 1995].

Other than the simplicity and lower computational cost of this method our goal with

discretization has to do with storing training records in an index of manageable size, in

order to increase searching efficiency, as long as the number of partitions is

representative of the concept description. Partitioning attribute domains into si intervals

helps reducing tree size as well as in some cases allowing concept generalization. The

well-known loss of information problem derived from discretization is attenuated in our

case. The most important information for each sub-cell individually considered is its

class. With this respect, the only negative effect of this is class overlapping, which has

the net effect of postponing class membership in sub-cells as they increase their size of

component members.

As additional help to attenuate some loss of information due to discretization, we

keep class distribution information for semi exclusive values in a specific file as

explained later on Section 7.

It has also being related the equal width binning mechanism to a higher sensibility to

outliers [Dougherty, 1995]. To help with this, semi-exclusive intervals can be tuned

setting parameter M in Equation (3.22) to a somewhat larger threshold value.

4.2 The special case of categorical attributes

Many Machine Learning and Pattern Recognition methods require that input take the

form of numeric values. As Trie-Class uses a distance calculation for the extraction of

near neighbours to some unknown cell px, the presence of symbolic attribute types

represent a problem of its own. Symbolic values are values representing concepts that

cannot be ordered, and therefore, there is not an obvious distance between them. This is

4 Pre-processing Data Before Mining

 70

the case for instance for the letters of the alphabet, or concepts such as “ red”, “white ”

and “blue” (provided we do not consider their wave length values of course). Near

neighbours methods resort to special metric schemes to solve the similarity problem in

these cases, a problem central to pattern matching.

Many methods have been proposed in the literature to overcome this problem, such as

the Value Difference Metric (VDM) from [Stanfill, 1986], counting the features that

match as in [Towel, 1990], the PEBLS system that incorporate MVDM, a modified

version of VDM in [Cost, 1993]; the basic idea of the later being that two values of the

same attribute are similar if they give similar likelihood for all possible classifications.

Also, the Heterogeneous Euclidean Overlap Metric (HEOM) which basically attributes

binary values to distances depending whether two values of the same attribute are equal

or not equal, the Minimum Risk Metric (MRM) which directly minimizes the risk of

misclassification using conditional probabilities [Blanzieri, 1999].

In many cases applications symbolic attributes appear along with continuous

attributes. For this reason it is used a heterogeneous distance function, as is the case

with the software IB1, IB2 and IB3 [Aha et al., 1991; 1992] as well as the one used in

[Giraud-Carrier et al., 1995]. This function defines the distance between two values x

and y of a given attribute a as:

()
()

1,
,

,

 if x or y is unknown, else

d x y overlap(x,y) if a is nominal, elsea
rn_diff x ya

 
  =  
 
  

 (4.1)

When any of the attributes is unknown a maximal distance of 1 is returned.

The overlap function is defined as:

() 0,
,

1,
 if x = y

overlap x y
otherwise

 
=  

 
 (4.2)

and the range-normalized difference rn_diff is defined as:

4 Pre-processing Data Before Mining

 71

()_ ,
mina

a a

x y
rn diff x y

max

−
=

−
 (4.3)

Where maxa and mina are the maximum and minimum values respectively observed in

the training set for attribute a. The normalization serves to scale the attribute down to

the point where differences are most of the time less than one.

Overall, Trie-Class uses a heterogeneous distance calculation. The first one explained

in Section 3.7 search cell patterns close to the unknown cell px. The second one used

within the context of decision parameters, use a straightforward distance calculation

when comparing two already pre-selected cell patterns, which will be shown in Section

6.1.2.

For the case of symbolic attributes, Trie-Class uses a simple distance calculation. It is

based on conditional probabilities in order to determine the distance between categorical

attributes. As it was explained in Section 3.7, for the ith attribute belonging to the

unknown sub-cell qx = <qx
i-1, qx

i>, the problem consist in determining whether element

qx
i is closer to element k1 or element k2 both belonging to the set of sub-cells p = <qi-1,

k>.

If qx presents the same value of some existing element k, then distance is zero and

element k is selected. If not, Trie-Class uses the distance computation that we explain

next.

Definition 26. The distance between two categorical attributes vx
 and vi given the

class c of vi, depends on the probability of class c given value vx.

() ()
0, ,

(,)
1 | | , , , ,

x i

x i
x i x i

i i i

 if v v else
d v v

P c v label v c c c L v v s

 ==  − = ∈ ∈
 (4.4)

Expression P(c | v) expresses the conditional probability of class c given value vx and

it is calculated as the prior probability of c times the joint probability of c and v:

() () (),P c v P c P c v= ∩< (4.5)

The meaning of this distance calculation is simple: the larger the probability that vx is

associated to the class of vi, the shorter the distance between them. When this

4 Pre-processing Data Before Mining

 72

probability is zero, the distance is a maximum, i.e., equal to one. If the probability is the

maximum then distance is zero.

As can be seen, this distance depends on the Prior Probability of a given class,

represented as P(c), and the joint probability of value vx and the class associated with

value vi.

When comparing distances d(qx, k1|c1) and d(qx, k2|c2) where c1 and c2 represent the

known classes of k1 and k2, the distance calculation is indirectly calculated and restricted

only to the correlation of qx against classes c1 and c2.

The intuition behind this is simple. When choosing the next closest element for sub-

pattern qx, the only reference is the class associated with each of the two contending

members. Therefore, the “closest” neighbour will be the one where its class correspond

to the class that qx also better relates.

When the label associated with vi is unknown and labels(qi) > 1, Trie-Class resort to

one of the options of the general search case, which were described in Section 3.7. In all

other cases the algorithm uses Equation (4.1). This mechanism works better than the

simple overlap idea of Equation (4.4).

We tested for this effect datasets Adult, Annealing, German credit and Census, which

contain an important number of symbolic attributes. Classification performance when

considering distance as decision parameter did improve on average over 2.5% when

compared with the simple overlap distance for the same datasets.

Next we show a simple example of distance calculation for symbolic attributes as

done by Trie-Class.

Example 4.1

Suppose a dataset formed by multidimensional attribute vectors, and attribute Ai is

symbolic and its domain set consisting of Ai = {v1= “ blue”, v 2 = “red”, v 3 = “yellow” }.

The set of available classes in this dataset is L = {c1 = “A”, c2 = “B”, c3 = “C”}. Table

4.1 below shows prior class probabilities hypotheses and also joint probabilities for each

class given the value. These data was compiled using training set data.

Imagine we are given a new query value for sub-cell qx = (v3 = yellow, c = ?) with

unknown class. Using the search process Trie-Class comes up with two possibilities as

4 Pre-processing Data Before Mining

 73

the nearest sub-cells: q1 = (v1 = blue, c1), and q2 = (v2 = red, c2). The problem consist to

know whether value yellow is closer to value blue or red, i.e., whether distance d1(v3,v1)

is greater or smaller than distance d2(v3,v2).

Table 4.1 Class distributions by value for a symbolic attribute

Categorical values Class hypotheses

 c1 c2 c3
Prior class hypotheses P(c) 0.50 0.30 0.20 1.0
v1=blue 0.40 0.30 0.25
v2=red P(c�v) 0.24 0.04 0.45
v3=yellow 0.36 0.66 0.30
Class probability 1.00 1.00 1.00

Using values from Table 4.1 and applying Equation (4.1) we obtain the following

results:

d1(v3, v1) = (1 – 0.18) = 0.820 and d2(v3 ,v2) = (1 – 0.198) = 0.802.

So d1(v3, v1) > d2(v3, v2), value yellow is closer to value red than to value blue. Thus,

there is a greater likelihood that the class corresponding to value yellow is c2, which is

the class associated with value red.

4.3 Feature reduction and elimination

Data Mining techniques face the challenge represented by the so-called

dimensionality problem. Often, data is represented by datasets containing N instances

each of them formed by n features or attributes. Sometimes know as multivariate data, it

can be thought of as a (N x n) data matrix. The dimensionality n plays a significant role

in multivariate modelling. In text classification problems, web traffic, commercial

supermarket transactions or clustering of gene expression data, n can be as large as 103

or 104 dimensions and the amount of data needed according to density estimation theory

scales exponentially in n. This is the so-called “ curse of dimensionality” problem.

Fortunately, transaction data is typically sparse, meaning that only a small percentage of

the entries in the N x n matrix are nonzero. Taking advantage of this, the idea of using

subsets of items or itemsets has been developed in market basket analysis, which

4 Pre-processing Data Before Mining

 74

represent “ information nuggets” in large high -dimensional transaction datasets. Finding

frequent itemsets from a sparse set of transaction data is one solution for the problem as

studied by [Agrawal, 1993] and more recently in [Han, 2001].

Not only the number of attributes poses a formidable complexity problem but also the

fact that, not all attributes contribute equally to solve classification problems.

Within this context, two well-known problems arise when using decision tree

structures and instance-based algorithms for supervised learning, which are of interest to

us. Firstly, the attribute’s input order heavily determines the predicting skills of the

algorithm. The reason for this is that some attributes have more discrimination power

than others predicting the right class for the unknown instance. Choosing the wrong

order of attributes could move values apart in the hyperspace that otherwise would be

closer. For instance imagine than in a tree, the fifth attribute is the one with a larger

statistical correlation with a given class in the dataset under analysis. Two records with

identical values for attribute five, but having different values in the previous four

attributes would end quite distantly from each other in the hyperspace, misleading the

classification algorithm. For this reason, at input time when building the tree we want

attributes ordered by their discriminatory power with respect to class labels, as done for

instance in some rule induction algorithms [Quinlan, 1986] [Cover, 1967], [De

Mántaras, 1991].

Secondly, the presence of irrelevant attributes increases computational cost and can

mislead distance metrics calculations [Indyk, 2000]. This is particularly true for nearest

neighbour algorithms, which determine the class label of an unknown instance using the

geometric concept of proximity, which involves the notion of distance between points in

a n-dimensional space [Lee et al., 1984]. As the position of the instance is defined by

the value of its attributes, if these are not relevant, then the basic assumption is violated.

Based on these, attributes are characterized as relevant or irrelevant, in terms of their

degree of contribution to the classification hypothesis [Kohavi, 1997; Lebowitz, 1985]12.

The complexity of feature selection algorithms is related among other factors to the

number and quality of attributes. Searching most relevant attributes cannot be

exhaustive in many cases. The dimension of datasets is exponential in the number of

12 These authors still identify redundant attributes, a situation which we do not address here.

4 Pre-processing Data Before Mining

 75

attributes. Hence, verifying every other possible combination of best attributes is, in

many cases, out of the question [Lesh, 1998].

In this section we present a low computational and simple empirical algorithm for the

supervised learning task in order to:

• Establish a criterion to decide which attributes are relevant.

• Choose the best attribute input order for processing.

• To diminish classification algorithm complexity, as well as increasing or at

least preserving its predictive skills.

4.3.1 Ordering attributes

In general, our method ranks attributes by its capacity of predicting classes as in

[Gennari et al., 1989]. We measure this capability without directly taking directly into

consideration other attributes from the original sequence. Indirectly, inter-attribute

relationship exists; attribute values are not independent from the value of other

attributes in a given pattern, as is the case in most real life cell vectors.

We postulate that this capacity of influencing class prediction increases, when a given

attribute interval shows a significant frequency of values fully or predominantly

associated with one class as defined in Equation (3.22). In this sense, we soften the

Boolean definition found in [Kohavi et al., 1997].

How and how much significant the frequency of these type of patterns in a given

interval should be, and the way it could be used as a measure for attribute relevance is

the topic of the next sub-section.

4.3.2 Looking at sub-cells from the “clearest” viewpoint

Our objective is to find the most useful discriminative attributes with the purpose of

improving the classifier prediction accuracy [Guyon, 2001]. This heuristic criterion has

been used successfully before [Liu et al., 2000].

We have already stated in Section 3 that strong sub-cells with small values for i

(shorter sub-cells) where nlabels(qi) = 1, represent large areas of the data space related

to one class. If a new instance to be classified falls into one of these areas, its chances of

correct classification increase. Most of its neighbours will share the same label. For this

4 Pre-processing Data Before Mining

 76

reason, we are interested in looking at the entire data space from the viewpoint of

attributes with larger number of examples where classes are “visible ” directly from

them. Using this simple criterion would avoid endless combination of possibilities as

done in traditional attribute selection methods [Miller, 1990; Brodley et al., 1995;

Kohavi et al., 1997] among others.

In any dataset R, visibility relates to the problem of looking at the data space from the

viewpoint that allows a better view to existing classes. Take for instance the well-known

example of looking at four numbered tennis balls suspended in a three-dimensional

space as shown in Fig. 4.1. Suppose that the objective of the viewer is to be able to

distinguish the tennis ball numbers. Looking at that space from different angles

represented by the three bulb lights in Fig. 4.1, more or less ball numbers are

distinguish. All solutions lie in the hyperspace. Our problem consists in finding them13.

We consider being more relevant attributes allowing a better view of larger number of

sub-cells in terms of class membership. On Fig. 4.1, the view from “A” is the only one

that allows full visibility of the 4 ball numbers. This is the most interesting view if the

goal was to discover as much ball numbers as we could.

The shortest sub-cell contains only one component element is q1 = <p1, c>. If it does

relate to one class only, it means that larger areas of the hyperspace relate also to one

class label. And by the principle of continuity the probability of correctly classifying

new instances falling into these intervals also increase.

3

21

3 4

2

4

3

1

4

2

4
1

2

13

Fig. 4.1 Different views on the same set of solutions

C

A

A

B

BB

4 Pre-processing Data Before Mining

 77

To identify better views on the data space from the viewpoint of an attribute all of its

values are projected into a one-dimensional discretized space, as was shown in Fig. 3.1.

This corresponds to build the root node of a multi-way tree using one attribute. This

resembles the 1R classification system [Holte, 1993] although in this system the ranking

of features is based directly on error rates using each individual attribute as the sole

classification hypothesis. In our case we are interested in the total number of sub-cells

components found in semi-exclusive intervals define in Equation (3.22), for a given

attribute Ai and M values. Attributes showing more individual cells in semi-exclusive

intervals are also more relevant as calculated by variable G defined in Equation (3.24).

The intuition behind this is that trees formed using these attributes in top levels will

produce larger data areas associated with one class, helping to define early class

membership in the data hyperspace. Based on this, we can set attribute relevance as a

measure allowing attribute comparison as explained in the next section.

To avoid the effect of outliers, in the form of few cells laying in one interval related

to one class, a minimum number of records in one semi-exclusive interval can be set as

a constrain in Equation (3.22). For instance, [Holte, 1993] used 3 and 6 as minimum

existing values on his tests.

4.3.3 Reducing attribute numbers

Ranking attributes is done according with attributes relevance as we already

explained in Section 3.5. As we will show in our results (Section 5), doing this

improves the predictive accuracy of the classification algorithm.

Reducing the number of irrelevant attributes drastically reduces the running time of a

learning algorithm and yields a more general concept, easier to understand by the

domain expert. This reduction though, cannot be done without a cost. The trade-off is

done at the expense of losing some predictive accuracy. With this constrain in mind, our

goal is to find a minimum subset of attributes S’ such that when the classification

algorithm is applied accepting some error 0��ZH�FDQ�REWDLQ�D�QHZ�SUHGLFWLYH�DFFXUDF\�
T´ as expressed in Equation (4.6) on next page.

13 Thanks to Prof. Rafael Martinez from US/LSI for this remark.

4 Pre-processing Data Before Mining

 78

S’� S, that satisfies T’ b�7��� 0 . (4.6)

This new set S’ obtained from original list ß in Equation (3.25) will include only

relevant attributes discarding all others provided the accepted error 0 is respected. The

classification algorithm rebuilds the tree using the new sequence in S’ . At running time,

and using some user-user-defined error over the existing prediction value T a new T’

value is obtained. Error 0�is a function of cost and quality [Brodley, 1995]. If Equation

(4.6) is satisfied and (T’ – T) � 0, then S’ is adopted as the new set of attributes.

Otherwise, threshold value 3�should be reduced and list � rebuilt. As a result this will

increase the number of attributes in subset S’ and hopefully will also increase prediction

accuracy T’ diminishing 0�
Tables 4.2 and 4.3 show the effect of both attribute ordering and reduction and the

corresponding gain or loss in accuracy. In column (A) of Table 4.2 we show the new

order of attributes for each dataset after applying our ordering process. Relevant

Table 4.2 Average attribute reductions after compression

N. º Records

Nº Number
Attrib. Dataset Training Test

(A) New Attribute Order
Number represents original ordinal

number
(Bold face = attribute is relevant)

(B)
Relevant
Attributes

(%)

1 24 Hypothyroid 1598 1063 18,23,21,1,20,22,7,5,13,24,19,17,16,15,14,
12,11,10,9,8,6,4,3 41.7

2 24 Dermatology 218 140
20,22,27,29,6,12,8,25,33,34,24,15,10,31,26,
30,14,23,7,32,28,21,19,18,17,16,13,11,9,5,4,
3,2,1

57.6

3 33 Adult 28468 15060 3,9,14,2,4,5,7,8,13,6,1,10,11,12 71.4

4 13 Diabetes 462 306 5,6,2,7,4,8,3,1 75.0

5 12 Forest covert 15120 565892 1,10,5,6,4,12,8,7,9,3,11,2 83.3

6 12 Pendigits 7494 3498 6,12,3,7,11,4,2,15,5,14,16,8,1,10,9,13 87.5

7 16 Cancer–W. 407 273 7,2,1,8,3,9,4,6,5 100.0

 Average number of relevant attributes after reduction 73.8

4 Pre-processing Data Before Mining

 79

attributes are indicated in bold. The reduction rate in the number of attributes is shown

in column (B). On average, over a quarter of the number of attributes are found to be

irrelevant and could be eliminated, thus decreasing algorithm complexity and

consequently execution time and storage.

Next in Table 4.3 we show a clear improvement in classification accuracy results

after attribute ordering. The table shows error rates produced when using the original

order of attributes (A), results when attributes are ordered (B) and results for the case

when only relevant attributes were used (C).

