
ENTERPRISE INFORMATION
INTEGRATION

###
UNSUPERVISED PROPOSALS FOR WEB INFORMATION

EXTRACTION

HASSAN A. SLEIMAN

UNIVERSITY OF SEVILLA, SPAIN

DOCTORAL DISSERTATION
SUPERVISED BY DR. RAFAEL CORCHUELO

DECEMBER, 2012

First published in December 2012 by
The Distributed Group
ETSI Informática
Avda. de la Reina Mercedes s/n
Sevilla, 41012. SPAIN

Copyright c⃝ MMXII The Distributed Group
http://www.tdg-seville.info
contact@tdg-seville.info

Classification (ACM 1998): D.2.11 [Software Architectures] Domain-specific archi-
tectures; H.1.2 [User/Machine Systems] Human information processing; H.3.4
[Systems and Software] Performance evaluation; H.3.5 [Online Information Services]
Web-based services; H.3.m [Information Storage and Retrieval]: Miscellaneous-
Data Extraction, Wrapper Generation; I.2.6 [Learning] induction; I.5.2 [Design
Methodology] Pattern analysis; I.7.5 [Document Capture] Document analysis.

Support: Supported by the European Commission (FEDER), the Spanish and
the Andalusian R&D&I programmes (grants TIN2007-64119, P07-TIC-2602, P08-
TIC-4100, TIN2008-04718-E, TIN2010-21744, TIN2010-09809-E, TIN2010-10811-E,
TIN2010-09988-E, and TIN2011-15497-E).

http://www.tdg-seville.info
mailto:contact@tdg-seville.info

UniversityofSevilla,Spain

The committee in charge of evaluating the dissertation presented by Has-
san A. Sleiman in partial fulfillment of the requirements for the degree
of Doctor of Philosophy in Software Engineering, hereby recommends

of this dissertation and awards the author the
grade .

Miguel Toro Bonilla

Catedrático de Universidad

Universidad de Sevilla

Juan Pavón Mestras

Catedrático de Universidad

Universidad Complutense de Madrid

Emilio Corchado Rodríguez

Catedrático de Universidad

Universidad de Salamanca

Alberto Pan Bermúdez

Profesor Contratado Doctor

Universidad de A Coruña

Carlos Molina Jiménez

Research Associate

Newcastle University

To put record where necessary, we sign minutes in ,
.

Extracting information of interest from the World Wide Web, by Alberto, aged twelve.

To my family.

Contents

Acknowledgements . xi

Abstract . xiii

Resumen . xv

I Preface

1 Introduction . 3
1.1 Research context . 4
1.2 Research rationale . 7

1.2.1 Hypothesis . 7
1.2.2 Thesis . 8

1.3 Summary of contributions . 9
1.4 Collaborations . 10
1.5 Structure of this dissertation . 10

2 Motivation . 11
2.1 Introduction . 12
2.2 Requirements . 12
2.3 Analysis of current solutions . 14
2.4 Discussion . 18
2.5 Our proposal . 19
2.6 Summary . 20

II Background Information

i

ii Contents

3 Software frameworks . 23
3.1 Introduction . 24
3.2 GATE . 24
3.3 UIMA . 28
3.4 Summary . 29

4 Unsupervised rule-based information extraction 31
4.1 Introduction . 32
4.2 RoadRunner . 32
4.3 FiVaTech . 33
4.4 EXALG . 35
4.5 IEPAD . 36
4.6 DeLa . 37
4.7 Summary . 38

5 Heuristic-based information extraction 39
5.1 Introduction . 40
5.2 Álvarez and others’ proposal . 40
5.3 ViPER . 41
5.4 WISH . 42
5.5 DEPTA . 44
5.6 NET . 45
5.7 ViDE . 46
5.8 ListExtract . 48
5.9 Summary . 49

6 Evaluating information extractors . 51
6.1 Introduction . 52
6.2 Repositories . 53

6.2.1 RISE . 53
6.2.2 TBDW . 53
6.2.3 TIPSTER . 54
6.2.4 The Pascal Challenge . 54
6.2.5 Ad-hoc repositories . 54

6.3 Partitioning repositories . 54
6.4 Collecting performance measures . 55

Contents iii

6.4.1 Effectiveness measures . 55
6.4.2 Efficiency measures . 58

6.5 Ranking proposals . 59
6.6 Summary . 61

III Our Proposal

7 Devising information extractors with CEDAR 65
7.1 Introduction . 66
7.2 Logical view . 66
7.3 Development view . 68
7.4 Scenarios view . 74
7.5 Our repository . 76
7.6 Experimentation . 79
7.7 Summary . 81

8 Extracting attributes with TEX . 83
8.1 Introduction . 84
8.2 Algorithms . 84

8.2.1 Structures . 84
8.2.2 Algorithm extract . 86
8.2.3 Algorithm filter . 92
8.2.4 Limitations . 94

8.3 Complexity analysis . 94
8.3.1 Space requirements . 95
8.3.2 Time requirements . 96
8.3.3 Computational tractability . 97

8.4 Experimental analysis . 98
8.4.1 Experimentation environment . 98
8.4.2 Effectiveness analysis . 99
8.4.3 Efficiency analysis . 101

8.5 Statistical analysis . 106
8.6 Summary . 107

9 Extracting information records with Trinity 109

iv Contents

9.1 Introduction . 110
9.2 Algorithms . 110

9.2.1 Structures . 111
9.2.2 Main algorithm . 112
9.2.3 Creating a trinary tree . 112
9.2.4 Algorithm learnTemplate . 117
9.2.5 Algorithm learnSchema . 119
9.2.6 Limitations . 119

9.3 Complexity analysis . 120
9.3.1 Space requirements . 121
9.3.2 Time requirements . 122
9.3.3 Computational tractability . 124

9.4 Experimental analysis . 125
9.4.1 Experimentation environment . 125
9.4.2 Effectiveness analysis . 125
9.4.3 Efficiency analysis . 128

9.5 Statistical analysis . 129
9.6 Summary . 132

IV Final Remarks

10 Conclusions . 137

Bibliography . 139

ListofFigures

1.1 Components of a typical web wrapper. 4
1.2 Proposals related to information extraction. 5

3.1 GATE’s information extraction components. 25
3.2 Components used for information extraction in UIMA. 29

6.1 Sample correct versus extracted information. 56

7.1 Relationships amongst the subsystems of our architecture. 67
7.2 Layers of our reference architecture. 68
7.3 Class diagram of the cross validation layer. 69
7.4 Class diagram of the learners layer. 71
7.5 Class diagram of the rules layer. 72
7.6 Class diagram of the dataset layer. 73
7.7 Class diagram of the tokeniser utility. 74