We observe a decrease in error rate in all seven cases. The average decrease in error

rate of 4.3% in Table 4.3 is similar to results for different datasets where this technique

was applied previously reported in [Serendero et al., 2001].

As for attribute reduction, although not conclusive due to experiment size, variation

in error rate is 3% greater after attribute reduction (C-B). This fact seems related to the

intensity of attribute “pruning ” (see Table 4.2).

Nevertheless, in 43% of cases, reducing the number of attributes increases predictive

accuracy, meaning that our algorithm to determine attribute relevance works well.

Attributes at the list’s end are indeed irrelevant for predictive purposes

In general, these figures confirm that gain in predictive accuracy is significant and

steady when applied to different data domains. It also confirms the generally accepted

need for ordering attributes when tree structures and instance-based methods are used.

Table 4.3 Variation in predictive error rate after ordering and reduction in the number of

attributes

 Classification Error Rates (%) Absolute (%)
variation due to:

Nº Datasets Original (A) Ordered (B) Reduced(C) Order
 (B-A)

Reduction
 (C-B)

1 Forest covert 28.2 20.5 23.9 -7.7 +3.4
2 Dermatology 10.2 4.5 6.5 -5.7 +2.0
3 Diabetes 27.8 22.2 22.5 -5.6 +0.3
4 Pendigits 9.3 5.3 2.0 -4.0 -3.3
5 Cancer –W. 5.5 2.2 1.8 -3.3 +0.4
6 Adult 18.9 16.0 10.6 -2.9 -5.4
7 Hypothyroid 1.6 0.7 1.1 -0.9 -0.4
 Average -4.3 -3.0

4 Pre-processing Data Before Mining

 80

As expected, a large reduction in the number of attributes results in greater error rates

although this could be user controlled by reducing attributes up to a maxim error value 0�
accepted as stated in Equation (4.4). In the face of large datasets with high dimensions

where traditional feature reduction methods represent very high computational costs,

this method can be a fair solution.

 - 81 -

5 Evaluation and Results

In this section, we present experiments to support the claim that Trie-Class compares

favourably over a wide variety of induction algorithms tested on various data domains.

We performed classification experiments with Trie-Class on several datasets and

compared them against other classifiers in terms of accuracy and error figures, as we did

in [Serendero et al., 2001 and 2003]. Additionally we use the well-known tool bench

“WEKA” [Witten et al., 2000] to test selected typical classifiers running on our own

hardware. The selection of classification tools used for testing is rather arbitrary and it

was done with the purpose of offering a comparison with the most typical and different

techniques.

In presenting our results form these two different sources we use the same datasets.

These datasets include from 2 to 10 classes, from 150 to half a million instances of

available data and from four up to 56 attributes. All types of data can be found in these

datasets, from discrete to symbolic, thus being somehow representative of the many

available existing data for research in the public domain. Datasets used for testing Trie-

Class come from public domain in the web, mainly from the U.C.I., [Murphy, 1994].

In the rest of this Section, we provide a brief description of datasets used in our

experiments, the evaluation method to obtain results and present our results from two

different sources.

5.1 Data used in experiments

We next describe briefly each one of the datasets used in our experiments. They were

manipulated to fit our algorithm from the original state in which we obtain them from

the Web. The explanation that follows was taken from the data owners or researches

using the data themselves.

5.1.1 Adult dataset. (Census USA 1994)

B. Becher extracted data for this dataset from the 1984 USA Census Bureau

Database. Found at UCI repository this database was given by R. Kohavi and B. Becker,

and first quoted by [Kohavi, 1996]. It contains 45,222 instances after removing

5 Evaluation and Results

 82

unknown values. Around 65% percent of these are used for training and the remaining

35% for testing. There are fourteen (14) attributes, most of them symbolic or categorical

and two (2) classes: people earning up to fifty thousand dollars a year or more. The

problems consist in determining whether a person earns over USD$50,000 per year.

Classes are labelled as ‘>50K’ and ‘<50H’ and their probabil ity distribution is:

 Probability for label '>50K': 23.93% / 24.78% (without considering unknowns).

Probability for label '<=50K': 76.07% / 75.22% (without considering unknowns).

5.1.2 Annealing dataset

Donated by David Sterling and Wray Buntine, this database contains 798 instances

and 38 Attributes. Out of these, six are continuously valued, three are integer-valued

and the remaining twenty-nine are nominal-valued. There is six classes with one of

them holding over 80% of records.

This dataset contains many '-' values literally defined by the authors as ‘not

applicable’ , which are different from ‘missing values’, indicated with a ‘?’ Therefore,

they can be treated as legal discrete values, which we have done in the case of all

twenty-nine symbolic attributes. For a detail of the used dictionary definition, see

Appendix II.

There are also many missing attribute values in this dataset. We convert them all to

the mean value of each class distribution group.

5.1.3 Breast Cancer (Wisconsin) dataset

This dataset is one of several from the UCI repository [Murphy, 1994], and it was

originally obtained from the University of Wisconsin Hospitals, Madison from Dr. W.

H. Wolberg [Mangasarian, 1990]. There are originally 699 instances but we have

eliminated 16 for missing some attribute values, so only 683 are used. Out of ten

attributes, the first one is just a reference number so only nine (9) attributes are used. All

of them are numeric with an equal domain value ranging from one to ten. There are two

possible class labels: benignant or malignant and they have a distribution of 458

instances (65.5%) for the benignant class and 241 instances representing 34.5% for the

malignant class.

5 Evaluation and Results

 83

5.1.4 Dermatology dataset

This database is from the UCI repository,, and was originally owned by Nilsel Ilter

and H. Altay Guvenir. The database contains six classes, 366 instances and 34

attributes, one of which is nominal.

The aim is to determine the type of Eryhemato-Squamous Disease. The differential

diagnosis of this disease is a real problem in dermatology. They all share the clinical

features of Erythema and scaling, with very little differences.

5.1.5 Diabetes (Pima Indian) dataset

This dataset was originally prepared for the use of participants for the 1994 A.A.A.I.

Spring Symposium on Artificial Intelligence in Medicine. Original donor is V. Sigillito

from the National Institute of Diabetes and Digestive and Kidney Diseases, USA.

There are 768 instances on this dataset where all patients were females at least 21

years old of Pima Indian heritage. Each instance has eight attributes. There are two

possible classes. The diagnostic investigates whether the patient shows signs of diabetes

according to World Health Organization criteria or not. There are no missing attribute

values.

Class Distribution is: No diabetes: 500 (65.1%). Positive for diabetes: 268 (34.9%).

5.1.6 Forest Cover type dataset

Original donors of this database available since 1998 are from the Forest Service and

the University of Colorado, USA. Owners are J. A. Blackard and the Colorado State

University.

There are 581,012 instances in this database, each representing a 30 x 30 meters

square cell of undisturbed forest. Each of these holds 12 attribute measures and 54

columns of data. Ten of these attributes are quantitative variables, four are binary

(wilderness areas), and forty represent binary soil type variables.

Natural resource managers responsible for developing ecosystem management

strategies require basic descriptive information including inventory data for forested

lands to support their decision-making processes. However, managers generally do not

have available data from neighbouring lands outside their immediate jurisdiction. One

5 Evaluation and Results

 84

method of obtaining this information is using predictive models. Thus, the problem

consists in recognizing various forest cover types as classes among the eight existing

groups: Spruce/Fir, Lodge pole Pine, Ponderosa Pine, Cottonwood/Willow, Aspen,

Douglas fir and Krummholz. Class distribution is largely dominated by two of these

classes, holding around 80% of the instances among themselves (Spruce-Fir and Lodge

pole Pine).

We use a stratified sample of around 56,800 records with splits in 60 and 40% for

training and testing datasets as shown in Table 5.1.

5.1.7 Heart disease dataset (Cleveland).

From UCI repository, this database is from 1998 and the donors and responsible for

the data collection are:

1. Hungarian Institute of Cardiology. Budapest: A. Janosi, M.D.

2. University Hospital, Zurich, Switzerland: W. Steinbrunn, M.D.

3. University Hospital, Basel, Switzerland: M. Pfisterer, M.D.

4. V.A. Medical Centre, Long Beach and Cleveland Clinic Foundation: R. Detrano,

M.D., and Ph.D.

This database contains 303 cases, including 13 attributes (4 cont, 9 nominal). There

are seven vectors with missing values. Only two classes used out of the original five

(no, degree 1, 2, 3, 4). Class distribution: 164 (54.1%) no, 55+36+35+13 yes (45.9%)

with disease degree 1-4. We use all 303 vectors replacing all missing values with the

mean value of their class group.

5.1.8 Heart disease Statlog

Donated by R. King among a group of other databases, this particular version of the

heart disease dataset contains 270 instances with 13 attributes each, (extracted from a

larger group of 75), Among them, there are six real continuous values, three ordered,

one ordered and three nominal or symbolic. There are no missing values. Out of the 270

instances, 150 plus 120 observations were selected from the 303 cases of the Cleveland

Heart database.

There are two classes to be predicted: Absence or presence of heart disease in

patients.

5 Evaluation and Results

 85

5.1.9 Hypothyroid dataset

This dataset originally used by Quinlan in the case study of his article "Simplifying

Decision Trees" (International Journal of Man-Machine Studies (1987) 221-234)

contained 3772 learning and 3428 testing examples. There are 21 attributes on each

instance, out of which 15 are binary and 6 continuous. There are three possible classes

and the problem is to determine whether a patient referred to the clinic is hypothyroid.

These classes are: normal (not hypothyroid), hyper function and subnormal functioning.

Because 92 percent of the patients are not hyperthyroid, a good classifier must be

significantly better than 92%. As we show later in this section, in our case this figure is

99.3%. All binary attribute fields with missing values were conserved as legitimate

symbolic values. These correspond to attributes numbers: 2, 5 till 17 and 19th.

5.1.10 Iris dataset

From Fisher, (1936), this is one of the best-known databases to be found in the area

of pattern matching. The data set contains three classes of 50 instances each, including

four attributes. Each class refers to a type of iris plant. One class is linearly separable

from the other two and these are not linearly separable from each other.

5.1.11 Pen-Based Recognition of Handwritten Digits: “pendigits” dataset

Donors of this dataset are E. Alpaydin and F. Alimoglu from the Department of

Computer Engineering at Bogazici University, Istanbul, Turkey. There are 10,992

instances in this dataset, each with sixteen (16) attributes and ten (10) classes. The

authors have used 7494 instances for training and validation and 3498 instances for test.

All 16 attributes are integers in the range 0 to100.

The database consists of a collection of 250 samples from 44 writers. The samples

written by 30 writers are used for training, cross-validation and writer dependent testing,

and the digits written by the other 14 are used for writer independent testing. A

WACOM PL-100V pressure sensitive tablet with an integrated LCD display and a

cordless stylus are used to collect handwriting samples. Each writer is asked to write

250 digits in random order inside boxes of 500 by 500 tablet pixel resolution. Written

digits are represented as constant length feature vectors.

5 Evaluation and Results

 86

5.1.12 Satellite image dataset (STATLOG version)

The Statlog databases are a subset of the datasets used in the European Statlog project

and the original title of them is: Statlog Databases. Donors are R. D. King and the

Department of Statistics and Modelling Science, University of Strathclyde, Glasgow,

Scotland.

The databases available here were in used in the European Statlog project, which

involves comparing the performances of machine learning, statistical, and neural

network algorithms on data sets from real-world industrial areas including medicine,

finance, image analysis, and engineering design.

The Landsat Satellite database consists of the multi-spectral values of pixels in 3x3

neighbourhoods in a satellite image, and the classification associated with the central

pixel in each neighbourhood. The aim is to predict this classification, given the multi-

spectral values. In the sample database, the class of a pixel is codified as number.

There are 6,435 instances in this dataset, where 4435 instances were used for training

and the remaining 2000 cases were used for test. There are 36 semi-continuous

attributes with numeric values ranging from zero to 255. There are six decision classes:

1, 2, 3, 4, 5 and 7.

The original database was generated from Landsat Multi-Spectral Scanner image

data. The sample database was generated taking a small section (82 rows and 100

columns) from the original data. One frame of Landsat MSS imagery consists of four

digital images of the same scene in different spectral bands.

The database is a small sub-area of a scene, consisting of 82 x 100 pixels. Each line

of data corresponds to a 3x3 square neighbourhood of pixels completely contained

within the 82x100 sub-area. Each line contains the pixel values in the four spectral

bands (converted to ASCII) of each of the nine pixels in the 3x3 neighbourhood and a

number indicating the classification label of the central pixel. In each line of data the

four spectral values for the top-left pixel are given first followed by the four spectral

values for the top-middle pixel and then those for the top-right pixel, and so on with the

pixels read out in sequence left-to-right and top-to-bottom. Thus, the four spectral

values for the central pixel are given by attributes 17,18,19 and 20, which are the

attributes suggested by the authors to build predictive models.

5 Evaluation and Results

 87

5.1.13 German credit dataset

This dataset is a donation of Dr. H. Hofmann, from the Institute of Statistics, at the

University of Hamburg, Germany. There are 1000 instances on this database. Two

datasets are provided. The original dataset contains categorical/symbolic attributes.

There exists also a version with numeric attributes for those classifiers that cannot

handle categorical attributes. This file has been edited and several indicator variables

added to make it suitable for this purpose. Several attributes such as attribute 17 are

coded as integers. This was the form used by Statlog. There are 20 attributes (7

numerical and 13 categorical) in the original version, whereas are 24 attributes in the

numeric version.

The problem in this dataset consists in correctly classifying bank creditors as “bad ”

or “good” . The dataset requires the use of a cost matrix, shown below

 1 2

 1 0 1

 2 5 0

(1 = Good, 2 = Bad)

The rows represent the actual classification and columns represent the predicted

classification. In this dataset, it is worse to class a customer being good when in fact is

bad, than to class a customer as bad when it is good.

5.2 The evaluation method used by Trie-Class

The method to evaluate our classification algorithm’s predictive accuracy, consists in

repeatedly splitting of the evaluation data * into two mutually exclusive sets: Rh

training and Rt test sets in 6/10 and 4/10 proportions respectively carrying both of them

approximately the same class distribution as the one observed for the whole population

(see Fig.5.1).

We do this applying the stratified sampling strategy. One first pass over the

evaluation data is done to obtain class distribution figures by copying records into

subsets of the same class, thus creating as many subsets as classes exist. Out of each one

5 Evaluation and Results

 88

of these, we randomly pick a subset of records without replacement, which amount

according to their class distribution proportion calculated as:

{ }()() (/100) (/100)
ii TSample R Sclass N= × × (5.1)

Function Sclass (i) returns the number of instances on a given class subset. The total

size of the sample is then given by:

{ }()# iTSample r Sample= ∈ (5.2)

Tsample corresponds to the size of the training set. All complementary records to

TSample in N go into the test set.

This whole process is repeated 10 times. Each time, the classifier is rebuilt from

scratch and trained again on a new training set. Estimating accuracy is done using once

the new test set as input. Average mean error and standard deviation values are

calculated from these runs.

 An example of stratified sample is shown in Table 5.1. It corresponds to the forest

cover type dataset [Murphy, 1994]. This file contains 581,012 records and seven

classes. Out of that total we have taken a sample of around 10% of the global population

containing 56,800 records, with approximately the same class distribution.

Database

�	��

� ��� ���

�������

���������� �"!#!
$"%�&�$�'�($

Class
distribution

)+* ,"-�-/.10"243
*

576
8#9�:�;
<�= >�<�>�= ?A@ >4B�C�?�DEGF4H F�I�JAK L�M N O�P�Q�R�S�T U V

W7X4Y�Z"[\] ^ _`Ga�bdc�e f gih"j
Sample(1)

5 Evaluation and Results

 89

Fig. 5.1. Flowchart for training and test sample subset selection

As shown in Table 5.1, the stratified sample technique preserves identical class

distribution in the training file if compared with the distribution in the entire population.

Table 5.1 Stratified sample characteristics in forest covert dataset

 Forest covert dataset Typical training file Sample size
Class distribution Size (recs.) % Size % Size %
Spruce fir 211,840 36.5 20,700 36.5 16,642 48.1
Lodgpole Pine 283,301 48.8 27,700 48.8 12,451 36.4
Ponderosa Pine 35,754 6.2 3,521 6.2 1,875 5.5
Cottonwood/Willow 2,747 0.5 284 0.5 176 0.5
Aspen: 9493 1.6 908 1.6 550 1.6
Douglas-fir 17,367 3.0 1,700 3.0 1,039 3.0
Krummholz 20,510 3.5 1,988 3.5 1,178 3.4
TOTAL 581,012 56,800 34,153

5.3 Comparison of results with other classifiers

As already mentioned, we present our results in two ways depending on their source.

For a larger number of classifiers we used figures from the bibliography. The idea in

this case is to cover results for a large spectrum of classifiers, which sometimes are

difficult if not impossible to obtain and experiment. This method might not be entirely

correct from a statistics viewpoint. In fact, we do not control the testing conditions

under which these results were obtained, such as possible differences in hardware, the

sample selection method, the percentages of data records used for training and testing,

the treatment to missing values as well as differences in evaluation methods under

which results are presented. For this reason, we present a second set of results obtained

after carrying experiments in our own hardware14, using the well-known benchmark

“WEKA” [Witten et al., 2000].

5.3.1 Results using figures from the bibliography

We present next tables with results for classification tools taken from various sources

in the bibliography, namely [Murthy, 1994], [Murthy, 1996], [Domingos, 1996],

14 A PC with a 32-bit architecture, nominal speed of 300Mhz, 128 MB of available RAM running under Windows 98.

5 Evaluation and Results

 90

[Quinlan, 1998], [NCU, 2000], [Liu, 2000], [Li, 2000], [Riquelme, 2000], [Bologna,

2000], [PMSI, 2001] and [Collobert, 2001].

With respect to these data, we tried to present the best possible results for each

classifier found on the available sources. These results are presented in order by their

error predictive figure on the test set, indicating the source on the right-hand column.

The error rate in accuracy is calculated as the error percentage classifying records from

the test set. On each table, the results include our own classifier for comparison

purposes. Results were obtained applying a stratified ten-fold cross-validation

evaluation using approximately 60% for the training set and 40% for the test set, as

described in Section 4.1.6. We indicate the mean value out of the ten runs, including the

corresponding standard deviation.