8.1 A running example: input and output of TEX. 85
8.2 Expansion of a TextSet during extraction. 87
8.3 Expansion of a sample TextSet. 89
8.4 Searching for a pattern in a base Text. 90
8.5 A case in which filtering TextSets is required. 93
8.6 Precision versus recall in our experiments regarding TEX. 102
8.7 Correlation from number of errors to the F1 measure in TEX. 103
8.8 Comparison of learning times regarding TEX. 103
8.9 Comparison of extraction times regarding TEX. 105

9.1 A sample trinary tree. (Shared patterns are underlined.) 111
9.2 The regular expression learnt for our running example. 119
9.3 The schema learnt for our running example. 121

v

vi List of Figures

9.4 Precision versus recall in our experiments regarding Trinity. 128
9.5 Correlation from number of errors to the F1 measure in Trinity. 129
9.6 Comparison of learning times regarding Trinity. 130
9.7 Comparison of extraction times regarding Trinity. 130

ListofTables

2.1 Time necessary to handcraft some extraction rules. 15
2.2 Time necessary to annotate some web documents. 16
2.3 Comparison of current unsupervised information extractors. 18

7.1 Records extracted from our datasets in each category. 77
7.2 Subset of common errors reported by JTidy on our datasets. 78
7.3 Properties of our datasets. 79
7.4 Comparing implementation times for SM, LR, FT, and PT. 80

8.1 Comparison of TEX’s effectiveness to other techniques. 100
8.2 Impact of errors on TEX effectiveness. 102
8.3 Comparison of TEX’s efficiency to other techniques. 104
8.4 Results of ranking TEX statistically. 106

9.1 Comparison of Trinity’s effectiveness to other techniques. 126
9.2 Impact of errors on Trinity effectiveness. 128
9.3 Comparison of Trinity’s efficiency to other techniques. 131
9.4 Results of ranking Trinity statistically. 133

vii

viii List of Tables

ListofPrograms

8.1 Algorithm TEX. 85
8.2 Algorithm extract. 86
8.3 Algorithm expand. 88
8.4 Algorithm findPattern. 91
8.5 Algorithm createExpansion. 92
8.6 Algorithm filter. 93

9.1 Algorithm Trinity. 112
9.2 Algorithm createTrinaryTree. 113
9.3 Algorithm expand. 114
9.4 Algorithm findPattern. 115
9.5 Algorithm createChildren. 116
9.6 Algorithm learnTemplate. 118
9.7 Algorithm learnSchema. 120

ix

x List of Programs

Acknowledgements

A little knowledge that acts is worth infinitely more than much knowledge

that is idle.

Gibran Kahlil Gibran, Lebanese artist, poet, and author (1883-1931)

S
ome people believe that when we are born or when we die, the
most important moments of our life flash before our eyes. I do not be-
lieve in that, but I do believe that at the end of a Philosophy Doctor
Thesis, the important moments of the PhD are remembered. Some of

these moments are full of sadness and others are full of happiness, but they
both share a unique message: cheer up, you can do it!

I feel too lucky since Dr. Rafael Corchuelo has supervised my PhD. He is
even more than a supervisor, he is a friend. I owe sincere thankfulness to
Rafael for his support, understanding, encouragement, comments, dedica-
tion, and guidance during the last years. I am sure that my achievements in
these years would not have been possible without him. Thank you.

It was a great pleasure to work during the last years with the TDG family
in Sevilla and Huelva. They created a suitable work environment, which pro-
vided me with valuable feedbacks for this dissertation. I also would like to
thank the AIFB and FZI families from the KIT with whom I spent the last
three months of this dissertation. The comments and the experience they pro-
vided helped me acquire an important knowledge for my future. I would like
to thank the external reviewers, namely: Dr. Rafael Z. Frantz and Dr. Fabricia
Roos Frantz, whose comments helped us improve this dissertation.

I could not forget to thank all of my friends and family members for their
support during the last years. Finally, and most important, I would like
to thank my parents and my brothers, to whom I dedicate this disserta-
tion. They all have been a constant source of love, concern, support, and
strength all these years. Thank you all.

xi

xii Acknowledgements

Abstract

You know that the beginning is the most important part of any work.

Plato, Greek philosopher (427-347 BC)

T
he goal of Enterprise Information Integration is to provide a uni-
form access to multiple data sources, which should be viewed
as if they were a unique and integrated database. Wrappers are soft-
ware modules that aim to provide an API that abstracts developers

away from the details required to simulate a human interacting with a search
form and transforming the results into structured data. One of the key com-
ponents of a web wrapper is the information extractor, which is used to
extract and structure information from web documents. The literature pro-
vides many techniques to learn information extractors from samples, but
none of them is universally applicable. We focus on unsupervised tech-
niques to learn extraction rules and on heuristic-based information extractors
that do not rely on rules. The problem that we address in this disserta-
tion is how to reduce the costs of developing an information extraction
proposal, how to compare techniques homogenously, and how to extract in-
formation using efficient and effective techniques. Currently, the literature
does not provide any frameworks to help software engineers devise and im-
plement new information extraction techniques for semi-structured web sites,
and current unsupervised information extraction techniques suffer from
some drawbacks that hinder their applicability in practice. In this disserta-
tion we present a reference architecture and an accompanying framework to
help software engineers devise new information extraction techniques for
semi-structured web documents. Furthermore, we propose two unsuper-
vised information extraction techniques that have proven to be very effective
and efficient in practice.

xiii

xiv Abstract

Resumen

Sabes que el inicio es la parte más importante de cualquier trabajo.

Platón, Filósofo griego (427-347 AC)

E
l objetivo de la integración de información empresarial es ofrecer un
acceso uniforme a multiples fuentes de datos, que deben ser trata-
dos como una base de datos única. Los wrappers web son módulos
software que tienen como objetivo ofrecer una API para abstraer a

los desarrolladores de los detalles requeridos para simular el comportamien-
to de una persona con los formularios y para transformar los resultados a
datos estructurados. Un componente clave en un web wrapper es el extrac-
tor de información, que se usa para extraer y estructurar la información de los
documentos web. Existen en la actualidad muchas técnicas para apren-
der las reglas de extracción de información, pero ninguna de ellas es aplicable
universalmente. En esta tesis doctoral, nos centramos en las técnicas no
supervisadas para aprender estas reglas y los extractores de información ba-
sados en heurísticas que no utilizan reglas. Los problemas que estudiamos en
esta tesis doctoral son la forma de reducir los costes de desarrollo de las técni-
cas de extracción de información, la forma de comparar estas técnicas de
una forma homogénea y cómo extraer información usando técnicas de ex-
tracción eficientes y efectivas. Actualmente, no existe ningún framework
para ayudar a los ingenieros del software a diseñar e implementar nue-
vas técnicas de extracción de información para sitios web semi-estructurados;
además, las técnicas no supervisadas existentes tienen diversos problemas
que afectan a su aplicación en la práctica. En esta tesis doctoral presentamos
una arquitectura de referencia acompañada de un framework para ayu-
dar a los ingenieros del software a desarrollar nuevas técnicas de extracción
de información para documentos semi-estructurados. Además, propone-
mos dos técnicas no supervisadas para la extracción de información que han
demostrado ser muy efectivas y eficientes en la práctica.

xv

xvi Resumen

Part I

Preface

Chapter1

Introduction

The beginning of all knowledge is the discovery of something interesting

that we do not understand.