5 Evaluation and Results

 91

Table 5.2 Adult dataset: Error Rate in predictive models

Method Error-rate (%) Reference
FSS-Naïve-Bayes 14.1 UCI
NBTree 14.1 UCI
C4.5-auto 14.5 UCI
IDTM- (Decision table) 14.5 UCI
HOODG 14.8 UCI
C4.5-rules 14.9 UCI
SVM 15.0 Zadrozsny, 2002
C4.5 15.5 UCI
Voted-ID3- (0.6) 15.6 UCI
CN2 16.0 UCI
Naive-Bayes 16.1 UCI
Voted-ID3- (0.8) 16.5 UCI
T2 16.8 UCI
Saxon 17.2 PMSI, 2001
1R 19.5 UCI
NN (3) 20.4 UCI
Trie-Class 10.6 ± 1.2 Ours (1)

(1) Using only the following relevant attributes taken from its original order: 11, 12, 6, 10, and 1 in

that order.

Table 5.3 Annealing dataset: Error Rate in predictive models

Method Error Rate (%) Reference
PEBLS 1.2±. 8 Domingos, 1996
MsCBA+Boosted C4.5 1.4 Liu, 2000
MsCBA 2.1 Liu, 2000
RISE 2.6±. 9 Domingos, 1996
NB 2.7 Liu, 2000
LB 3.6 Liu, 2000
CBA 3.6 Liu, 2000
Boosted C4.5 4.3 Liu, 2000
RIPPER 4.6 Liu, 2000
C4.5 (AdaBoost Ensemble) 4.9 [Quinlan, 1998]
k-NN, k=1 7.5 Riquelme, 2000
C4.5+NB 7.8 Liu, 2000
Trie-Class 2.3± 0. 3 Ours

5 Evaluation and Results

 92

Table 5.4 Wisconsin Breast Cancer: Error Rate in predictive models

Method Error Rate (%) Reference
FSM 1.7 NCU, 2001
MsCBA+Boosted C4.5 2.2 Liu, 2000
NB 2.4 Liu, 2000
3-NN stand Manhattan 2.9 NCU, 2001
21-NN stand. Euclidean 3.1 NCU, 2001
DIMLP 3.3 Bologna, 2000
OC1 3.8 ± 0.3 Murthy, 1996.
C4.5 4.7 ± 2.0 Murthy, 1996
CART-LC 4.7 ±0.6 Murthy, 1994
CART-AP 5.0 ± 1.6 Murthy, 1994
RIAC (prob. inductive) 5.0 Hamilton et. al.
k-NN (k=7) 25.8 Riquelme, 2000
Trie-Class 1.5 ± 0. 2 Ours

Table 5.5 Dermatology dataset: Error Rate in predictive models

 Method Error Rate (%) Reference
DIMLP 3.3 Bologna, 2000
C4.5-1 3.9 Bologna, 2000
C4.5-2 4.1 Bologna, 2000
C4.5-3 4.8 Bologna, 2000
MLP 4.9 Bologna, 2000
LDA 34.9 Bologna, 2000
Trie-Class 4.5 ± 0.3 Ours

Table 5.6 Pima Indian Diabetes: Error Rate in predictive models

Method Error Rate (%) Reference

MsCBA+C4.5+NB 22.0 Liu, 2000
Logdisc 22.3 NCU, 2001
Incnet 22.4 NCU, 2001
DIPOL92 22.4 NCU, 2001
SMART 23.2 NCU, 2001
GTO DT (5 x CV) 23.2 NCU, 2001
DIMLP 23.3 NCU, 2001
LDA 23.6 NCU, 2001
k-NN, k=7 24.7 Riquelme, 2000
C4.5 (Rel. 8) 25.4 ± 0.3 Quinlan, 1996
Trie-Class 18.5 ±1.6 Ours

5 Evaluation and Results

 93

Table 5.7 Forest cover: Error Rate in predictive models

Method Error Rate (%) Reference
HISURF 13.0(*) Hegland, 2000
One SVM 16.8 Collobert, 2001
C4.5 29.2 Chou et al., 2000
Neural Network (back prop.) 30.0 J. Blackard
LDA 42.0 J. Blackard
Trie-Class 20.5 ± 2.5 Ours

(*) Result obtained on the evaluation set

In [Garcke, 2002] 93.7% in accuracy is reported for this dataset, but this is done

considering 10 attributes, using the evaluation set and for only 1 class: Ponderosa Pine.

For this reason, we did not include it.

Table 5.8 Heart disease, Cleveland: Error Rate in predictive models

Method Error Rate (%) Reference
MsCBA+Boosted C4.5 10.2 Liu, 2000
IncNet 10.0 NCU, 2001
28-NN, stand, Euclidean, 7features 14.9 ± 0.5 NCU, 2001
Fisher discriminant analysis 15.8 NCU, 2001
LDA 15.5 NCU, 2001
25-NN, stand. Euclidean 16.4 ± 0.5 NCU, 2001
16-NN, stand. Euclidean 16.0 ± 0.6 NCU, 2001
FSM82.4 - 84% on test only 16.0 NCU, 2001
Naïve Bayes 16.6 – 17.5 NCU, 2001
KNN, k=7 17.8 Riquelme, 2000
C4.5 tree 21.5 Liu, 2000
Trie-Class 10.8± 0.2 Ours

A total of 303 records were used for the Heart disease, Cleveland dataset. Four

attribute values labelled ”?” from original attribute Nº 12 and 2 from attribute Nº 13

were converted to its mean values.

5 Evaluation and Results

 94

Table 5.9 Statlog Heart disease: Error Rate in predictive models

Method Error Rate (%) Reference
LDA 16.4 Bologna, 2000
Naïve Bayes 16.4 NCU, 2001
TAN 16.7 Li, 2000
DIMLP 16.9 Bologna, 2000
MsCBA+C4.5+NB 17.0 Liu, 2000
MsCBA+C4.5 17.4 Liu, 2000
MLP 17.5 Bologna, 2000
DeEPs 17.8 Li, 2000
MsCBA 18.1 Liu, 2000
KNN, k=11 18.5 Riquelme
CBA 18.5 Liu, 2000
C4.5 tree 21.8 Liu, 2000
IB1c 26.0 NCU, 2001
Trie-Class 18.8±1.7 Ours

Table 5.10 Hypothyroid dataset: Error Rate in predictive models

Method Error Rate (%) Reference
C4.5-3 0.4 Bologna, 2000
C4.5-1 0.4 Bologna, 2000
RIPPER 0.8 Liu, 2000
NB 1.5 Liu, 2000
DIMLP 1.6 Bologna, 2000
CBA 1.6 Li, 2000
DeEPs(dynamical B) 1.7 Li, 2000
CN2 1.7 ± 0.5 Domingos, 1996
MLP 2.15 Bologna, 2000
RISE 2.5 ± 0.4 Domingos, 1996
LDA 4.15 Bologna, 2000
Trie-Class 0.7 ± 01 Ours

5 Evaluation and Results

 95

Table 5.11 Iris dataset: Error Rate in predictive models

Method Error Rate (%) Reference
MsCBA + Boosted C4.5 2.7 Liu, 2000
C4.5 3.7 Li, 2000
DeEPs (B = 12) 4.0 Li, 2000

OC1 5.3 ± 3.1 Murthy, 1996
RIPPER 5.3 Liu, 2000
LB 5.3 Liu, 2000
msCBA 5.3 Liu, 2000
CART-LC 6.5 ± 2.9 Murthy, 1996
OC1-AP 7.3 ± 2.4 Murthy, 1996
CART-AP 6.2 ± 3.7 Murthy, 1996
CBA 7.1 Li, 2000
Trie-Class 2.1 ± 0.3 Ours

Table 5.12 Pendigits dataset: Error Rate in predictive models

Method Error Rate (%) Reference

DeEPs (B = 12) 1.8 Li, 2000

k-NN (k = 3) 2.2 Murthy, 2001
k-NN (k = 1) 2.3 Murthy, 2001
C4.5 (full) 3.4 Chawla, 2001
Loss-based (L(y) = -y) 7.2 Zadrozsny, 2001
Trie-Class 2.4 ± 0.2 Ours

Table 5.13 Satellite image dataset (STATLOG): Error Rate in predictive models

Method Error Rate (%) Reference
k-NN 9.4 NCU, 2001
k-NN, k=2,3, Euclidean 9.7 NCU, 2001
Boosted C4.5 10.3 Liu, 2000
LVQ 10.5 NCU, 2001
DeEPs 11.5 Li, 2000
 MsCBA+Boosted C4.5 12.3 Liu, 2000
RBF 12.1 NCU, 2001
TAN 12.8 Li, 2000
Alloc80 13.2 NCU, 2001
LB 13.6 Liu, 2000
C4.5 14.8 Li, 2000
CBA 15.1 Li, 2000
Trie-Class 10.1± 0.4 Ours

5 Evaluation and Results

 96

Table 5.14 German Credit dataset. Error Rate in predictive models

Method Error Rate (%) Reference
CBA 28.5 Liu, 2000
C4.5 tree 28.4 Liu, 2000
MsCBA+Boosted C4.5 24.8 Liu, 2000
RIPPER 27.8 Liu, 2000
LB 24.7 Liu, 2000
NB 25.9 Li, 2000
SORES 32.9 Duntsch, 1998
Naive Bayes 25.3 Friedman, 1996
Trie-Class 25.9 ± 1.5 Ours

5.3.2 Results from experiments done in our own hardware

Results showed in this section were obtained running in our own hardware15 some

selected classifiers using Weka. This is an open-source machine learning workbench

implemented in Java developed at the University of Waikato, New Zealand [Witten et

al, 2000], which is freely available on the World Wide Web at the following address:

(www.cs.waikato.ac.nz/ml/weka).

The Weka experiment environment is a comprehensive tool for machine learning and

data mining. Mainly directed to classification problems, this software implements old as

well as new algorithms using the object-oriented Java programming language, and thus

it allows the incorporation of other classification software using its Java class hierarchy.

The tool also implements regression, association rules and clustering algorithms.

Although is possible to run the environment from the command line, the system

includes a GUI that provides the user with more flexibility and easiness of use.

Evaluation methods include leave-one-out and cross-validation among others.

We present results for three main classifiers. For all cases, we calculate error rate

percentages and standard deviation (s) against the test set using the 10-fold cross-

validation evaluation method. All classifiers were executed against exactly the same

datasets previously selected and converted to WEKA format “arff”.

15 A regular PC, Pentium II at 500Mhz, with 255Mb of main memory.

5 Evaluation and Results

 97

 The first classifier for which we show results is IBk, a nearest neighbour classifier

where we set parameter k = 2, for comparison purposes with our own implementation

that extracts also two best close neighbours. Other parameter settings for this and other

classifiers are shown in Annex 2. The second one is Weka own improved version of

Quinlan’s C4.5 called J4.8 which we used with confidence factor of 0.25 and 2

minimum number of objects. Actually, according with its authors, J4.8 implements a

later and slightly improved version of C4.5 [Witten et al., 2000]. The third classifiers

used is a version of Naive Bayes that we include because this is one of the classical

classifiers whose accuracy figures can be used as a reference.

The last classifier used for comparison purposes is SMO, a version of a Support

Vector Machine classifier. Because SMO could only handle two-classes datasets, we

show only results for datasets where this was the case.

5 Evaluation and Results

 98

Table 5.15 Comparison in Classifiers accuracy using Weka against Trie-Class

 Datasets Percentage error and standard deviation in Classifiers

Nº Name #inst,attrib,class Naive Bayes IBk(1) J4.8 SMO Trie-Class

 Error s Error s Error s Error s Error s

1 Adult 45221, 14, 2 17.4 0.52 20.9 0.4 14.7 0.48 15.0 0.69 10.6 0.51

2 Annealing 998, 38, 6 13.5 3.45 0.8 0.76 1.6 0.94 - - 2.3 0.30

3 Breast cancer W 699, 9, 2 4.0 2.31 4.7 3.63 5.9 3.13 3.0 2.73 1.5 0.20

4 Dermatology 358, 34,6 2.5 1.58 4.5 4.21 4.2 1.99 - - 4.5 1.11

5 Pima Diabetes 768, 8, 2 24.2 3.61 27.9 4.13 25.3 3.0 22.5 4.70 18.5 2.60

6 Forest cover (2) 53889, 12, 9 29.8 0.40 13.3 0.38 19.4 0.33 20.5 0.51

7 Heart Clev. 303, 13, 2 15.5 6.69 23.8 6.62 21.8 7.82 15.6 5.95 10.8 0.22

8 Heart Statlog 270, 13, 2 14.8 7.20 25.6 7.50 25.6 8.81 15.9 7.42 18.8 1.73

9 Hypothyroid 7200, 21, 3 4.8 0.64 8.7 0.79 0.5 0.38 - - 0.7 0.33

10 Iris 150, 4, 3 4.0 4.66 4.8 4.65 4.7 4.50 - - 2.1 0.25

11 Pendigits 10992, 16,10 14.2 1.41 0.6 0.30 3.4 0.69 - - 2.4 0.75

12 Satimage 6435, 36, 6 20.7 1.17 17.7 1.18 15.4 1.36 - - 10.1 1.21

13 German credit 1000, 20, 2 25.1 3.90 27.2 5.77 32.0 4.26 24.0 4.48 25.9 1.94

Note: All error results expressed in percentage of instances in error from the test set. Lower error rates for each dataset are indicated in bold face.
(1) For all cases we use the IBk classifier with k =2, resembling our own case..
(2) WEKA did not run on the original full size dataset.

5 Evaluation and Results

 - 99 -

Classification results in Table 5.15 are in general similar to those in the bibliography

when comparing error values exhibited by classifiers from both sources and the same

datasets. On average, relative percentage differences amount to a mere 4.9%. In

addition, classifiers results from both sources show the same relative order of accuracy

among themselves when classifying the same dataset. The first of these two aspects

can be observed when comparing results obtained for the popular classifier C4.516 from

these two different sources, as shown in Table 5.16.

Table 5.16 Comparing C 4.5 Error Rates from two sources

Nº Datasets Origin of error figures Relative
 Name Weka (ours) Bibliography Difference (%)
1 Adult 14.7 14.5 1.4
2 Annealing 1.6 1.4 12.5
3 Breast cancer W 5.9 4.7 20.3
4 Dermatology 4.2 3.9 7.1
5 Pima Diabetes 25.3 25.4 -0.4
6 Forest cover 19.4 29.2 -50.5 (1)
7 Heart -Cleveland 21.8 21.5 1.4
8 Heart Statlog 25.6 21.8 14.8
9 Hypothyroid 0.5 0.4 20.0
10 Iris 4.7 3.7 21.3
11 Pendigits 3.4 3.4 0.0
12 Satimage 15.4 14.8 3.9
13 German credit 32 28.4 11.3
 Mean relative percentage difference 4.9

(1) This result was obtained training and testing only on 10% of the original file size. As explained

before, we could not manage to put Weka to run against its full version.

A third aspect, although secondary is the fact that in all cases but three classifier

results from the bibliography are better than results from their counterparts running

under Weka. This is normal because we did run C4.5 from Weka using the default

options provided and did not tune up its parameter values, as is usually the case with

results presented in the bibliography.

Consequently, in this particular case, we believe that it is legitimate to extend the

comparison from our own experiments to those of the bibliography for completeness

16 The commercial implementation receives the name of C5.0

5 Evaluation and Results

 100

since it does not alter significantly the relationship in terms of accuracy between ours

and other classifiers.

We present next in Table 5.17 execution times for the very same cases indicated in

table 5.16. This represents a straight and simple measure of algorithm complexity taken

to build and to execute these classifiers.

Table 5.17 Classifiers execution total time for each individual fold using Weka.

Classifiers Build + execution time in wall clock seconds Dataset
Name SMO IBk J4.8 Naive Bayes Trie-Class
Adult 20602 6304 65.3 167 309
Annealing 3.8 3.92 0.82 45
Breast cancer W 0.35 3.91 0.1 0.04 0.5
Dermatology 0.65 0.19 0.07 0.3
Pima Diabetes 0.77 0.48 0.18 0.02 2
Forest covert 8220 817 50 5220
Heart Cleveland 0.82 0.18 0.07 0.01 0.5
Heart Statlog 0.68 0.18 0.09 0.03 0.5
Hypothyroid 613.8 5.8 0.24 260
Iris 0.1 0.11 0.06 0.5
Pendigits 325 10.21 1.42 45
Satimage 15.9 1.59 0.11 8
German credit 7.49 2.77 3.1 0.044 5

Execution time in Trie-Class is largely better than in traditional Nearest Neighbour

algorithms, one of the objectives in creating this tool. Although we observe larger

execution time figures compared with J4.8 in nine out of thirteen datasets these times

are under 10 seconds.

5.4 Performance Conclusions

Our results shows that on average Trie-Class performs as good as several of the

leading classifiers reported here, whether this comparison is done against classifiers

running in our test bench or whether we compare with those results from the

bibliography. In particular this is true with respect to the landmark classifier C4.5

[Quinlan, 1986] and the instance-based learning k-NN algorithm [Aha, 1991].

Table 5.18 Error Rate comparison between Trie-Class, k-NN and two versions of C4.5

 Classification error rates (%)

5 Evaluation and Results

 101

Nº Dataset k-NN C 4.5
Bibliography

J4.8
Weka

Trie-
Class

1 Adult 20.9 14.5 14.7 10.6
2 Annealing 0.8 1.4 1.6 2.3
3 Breast cancer W 4.7 4.7 5.9 1.5
4 Dermatology 4.5 3.9 4.2 4.5
5 Pima Diabetes 27.9 25.4 25.3 18.5
6 Forest cover 13.3 29.2 19.4 20.5
7 Heart -Cleveland 23.8 21.5 21.8 10.8
8 Heart Statlog 25.6 21.8 25.6 18.8
9 Hypothyroid 8.7 0.4 0.5 0.7
10 Iris 4.8 3.7 4.7 2.1
11 Pendigits 0.6 3.4 3.4 2.4
12 Satimage 17.7 14.8 15.4 10.1
13 German credit 27.2 28.4 32 25.9

Note: we show in bold type smaller error rates.

These differences can be clearly seen when isolating the comparison in classification

error rates between Trie-Class and these two other classifiers.

As Table 5.18 shows, in eight out of thirteen cases (61.5%) Trie-Class was superior

to IBk, C4.5 and J4.8 (Weka’s k-NN version), independently of the source for these

figures.

We believe that modified instance-based methods such as the one proposed in this

thesis represent a powerful challenge to other classification methods. The key issues are

solving the complexity of the search problem of similar instances by means of

appropriate data structures as a first approximation to object similarity, and a dataset

dependent set of criteria to inspect selected close patterns. Compared with other k-NN

methods for instance, ours resolves successfully an important weakness of these

methods represented by the search complexity problem and the determination of the

value of k as stated in a recent work [Riquelme, 2001]. In the extreme case for these

methods the distance calculation for all instances in the search space becomes

intractable.

About the execution time issue, it seems to exist a generalized view that execution

time should be very small in all cases, for a classification algorithm to be considered

useful. In our opinion, it is always desirable to have the goal of reducing algorithm

complexity and thus execution time. Nevertheless, this goal finally depends on the data

5 Evaluation and Results

 102

owner defined as the maximum allowed time he/she consider reasonable. A doctor

waiting for a Data Mining program to forecast a patient possibility of a serious disease,

does not have the same time requirements as a biologist trying to classify some type of

diatomaceous. Moreover, one cannot forget that in many cases in real-life situations

data preparation and pre-processing takes sometimes hours if not days even before the

Data Mining algorithm can start execution. Within this context, to be concerned with

few more or less seconds in execution time does not look reasonable, especially if the

gain in execution time is done at the expenses of losing accuracy. Because this, we

cannot more agree with the statement that: “ Ideally, accuracy should not suffer at the

expense of improved performance.” [Brighton et al, 2002].

103

6 Choosing the best close neighbour

Most NN classification algorithms use only the distance between objects as the sole

criterion to select the best neighbour object. In the case of the family of k-NN

algorithms, after k closest neighbours are selected, a voting on the majority class of

selected close objects is used, with a neighbour vote decreasing with its distance from

the test example [Bentley, 1980; Friedman et al., 1977; Dasarathy, 1991]. Algorithms

for discrete and real-value functions have been developed as in [Mitchell, 1997] with

refinements including the case where the query point exactly match one or more

training objects. Also, many other algorithms have been developed to increase the

search efficiency of k-NN in the sense of choosing a group of objects that best represent

the class of the unknown object, as we refer in Section 2. However, most of the time the

recurrent criterion for choosing among subset k of pre-selected training members is the

dominant class.

In Trie-Class we use a mixed method in two phases to select the best hypothesis. As a

first phase, we extract two nearest cells from the tree structure holding training records

using the search mechanism described in Section 3.7. We call these cells p1 and p2 and

each one of them is associated to a different class.

The second phase consist in the selection of one of them to assign its class to the

unknown cell px. On this phase, cells p1 and p2 and the query object itself are inspected

in order to make a final decision. This is what we explain next.

Trie-Class uses six weighted decision parameters (DP) that characterize the selected

cells to make its final selection. DP’s are weighted before run time according with their

predictive skills on a particular dataset. Hence, adapting themselves to the

characteristics of the dataset where the classification will be done. After weighted they

are applied to contending cell patterns p1 and p2 to decide which one of them best

represents the new object.

By carrying this second inspection on similar cells including the unknown cell px we

somehow try to overcome a known problem. The similarity criterion must be applied to

a pre-defined set of features and the definition of this set is affected by the previous

knowledge one has over the objects [Murphy et al., 1985]. Inspecting the unknown

object px itself can bring into light new knowledge.

6 Choosing the best close neighbour

 104

On what premises DP weights are attributed? They depend on how well a given DP

classifies new objects. As shown later, we demonstrate that this ability changes from

one dataset to the next. For this reason, DP weights are set every time a new dataset is

under analysis. DP weights are individually calculated by testing to how many new

unseen records a particular DP applies, and how well it classifies them. These two

criteria correspond to ambit and precision respectively. Weights are computed learning

from the training file and testing against an evaluation file. Weight calculation is

explained in subsection 6.3.

Once weighted, how DP’s are used to select p1 or p2?

To each cell is applied a merit () function, which correspond to the joint application

of allowable combinations of weighted DP’s. Several functions are used to fulfil the

task of this function to which we refer next.

As DP criteria are first weighted we use function apply() to determine a given

criterion’s applicability or ambit which contributes to its weight. In this function a given

DP is applied to both cells p1 and p2. We say that a particular DP “applies” to a given

object when it produces a better result applied to one of these cells. Function apply()

returns a Boolean value and is shown in Fig 6.1.

 One weighted, the primary usage of each individual criterion is to help selecting a

cell and consequently its class for a new query cell px. In this context we develop a basic

function criterion() that applies a given criterion to cell patterns p1 and p2 and returns a

real value, which correspond to a measure of “goodness” of that criterion. Different

criteria return different values as shown later in Table 6.1.

This in turn allows the direct comparison between criteria applied to the same DP

which is done by function apply() from Definition 28 which allows to determine to

which cell the criterion applies best.

As the weight of each criterion is already calculated, a final result corresponds to the

sum of al applicable criteria multiplied by its pre-determined weight. This is carried by

the merit() function applied separately to each cell pattern p1 and p2. A pattern with

larger merit means larger similarity between a given cell pattern and query cell px.

Based on each cell’s merit, a final comparison through function predict() returns the

wining cell and class.

6 Choosing the best close neighbour

105

We begin this section by giving the characteristics of each DP criterion, its weight

calculation and meaning, along with figures showing its discriminating power on

various datasets. Next we explain each of the functions referred above putting it all

together in the final predict() function.

6.1 Decision parameters

We now explain the meaning and characteristics of each decision parameter. Its

weight calculation as well as the class returned when applied as criterion.

6.1.1 Semi-exclusive values

We have already defined the exclusiveness of a cell in Equation (3.23) of Section 3.4.

This measure of exclusiveness tries to determine if the attribute values of a record

belong to semi-exclusive intervals or not. The presence of attributes qualifying as semi-

exclusives within the unknown object px can only mean that there is a strong evidence

that this cell is likely to be related to the class dominating those same intervals.

The fact that this DP check first within the unknown cell px itself looking for one or

more semi-exclusive intervals make it different from all others. When this is the case

and function semp(px, K) applies, function criterion verifies if the actual class held by

cell p (p1 or p2) correspond to the class found in px intervals. If so, the function returns

the fraction of those intervals.

Notice that this criterion is not applicable directly to cell patterns p1 and p2 as the

information conveyed by the eventual presence of semi-exclusive intervals on these

patterns, gives no reason to prefer one of them as the best representative for px.

6.1.2 Distance between selected cells

Distance calculation used for the cell extraction of p1 and p2 is different from the one

used here. In the first case distance was computed using the search mechanism already

explained in Section 3.7.

In the present case we use a standard distance calculation to find out the smallest

distance between px and cells p1 and p2. Its computation is normalized using as divisor

6 Choosing the best close neighbour

 106

factor the attribute’s domain range. This distance basically corresponds to a normalized

Manhattan distance:

1

'
(, ')

min

n
i i

i i i

p p
d p p

Max=

−
=

−∑ (6.1)

Max and min represent observed maximum and minimum values for attribute i.

When used within function criterion(), it returns the inverse of distance to px plus a

small constant to avoid zero division:

()
1(,)

(,)
x

xcriterion distance, p p
d p p ε

=
+

 (6.2)

When used by function apply() this criterion returns true if find that one of the

distances d1(p1, px) or d2(p2, px) is smaller. If distances are equal, and in an attempt to

deal in part with noisy data17, cell frequencies are used as weight considering the well-

known heuristic rule that larger frequencies means closer distance.

6.1.3 The shape of cells

We already have defined a shape vector in Equation (3.26) and a shape similarity

function in Equation (3.27) allowing shapes comparisons.

Provided with these tools this criterion returns the inverse distance of the shape

similarity function between p and px plus some small constant to avoid zero division.

()
1(,)

(,)
x

xcriterion Shapes, p p
sp p p ε

=
+

 (6.3)

6.1.4 Cell strength

A cell can be characterized as strong or weak depending on the number of its sub-

cells associated with a single class label. As it was already shown in Definition 18 in

subsection 3.3, the value of function strength() correspond to the value of i at the point

17 Data for which the label is incorrect, some number of attribute values are incorrect or a combination of the two

[Brodley 1995]

6 Choosing the best close neighbour

107

where a cell’s prefix becomes unique in terms of class in the whole training dataset, i.e.,

when function nlabels(qi) = 1. From this point on, all other sub-cells derived from this

one will also hold that same class label.

When strength(p) = n, cell strength is minimum. When strength(p) = 1, cell strength

is maximum. When strength(p) = 0, we are probably in the presence of an outlier,

meaning that two identical cells in the dataset are associated to at least two different

classes, thus breaking our basic assumption about data consistency described in Section

3.8.1. On the other hand, if strength(p) = n, means that only the last attribute value

made the difference to associate the cell to a given class. Considering that less relevant

attributes are located towards the end of a cell’s sequence of values class membership

for minimum strength cells is weak. It is less likely that other cells similar to it might

have the same class.

This criterion is applicable if one of the competing cells p1 or p2 has a larger strength

value than the other. In this case function apply() will return true. When this is the case,

it represents a larger area of the hyperspace where the class distribution is

homogeneous. An unknown new instance close to this area increases its chances of

sharing the same class, unless we are dealing with an area with greater noise. In these

cases this parameter is not very effective.

Applying function criterion to this parameter returns the strength value plus one

subtracted from n, the number of attributes in the cell pattern. So the largest strength

value corresponds to n and the weakest value correspond to one.

6.1.5 Frequency of cells and sub-cells

In Equation (3.14) from Section 3.2 we defined function freq(qi), in order to obtain

the number of existing sub-cells of size i within the training set.

As explained later in Section 7.2, the tree structure holds pattern frequencies, interval

values (the discretized discrete value of the corresponding attribute) and a flag label. For

this reason, we could rewrite Equation (3.11) as:

p = <(q1, freq(q1),labels(q1)), (q2, freq(q2), labels(q2),..,(qn, freq(qn), labels(qn))> (6.4)

Although sub-cell frequency is used in both distance calculations used in this thesis,

we still consider frequency of cells as one more decision parameter on its own right. Not

6 Choosing the best close neighbour

 108

all sub-cell frequencies are of interest. Here we are interested in the frequency of sub-

cell qi where nlabels(qi) = 1. This frequency is given by Equation (3.18)

Because of the recursive division of the space into hyper planes in Trie-Class, which

are orthogonal to the axes, frequency values rapidly decrease as we descend down tree

levels, as noticed in [Arya, 1998].

In this context, and if we agreed on the fact that most relevant information occupies a

very reduced area in the objects space [Faloutsos, 1995; Berchtold, 1996], then in many

situations a larger frequency of cells in well defined areas of the hyperspace are a good

indicator for some unknown object close to this area. Several identical sub-cell objects

will have more influence on the generated hypotheses that just one, a typical

disadvantage of decision trees [Cios et al., 1998]

Therefore, for sub-cells with i component elements where labels(qi) = 1, function

apply() using this criterion return true if one of competing sub-cells qi or qi
’ has larger

frequency than the other. When used within function criterion(), it returns the frequency

of the sub-cell provided the label constrain is true.

6.1.6 The Majority Class

We have already defined majority class in Section (3.3). In most Machine Learning

algorithms this is a simple and effective criterion for classification. In general, the

majority class or default class serves also as the low limit boundary for classification

accuracy. An algorithm classifying with accuracy figures below this value would be

useless.

In populations with two classes, c1 and c2, where class c1 is strongly predominant, this

parameter will serve to the algorithm to predict c2, only when strong evidence is found

that this is the case [Johnson, 1998]. Hence, this criterion applies if one of the selected

cells exhibits the same class as the majority class and thus function apply() returns true.

In this case, function criterion() returns 1, zero otherwise.

6.2 Basic functions definitions for the selection of a representative cell’s class

We define next all functions used in the class selection process, as well as the way DP

weights are calculated and its usage in function merit().

6 Choosing the best close neighbour

109

Definition 27. We define function criterion() that applies a given criterion to cell

pattern p = cel(r). This function returns a real value calculated by a given DP according

to Table 6.1.

Function criterion() is applied differently according with each DP characteristics.

Some of these criteria are just applied to near cells p1 and p2, while others also depend

on cell px for its calculation. Table 6.1 resumes the application of this function to each

criterion and its returning value.

Table 6.1 Function criterion return values by DP

Function criterion() calculation by DP Returned
value

px
dependent?

criterion(Semi-exclusives, p, px) = (semp(px, K) (0..1) yes

criterion(Shapes, p, px) =1 / (sp(p, px) + F) a value yes

criterion(Strength, p) = (n - strength(p)) + 1 (1..n) no

criterion(Distance, p, px) = 1 / (d(p, px) + F) a value yes

criterion(Frequency, p) = freq(p) (1..N) no

criterion(MajorityClass, p) = (label(p) = = lmaj()) ? 1 : 0 (0 1) no

Parameter n corresponds to the number of attributes in the object and N is the number

of records in the training dataset.

A given criterion can be applicable or not to a record. This constitutes one of the

measures Trie-Class uses to determine the adaptability of each DP criterion to different

datasets. Function apply() defined next helps to do that.

Definition 28. We assume the existence of function apply() that returns a Boolean as

a result of comparing the results produced by a given criterion applied to both cells p1

and p2, using cell px as reference.

Boolean apply(DP, r)

{px = cel (r);

(p1, p2) = neighbours(px);

 return !(criterion(DP, p1, px) = = criterion(DP, p2, px)); }

6 Choosing the best close neighbour

 110

Fig 6.1 Function apply() returns true if a criterion applies to a given cell

When the result of this comparison yields zero we say that the corresponding criterion

is not applicable. Else, function apply() does indeed apply although does not

discriminate which criterion is best. It simply verifies that it is applicable.

6.3 Obtaining the weight of decision parameters

Before using decision parameters to select a class using function merit() we must

determine its weights, that is, how well they classify records from different datasets.

We have already said that the ability of DP’s to classify new records changes with

dataset characteristics. These weights are obtained after training decision parameters

using roughly 80% of records from the training set, with the remaining 20% being used

as evaluation set. These sets are mutually exclusive and distinct from the test set.

 Implicitly we are assuming that results obtained with the evaluation set will be later

similar when the criterion is applied to the test set.

According with its performance on the evaluation set and some heuristics, a weight is

assigned to decision parameters. A DP criterion with more weight means greater

influence in deciding which cell bests represent the new object.

Weight is calculated using two parameters: ambit and precision degrees, an idea

similar to the support and confidence concepts used in decision rules [Agrawal et al.,

1993].

Definition 29. If E is some evaluation set formed by N records r, the ambit of a

decision parameter DP correspond to the fraction of records r � E where that criterion

applies:

()
(){ }, 0

#
r E apply Dp r

ambit DP
N

∈ ≠
= (6.5)

6 Choosing the best close neighbour

111

Along with this concept of ambit, we define next the classification precision of a

given DP.

Definition 30. The degree of precision of some decision parameter DP corresponds to

the fraction of cells p where function apply() is not zero and the cell is correctly

classified by function predictr() applying function merit() for this criterion alone.

Function predictr() assign a class to a given record r. It is show next in Fig. 6.2

Fig 6.2 Function predictr() predicts the label of a given record

Function predict() is explained later in Section 6.4. The next example illustrates the

use of ambit and precision concepts.

Example 6.1

If an evaluation set contains 100 cells, and criterion distance is applicable to 25 of

them, the ambit for this criterion is 25%. In the remaining 75% of cases these two

criteria cancels each other out. The two candidate cells are at the same distance from the

unknown object. As an example from Table 6.2, we see that criterion shape has an

ambit of 74.5%, corresponding to the fraction of evaluation records where the criterion

applies.

Table 6.2 presented next shows ambit and precision values for each DP criterion and

some datasets used in this thesis. Look for example the line corresponding to forest

()
() () ()(){ }

(){ }
, 0

, 0

r E apply DP r predictr r label r
precision DP

r E |apply DP r

∈ ≠ ∧ =
=

∈ ≠
 (6.6)

string predictr(r)

{ px = cel(r);

 (p1, p2) = neighbours(px);

 c = predict(p1,p2);

 return c;

}

6 Choosing the best close neighbour

 112

cover dataset and the column for decision parameter semi-exclusive. Within the subset

of those cells where this criterion applies, it correctly classified 88.1% of them.

This table confirms that DP’s are data dependent, a fact shown by the variations

observed in parameters ambit and precision. DP semi-exclusive shows on average the

best precision with 93.9%. This is not surprise, as exclusiveness present in cell px is a

strong assumption about the true hypothesis of the class. At the same time, it shows a

reduced ambit or sphere of action. The next two parameters that follow very close are

parameters frequency and shapes. It is rather surprising the performance of shapes,

being such a simple similarity function. On average it applied to 84.7% of records with

an average precision of 90.4%.

Table 6.2 Ambit and Precision values for decision parameters in various datasets

Datasets Degree of ambit and precision for each DP in percentage

Name Set type
Nº
recs.