Frank P. Helbert, American author (1920-1986)

O
ur goal in this dissertation is to report on our work to create an
information extraction reference architecture and on two unsuper-
vised information extraction techniques. This chapter introduces
this dissertation. It is organised as follows: in Section §1.1, we first

introduce the context of our research work; Section §1.2 presents the hypothe-
sis that has motivated it and states our thesis; Section §1.3 summarises our
main contributions; Section §1.4 introduces the collaborations we have con-
ducted throughout the development of this dissertation; finally, we describe
its structure in Section §1.5.

3

4 Chapter 1. Introduction

Verified Result SetsEnquirer Navigator InformationExtractorQuery FilledForms WebDocuments ResultSets Verifier
Figure 1.1: Components of a typical web wrapper.

1.1 Research context
The idea behind Enterprise Information Integration, or EII for short, is to

have a target schema that integrates the data managed independently by sev-
eral applications, so that they can be seen as if they were a large database
[61]. Wrappers are pivotal to EII, since they allow to have access to an
application’s data so that it can be integrated.

Our focus in this dissertation is on web applications that do not provide a
programmatic or data-oriented interface, but a user interface only, which
is typically the case of many web applications. Integrating them is chal-
lenging insofar building a wrapper amounts to writing a component that
emulates a human interacting with them.

A typical web wrapper is composed of the components in Figure §1.1,
namely: the enquirer takes a user query as input and maps it onto the appro-
priate search forms provided by a web application; the navigator cares of
submitting the filled forms provided by the enquirer and navigating through
the results to fetch web documents that are relevant to the user query; the in-
formation extractor is responsible for extracting relevant information from
these documents. Since the previous components rely on artificial intelli-
gence techniques, they are likely not to work well if the web site for
which they have been trained undergoes redesign changes. This is the rea-
son why a wrapper should incorporate a final component to verify the
information returned by the information extractor.

In this dissertation, we focus on information extractors, which consti-
tute a vast research field in which there are a plethora of proposals. The
common theme is to help transform web documents into structured informa-
tion, i.e., data for which there is an explicit model. This idea is not new at all.
In 1950, Zellig Harris suggested that it would make sense to reduce docu-
ments to a tabular structure, as a means to provide an abstract with relevant
facts only. Sager [129] devised one of the earliest materialisations of Har-
ris’s ideas in the context of medical documents. With the advent of the Web in

1.1. Research context 5

Information extractors Region extractors Toolkits

Free-text Semi-structured

Rule-based Heuristic-basedStatistical-models-based Rule-based

Handcrafted Learnt unsupervisedly

Frameworks GUI-tools

Learnt supervisedly

Information extraction proposals

Figure 1.2: Proposals related to information extraction.

the early 90s, the problem attracted an increasing number of researchers, first
in the context of the well-known Message Understanding Conference se-
ries, or MUC conferences for short, and later in the context of the SIGMOD,
WWW, VLDB, and CIKM conferences, to mention a few.

Figure §1.2 provides a taxonomy of the many proposals that have been
presented in this context. They can be classified into information extractors,
region extractors, and toolkits. Unfortunately, none of these proposals is uni-
versally applicable, which makes this quite an active research area [34]. In the
following paragraphs, we provide an insight into each of the categories in our
taxonomy.

Information extractors: The emphasis of these earliest attempts to address
the problem focused on documents that were written in natural language
(free-text documents), including telegraphic language. Note that a free-text
web document usually contains HTML tags that provide a little structure,
e.g., <h1> tags to typeset a title, <div> tags to typeset the authors, <p> tags to
typeset paragraphs, and or <emph> tags to emphasise some pieces of
text. Unfortunately, this little structure is not enough to characterise the infor-
mation to be extracted; that is, natural language processing techniques are
required to extract relevant information from these documents.

This field attracted the attention of many authors, who devised power-
ful natural language processing proposals. According to Turmo and others
[158] and Sarawagi [131], roughly half the information extractors from free-
text documents are based on rules [2, 11, 19, 49, 74, 83, 127, 150, 151, 159, 166]

6 Chapter 1. Introduction

and the other half are based on statistical models [23, 24, 29, 47, 50, 51, 79, 113,
121, 128, 132, 137, 155, 168, 172].

As the web gained popularity, it progressively turned into a platform
through which most companies provide information about their catalogues
of products and/or services. It is very common that these catalogues are gen-
erated using server-side templates, which results in so-called semi-structured
documents in which the information of interest is rendered as attributes in
lists or tabular forms. In these documents, HTML tags provide far more
structure than in free-text documents since the pieces of information to ex-
tract are usually enclosed within formatting tags. Such pieces of information
are usually referred to as attributes or slots in this context.

The proposals in this field can be classified into two categories, namely:
rule-based and heuristic-based information extractors. Rule-based informa-
tion extractors rely on so-called extraction rules, which can be handcrafted [9,
30, 55, 62, 112, 124, 130], learnt using supervised techniques [17, 20, 28, 48, 57,
71, 73, 87, 93, 118, 151, 157], or learnt using unsupervised techniques [7, 10,
18, 21, 32, 56, 72, 81, 101, 103, 104, 162, 169, 173].

Information extractors that rely on extraction rules do not usually adapt
well to changes to the Web. Note that once a set of extraction rules is hand-
crafted or learnt, the Web keeps evolving and it is not uncommon that
changes may invalidate the existing extraction rules. This motivated some
authors to work on proposals to maintain extraction rules (semi-) automati-
cally [22, 91, 96, 110, 123, 125]. Contrarily, others worked on unsupervised
proposals that do not rely on extraction rules. These proposals are referred to
as heuristic-based information extractors; they are based on a number of hy-
pothesis and heuristics that have proven to work well in many cases [6,
38, 59, 98, 106, 136, 152]. Note that changes to a web site do not usu-
ally have an impact on these extractors since they analyse every new web
document independently from the previous ones.

Region extractors: As the complexity of typical web documents increases,
information extractors have to analyse more and more irrelevant regions,
which has an impact on both efficiency and effectiveness [80, 161, 167]. This
has motivated a number of authors to work on region extractors as a means
to relieve information extractors from the burden of analysing the regions of a
web document that are not likely to contain any relevant information [142]. A
region in a web document is an HTML fragment that shows information
about one or more related items when it is rendered on a web browser. A re-
gion can be an individual record (that is, a collection of related attributes), a

1.2. Research rationale 7

data region (which encompasses a series of data records), or an ancil-
lary region (which refers to headers with navigation menus, footers with
contact and corporate information, or sidebars with advertisements, to men-
tion a few). The majority of region extractors focus on data records and data
regions; only a few attempt to extract other regions.

The difference between information extractors and region extractors is
that the former focus on extracting and structuring data records and their at-
tributes, whereas the latter focus on identifying the HTML fragments that
contain this information. Yi and others [167], Wang and Lochovsky [161], and
Kang and Choi [80] have confirmed experimentally that using region extrac-
tors has a positive impact on both the effectiveness and the efficiency of
information extractors; it is not surprising then that some recent propos-
als for information extraction incorporate a built-in region extractor [98, 101,
136, 162, 169]. The literature records an increasing number of proposals in
this area [14–16, 39, 80, 97, 100, 111, 119, 120, 134, 161, 163, 170, 171].

Toolkits: This category includes proposals that are intended to help end
users build an information extractor or put an information extractor in
production scenarios.

Toolkits can be classified into two subcategories, namely: software frame-
works and user interfaces. Software frameworks aim to help users build
their information extractors without starting from scratch [33, 45], whereas,
user interfaces facilitate putting information extraction proposals into prac-
tice in production scenarios, i.e., they provide a wizard-like environment that
guides users in tuning and deploying an information extraction technique [1,
12, 36, 46, 63, 94, 99, 102, 105, 114, 115].

1.2 Research rationale

In this section, we present the hypothesis that has motivated our re-
search work in the context of information extraction from semi-structured
web documents; we also state the thesis that we prove in the rest of the
dissertation.

1.2.1 Hypothesis

Companies are increasingly relying on software applications to manage
their data. Although these applications are very valuable on their own, most

8 Chapter 1. Introduction

companies have realised that integrating web information with the informa-
tion provided by these applications is even more valuable since this usually
results in better support for business processes [84]. We think that more and
more companies shall rely on an increasing number of such automated busi-
ness processes, which shall require more and more web information to be
integrated to support them.

Unfortunately, even though the technologies provided by the Service Ori-
ented Architecture and the Semantic Web initiatives are helping cut web
information integration costs down, a recent report by IBM [75] highlighted
that 80% of the information on the Web is not structured, but in semi-
structured or unstructured forms. Furthermore, Gartner [84] highlighted the
importance of information extraction in the semantic connectivity technology
trend. Another recent paper published in the SIGMOD conference [25] high-
lighted the high costs involved in developing and maintaining information
extractors.

According to the previous argumentation, we formulate the following
hypothesis:

Companies are increasingly interested in extracting information from
the Web to enrich their business processes. Software engineers need
a software framework to reduce the effort to develop information
extraction proposals and to compare them homogenously.

1.2.2 Thesis

Software frameworks have demonstrated to be a very useful tool to re-
duce the effort required to develop a software system and, thus, the costs
involved [41]. In the context of information extraction, there are a num-
ber of frameworks that help software engineers reuse free-text components to
devise and implement new information extraction techniques [33, 45]. Unfor-
tunately, no such a software framework seems to exist in the context of web
information extractors for semi-structured documents.

The Web has evolved and information extraction techniques that used to
perform well a few years ago are facing problems in the current web: web
documents are more and more complex, and incorporating information ex-
traction proposals into business processes requiere both effectiveness and
efficiency.

According to the previous argumentation, we formulate the following
thesis:

1.3. Summary of contributions 9

It is possible to build an information extraction framework for semi-
structured documents that provides a reference architecture for
software engineers and new unsupervised techniques that achieve
high effectiveness and efficiency on current web documents.

1.3 Summary of contributions
Next we summarise the contributions we have made to prove our thesis.

CEDAR: This is a reference architecture and a software framework that helps
software engineers design and implement new proposals in the field of
information extraction from semi-structured web documents. To vali-
date it, we have implemented four supervised information extraction
techniques that got inspiration from other classical techniques in the lit-
erature. Furthermore, it was used to develop two new unsupervised
information extraction techniques, namely TEX [143, 144], and Trin-
ity [145]. We got the following publications regarding this contribution:
[42, 138–142, 146–148].

TEX: This is a heuristic-based information extractor that extracts attributes
from semi-structured web documents. It saves end users from the bur-
den of annotating training examples to learn extraction rules and,
consequently, from maintaining them. It works on malformed web doc-
uments since it does not require converting HTML code into XHTML
or to build DOM trees. Furthermore, it can work on both single-
and multi-record web documents. We got the following publications
regarding this contribution: [143, 144].

Trinity: This is an unsupervised proposal to learn extraction rules. These
rules are regular expressions that model the server-side template used
to generate a number of web documents; these expressions contain
capturing groups that help extract information from similar web docu-
ments. Since it is unsupervised, it does not require the user to provide
any annotations, only to interpret the resulting rules. This facili-
tates maintaining them when a web site is redesigned. Our technique
can work on malformed input documents and deal with both single-
and multi-record web documents. We got the following publications
regarding this contribution: [145].

In addition to the previous main contributions, we also got involved in a
number of complementary contributions with other members of our research
group: [35, 43, 44, 67, 68, 149].

10 Chapter 1. Introduction

1.4 Collaborations
Throughout the development of this dissertation, a three-month research

visit was paid to the Institut für Angewandte Informatik und Formale
Beschreibungsverfahren (AIFB) at the Karlsruhe Institute of Technology (Ger-
many). This visit was paid to the research group headed by Prof. Dr. Rudi
Studer, under the supervision of Dr. Achim Rettinger. The focus was on
presenting our research results, researching on how our work can be
used to support the design and implementation of a technique to map
semi-structured web documents onto ontological models using transducers.

1.5 Structure of this dissertation
This dissertation is organised as follows:

Part I: Preface. It comprises this introduction and Chapter §2, in which
we motivate our research work and conclude that there is currently
a lack of a software framework to support software engineers and
researchers in devising and implementing their information extrac-
tion techniques for semi-structured web documents, and that current
information extraction techniques have a number of drawbacks.

Part II: Background Information. It provides information about the soft-
ware tools and technologies that are related to our research context.
In Chapter §3, we describe the software frameworks that are cur-
rently available to build information extractors. In Chapter §4, we
describe the unsupervised proposals in the literature that are based on
extraction rules. In Chapter §5, we describe the proposals in the litera-
ture that are based on heuristics. In Chapter §6, we study the steps to
evaluate an information extraction proposal.

Part III: Our Proposal. It reports on the core contributions we made with this
dissertation. In Chapter §7, we report on CEDAR, our reference archi-
tecture and software framework. In Chapter §8, we introduce TEX, our
heuristic-based information extractor. In Chapter §9, we present Trinity,
an unsupervised technique to learn extraction rules.

Part IV: Final Remarks. This concludes the dissertation and highlights a few
future research directions in Chapter §10.

Chapter2

Motivation

One finds the truth by making a hypothesis and comparing observations

with the hypothesis.