 Semi-
Excl

Shapes Distance Frequency Strength Majority

forest Training 28457 Ambit 25.7 99.9 99.9 43.7 29.9 48.7
(7 classes) Evaluation 5691 Precision 88.1 86.0 82.0 81.0 74.5 72.2
pendigits Training 7495 Ambit 0.01 94.2 100 80.8 50.2 10.4
(10 classes) Evaluation 1499 Precision 100.0 98.8 98.4 98.5 98.3 97.7
landsat Training 3219 Ambit 41.2 68.6 88.0 57.3 49.6 37.8
(7 classes) Evaluation 644 Precision 95.2 87.4 76.7 89.1 85.0 62.8
adult Training 22612 Ambit 6.6 76.0 92.0 57.9 60.5 78.8
(2 classes) Evaluation 4522 Precision 98.6 87.1 83.4 92.5 89.6 86.1
Cancer-W Training 343 Ambit 34.8 99.6 87.4 89.3 86.1 67.0
(2 classes) Evaluation 69 Precision 93.7 100 97.7 98.7 97.8 96.0
Hypothyroid Training 1332 Ambit 5.5 99.9 100 99.7 31.6 92.1
(6 classes) Evaluation 266 Precision 96.2 99.4 99.3 99.7 99.7 99.3
Heart (Statlog) Training 135 Ambit 42.7 100 100 19.1 12.0 55.1
 (2 classes) Evaluation 27 Precision 81.5 81.1 77.5 77.7 77.6 84.3
dermatology Training 180 Ambit 36.5 39.7 100 51.6 58.4 30.6
(6 classes) Evaluation 36 Precision 97.7 83.7 81.1 87.3 94 89.6
 Average Ambit 24.1 84.7 95.9 62.4 47.3 52.6
 Average Precision 93.9 90.4 87.0 90.6 89.6 86.0

Altogether, this makes it a very important component among decision parameters. On

the other hand, distance remains the most solid criterion of all when we use both its

ambit and precision for comparison purposes.

6 Choosing the best close neighbour

113

The table also shows that majority class is at the bottom of the classification, hence

indicating the usefulness of developing other decision parameters, as a mean of

improving classification accuracy.

Adapting decision parameters to a given task is the confirmation that there is no

classification algorithm performing well in all cases. [Mitchell, 1980; Brodley, 1995]. In

[Shaffer, 1994] it is proposed for instance to try different induction paradigms, each one

in turn, and to use cross-validation to choose the one that appears to perform best. Other

approaches combine empirical with analytical evidence as in [Pazzani et al., 1992;

Michalski et al., 1993]. Still others use multi-strategy learning by combining multiple

methods in one algorithm [Domingos, 1996].

What combinations of ambit and precision values for a DP represent a better criterion

in a given dataset?

We use a heuristic that in general gives more weight to DP’s exhibiting large values

for both ambit and precision. The contribution of these two factors is not equal though,

as more weight is given to parameter ambit over precision. The reason for this being

simply the fact that if the extent of a criterion is insignificant or very small, the value of

factor precision, whatever it might be, is immaterial. On the contrary, a significant

ambit of a criterion then a precision figure might be interesting if relatively high for

classification purposes. Function B(DP) measures the weight of a given decision

parameter, which is calculated using the following heuristic:

B(DP) = ((((2ap) / (3a)) +1) / (((3a) / (2p)) + 1)) + 3p + 2a (6.7)

Variables a and p stand for ambit and precision calculated according with Equations

(6.5) and (6.6) respectively. Function B(DP) ranks over every other percentage

combination of ambit and precision favouring ambit as observed by the value assigned

to the coefficients. In general, when variables a and p increases, B increase also. The

intuition here is simple. Assign more weight to those DP that extent over a large number

of cases and at the same time have better classification skills. And within this general

evaluation criterion, favours slightly more the value of ambit. A very high precision

only applicable to a bunch of cases is not as good as a somewhat lower classification

6 Choosing the best close neighbour

 114

value, but covering a larger fraction of records. In any case, as the discovery process

seems, as a rule, to require human judgement [Langley, 1998], these figures can lead to

modifications in the way weights are calculated.

In Fig. 6.3 below we show the variations in the values of function B(DP) depending

on various combinations of ambit and precision.

0

100

200

300

400

500

600

(ambit, precision)

al
ph

a

Fig. 6.3 Variation in weight B for various combinations of ambit and precision

In Appendix 3 you can find the table of values originating the graph of Fig. 6.3.

Ranking decision parameters is done, calculating the value of function B(DP) from

Equation (6.7) for each criterion and setting them in decreasing order.

In Table 6.3 we show the result of applying Equation (6.7) to ambit and precision

values from Table 6.2.

Table 6.3 Decision parameters weights for different datasets

Weight values by DP and dataset dataset
Name Exclusive Shapes Distance Frequency Strength Majority

Forest cover 256 501 494 301 243 301
Pendigits 200 505 524 459 356 227
Landsat 320 397 443 362 328 247
Adult 217 197 469 370 374 429
Cancer-W 358 354 363 368 359 351

6 Choosing the best close neighbour

115

Hypothyroid 209 526 526 525 298 499
Heart (Statlog) 299 493 486 215 192 345
Dermatology 310 293 493 339 375 275

Average weight 271.1 408.3 474.8 367.4 315.6 334.3

Fraction of total
avg. values 12.5% 18.8% 21.9% 16.9% 14.5% 15.4%

The last line in Table 6.3 corresponds to the fraction that each weight represents

overall in the merit function for the considered datasets. This can be interpreted as the

average influence of each decision parameter when applied into the merit function.

Although parameter Distance continues to be the more important (21.9%), the

participation of each other parameter is very homogeneous, perhaps with the exception

of Semi-exclusives. In general, this denotes a combined effort to help choosing the best

representative cell pattern when all these aspects are together considered.

6.4 Predicting the final output class

Decision parameters are weighted just once for a dataset. The classification process

starts next. Trie-Class is presented with a new test file to classify. Each new record is

discretized using the same algorithms used to create the training file stored in a tree, and

converted into cell px which becomes the first input to the function. Two near candidates

cell patterns p1 and p2 are extracted from the training dataset using the algorithm

described in Section 3.7 using function neighbours(). They also are input to the

function.

Next, function criterion() is applied to both cell patterns p1 and p2 using the six

available decision parameters. Once each criterion is calculated, we proceed to measure

the merit of each considered cell p. This is done using function merit().

Definition 31. We assume the existence of function merit() which measures how

similar a given cell pattern is with respect to some unknown object px.

() ()6

1
() , , x

i ii
merit p criterion DP p p DPα

=
= ⋅∑ (6.8)

6 Choosing the best close neighbour

 116

This function returns the aggregate value resulting from the application of function

criterion() to all six decision parameters pondered by its corresponding weight.

Resulting values produced by the criterion() function are normalized as their return

values should be equally considered. This requires normalizing the distance, shape and

strength criteria. In the case of both distance criteria, its intervals ranges from zero to

the maximum distance observed between p1, p2 and px, so it is: [0 max(d(px,p))].

Therefore, on each case distance figures will be divided by the maximum value

observed. The same is done with criterion strength, but this time applied to strength

values.

Function merit() returns a real value. In the case when all DP criteria values except

one are set to zero, function merit can be used to measure the goodness of a single

criterion for a particular cell pattern.

Function merit() represent a similarity measure among cell patterns within a given

data space, allowing their comparison with respect to another cell pattern (px in our

case). In this sense we can say that it could be used as a new metric with its own

similarity measure for classification problems. Therefore, and although not

implemented in the present thesis, the use of this function could substitute completely

the initial similarity measure used to extract cells p1 and p2. Probably this would be done

at the expense of a larger algorithmic complexity and a different data structure given the

number of parameters used.

Once we know the merit value for each contending cell, the application of a final

function predict() gets the winner class to be attributed to px.

label predict(p1,p2)

{if (merit(p1) > merit(p2)

 return label(p1)

else

if (merit(p2) > merit(p1)

 return label(p2)

else return lmaj();

}

6 Choosing the best close neighbour

117

Fig 6.4 Function that predicts the label class for a new query px.

Trie-Class always assign a class to each new object under scrutiny. The majority class

is attributed in the default case, on the condition that one of the two cell patterns p1 or p2

actually exhibit this class (which in the case of datasets with more than two classes

might not be true). If it is not, the pattern holding the criterion with the largest weight

value will be chosen instead.

6 Choosing the best close neighbour

 118

119

7 Implementation

7.1 General overview

The drawing in Fig.7.1 shows the general idea on how Trie-Class algorithm is

implemented. There are three main steps in the construction of our classifier: pre-

processing data, building the required structures and running the classifier.

Fig 7.1 Trie-Class main modules

As every other algorithm learning by induction, Trie-Class begins by preparing the

training and test datasets. The training file will be used for “learning” and evaluating the

functioning of the algorithm. The test set is used once to finally classify unseen records.

Sample stratification, explained in Section 4 is used to obtain these subsets.

Original
dataset

Training
dataset

Dictionary

Test
 dataset

support
data

Trie-
Class

Stratify
working files

Tree build

Parameter
tuningEvaluation

set

Classifier

Results

7 Implementation

120

All attribute records within these files are discretized. This discretization is done

using interval values specified on the dictionary file for each attribute. In practice, in

many cases of domains with small number of values, the discretization process does not

alter the original values of an attribute and hence no domain compression takes place.

For instance consider the famous Cancer dataset, which consist of 10 attributes, all with

identical numeric domain values ranging from 0 to 10. If decided by the user, indicating

an interval of 1 for each domain in the dictionary file would produce this effect.

Trie-Class can handle missing values in categorical attributes if they form part of the

allowable values of an attribute.

Watching at the diagram it can be observed that the storage of records is not “ lazy” , a

characteristic of many instance-based methods.

Trie-Class uses a trie as tree structure to hold cell information, which will be used as

patterns at classification time. This tree structure does not hold training data on its

original format. C-trie keeps count on cell frequencies within each attribute interval.

These frequencies are used by the frequency DP criterion as explained earlier in Section

6. Besides this tree, a second file is created, which contains supporting information

needed by the algorithm. Basically it contains information on semi-exclusive intervals,

as defined in Equation (3.22) by function semk(), as well as information on joint

probability values for each symbolic attribute, needed for the distance calculations of

symbolic attributes as stated in Definition 26 and Equation (4.2). As for the first type of

information the file contains orderly lists of attributes. For each of them the file stores

those intervals where the semi-exclusive property holds. As it was explained in

Definition 19 in Section 3.4, the value of parameter φ is user-defined.

These two files appear labelled in Fig. 7.1 as “ Trie” and “ supporting data”

respectively.

A dictionary permanently loaded into main memory during tree construction and

classification completes the information for Trie-Class to work. It includes attribute

information: data type, interval size, maximum and minimum values and a class flag.

(For a complete layout of the dictionary see Annexe I).

In order to assign weights to decision parameters, Trie-Class divides the training set

itself into training and evaluation sets with approximately 80 and 20% of records

respectively. Decision parameters are tested against this last subset in order to decide

7 Implementation

121

the weight to assign to each decision parameter. This last sub-process is iterative as

depend on prediction error results, as suggested by the arrow pointing to itself in the

parameter tuning process of Fig. 7.1. Once decision parameters have their weights the

classification algorithm is ready to run against test data.

In the rest of this chapter, we explain tree growing, its characteristics, related work

and the search process. Finally, we argue that our search algorithm using best sub-cells

to obtain p1 when compared with regular k-NN methods as the sole decision criterion

increases classification accuracy and decrease execution time.

7.2 Building a trie as the main tree structure

A fundamental and very well studied technique for storing and retrieving data is to

use m-ary trees, also known as digital trees, lexicographic trees or simply tries, which

is its most widespread name and the one we use in this thesis.

 Tries were first proposed in [de la Briandais, 1959] although the term trie, taken

from information retrieval has been given by [Fredkin, 1960]. Tries are used to store

multimedia images, web pages, string matching, remote sensing imagery, genetic

sequences, etc using all kind of trie variations: Patricia trees [Morrison, 1968], Two-

tries [Aoe, 1996], Triangulation tries [Bergman, 1994], R-trees [Guttman, 1984],

Quadtrees [Samet, 1984], Burst Tries [Heinz, LC-tries [Nilsson, 1999], among several

others.

 Along the paths of the tree these structures do not store data at the nodes, which is

usually the case in regular trees. In a trie a set of strings from an alphabet containing m

symbols is stored in a natural way in an m-ary tree where each string corresponds to a

unique path. Branching at the jth level is determined by the value of the jth element from

the key. There are two types of nodes in a trie: branch nodes containing only pointers to

a number of children and leaf or element nodes, containing the string or key. Leaves

have no children. The root of the trie contains disjoint index values representing the first

letter or element of the string. At index position i, the pointer to the next letter points to

the sub-tree of all words starting with that letter. A pointer to the jth character of a key is

located at the jth level of the trie. All words containing a common prefix are located in

the same path represented by the various node levels. Trie structures represent

incomplete trees. Its leaves are not at the same level as shown in Figure 7.2.

7 Implementation

122

1 A B C Z
 v1 v2 v3 vn

0 A B … P ... R ... Z
 v1 v2 v3 vi .. vh .. vn

 Fig. 7.2 Example of a classical trie after insertion of words

A leftmost binary field is sometimes used as a leaf indicator; a bit 0 indicates a leaf

node; otherwise a branch node. Our own tree structure is show next in Fig. 7.3.

Fig. 7.3 Section of C-trie showing 3 equal domain attribute levels

This structure slightly differs from the classical trie structure.

1 A B C Z
 v1 v2 v3 vn

[0] [1] [2] [3] [4] [5] [6] [7] [8] [9] Info
92 12 16 14 16 10 9 8 1 16 194

A * * * B B B * B B *
1 48 74 9 83 91 102 28 441 35 0

 [0] [1] [2] [3] … [8] [9]
6 2 2 1 … 1 12

A A * B … B *
 115 … 9

[0] [1] [2] … [9]
1 11 14 … 16

A * B … *
 45 … 10

[0] [1] … [6] … [8] ..
 1 … 1 … 1 3

 2 … 4 … 2 *

 … 45

[0] [1] [2] [3] [4] [5] [6] [7] ...
1 2 4 3 1 2 1 14
2 4 4 * 4 4 4 *
 10

CAB

CAP CAR

Attribute 2

Attribute 1

Attribute 3

7 Implementation

123

From Equation (3.6) we know that each attribute value belonging to a record’s

sequence is converted into an integer value that we call cell component vi. Its value

ranges from 0 to si, which corresponds to the attribute’s domain.

It is using the vi component values from a cell vector p that the tree is built. Each cell

component value serves as the branching factor. This structure is permanently stored in

secondary memory. We call this tree the C-trie. As shown in Figure 7.3, every node in

the C-trie is formed by an array of j attribute interval values corresponding to cell

component value vi. Like regular tries, C-trie is also a kind of deterministic finite

automaton (DFA) [Cohen, 1990].

All input cells are n dimensional vectors. For this reason and contrary to normal tries

C-trie contains a fixed number of levels, one for each of the n attributes in the cell

vector. It also has no leaves, the last level corresponds to level n. The ith tree level

corresponds to the ith cell component value vi. Classes are not stored at leaves as is the

case with decision trees. They are indicated at each index positions within a node. In the

example of Fig 7.3 there are two classes A and B.

With the exception of the root node, all nodes in a level are linked together by

pointers forming n linked-lists, thus making easier to travel along that level. Cells

within each node have a record structure containing three pieces of information: a

counter field ctr holding sub-cell frequency, a class flag indicator, and a pointer ptr to

the next cell element down the tree. The class flag keeps track of sub-cell’s class

membership in a sort of “binary” fashion. As long as one or more identical sub -cells qi

from Equation (3.12) exhibits the same class, that class appears in the flag field at the ith

level. When a new cell p comes along for insertion, and its class c is different from the

existing one at qi
, then the flag field becomes undetermined class-wise at sub-cell qi, a

fact marked with a ‘*’ in the flag field. For instance, for interval 0 on the root node

correspond a frequency of 92, a class “A” and pointer address of 1 pointing to next

node. This means a unique class exists for this full cell throughout the dataset. However,

for interval 1 with frequency 12, the class is ‘*’, meaning that two or more sub -cells

relate to two or more different classes. At some point along the cell path the class flag

becomes associated with one class only. This corresponds to a cell strength defined in

Equation (3.21). Every node contains an extra cell at the end of the array. It holds the

sum of cell frequencies in a node, the general class observed in the entire partition and a

7 Implementation

124

pointer to the next node of the same level. For instance in level 3, the leftmost node

points to node number 45, the next node at the same level. This number coincides with

the value of the pointer used by interval 2 in the rightmost node of level 2.

As is the case with other trees, such as the optimised kd-tree [Friedman et al, 1977]

C-trie recursively subdivides the nth-dimensional space using hyper planes orthogonal to

the coordinate axes.

Fig. 7.4 Overlapped class regions in a two-dimensional space.

 As one descends along any tree path, sub-cell cardinality decreases very rapidly. In

the last level, it represents the number of identical cells p existing in the whole training

file. Keeping track of frequencies can be very useful in determining isolated sub-cells

that could result into outliers. Also, a map of frequencies like this can be useful to create

clusters of similar cell prefixes, a task that comes almost naturally with the structure of

tries.

An original contribution of Trie-Class with respect to the spatial class distribution is

its ability to keep track of cell class membership at the sub-cell level. Overlapped and

non-overlapped class areas are exactly mapped as shown in the example of Fig. 7.4 for

two-dimensional data. In simple terms, overlap is the data space region covered by sub-

cells where function nlabels(qi) > 1 (see Definition 16 and Equation 3.20b) Example

7.1, illustrate the same with vectors of numeric value.

7 Implementation

125

Example 7.1

Imagine we insert into a trie cell p1 = <3,1,1,1,3,”A”> with class “A” as shown in

Fig.7.5 (a). A second cell p2 = <3,1,1,3,2,”A”> is inserted next in 7.5(b) also with the

same class. In 7.5(c) a cell p3 = <3,1,1,7,4,”B”> is introduced.

Sub-cell q3 = <3,1,1, u> becomes immediately overlapped. By this we mean that

from the point of view of classes, two classes “share” the same prefix.

 (a) (b) (c)

Fig. 7.5 Overlap class regions in the hyperspace

From sub-cell q4 onwards, sub-cells are associated with just one class, which

correspond to class “A” in the case of cells p1 and p2 and “B ” in the case of cell p3.

The information contained in these overlapped and non-overlapped class distribution

regions is used for class assignment of new instances.

7.3 Insertion algorithm

Trie-Class creates its trie incrementally as described next in Table 7.1.

 3

1

1

1

3

3

1

1

1

3

3

2

3

1

1

1

3

3

2

7

4

7 Implementation

126

__
Create empty node as root;
for each training record r ° R:
 node_number � 0; /*all insertions begin at root node */
 c � label(r); /* obtain cell class */
 for each attribute ai ° r , i[1 n], do:
 v � ord(ai) /* discretize the attribute value */
 counter[v] � counter[v] + 1;
 if class[v] = nil class[v] � c;
 else
 If c not equal to class[v]
 class[v] � ‘*’; /* undefined class */
 If address[v] = nil /*create a new node only if necessary; */
 node � new sequential file record
 address[v] � node;
 update node;
 node_number � address[v];
 end;
end.
__

Table. 7.1 Pseudo-code for insertion algorithm

Each new attribute is inserted in a new node unless it exists before. Therefore, cell

sub-cells exhibiting identical attribute values share the same nodes including up to the

point where the last cell component elements differs from each other. From there on,

new nodes will be created for the remaining cell component elements.

Each attribute belonging to a cell is inserted in a node representing consecutive tree

levels. Attributes are all linked together by the corresponding address fields.

7.4 Discussion on the actual implementation

Very high in the list of desired performance capabilities for a good near neighbour

engine algorithm is the need for a fast, efficient retrieval algorithm. The reason for using

tries is that these structures have proven to be very fast on search problems [Bergman,

1994;Merret et al., 1996; Alber et al., 2001]. Tries also have excellent retrieval

7 Implementation

127

properties for spatial data when dealing with a large number of dimensions in datasets

[Aoe, 1996; Merret, 1996] as well as for approximate searching of similar objects such

as remote sensing images [Alber, 2001] or similar but not identical cells as do it here.

From the insertion algorithm of previous section, we see that only required nodes for

new sub-cells are created. In other words all cell prefixes shares the same nodes. This is

a characteristic of regular tries. Exploiting this overlap of paths near the root helps in

achieving some degree of natural compression, which depends on cells spatial

distribution.[Merret, 1996]. Additional compression in front of dataset with a large

number of dimensions, could be achieved by using compression schemes such as a

DAWG graph [Appel, 1988] or the double array TAIL presented by [Aoe, 1989] which

share all transition states, or using a single node to stack common cell prefixes [Aoe,

1996], [Andersson, 1994]. There are still several known mechanisms offered to

compress trie size such as Patricia trees [Gonnet et al., 1991], X-tree [Berchtold et al.,

1996] and Burst tries [Heinz et al., 2002] among others.

Nevertheless, all these compression schemes in our case would reduce even further

information on cells, already limited by discretization. Also, some of these compress

mechanisms require going through the input file more than once to achieve its purposes.

At this point, we want to remember the fact that our purpose is not perfecting trie

compression techniques, but to produce a simple, efficient and accurate classification

algorithm.

In any case, very large dimension datasets pose a space problem. If compression is

desired for these cases, it could be achieved by one of the following simple methods.

The first one would be splitting C-trie into sub-trees holding different index ranges,

although this might influence I/O access time. The second and more important would be

to compress the first levels of the tree up to the point where sub-cells become associated

with classes, leaving all remaining suffixes in some linked list. Although this operation

would require processing a second time the training file, tree size would be smaller.

Suffix elements could also be keep in remaining common nodes.

Perhaps the best alternative would be creating a forest of trees each one holding only

cells of the same class. Each structure would represent the spatial distribution of one

class in the total data hyperspace. Searching the closest elements in these trees would be

carried on each tree using the same method as the one we use in Trie-Class. Several

7 Implementation

128

small subsets of close neighbours each belonging to one class would participate in the

final selection process using decision parameters. In these trees, equal binning

discretization method would have no importance whatsoever in terms of information

loss. It remains to see the time complexity of such forest structure.

Mixing strategies for tries is not new as a mean to balance its fast searching

capabilities with a large space usage [Knuth, 1997]. In both cases though, searching for

identical or similar cells would increase search time costs by introducing sequential

search mechanisms in these “big” nodes or linked lists. Compression techniques seem to

be consistent with the fact that the most relevant attributes are indeed first located into

the tree and these common prefixes are indeed strong representatives of the correct

mapping between cells and classes.

The search process described in Section 3.7 is constant and independent of the size of

the training file, a very important factor. This search process could be also considered as

searching in an ordered file as a matrix of i rows and j columns, with the search done on

columns represented by the ordered array of nodes, as is the case with some algorithms

such as [Micó, 1996]. The search is done starting from the ith column corresponding to a

given element value in a circular way increasing the radius each time by one unit,

looking each time to the next elements [i+1] and [i –1] discarding all others as soon as

an existing cell value is found. For this reason algorithm’s complexity is constant and

equal to 2(log n) on the average case.

Search time is always constant in Trie-Class, unless used the “ look ahead”

mechanism. Search complexity is logarithmic, if we use total nodes visited as a measure

of complexity, as done in other cases [Yanilos, 1993].

Keeping the count of frequencies at sub-cell level allows us to have a graphical

distribution of cell density. This not only helps in breaking ties when selecting

neighbour elements within a given node, as it could be used to extend the use of this

structure for clustering as well [Anderberg, 1973].

Search time is fast in C-trie. Taking advantage of array indexing, for any given index

value j we look for existing cell values to the “left” starting at j, j-1,..0, and to the right

starting at j+1 within interval [1..i]. Once cell(s) found within the node, we eliminate

from the search the rest of the tree, concentrating in the following sub-tree. This is

equivalent to take into account the triangle inequality [Burkhard, 1973] to significantly

7 Implementation

129

reduce the number of direct distance calculations needed for an efficient search

algorithm as in [Berman, 1999]. The search phase is done in O(ni) time complexity.

Trie-Class can learn, due to the fact that is persistent. New training cells can be easily

added. Record deletion is more complicated but is not considered as a functional part of

the algorithm. Changing the training file is interpreted as growing again a new tree.

It should not be neglected the fact that C-trie was designed to hold a sample from the

database, whose only requirement is to be representative of the data in the statistical

sense. This means that most of the time we are dealing with a manageable number of

records.

Although the actual structure for prototyping is done using dynamically sized arrays

for every node, linked lists could also be used to save array size in sparse distributions.

As it is well known, this structure unless indexed, has a drawback of a sequential search.

Alternatively, hashing tables containing internal node indexes could also be used, but

constructing them requires also extra time.

7.5 Dictionary and other supporting files

Like many other data mining applications, ours also use a user-provided dictionary

file. Basically it contains information on all attributes, the type of data, i.e. numeric

discrete, continuous or symbolic, the minimum and maximum possible values they can

take (their domain), the size of the interval to be used as a domain partition in the tree

structure and a flag indicating whether this is the class field or not.

An example of the dictionary can be found in the Appendix I.

It is worth saying at this point that with an extra single read of the training sample

most of this information could be automatically detected. The only requirement to be

supplied by the user would be the size of the interval for each attribute. This information

is crucial for tree construction, and allows the user adjust algorithm efficiency by

altering the interval for whichever attribute. This user interface with the software is very

important for all classification algorithms in data mining, where to a large degree they

play a key role in the success of the end result. There is nothing compared with this

knowledge, if such knowledge exists, and cannot be overlooked with the obsession of

automation.

7 Implementation

130

Along with C-trie and dictionary files Trie-Class uses a couple more of files

containing information devoted to two different purposes.

One of them is to keep information on semi-exclusive intervals as defined in Equation

(3.22), which is basically an ordered table keeping for each attribute and partition

interval, values which relate to one class only. These are sometimes called “pure

attributes” [Breiman, 1984] or “primary ” [Turney, 1996] in the literature. These

attributes are informative of the class when considered by themselves [Kohavi, 1997].

Optionally, the user can decide to have this file information somehow softened: the

information contains interval values for those attributes where one of the classes holds a

user-defined threshold percentage of the number of training cells. Whichever the degree

of exclusiveness is selected, this file is used at generalization time when cell values are

checked for the presence of one or more of these values.

A second file, also on disk is used to keep information on symbolic attributes

frequencies. For each symbolic attribute the file keeps one record for each class

containing the frequency of each value. These are used in the distance calculation for

these types of attributes, specifically in the calculation of the joint probability P(v�c)

already explained in Section 4.2.

These two files appear under the name “support data” in the diagram of Fig. 7.1.

131

8 Conclusions and Future work

In this dissertation, we explored specific paradigms for data classification, namely,

decision trees and instance-based methods in an effort to develop an experimental

algorithm able to improve some of its aspects while simplifying algorithmic complexity.

The order of the conclusions presented here is arbitrary with respect to its importance

degree. Rather, we have followed the sequential order in which these topics appear on

this work.

There are literally dozens of algorithms to solve classification problems in the

literature. Our approach was in general to keep it as simple as possible, considering the

truthfulness of the well-known paradigm of the Minimum Description Length principle.

Within this context we did retain two of the more popular methods, instance-based and

decision trees as inspiration to develop our own. From the first one we took the main

idea of not using a central model developed to classify all records – as done for instance

in decision trees - but to use training records themselves as patterns to locally represent

on each case the best model to assign its class to some unknown query. From the second

of these methods, we have taken the idea of using a tree to store actual records as a

means of rapidly searching records in the data hyperspace. This is as far as it goes the

similarity between our algorithm and decision trees because in this kind of paradigm

tree nodes are used as threshold decision values that together represent a general model

used to classify in the same manner all test records. In our case, the use of a trie serves

only the purpose of an index with very fast access, but not as a generator of a

classification model. In fact our algorithm in this respect has a totally opposed

behaviour to decision trees and it is similar to the nearest neighbour method.

 Trie-Class use a simple algorithm overall, formed by small contributions along the

various phases of the Data Mining process.

• The development of the concept of sub-cells, as a method for early class

identification as well as pattern characterization for model selection (Section

3.3).

• A sub-optimal search method for the extraction of near neighbours, different

from the traditional distance calculation, which gives elimination power to

more relevant attributes (Section 3.7).

8 Conclusions and Future work

132

• A simple mechanism to differentiate relevant and non-relevant attributes using

a one-dimension projection of attribute values and semi-exclusive intervals

(Section 4.3).

• The use of joint probabilities to solve the distance calculation problem in the

presence of symbolic attributes (Section 4.2).

• The use of Decision Parameters in the final pattern selection process uses

concepts such as cell strength, semi-exclusivity and shapes (Section 6.1).

These parameters enrich the information about objects. By having a weight

according with training data characteristics (Section 6.3), they adapt the

algorithm to the data under inspection.

8.1 Conclusions

Our experimental results from Section 5 show that on average Trie-CLASS performs at

least as good as several of the leading classifiers reported, whether this comparison is

done against classifiers running in our test bench or whether we compare with results

found in the bibliography18. In particular this is true with respect to the landmark

classifier C4.5 [Quinlan, 1986] and the instance-based learning k-NN algorithm [Aha,

1991]. In eleven out of thirteen files compared against C4.5, ours was better. It also

appears clear from these figures that Trie-Class performs equally well with various

types of data, numeric or symbolic as well as average dataset sizes and dimensions. Our

figures also show that Trie-Class has poorer results when the number of classes is

greater than two, perhaps due to the fact that the actual algorithm is only implemented

to extract two cell patterns representing two different classes.

A clear improvement over regular NN methods is the search mechanism used to

extract selected records using a greedy strategy. Trie-Class extracts near objects using

the concept of similarity in turn assimilated to a distance calculation. Its searching

method restricts the search area within the trie according with previous values found at

sub-cell levels, thus avoiding the visit to all unnecessary tree branches. The extraction

of additional cells restricts even further the search space, as its class must be different

18 As new results on classifiers performance appear every day in the literature, some of our figures could be out of

date.

8 Conclusions and Future work

133

from the class of the previous cells extracted. Overall, reduced areas of the data space

are searched to obtain close neighbours.

Greedy search strategies are in general sub-optimal, as they can loss better solutions.

The counter part to this been that some complex algorithmic problems can find some

acceptable solution. Our results, mixing a greedy search with look-ahead for ties

situations prove to be encouraging. In fact, Trie-Class obtain better results than IBk, a

Weka implementation of a k-NN algorithm, when the value of k = 1.

Feature subset selection is the process of identifying and removing as much irrelevant

and redundant information as possible. Searching the feature space within reasonable

time is necessary, especially for the case o data with large number of features. For this

reason reducing data dimensionality is dealt using a heuristic search strategy as opposed

to an exhaustive search of the feature space prohibitive most of the time. They are more

feasible and can give good results, although they do not guarantee finding the optimal

subset. Regularities on data are found in Trie-Class using every other feature one at a

time, independently from others using a previously discretized single-dimension space.

Using this criterion attributes can be ordered by degree of relevance, allowing the

removal of irrelevant values without diminishing severely classification accuracy.

Feature selection is done before tree growth. Most relevant attributes produce the initial

data space divisions and thus most similar objects remains close, a problem affecting

several classification algorithms. This fact also influences distance calculation, because

more elimination power is given to more relevant attributes largely reducing the search

space.

We have already said that Trie-Class extracts two near cells as a first approximation

to classify new objects. In a next step it uses a “voting” mechanism to make a final

decision that is different from all other k-NN algorithms we know of. This selection is

done through the use of decision parameters, which allow the extraction of further

information from pre-selected cell patterns. This represents richer knowledge about

these competing neighbours, a procedure that goes beyond the standard mechanism of

using distance as the sole criterion. Moreover, decision parameters are weighted

according with its ability to classify new records, dynamically adapting the whole

algorithm to the changing characteristics of data. This adaptation of the algorithm

constitutes an important step towards fighting the known fact that not all classification

8 Conclusions and Future work

134

algorithms performs equally well with different datasets. We have no knowledge of

these technique been used before.

Distance calculation for symbolic attributes constitutes a problem of its own, dealt in

different ways by different authors. Trie-Class uses a heterogeneous mechanism

depending on the type of value (discrete, continuous or symbolic). In the specific case

of symbolic attributes it uses a simple mechanism of low complexity based on the joint

probability distribution of classes within attributes and its corresponding values,

resembling somehow the functioning of Bayesian Networks at a given node. This

mechanism works better than the simple overlap solution and is cheaper in complexity

than more sophisticated methods.

The choice of using a multi-way tree indexed on attribute values works as a very fast

index and we believe it is a good solution for the type of search carried on. It has been

demonstrated that this structure allows a very fast search and presents a low

computational complexity for the required type of proximity search [Bentley, 1997] as

well as in the case of large multimedia databases. Contrary to standard tries, useful

information represented by records class membership is not found at tree leaves but at

each tree level, i.e. associated with sub-cells, allowing the drawing of a very useful class

map in the data space. Moreover, difficult choices of threshold values as in the case of

decision trees are avoided.

In this structure search time is independent of the file size and exhibit low algorithmic

complexity, a problem found in many search methods as our results show with respect

to execution time.

The gain we obtain with a fast search has the cost of sometimes using a larger disk

space, as our data structure is disk resident. As disk space has sky rocketed in terms of

capacity, and at the same time with systematic decreasing prices and increasing access

speeds in the last decade, our choice seems to be adequate. In any case, the eventual use

of pruning at the level of sub-cells or prefixes belonging to a single class can diminish

easily tree size, not to mention the fact that Trie-Class requires only a representative

sample not the entire population in order to classify and thus the size of the required

structure is always under control. The algorithm implemented by Trie-Class can be

alternatively implemented using any database management system. This could simply

8 Conclusions and Future work

135

handle all required data and carry the search mechanism using some of the existing

database techniques.

8.2 Future work

Trie-Class extracts two near neighbours in order to select the class of one of them as

the class to assign to a new query object. In this respect, as a proposal for further work,

an obvious way of decreasing tree size and perhaps improve classification accuracy in

datasets with more than two classes, would be the use of a forest with as many trees as

classes exist in a given dataset. Each one of these trees would hold records belonging to

one class only. At search time the actual search algorithm would be used to extract one

or two cell patterns per tree, each one of them associated with a single class.

Trie-Class tree structure called C-trie allows the identification of classes at the sub-

cell level. Manipulating this map of classes would allow a graphical representation of

clusters of classes and its frequencies.

Clustering techniques could be easily implement with Trie-Class, an aspect in Data

Mining that was out of the scope of this work. As clusters represent objects with

common characteristics, all six decision parameters are a good solution to identify these

common objects, especially applied at sub-cell levels. The application of these criteria

would extend the use of distance as the sole similarity criterion used in many clustering

algorithms, allowing a richer similarity concept and thus allowing the selection of

clusters with a strong internal strength. In this sense, Trie-Class can become a bivalent

tool, allowing the implementation of classification as well as clustering techniques.

One of the decision parameters used to select the best representative pattern is shapes,

a vector of values representing inter-attribute relationships, which are used to identify

pattern similarity. Considering the encouraging results of this decision parameter in

classification, it would be worth investigating further the possibility of creating a whole

new metric space using this shape criterion.

Finally, another aspect not implemented in this thesis is the fact that we use decision

parameters and the merit() function as a mean of selecting the most representative cell

pattern. We could well substitute the original search mechanism to extract near

neighbours all together and replace it by the value provided by this function. Thus, it

would be used to define a new similarity metric. This might represent a richer similarity

8 Conclusions and Future work

136

concept if compared with the use of distance as the only similarity criterion between

objects.

137

9 Bibliography

Agarwal, P., Erickson, J., 1999. Geometric range searching and its relatives, Advances
in Discrete and Computational Geometry, Contemporary Mathematics 223,
American Mathematical Society Press, pp. 1-56.

Agrawal, R., Imielinski, T., Swami, A., 1993. Mining Association Rules between Sets
of Items in Large Databases, Proceedings of the ACM International Conference
on Management of Data, pp. 207-216.

Aha, D. W., Kibler, D., Albert, K., 1991. Instance-Based Learning Algorithms, Journal
of Machine Learning, Vol. 6, pp.37-66

Aha, D. W., 1992, Tolerating noisy, irrelevant and novel attributes in instance-based
learning algorithms, International Journal of Man-Machine Studies, Vol. 36, pp
267-287.

Aha, D. W, Bankert, R., 1994. Feature Selection for Case-Based Classification of Cloud
Types: An Empirical Comparison, In D.W. Aha (Ed.) Case-Based Reasoning:
Workshop (Technical Report WS-94-01, CA, AAI Press.