David H. Douglass, American physicist (1920-1986)

W
eb information extraction has been extensively researched.
However, existing proposals in this field have a number of
drawbacks that hinder their applicability to many current web
documents. In this chapter, we present some important require-

ments for a web information extractor, we detail to which extent current
proposals deal with these requirements, and we motivate the need for new
proposals in this field. This chapter is organised as follows: in Section §2.1,
we introduce it; in Section §2.2, we present the requirements of an informa-
tion extractor in detail; in Section §2.3, we describe the current proposals; in
Section §2.4, we discuss these solutions and we conclude that current propos-
als do not fulfill these requirements at a time; in Section §2.5, we introduce
our contributions; finally, Section §2.6 summarises this chapter.

11

12 Chapter 2. Motivation

2.1 Introduction

The Web provides a huge amount of information and it is still growing [5,
58]. This unlimited repository has attracted the attention of many companies
that have devised applications that consume and analyse this information
[84]. Business processes are more and more commonly fed by Enterprise In-
formation Integration systems that gather data from semi-structured web
documents. Unfortunately, integrating this information into business pro-
cesses is a costly task since web information is usually embedded in HTML
tags and buried into other superfluous contents. This has motivated many
authors to work on web information extractors that allow to extract rele-
vant information from web documents and structuring it in formats that can
be easily consumed by business processes.

In recent years, researchers and software engineers have realised that de-
vising an information extractor from scratch is costly [25, 95, 107]. This has
motivated the emergence of some software frameworks that aim to re-
duce development costs. However, as we discuss later, these frameworks
focus exclusively on free-text documents, which makes them of little inter-
est for researchers and software engineers who focus on semi-structured web
documents.

Regarding information extractors, the literature provides a plethora of
proposals, which range from information extractors whose extraction rules
must be handcrafted to proposals to learn them supervisedly or unsupervis-
edly, including heuristic-based proposals that do not rely on rules. Due to
the costs involved in handcrafting rules or using a supervised technique,
the current focus of researchers is unsupervised rule learners or heuristic-
based information extractors. We have identified a number of requirements
that should be addressed by information extraction proposals. These re-
quirements are intended to facilitate integrating these proposals in current
enterprise information integration solutions and to achieve high effectiveness
and efficiency.

2.2 Requirements

Devising and implementing an information extractor is not a simple task.
It is challenging from both a conceptual point of view, since the array of tech-
niques that are currently available make it difficult to innovate, and a

2.2. Requirements 13

software engineering point of view, since the algorithms involved are com-
monly intricate and difficult to give expression in a good design. We have
identified a number of requirements that are necessary for researchers and
developers when they devise or implement a new information extraction
technique; the most important are the following:

(R1.1) Count on a software framework: A software framework implements
a reference architecture that helps software engineers reuse pieces of
software to solve common problems, so that they only have to fo-
cus on the details that are specific to their technique. Counting on a
software framework helps software engineers develop information ex-
tractors for semi-structured web sites. This is an important requirement
since, if it is not fulfilled, software engineers need to implement their
proposals from scratch, i.e., they need to pay attention to a variety of de-
tails that are ancillary and common to many other proposals, but do not
constitute the core of their research. Furthermore, the lack of such
a framework may lead to a variety of terminologies, which makes
communication amongst software engineers very difficult.

(R1.2) Count on an evaluation methodology: It is necessary to follow a con-
sensus on how to study the evaluation results of different proposals
from a comparative point of view. The lack of such requirement may
lead to a situation in which making a decision on which technique is
the most appropriate for a particular problem remains largely sub-
jective. Counting on a common evaluation methodology allows the
published results to be side-by-side comparable because the evaluation
methodology used to compute them is the same for different techniques.

(R1.3) Count on an evaluation repository: It is necessary to count on an
up-to-date and publicly available collection of datasets on which infor-
mation extraction techniques can be tested. Such repository allows to
compare published results side-by-side since they have been computed
on the same datasets.

Regarding information extractors, themselves, our focus in this disserta-
tion is on unsupervised rule-based or heuristic-based proposals. We have
identified a number of requirements that the proposals should meet, namely:

(R2.1) Ability to work on current web documents: The Web is still evolving
and typical web documents are growing in complexity. An essential re-
quirement for the information extraction proposals is to be based on

14 Chapter 2. Motivation

simple algorithms that can work correctly on recent web documents
despite their complexity and errors.

(R2.2) Work on text view: Real-world web sites usually contain errors in
their HTML code. Working on DOM trees requires to convert HTML
code that is very often malformed into correct XHTML and then into
DOM trees. This requires to use an HTML cleaner, which is a heuristic-
based tool that attempts to mend the errors in the HTML code; the
problem is that mending an error may result in additional spurious er-
rors, which is problematic insofar these new errors may lead to noise.
Then, working on a text view is a requirement for information ex-
tractors since it helps reduce the numbers of possible errors during
information extraction.

(R2.3) Work on both single- and multiple-record web documents: It is nec-
essary for an information extractor to work on all kinds of
semi-structured web documents. This is an important requirement since
many proposals only work correctly on multi-record web documents by
identifying repetitive patterns within a single document, which pre-
vents them from being used in detail documents that provide a single
record of information.

2.3 Analysis of current solutions

Despite the high number of proposals on information extraction in the lit-
erature, only few of them have focused on devising a reference architecture
and a software framework to devise information extractors [1, 28, 33, 45, 63,
88, 154]. Some of these proposals claim to offer an environment in which
information extractors can be developed and tested [1, 28, 63, 88, 154]. How-
ever, they were presented as tools and the description of their architecture
is not clear. Furthermore, the majority of them are neither available nor
maintained any more.

The most popular and up-to-date frameworks are GATE [33] and UIMA
[45]. They both provide a reference architecture and an accompanying soft-
ware framework that aim to help software engineers devise solutions to
process large volumes of text. They both provide a number of components
that help tokenise text, determine the grammatical role of a word in a sen-
tence, analyse the structure of a sentence, and so on; they also provide kind of
an engine in which these components can be composed in a reusable work-
flow. Unfortunately, they were devised to work on free-text documents,

2.3. Analysis of current solutions 15

Summary Annotation time

Mean 1:30:43

StDev 0:51:44

Category Site Annotation time

cars.amazon.com 0:40:00

players.uefa.com 1:10:00

popartist.amazon.com 1:15:00

teams.uefa.com 0:45:00

www.ausopen.com 3:30:00

www.ebay.com 1:30:00

www.majorleaguebaseball.com 0:50:00

www.netflix.com 1:00:00

www.rpmfind.net 2:30:00

www.bigbook.com 1:55:00

www.iaf.net 2:45:00

okra.ucr.edu 0:40:00

www.laweekly.com/restaurants 1:10:00

www.zagat.com 1:30:00

EXALG

RISE

Table 2.1: Time necessary to handcraft some extraction rules.

which makes them of little interest in the field of semi-structured web
documents.

The problem of evaluating information extractors has been addressed in
several papers [3, 40, 90, 95, 126]. Their focus was on free-text information ex-
tractors and provided some guidelines only. Unfortunately, not a word on
how to evaluate a semi-structured information extractor or to produce a
ranking has been published.

Regarding evaluation repositories, there are some public ones that fo-
cus on free-text proposals [77, 156], another that focuses on semi-structured
proposals [164], and another that is mixed [117]. There are also some ad-
hoc repositories [6, 7, 31, 88, 154]. Unfortunately, the public repositories are
no longer maintained, which implies that the documents they provide are
commonly outdated and little representative of current web documents.
Furthermore, most of the ad-hoc repositories have not been publicly released.

Many information extractors rely on extraction rules. These rules can be
handcrafted [9, 30, 55, 62, 112, 124, 130]. The problem is that they require the
user to analyse the web documents to handcraft rules, which is cumber-
some, error-prone, and time-consuming, not to mention that the rules need be
maintained. Table §2.1 illustrates the time we required to handcraft extrac-
tion rules for the datasets offered by two well-known public repositories [7,

16 Chapter 2. Motivation

Summary Annotation time

Mean 1:54:34

StDev 0:47:03

Category Site Annotation time

www.abebooks.com 1:47:00

www.awesomebooks.com 2:17:00

www.betterworldbooks.com 1:57:00

www.manybooks.net 1:49:00

www.waterstones.com 1:54:00

www.autotrader.com 2:13:00

www.carmax.com 1:57:00

www.carzone.ie 2:17:00

www.classiccarsforsale.co.uk 2:37:00

www.internetautoguide.com 2:05:00

events.linkedin.com 2:03:00

www.allconferences.com 3:45:00

www.mbendi.com 1:18:00

www.netlib.org 0:53:00

www.rdlearning.org.uk 1:24:00

doctor.webmd.com 2:35:00

extapps.ama-assn.org 3:40:00

www.dentists.com 2:19:00

www.drscore.com 2:12:00

www.steadyhealth.com 3:12:00

careers.insightintodiversity.com 0:45:00

www.4jobs.com 0:50:00

www.6figurejobs.com 1:15:00

www.careerbuilder.com 0:50:00

www.jobofmine.com 0:50:00

www.albaniam.com 1:23:00

www.allmovie.com 1:46:00

www.citwf.com 1:32:00

www.disneymovieslist.com 1:02:00

www.imdb.com 1:18:00

www.soulfilms.com 0:54:00

Books

Cars

Events

Doctors

Jobs

Movies

Table 2.2: Time necessary to annotate some web documents.

117]. Note that we spent an average of one hour and a half per dataset and
that this process needs be repeated every time a web site changes.

The costs involved have motivated many researchers to work on propos-
als to learn extraction rules using supervised techniques [17, 20, 28, 48, 57, 71,
73, 87, 93, 118, 151, 157]. Supervised techniques require the user to annotate a
collection of sample web documents. The problem is that producing the an-

2.3. Analysis of current solutions 17

Summary Annotation time

Category Site Annotation time

realestate.yahoo.com 1:35:00

www.haart.co.uk 1:37:00

www.homes.com 3:25:00

www.remax.com 2:10:00

www.trulia.com 1:55:00

baseball.playerprofiles.com 2:10:00

en.uefa.com 2:22:00

www.atpworldtour.com 1:57:00

www.nfl.com 2:35:00

www.soccerbase.com 3:19:00

Sports

Real Estate

Table 2.2: Time necessary to annotate some web documents. (Cont’d)

notations is also cumbersome, error-prone, and time-consuming. Table §2.2
shows the time we spent at handcrafting the annotations for our collec-
tion of datasets. Each dataset consists of thirty web documents, and we spent
roughly two hours at annotating each of them.

The effort required by the previous techniques has motivated many
authors to work on unsupervised techniques to learn extraction rules:
RoadRunner [32], FiVaTech [81], EXALG [7], IEPAD [21], and DeLa [162]. Un-
supervised techniques seem to require less user effort because they learn
extraction rules that extract as much information as possible, gives computer-
generated labels to the information extracted, and it is the responsibility of
the user to assign a meaning to these labels. This usually requires much less
effort than handcrafting extraction rules or producing annotations since it
usually requires just taking a quick look at the information groups extracted
to discover their meaning.

Since extraction rules do not usually adapt well to changes to the Web,
some authors worked on so-called heuristic-based proposals that do not rely
on extraction rules, but are based on a number of hypotheses and heuristics
that have proven to work well on a large number of web sources, namely: Ál-
varez and others’ proposal [6], ViPER [136], WISH [72], DEPTA [169],
NET [101], ViDE [103], and ListExtract [38]. These proposals build on the
hypothesis that the data records introduce a repeated pattern in web docu-
ments, so they try to build the DOM tree of the input web document, and try
to find this repeating pattern using different heuristics. This is problem-
atic insofar real-world web sites usually contain errors in their HTML code,
which are usually mended using additional heuristics. Furthermore, build-

18 Chapter 2. Motivation

Proposals R2.1 R2.2 R2.3

RoadRunner No No Yes

FiVaTech No No Yes

EXALG ? No Yes

IEPAD ? Yes No

DeLa ? No No

Álvarez and others Yes No No

ViPER ? No No

WISH ? No No

DEPTA ? No No

NET ? No No

ViDE ? No No

ListExtract ? No No

R2.1 = Ability to work on current web documents; R2.2 = Work on text view;
R2.3 = Work on both single- and multiple-record web documents.

Table 2.3: Comparison of current unsupervised information extractors.

ing on the hypothesis that the data records introduce a repeated pattern in the
web document does not work in case the input web document reports on a
single item.

Table §2.3 summarises how the previous unsupervised proposals deal
with the requirements we have identified. The first column in the table shows
the name of each technique, and the others report on whether they meet the
corresponding requirements or not. Since many proposals are not avail-
able for their evaluation, it was difficult to check if the techniques can deal or
not with current web documents.

2.4 Discussion

The lack of a reference architectural proposal in the literature to guide
software engineers in devising and implementing new information extrac-
tion techniques for semi-structured web documents amounts to little reuse;
that is, the focus tends to blur because of irrelevant details. Existing proposals
[33, 45] focus on information extraction from free-text web documents and do
not support extracting information from semi-structured documents (R1.1).

2.5. Our proposal 19

The problem of evaluating information extraction proposals remains
largely unexplored in the field of semi-structured web documents [81, 94, 163,
169, 170]. The majority of proposals in the literature simply present their re-
sults and compare them with a few more proposals, without checking if the
conclusions are statistically significant, neither provide them any details on
the evaluation methodology used (R1.2).