Aha, D. W., Bankert, R., 1995. A comparative evaluation of sequential feature selection
algorithms, Proc. of the Fifth Intl. Workshop on Artificial Intelligence and
Statistics, pp., 1-7.

Alber, I. E., Xiong, Z., Yeager, N. , Farber, M., Pottenger, 2001, W. M. Fast Retrieval
of Multi-hand Hyperspectral Images Using Relevance Feedback. Proceedings of
the International Geoscience and Remote Sensing Symposium, Vol 3, pp 1149-
1151.

Anderberg, M.R., 1973. Cluster Analysis for Applications. Academic Press, N.Y.,
USA.

Andersson, A, Nilsson, S., 1993, Improved behaviour of tries by adaptive branching.
Information Processing Letters, Vol. 46, pp. 295-300

Andersson, A, Nilsson, S., 1994, Faster Searching in Tries and Quad trees – An
Analysis of Level Compression, in Proceedings of the Second European
Symposium on Algorithms, pp. 82-93.

Bibliography

138

Aoe, J., 1989. An Efficient Digital Search Algorithm by Using a Double Array
Structure, IEEE Transactions Software Engineering, Vol 15:9, pp. 1,066-1,077.

Aoe, J, Katsushi, M., Shishibori, M., Park, K., 1996. A trie compaction algorithm for a
large set of keys, IEEE Transactions on Knowledge and Data Engineering, vol. 8,
nº 3, pp. 476-491.

Appel, A.W., Jacobson, G.J., 1988. The World’s Fastest Scrabble Program,
Communications of the ACM, Vol 31:5, pp. 572-578.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R. Wu, A., 1998. An optimal
algorithm for approximate nearest neighbor searching, Journal of the ACM, 45(6),
pp.891-923.

Aurenhammer, F., 1991. Voronoi diagrams – a survey of a fundamental geometric data
structures, ACM computing surveys '91 (Japanese translation), Kyoritsu Shuppan
Co., Ltd., pages 131-185.

Baeza-Yates, R., Cunto, W., Manber, U. Wu, S., 1994. Proximity matching using fixed-
queries trees. In Proc. 5th Combinatorial Pattern Matching (CPM 94), Lectures
Notes in Computer Science, Nº 807, pp. 198-212.

Batchelor, B. G., 1978. Pattern Recognition: Ideas in Practice. New York: Plenum
Press, pp. 71-72.

Beckmann, N., Kriegel, H, P., Schneider, R., Seeger, 1990. B., The R*-tree: An
efficient and Robust Access Method for Points and Rectangles, Proc. ACM
SIGMOD International Conference on Management of Data, Atlantic City, USA,
pp. 322-331.

Bentley, J. L., 1975. Multidimensional binary search trees used for associative
searching. Communications of the ACM, Vol. 18(9), pp. 509-517.

Bentley, J. L., 1980. Multidimensional Divide and Conquer, Communications of the
ACM, 23(4), pp. 214-229.

Bentley, J. L., Sedgewick, R., 1997, Fast algorithms for sorting and searching strings. In
Proc. of the Annual ACM-SIAM Symposium on Discrete Algorithms, New
Orleans, USA, pp. 360-369.

Bibliography

139

Benzecri, J. P., 1992, Correspondence Analysis Handbook, Ed. Dekker, Marcel Inc.,
688 pp.

Berchtold, S., Keim, d. A., Kriegel, 1996, H.P., The X-tree: An Index Structure for
High-Dimensional Data, Proceedings of the 22nd. International Conference on
Very Large Databases, Bombay, India, pp. 28-39.

Berman, A.P., 1994. A New Data Structure For Fast Approximate Matching, Technical
Report, 1994-03-02, Dept. of Computer Science, University of Washington.

Berman, A. P., Shapiro, L. G., 1999, Triangle-Inequality-Based Pruning Algorithms
with Triangle Tries. Proceedings of the IS&T and SPIE Conference on Storage
and Retrieval for Image and Video Databases VII, San José, CA, USA.

Bin Liu, Y. Ma, and C.K. Wong, 2000. Improving an Association Rule Base Classifier,
Principles of Data Mining and Knowledge Discovery, pp. 504-509.

Blanzieri, E., Ricci, F., 1999. Advanced Metrics for Class-Driven Similarity Search,
International Workshop on Similarity Search, Firenze, Italy.

Bologna, G., 2001. A Study on Rule Extraction from Neural Networks Applied to
Medical Databases, International Journal of Neural Systems, Vol. 11, No. 3
(2001) 247-255.

Bozkaya, T., Ozsoyoglu, M., 1997, Distance-based indexing for high-dimensional
metric spaces. In Proc. ACM SIGMOD International Conference on Management
of Data, pp. 357-368.

Breiman, L., Friedman, J., Olshen, R., Stone, C., 1984, Classification and Regression
Trees, Wadsworth International Group.

Brighton, H., Mellish, C., 2002, Advances in Instance Selection for Instance-Based
Learning Algorithms, Data Mining and Knowledge Discovery, 6, Kluwer
Academic Publishers, The Netherlands, pp. 153-172

Brin, S., 1995. Near neighbor search in large metric spaces. In Proc. 21st. Conference on
Very Large Databases (VLDB 95), pp. 574-584.

Brodley, C.E., 1995a, Recursive automatic bias selection for classifier construction.
Machine Learning, Vol. 20, pp. 63-94.

Bibliography

140

Brodley, C.E. 1995b, Multivariate Decision Trees, Machine Learning, Vol. 19(1), pp
45-77.

Burkhard, W. A., Keller, R.M., 1973, Some approaches to best-match file searching,
Communications of the. ACM, Vol. 16: 4, pp. 230-236.

Catlett, J., 1991, On Changing Continuous Attributes into Ordered Discrete Attributes,
Lecture Notes in Artificial Intelligence, Ed. J. Siekmann, Springer-Verlag, Berlin,
pp. 164-178.

Cha, M.Y, Gero, J.S., 1998. Shape Pattern Recognition Using a Computable Pattern
Representation, Artificial Intelligence in Design, Kluwer Academic Publishers,
pp. 169-187.

Chavez, E., Navarro, G., Baeza-Yates, R., Marroquin, J., L., 2001. Searching in Metric
Spaces, ACM Computer Surveys, Vol. 33:3, pp. 273-321.

Chawla, N., Eschrich, S., Hall, L.O., 2001. Creating Ensembles of Classifiers,
International Conference on Data Mining, ICDM, San José, CA, USA., pp.580-
581.

Cheeseman, P., Stutz, J., 1995. Bayesian Classification (AutoClass): Theory and
Results, in Advances in Knowledge Discovery and Data Mining, U. M. Fayyad, G.
Piatetsky-Shapiro, P. Smyth, & R. Uthurusamy, Eds. The AAAI Press, Menlo
Park, pp. 153-180.

Chmielewski, M. R., Grzymala-Busse, J.W., 1994. Global discretization of continuous
attributes as preprocessing for machine learning, Third International Workshop on
Roughs Sets and Soft Computing, pp. 294-301.

Ching, J. Y.,Wong, A.K.C. & Chan, K.C.C, 1995. Class-dependent discretization for
inductive learning from continuous and mixed-mode data. IEEE Transactions on
P.A.M.I., vol. 17, pp. 641-651.

Chou, Y., Shapiro, L. G. 2000. A Hierarchical Multiple Classifier Learning Algorithm,
Proceedings of the Intl. Conference on Pattern Recognition, Vol. 2, pp. 152-155.

Ciaccia, P, Patella, M., Zezula, 1997. P., M-tree: an efficient access meted for similarity
search in metric spaces., In Proceedings of the 23rd Conference on Very Large
Databases (VLDB 97), pp. 426-435.

Bibliography

141

Cios, K., W. Pedrycz, R. Swiniarski, 1998. Data Mining Methods for Knowledge
Discovery, Kluwer Academic Publishers, London.

Clement, J., Flajolet, P., Vallée, B., 2001. Dynamic sources in information theory: A
general analysis of trie structures, Algorithmica, Vol. 29(1/2), pp.307-369.

Cohen, D., 1990. Introduction to Theory of Computing, John Wiley & Sons.

Collobert, R., Bengio, S., Bengio, Y., 2001. A Parallel Mixture of SVMs for Very Large
Scale Problems, IDIAP Research Report, nº RR 01-12, Switzerland.

Cover, T. Hart, P. 1967. Nearest neighbor pattern classification, IEEE Transactions on
Information Theory, Vol. 13:1, pp 21-27.

Dasarathy, B.V., 1991. Nearest Neighbor (NN) Norms: NN Pattern Classification
Techniques, IEEE Computer Society Press, Los Alamitos.

Dehne, F., Nolteimer, H., 1987. Voronoi trees and clustering problems, Information
Systems Nº12(2), pp 171-175.

De la Briandias, R., 1959. File searching using variable length keys. In Proc. Western
Joint Computer Conference, Vol. 15, Montvale, N.J., AFIPS Press.

De Mántaras, R., 1991. A Distance-Based Attribute Selection Measure for Decision
Tree Induction, Machine Learning, Vol. 6, pp. 81-92.

Dijkstra, E., 1972. The Humble Programmer, Turing Award Lecture at the ACM Annual
Conference, Boston, USA.

Doak, J., 1992. An evaluation of feature selection methods and their application to
computer security, Technical Report CSE: 18, Davis, Dept. of Computer Science,
U. of California., USA.

Domingo, C, Watanabe, O, 2000. Scaling up a boosting-based learner via adaptive
sampling, in Proc. of Knowledge Discovery and Data Mining (PAKDD'00),
Lecture Notes in AI 1805, 317-328.

Domingos, P, 1996. Unifying Instance-Based and Rule-Based Induction, Machine
Learning, 24(2), pp.141-168.

Bibliography

142

Dougherty, J., Kohavi, R., Sahami, M., 1995. Supervised and Unsupervised
Discretization of Continuous Features, Proceedings of the 12th Intl. Conference on
Machine Learning, Morgan Kaufman Publ., San Fco., USA, pp. 194-202.

Duch, W., Grudzinski, K., 1998. Weighting and selection of features, Proc. of the
Workshop Intelligent Information Systems VIII,�8VWUR���3RODQG����-18.06.1998,
pp. 32-36.

Duda, R., O., Hart, P.E., 1973. Pattern classification and scene analysis, New York:
John Wiley & Sons.

Duntsch, I., Gedida, G., 1998. Uncertainty measures of rough set prediction, Artificial
Intelligence 106, pp.109-137.

ECML/2002, 2002. Thirteen European Conference in Machine Learning, Helsinki,
Finland.

Efron, B., 1983. Estimating the error rate of a prediction rule: improvement on cross-
validation, Journal of the American Statistical Association, 78(382), 316-330.

Efron, B., Tibshirani, R., 1993. An introduction to the bootstrap, Chapman & Hall,
London.

Elder J. F., Abbott D. W., 1998. A Comparison of Leading Data Mining Tools, 4th

International Conference on KDD, N. York, USA.

Everitt, B. S. & Hand, D.J., 1981. Finite Mixture Distributions, Ed. Chapman and Hall,
London.

Faloutsos, C., Lin, K., 1995. Fastmap: A fast Algorithm for Indexing, Data-Mining and
Visualization of Traditional and Multimedia Datasets, Proceedings of the ACM
SIFMOD International Conference on Management of Data, San Jose, CA, USA,
pp 163-174.

Fayad, U., Kebi, I. 1992. On the Handling of Continuous-Valued Attributes in Decision
Tree Generation, Machine Learning, Vol. 8, pp. 87-102.

Fayyad, U., Kebi, I. 1992. On the Handling of Continuous-Valued Attributes in
Decision Tree Generation, Machine Learning, Vol. 8, pp. 87-102.

Bibliography

143

Fayyad, U., Irani, K. B., 1993. Multi-interval discretization of continuous-valued
attributes for classification learning, Proceedings of the 13th International Joint
Conference on Artificial Intelligence, pp. 1022-1027.

FCC, 2002. Federal Communications Commission News, Washington, USA, July 23th,
2002.

Fix, E. and Hodges, J.L., 1951. Discriminatory analysis, non-parametric discrimination.
Technical report, USAF School of Aviation Medicine, Randolf Field, Tex. Project
21-49-004, Report. 4, Contract AF41(128)-31.

Flach, P. A., 2001. On the state of the art in Machine Learning: a personal review,
Artificial Intelligence, 13(1/2): pp.199-222.

Flajolet, Ph., 1983. On the performance evaluation of extendible hashing and trie
searching, Acta Informática Vol. 20, pp. 345-369.

Forbes Magazine, 2002. Monet launches high-speed wireless data network, Reuters,
Oct. 29th, 2002.

Frawley, W., Batheus, C., 1991. Knowledge Discovery in Databases: An Overview. In
Piatetsky-Shapiro, G. and Frawley, W. (Eds.), Knowledge Discovery in
Databases, MIT Press, Cambridge, MA, pp1-27.

Fredkin, E. Trie Memory, 1960. Communications of the ACM, Vol.3:9, pp. 490-500.

Friedman, J.H., Bentley, J.L. Finkel, R.ª, 1977. An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software 3:3, pp
209-226.

Garcke , J., Griebel , M., 2001. Classification With Sparse Grids Using Simplicial Basis
Functions, Proc. of the the Seventh ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Francisco, CA, USA, pp. 87-96.

Gehrke, J., Ganti, V., Ramakrishnan, R., Loh, 1999. W-Y., BOAT – Optimistic decision
tree construction, Proceedings of the SIGMOD Conference, New York, USA:
ACM Press, pp. 169-180.

Gennari, J. H., Langley, P., Fisher, D., 1989. Models of Incremental Concept
Formation, Artificial Intelligence, Vol. 40, pp. 11-61.

Bibliography

144

Goldberg, D., 1989. Genetic Algorithms in search, Optimisation and Machine Learning,
Addison-Wesley, Reading, MA., USA.

Goodman, R., P.J. Smyth, 1988. Decision tree design from a communication theory
standpoint, IEEE Transactions on Information Theory, 34(5):979-994.

Grossman, R., Chandrika, K, Kumar, V., 2001. Editors, Data Mining for Scientific and
Engineering Applications, Kluwer Academic Publishers.

Guttman, A., 1984. R-trees: A dynamic index structure for spatial searching,
Proceedings of the ACM-SIGMOD Conference on Management of Data (1985),
Boston, MA., USA, pp. 47-57.

Guyon, I., 2001. Introduction to the NIPS 2001 Workshop on Variable and Feature
Selection, BC., Canada.

Hamming, R.W. 1973. Numerical Methods for Scientists and Engineers. McGraw-Hill.

Han, J., Kamber, M., 2001. Data Mining: Concepts and Techniques, Morgan
Kaufmann, San Fco., CA., USA.

Hand D.J., Mannila H., Smyth P. 2001. Principles of data mining, MIT Press, Boston,
MA.,USA.

Hansen, L., Salamon, P., 1990. Neural network ensembles, IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol. 12, pp. 993-1001.

Heat, D., Kasif, S., Salzberg, S., 1993. Learning oblique decision trees, Proceedings of
the 13th International Joint Conference on Artificial Intelligence, Morgan
Kaufmann, France, pp. 1002-1007.

Heinz, S., Zobel, J., Williams, H.E., 2002. Burst Tries: A Fast, Efficient Data Structure
for String keys, ACM Transactions on Information Systems, 20(2), pp. 192-223.

Hegland, M., Nielsen, O. M., Shen, Z., 2000. High dimensional smoothing based on
multilevel analysis. Technical report, Data Mining Group, The Australian
National University, Canberra, Submitted to SIAM Journal of Scientific
Computing.

Bibliography

145

Holte, R. C., 1993. Very Simple Classification Rules Perform Well on Most Commonly
Used Datasets, Machine Learning, Vol.11, pp. 63-91

Hunt, E., Marin, J. & Stone, P., 1966. Experiments in Induction, Academic Press Inc.,
New York, USA.

Indyk, P., 2000. Dimensionality Reduction Techniques for Proximity Problems, Proc.
11th ACM-SIAM Symposium on Discrete Algorithms, pp. 371-378.

ICDM 02, 2002. The “002 IEEE International Conference on Data Mining, Maebashi,
Japan, December 2002.

ICML 2002, Nineteenth International Conference on Machine Learning, Sydney,
Australia, July 2002.

John, G., Langley, P., 1996. Static Versus Dynamic Sampling for Data Mining,
Proceedings of the Second International Conference on Knowledge Discovery in
Databases and Data Mining, AAAI/MIT Press.

Johnson, R.A., Wichern, D. W., 1998. Applied Multivariate Statistical Analysis,
Prentice-Hall, Forth Edition.

Kalantari, I., McDonald, G., 1983. A data structure and an algorithm for the nearest
point problem, IEEE Transactions on Software Engineering, 9(5), pp. 631-634.

KDD 2002, Eight ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, July 2002, Edmonton, Canada,

Kaski, S., 1997. Data exploration using self-organizing maps. Acta Polytechnica
Scandinavica, Mathematics, Computing and Management in Engineering Series
No. 82, 57 pp.

Kerber, R., 1992. ChiMerge: Discretization of Numeric Attributes, Proceedings of the
10th National Conference on Artificial Intelligence, pp 123-127.

Knuth, D., 1998. The Art of Computer Programming, Vol. 3, Sorting and Searching,
Reading, Massachusetts: Addison-Wesley, 1998, MA., USA.

Kohavi, R., 1995. A Study of Cross-Validation and Bootstrap for Accuracy Estimation
and Model Selection, Proceedings of the Fourteenth International Joint

Bibliography

146

Conference on Artificial Intelligence, San Francisco, CA, USA: Morgan
Kaufmann, pp. 338-345.

Kohavi, R., 1996. Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree
Hybrid, Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining, Edited by E. Simoudis, J. Han, and U. Fayyad, The
AAAI Press, pp. 202-207.

Kohavi, R, John, G., 1997. Wrappers for Feature Subset Selection, Artificial
Intelligence Journal, Special issue on relevance, Vol. 97, Nº 1-2, pp 273-324.

Lachlan, R. 1983. The Principle of Continuity." §8 in An Elementary Treatise on
Modern Pure Geometry. Ed. Macmillian, London, pp. 4-5.

Langley, P., 1996. Elements of Machine Learning. Morgan Kaufmann.

Lebowitz, M., 1985. Categorizing Numeric Information for Generalization, Cognitive
Science, Vol. 9, pp. 285-308.

Lee, D.T., Preparata, F.P., 1984. Computational geometry- A Survey, IEEE
Transactions on Computers, Vol. C-33: 12, pp. 1072-1101.

Lesh, N., Zaki, M., Ogihara, M. 1998. Mining Features for Sequence Classification,
MERL Technical Report Number: TR98-22.

Li, J., Dong, G., Ramamohanarao, K., 2000. Instance-Based Classification by Emerging
Patterns, Proceedings of the Fourth European Conference On Principles and
Practice of Knowledge Discovery in Databases, Springer-Verlag, pp. 191-200.

Lin, S. -K., 2001. The Nature of the Chemical Process. 1. Symmetry Evolution –
Revised Information Theory, Similarity Principle and Ugly Symmetry.
International Journal of Molecular Sciences, vol. 2, pp.10-39.

Liu, B., Ma. Y, Wong, C.K, 2000. Improving an Association Rule Based Classifier, 4th
European Conference on Principles and Practice of Knowledge Discovery in
Databases, Lyon, Springer-Verlag, pp. 504-509.

Lohr, S. L., 1999. Sampling: Design and Analysis, Duxbury Press, Brooks/Cole
Publishing Co., CA, USA.

Bibliography

147

Lyman, P., H. R. Varian, 2002. Report: How Much Information. Available from
http://www.sims.berkeley.edu/how-much-info on June 2002. School of
Information Management and Systems, University of California, Berkeley, CA,
USA.

Mangasarian, O. L., Wolberg, W. H., 1990. Cancer diagnosis via linear programming",
SIAM News, Volume 23, Nº 5, pp. 1-18.

Mehrotra, R.. Gary, J. E., 1995. Similar-shape retrieval in shape data management.
IEEE Computer, 28(9): pp. 57-62.

Meretakis, D., Lu, H., Wuthrich, B., 2000. A study on the performance of Large Bayes
Classifiers, 11th European Conference on Machine Learning, Catalonia, May 30-
June 2, Spain.

Michalski, R., Mozetic, I., Hong, J., and Lavrac, N. 1986. The multi-purpose
incremental learning system AQ15 and its testing application to three medical
domains. Proceedings of the 5th National Conference on Artificial Intelligence,
Philadelphia, Morgan Kaufmann 1041-1047.

Michalsdi, R., Tecuci, G., 1994. Proc. of the Second International Workshop on Multi-
strategy Learning, harpers Ferry, Va: Office of naval research/G. Mason
University.

Michalski, R. S., Diday, E., Stepp, R.E. 1981. A recent advance in data analysis:
Clustering Objects into classes characterized by conjunctive concepts. In: Kanal
L.N. and Rosenfeld A. (Eds): Progress in pattern recognition. North-Holland, pp.
33-56.

Micó, L., Oncina, J., Carrasco, J., 1996. A fast and bound Nearest neighbour classifier
in metric spaces, Pattern Recognition Letters, vol. 17, pp. 731:739.

Mitchell, T. M., 1980. The need for biases in learning generalizations, Technical
Report, New Brunswick, NJ: Rutgers University, Computer Science Department.

Mitchell, M., 1996. An Introduction to Genetic Algorithms, MIT Press.

Mitchell, T. M., 1997. Machine Learning, McGraw Hill.

Bibliography

148

Merrett, T.H., Shang, H., Zhao, X., 1996. Database Structures, Based on Tries, for Text,
Spatial, and General Data, International Symposium on Cooperative Database
Systems for Advanced Applications, Kyoto, pp. 316-324.

Moret, B. M., 1982. Decision trees and diagrams, Computing Surveys, 14(4), pp. 593-
623.

Morgan, J., Sonquist, J. A., 1963. Problems in the analysis of survey data and a
proposal, Journal of the American Statistics Society, Vol 58, pp. 415-434.

Morrison, D. R., 1968. PATRICIA: Practical Algorithm to Retrieve Information Coded
In Alphanumeric, Journal of the A.C.M., 15(4): 514-534.

Mullin, M., Sukthankar, R., , 2000. Complete Cross-Validation for Nearest Neighbor
Classifiers, Proceedings of the Seventeenth International Conference on Machine
Learning, USA.

Murphy, P.M., Aha, D.W., 1994. UCI Repository of machine learning databases,
University of California, Department of Information and Computer Science,
Irvine, P. M. Murphy (Repository Librarian).

Murphy, G., Medin, D., 1985, The Role of Theories in Conceptual Coherence,
Psychological Review, 92(3), pp. 289-316.

Murthy S., Kasif, S., Salzberg, S., 1994. A System for Induction of Oblique Decision
Trees, Journal of Artificial Intelligence Research vol. nº 2, pp.1-32.

Murthy, K. V. S., 1996. On growing Better Decision Trees from Data, Ph.D. Thesis,
University Johns Hopkins, BA., USA, 288 pp.

Nadler, M., Smith, E.P., Pattern Recognition Engineering. New York: Wiley & Sons,
pp.293-294.

NCU Nicholas Copernicus University, 2000. Department of Computer Methods,
Computational Intelligence Laboratory, Poland. Available from:
(http://www.phys.uni.torun.pl/projects/datases.html).

Nilsson, S., Karlsson, G., 1999, Ip-address lookup using LC-tries, IEEE Journal on
Selected Areas in Communications, 17(6):1083-1092.

Bibliography

149

Ng, A.,Y.,1997. Preventing "overfitting" of cross-validation data. Machine Learning:
Proceedings of the Fourteenth International Conference, Nashville, TN, USA,
Morgan Kaufmann Publisher, pp. 245-253.

Omachi, S., Aso, H., 2000. A Fast Algorithm for a k-NN Classifier Based on Branch
and Bound Method and Computational Quantity Estimation, Systems and
Computers in Japan, vol.31, no.6, pp.1-9.

Payne, T., Edwards P., 1998. Implicit Feature Selection with the Value Difference
Metric, Proceedings of the 13th European Conference on Artificial Intelligence,
ECAI-98, John Wiley & Sons, New York, NY, pp. 450-454.

PMSI, 2002. Software House, Data Mining Tools, France. Available from:
http://www.pmsi.fr/

Quinlan, J. R., 1983. Learning efficient classification procedures and their application to
chess end games. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell, editors,
Machine Learning, An Artificial Intelligence Approach, Volume I. Morgan
Kaufman.

Quinlan, J. R., 1986. Induction of Decision Trees. Machine Learning Journal 1(1):81-
106.

Quinlan, J. R., 1988. Bagging, Boosting, and C4.5, University of Sydney.

Quinlan, J. R., 1996. Improved Use of Continuous Attributes in C4.5, Journal of
Artificial Intelligence Vol. 4, 77-90.

Quinlan, J.R., 1998. MiniBoosting Decision Trees, Journal of Artificial Intelligence
Research.

Riquelme, J., Ferrer, F.J., Aguilar, J., 2001. Búsqueda de un patrón para el valor de k en
k-NN, Proceedings of the IX Conferencia de la Asociación Española para la
Inteligencia Artificial, Gijón, Spain, Vol. I, pp. 63-72.

Riquelme, J., Aguilar, J. Toro, 2003. M., Finding representative patterns with ordered
projections, Pattern Recognition, Vol. 36, pp.1009-1018.

Ripley B.D, 1996. Pattern Recognition and Neural Networks, Cambridge University
Press.

Bibliography

150

Risannen, J., 1978, Modelling by shortest data description, Automática Vol 14, pp.
465-471.

Rowland, K.F., 1964. Pattern and Shape, Ginn & Company, Oxford, U.K.

Safavim, S. R., Landgrebe, D., 1991. A survey of decision tree classifier methodology,
IEEE Trans. Systems, Man and Cybernetics, vol. 21, pp. 660-674.

Salzberg, S., 1990. Learning with Nested Generalized Exemplars, Norwell, MA:
Kluwer Academic Publishers, Boston, MA, USA.

Samet, H., 1984. The quadtree and related hierarquical data structures. Computing
Surveys, vol. Nº 16(2), pp.187-260.

Shamir, R., Tsur, D., 1999. Faster Subtree Isomorphism, Journal of Algorithms, Vol. Nº
33, pp.267-280.

Schaffer, C., 1994. Cross-validation, stacking, and bi-level stacking: Meta-methods for
classification Learning. In P. Cheeseman & R. W. Oldford Editors, Selecting
models from data: Artificial intelligence and statistics IV, New York, Springer-
Verlag.

Schapire, R. E., 2002. The boosting approach to machine learning: An overview, In
MSRI Workshop on Nonlinear Estimation and Classification.

Serendero, P., Toro, M., 2001. Supervised Learning Using Instance-based Patterns,
Proceedings of the IX Conferencia de la Asociación Española para la Inteligencia
Artificial, Gijón, Spain, Vol. I, pp. 83-92.

Serendero, P., Toro, M., 2003. Attribute Selection for Classification, Proceedings of the
IADIS International Conference, e-Society 2003, Lisbon, Portugal, 3-6 June, A.
Palma do Reis, P. Isaías Editors, Vol. I, pp. 469-476.

Skiena, S., Pemmaraju, S., 2002. Computational Discrete Mathematics: Combinatorics
and Graph Theory with Mathematica, Cambridge University Press.

Smyth, P., 2001. Data Mining at the interface of computer science and statistics,
Chapter 1, in Data Mining for Scientific and Engineering Applications, Grossman,
R., Chandrika, K., Kumar, V. Editors, Kluwer Academic Publishers.

Bibliography

151

Stanfill, C., Waltz, D., 1986. Towards Memory-Based Reasoning, Communications of
the A.C.M., 29(12), pp. 1213-1228.

Titterington, D.M., 1985. Smith, A.F.M.; and Makov, U.E. Statistical Analysis of Finite
Mixture Distributions, John Wiley & Sons, New York, USA.

Thrun, S., Faloutsos, C., Mitchell, T., Wasserman, L., 1998. Automated Learning and
Discovery: State-Of-The-Art and Research Topics in a Rapidly Growing Field,
NSF Foundations, CONALD Report, Carnegie Mellon University, PA, USA.

Towell, G., Shavlik, J. Noordewier, 1009. M., Refinement of approximate domain
theories by knowledge-based neural networks. Proceedings of the Eight National
Conference on Artificial Intelligence, AAAI Press, CA, USA, pp 861-866.

Traina Jr., C., Traina, A.J.M., Seeger, B., Faloutsos, C., 2000. Slim-trees: High
performance metric trees minimizing overlap between nodes. VII Intl. Conference
on Extending Database Technology - EDBT, March 27-31 , Konstanz, Germany,
pp. 51-65.

Turney, P.D., 1996. The identification of context-sensitive features, a formal definition
of context for concept learning, in M.Kubat & G. Widmer, eds., Proceedings of
the Workshop on Learning in Context-Sensitive Domains, pp.53-59.

Uhlmann, J. 1991. Satisfying general proximity/ similarity queries with metric trees.
Information Processing Letters 40, 175-179.

Usama M. Fayyad, 1996. Automating the Analysis and Cataloguing of Sky Surveys, in
Advances in Knowledge Discovery And Data Mining, Usama Fayyad et. al.,
AAAI Press/ The MIT Press.

Wehenkel, L., 2001. Recent developments in tree induction for KDD, Presentation,
Brasilian Conference on Neural Networks, Rio de Janeiro, Brazil.

Weis, S. M., Indurkya N., 1998. Predictive Data Mining, Morgan Kaufmann Publishers
Co., San Francisco, California, USA.

Weisberg, S. 1985. Applied Linear Regression, John Wiley & Sons.

Witten, I. H., Frank, E. 2000. Data mining: Practical machine learning tools and
techniques with Java implementations. Morgan Kaufmann, San Francisco, CA.
USA, 371 pp.

Bibliography

152

Wolpert, D.H., 1994. The relationship between PAC, the statistical physics framework,
the Bayesian framework and the VC framework, Technical report, The Santa Fe
Institute, Santa Fe, N.M., USA.

Wong, A.K.C., Chiu, K.K.Y., 1988. Synthesizing statistical knowledge from incomplete
mixed-mode data, IEEE Transactions on Pattern Analysis and Machine
Intelligence, TPAMI-9, Nº6, pp. 796-805.

Yianilos, P. N., 1993. Data Structures and Algorithms for Nearest Neighbor Search in
General Metric Spaces, Proceedings of ACM-SIAM Symposium on Discrete
Algorithms, pp. 311-321.

Zadrozsny, B., 2001. Reducing Multiclass to binary by coupling probability estimates,
To appear in Advances in Neural Information Processing Systems 14
(NIPS*2001), Canada.

Zadrozsny, B., Elkan, C., 2002. Transforming Classifying Scores into Accurate
Multiclass Probabilities Estimates, To appear, Proceedings of the Eighth
International Conference on Knowledge Discovery and Data Mining (KDD'02).

Zhou, Z. H., 2003. Three perspectives of data mining. Artificial Intelligence, Nº 143(1),
pp. 139-146.�

Zhu, S., Li, T., Ogihara, M., 2002. CoFD: An Algorithm for Non-distance Based
Clustering in High Dimensional Spaces, 4thInternational Conference on Data
Warehousing and Knowledge Discovery, Aix en Provence, France.

153

Appendix I. Example of Dictionary corresponding to the Annealing

Dataset

Each line contains the following elements:
Number, description, Type, initial value, end value, interval size, class flag, #,symbolic values.
Allowable types: N=discrete, R=continuous, D=symbolic known values, S= symbolic

unknown values, C=Class

1, hardness, N, 0, 85, 1, N

2, width, R, 0, 1525, 20, N

3, surface-quality, D, 0, 6, 1, N,#,-,D,E,F,G,

4, carbon, N, 0, 70, 1, N

5, steel, D, 0, 10, 1, N,#,-,R,A,U,K,M,S,W,V,

6, family, D, 0, 11, 1, N,#,-,GB,GK,GS,TN,ZA,ZF,ZH,ZM,ZS,

7, strength, N, 0, 700, 10, N

8, chrom, D, 0, 3, 1 ,N,#,C,-,

9, oil, D, 0, 4, 1, N,#,-,Y,N,

10, ferro, D, 0, 3, 1, N,#,Y,-,

11, len, R, 0, 4880, 40, N

12, enamelability, D, 0, 7, 1, N,#,-,1,2,3,4,5,

13, surface-finish, D, 0, 4, 1, N,#,P,M,-,

14, formability, D, 0, 7, 1, N,#,-,1,2,3,4,5,

15, packing, D, 0, 5, 1, N,#,-,1,2,3,

16, phos, D, 0, 3, 1, N,#,P,-,

17, exptl, D, 0, 3, 1, N,#,Y,-,

18, BlueBrightVarnClean, D, 0, 6, 1, N,#,B,R,V,C,-,

19, product-type, D, 0, 4, 1, N,#,C,H,G,

20, temper_rolling, D, 0, 3, 1, N,#,-,T,

21, condition, D, 0, 5, 1, N,#,-,S,A,X,

22, non-ageing, D, 0, 3, 1, N,#,-,N,

23, bc, D, 0, 3, 1, N,#,Y,-,

24, bf, D, 0, 3, 1, N,#,Y,-,

25, bt, D, 0, 3, 1, N,#,Y,-,

26, bw/me, D, 0, 4, 1, N,#,B,M,-,

27, bl, D, 0, 3, 1, N,#,Y,-,

28, m, D, 0, 3, 1, N,#,Y,-,

29, cbond, D, 0, 3, 1, N,#,Y,-,

154

30, marvi, D, 0, 3, 1, N,#,Y,-,

31, corr, D, 0, 3, 1, N,#,Y,-,

32, lustre, D, 0, 3, 1, N,#,Y,-,

33, jurofm, D, 0, 3, 1, N,#,Y,-,

34, s, D, 0, 3, 1, N,#,Y,-,

35, p, D, 0, 3, 1, N,#,Y,-,

36, shape, D, 0, 3, 1, N,#,COIL,SHEET,

37, thick, R, 0, 4000, 40, N

38, bore, D, 0, 5, 1, N,#,0000,0500,0600,0760,

39, classes, C, 0, 5, 0, S

155

Appendix II. Settings for the execution of the Naive Bayes classifier

156

Parameter values settings for the execution of the J48 (C4.5) classifier.

Bibliography

157

Parameter values settings for the execution of the IBk (k-NN) classifier.

158

Bibliography

159

Appendix III. Alpha values for Decision Parameters

Table A-1 Weights (alpha) for various ambit and precision values expressed in percentage

ambit precision alpha ambit precision alpha
10 10 53 50 60 282
10 20 72 50 70 301
10 30 91 50 80 320
10 40 111 50 90 339
10 50 131 50 100 359
10 60 151 60 10 233
10 70 171 60 20 247
10 80 191 60 30 263
10 90 211 60 40 281
10 100 230 60 50 298
20 10 88 60 60 316
20 20 106 60 70 335
20 30 124 60 80 354
20 40 144 60 90 373
20 50 163 60 100 392
20 60 183 70 10 269
20 70 202 70 20 283
20 80 222 70 30 299
20 90 242 70 40 316
20 100 262 70 50 333
30 10 124 70 60 351
30 20 141 70 70 369
30 30 158 70 80 388
30 40 177 70 90 406
30 50 196 70 100 425
30 60 215 80 10 306
30 70 235 80 20 320
30 80 254 80 30 335
30 90 274 80 40 351
30 100 294 80 50 368
40 10 160 80 60 386
40 20 176 80 70 403
40 30 193 80 80 422
40 40 211 80 90 440
40 50 230 80 100 459
40 60 249 90 10 342
40 70 268 90 20 356

160

40 80 287 90 30 371
40 90 306 90 40 387
40 100 326 90 50 403
50 10 196 90 60 421
50 20 211 90 70 438
50 30 228 90 80 456
50 40 246 90 90 474
50 50 264 90 100 493