The lack of an up-to-date repository is another problem that researchers
face when they are interested in evaluating their proposals [95]. The major-
ity of current repositories are intended to evaluate free-text information
extractors, whereas the few public repositories on the Web to evaluate infor-
mation extractors for semi-structured web documents are outdated and no
longer maintained (R1.3).

With the increasing complexity of web documents, unsupervised informa-
tion extractors are becoming more and more attractive insofar they require
less user intervention and thus smaller costs. Unfortunately, current pro-
posals in the literature have a number of drawbacks that hinder their
applicability in practice.

Unsupervised techniques that learn extraction rules build usually on
the DOM trees of the web documents, which may reduce their perfor-
mance due to the complexity of the current web documents (R2.1) and the
possible errors introduced by the HTML cleaner (R2.2). Furthermore, the
heuristic-based information extractors in the literature focus on extracting in-
formation from multi-record web documents, and none of them focuses on
single-record web documents (R2.3).

2.5 Our proposal
We present CEDAR, a reference architecture to design, implement, and

test information extractors for semi-structured web documents (see Chap-
ter §7). It provides an abstract and reusable design that should allow software
engineers and researchers face the development of a new information extrac-
tion technique without incurring the high costs of developing it from scratch
(R1.1). To support our reference architecture, we have implemented a soft-
ware framework and we have validated it by implementing four information
extraction techniques that got inspiration from classical techniques in the lit-
erature; this helped us prove that CEDAR helps reduce development costs
significantly. The framework provides a k-fold cross validator that allows to
compare the results about a given proposal to others (R1.2). The frame-
work also provides an up-to-date collection of 55 datasets that were gathered
from 40 real-world web sites and two public repositories (R1.3).

20 Chapter 2. Motivation

We have also devised a heuristic-based information extraction tech-
nique called TEX to extract attributes from semi-structured web documents
(see Chapter §8). TEX does not rely on DOM trees, but on quite an effec-
tive and efficient multi-string alignment algorithm (R2.1). Contrarily to the
heuristic-based proposals in the literature TEX does not require the input web
documents to be translated into DOM trees, i.e., it can work on mal-
formed web documents without correcting them (R2.2), and does not require
the document to contain multiple records (R2.3). It works on two or more
web documents and compares them in an attempt to discover shared pat-
terns that are not likely to provide any relevant information, but parts of the
template used to generate the web documents.

Furthermore, we have devised a rule-based information extractor called
Trinity to extract data records from semi-structured web documents (see
Chapter §9). It tries to learn a regular expression that represents the server-
side template that was used to generate the input web documents using an
effective and efficient multi-string alignment algorithm that was inspired by
TEX (R2.1). Contrarily to the unsupervised information extractors in the liter-
ature that learn extraction rules, Trinity works on malformed web documents
without correcting them (R2.2) and does not require the web documents to be
formatted using repetitive patterns (R2.3). Trinity uses an algorithm simi-
lar to that one used by TEX, but it learns extraction rules and the schema of
the extracted information.

2.6 Summary

In this chapter, we have motivated the reasons for this piece of research
work. We have analysed the requirements for developing information extrac-
tion techniques, and for the current information extraction proposals. We
have concluded that current frameworks do not support developing infor-
mation extractors for semi-structured web documents, and that current
information extraction proposals do not meet some important requirements.
This motivated us to work on this topic so as to advance the state of the art a
step forward.

Part II

BackgroundInformation

Chapter3

Softwareframeworks

I am the wisest man alive, for I know one thing: I know nothing.

Socrates, Greek philosopher (469-399 BC)

I
n this chapter, we present the frameworks in the literature that aim
to help researchers and software engineers build their information ex-
tractors without having to implement their proposals from scratch.
The chapter is organised as follows: in Section §3.1, we provide an

overview on the proposals on the literature that provide such frameworks; in
Section §3.2, we describe GATE, which is a reference architecture accompa-
nied by a software framework to manage text documents; Section §3.3
presents UIMA, which is another reference architecture and framework to
manage information sources; finally, Section §3.4 summarises this chapter.

23

24 Chapter 3. Software frameworks

3.1 Introduction
Information Extraction is the process of analysing unstructured or semi-

structured documents and extracting relevant information in a structured
format. Information extraction systems are usually composed of a set of com-
ponents that are intended to read input documents, pre-process them, extract
information, and structure it. They usually contain similar components and
differ only in the extraction algorithms. This has motivated some authors
to work on reference architectures and software frameworks to help re-
searchers and software engineers build their information extractors without
having to implement their proposals from scratch.

In the following we describe the state-of-the-art proposals in the literature
that provide a reference architecture for information extraction.

3.2 GATE
Gaizauskas and others [52] introduced a system called LASIE in the con-

text of the MUC conferences. Its goal was to extract named entities, i.e., names
of people, countries, companies, equipment components, and so on. This sys-
tem evolved progressively into GATE [33] (General Architecture for Text
Engineering), which provides a number of tools, a reference architecture, and
a number of components whose focus is on processing free-text documents.

The development tools include the following: GATE Embedded, which is
a Java-based software framework that provides the foundation to every
other tool or component; GATE Developer, which is an integrated develop-
ment environment to develop new techniques to analyse free-text documents;
GATE Teamware, which is a web-based collaborative platform for annotat-
ing free-text documents; Mímir, which is an indexing framework for text
and annotations; GATE Wiki, which helps developers write their docu-
mentation collaboratively; GATE Cloud, which helps run GATE solutions
from the GATE family on cloud computing infrastructures; and GATE Pro-
cess, which is a set of UML activity diagrams that support GATE Teamware,
GATE Developer, and GATE Embedded.

GATE provides several components for language processing tasks, such
as parsers, morphological analysers, part-of-speech taggers, information re-
trieval tools, or information extraction components for different languages.
These components rely on a number of linguistic resources that are known as

3.2. GATE 25

Document ResetTokeniserGazetteerSentence Splitter
Semantic TaggerOrthographic Co-referencePronominal Co-reference

Input document
Tokenisation rulesPattern listsSentence patterns
Lexicon and rule set

Structured information
Parser

Part-of-Speech Tagger

Extractor
Figure 3.1: GATE’s information extraction components.

CREOLE (Collection of REusable Objects for Language Engineering). The re-
sources can be classified into three types, namely: language resources, such as
lexicons, corporas, and ontologies; processing resources such as parsers and
n-gram modellers; and visual resources like editing components.

The previous tools and components can be used to implement custom
information extractors [109]. Notwithstanding, the latest version provides
ANNIE [108], which is a collection of components that are specifically
targeted to extracting information from free-text documents. Figure §3.1 illus-
trates the components of ANNIE and how they are usually connected in a

26 Chapter 3. Software frameworks

workflow, namely:

Document Reset: It provides the users with methods to read different types
of documents or to download them from a given URL. This component
is usually run as the first step of an information extraction algo-
rithm and outputs a document that is prepared to be used in other
components of GATE.

Tokeniser: It provides methods to tokenise a document, which can be con-
figured by means of rules. Each rule has a regular expression that
describes a token and an annotation that is added to the annota-
tion set of the document whenever the regular expression matches.
The tokeniser has a default set of rules that distinguish between up-
per and lower case words, numbers, punctuation, special symbols, and
space tokens. This component also provides a so-called English to-
keniser that takes into account the intricacies of the English spelling,
e.g., “don’t” is tokenised as “do” and “not”. The output is a document
with annotations that reference the tokens found in the input document.

Gazetteer: This component takes a tokenised document as input and identi-
fies the named entities within it. This component builds on name and
pattern lists that help identify named entities. The output is a document
in which every named entity found has been annotated appropriately.

Sentence Splitter: This component takes a tokenised web document as in-
put and outputs a document in which the annotations reference the
individual sentences of which it is composed. GATE provides two im-
plementations of this component, namely: the simplest one is based
on a number of heuristics and lists of abbreviations that prevent it
from splitting a sentence at the trailing dot of a common abbrevia-
tion; the other is based on a list of regular expressions that help identify
the end of a sentence more efficiently and precisely.

Part-of-Speech-Tagger: This component takes a tokenised web document, a
lexicon document, a tagging-rule document, and the document out-
put by the sentence splitter as input. It provides a tagger that adds a tag
to every word in the input text; the tag describes the grammatical func-
tion of that word, e.g., substantive, adjective, verb, adverb, and so on. It
is based on Hepple’s technique [65] and uses a previously trained lexi-
con and rule set that can be modified if necessary. The output is a
document with annotations that reference the words found in the input
document and their grammatical functions.

3.2. GATE 27

Semantic Tagger: This component takes a document and the annotation doc-
uments produced in earlier steps as input. It provides methods to add
some semantic tags to the annotations created by other components.
The output is a document that contains an annotation with a seman-
tic category of each word in the input web document. This component
is essential for the co-reference components in ANNIE.

Orthographic Co-reference: This component, aka NameMatcher, takes a
document and the annotations output by the gazetteer. It aims to iden-
tify named entities that are spelled differently, but actually refer to the
same real thing. For instance, it can identify that “Mary Smith” and
“Mrs. Smith” or that “International Business Machines Ltd.” and “IBM” re-
fer to the same actual entities. It modifies the input document to make
these correspondences explicit.

Pronominal Co-reference: This component takes a tokenised document and
annotations produced by the previous components as input. It pro-
vides methods to find the noun or noun phrase to which an anaphora
refers; typical anaphora include pronouns and noun sentences. For in-
stance, given the sentences “IBM reported on its profits yesterday; the
company was satisfied.”, this component is intended to find that “its” and
“the company” refer to “IBM”. The output is a document in which each
pronoun is annotated with the noun or noun phrase to which it refers.

The previous components provide a foundation, but are not enough to
extract structured information, only named entities. GATE provides two
additional components for this purpose, namely:

Parser: This component aims to construct the syntax tree of a sentence, i.e., it
identifies subjects, verbs, and complements and represents them in a hi-
erarchical form that makes it explicit their grammatical structure. GATE
provides several implementations of this component, ranging from a
shallow one to full parsers, such as SUPPLE, RASP or the Stanford
Parser.

Extractor: This component builds on extraction rules that are expressed in
Prolog; they help walk the syntax trees output by the parser in or-
der to locate the information on which we are interested. Note that
this provides the foundations, again; other authors developed several
information extraction techniques building on it [4, 26, 27, 122].

28 Chapter 3. Software frameworks

3.3 UIMA

Unstructured Information Management Architecture [45], or UIMA for
short, is a framework that was intended to help analyse large amounts of
free-text documents, video, and audio to extract relevant information. The
project was initiated by IBM Research in 2001 to provide a common software
architecture for developing techniques to work with free-text documents
in several problems, such as natural-language dialogues, information re-
trieval, and information extraction, to mention a few. In 2004, IBM released
the UIMA Software Development Kit (SDK), which allowed developers to
build and deploy components for analysing free-text documents. In 2006,
IBM made the UIMA SDK open source and it was accepted as an Apache in-
cubation project. That same year, UIMA was transformed into a standard
specification by OASIS; the open source reference implementation is now
called Apache UIMA.

UIMA provides an architecture and an accompanying software frame-
work that supports it. The framework provides a collection of components
and a run-time environment in which developers can plug in and run their
UIMA component implementations along with the other components to
build and deploy their applications.

Users interested in using UIMA should define a so-called pipeline config-
uration. This pipeline contains the components that should run consecutively.
An UIMA application is organised as a so-called Collection Processing En-
gine that consists of one or more UIMA Collection Readers, one or more
UIMA Analysis Engines, and one or more Collection Consumers. The in-
put is stored in an internal UIMA data structure called Common Analysis
Structure (CAS). In Figure §3.2, we show a typical UIMA pipeline for infor-
mation extraction. Note that there are different implementations for each
type of component and other types of components can be used in the
pipeline. In the following we present some more details on this pipeline:

Collection Readers: This group includes the components that allow to have
access to information sources, read documents, gather metadata about
them, and convert them into Common Analysis Structures that can
be processed by the following components in the pipeline. Compo-
nents in this group include a MySQL reader, an HTML reader, or a plain
text reader, to mention a few.

3.4. Summary 29

Collection readersSentence Splitter
Part-of-Speech Tagger

Input document

Co-reference resolution
Tokeniser
ExtractorConsumers

Figure 3.2: Components used for information extraction in UIMA.

Analysis Engines: This group includes the components that allow to anal-
yse the input documents, namely: i) a sentence splitter, which splits the
input document into individual sentences; ii) a tokeniser, which seg-
ments the sentences into tokens using blanks as separators; iii) a
part-of-speech tagger, which annotates each token with its grammatical
function; iv) a co-reference resolver, which performs anaphora resolu-
tion, i.e., makes it explicit which noun or noun phrase is referenced by
each pronoun; v) an information extractor that works on the previous
annotations and extracts information depending on the domain; au-
thors have developed several information extraction techniques that
can be used here [78, 153].

Collection Consumers: This group includes a number of components that
work on the information extracted to display it, to serialise it, or to store
it to a database, to mention a few examples.

3.4 Summary
The literature provides two reference architectures and frameworks for

information extraction. Both are intended to manage large volumes of

30 Chapter 3. Software frameworks

information and focus on free-text documents and provide a number of com-
ponents that allow to read input documents, tokenise them, split them
into sentences, perform anaphora resolution, and so on. Unfortunately, no
support is provided to deal with semi-structured web documents.

Chapter4

Unsupervisedrule-based
informationextraction

Imagination rules the world.

Napoleon I Bonaparte, French military and political leader (1769-1821)

T
his chapter is devoted to presenting the state-of-the-art unsuper-
vised proposals to learn information extraction rules. It is organised
as follows: Section §4.1 introduces this chapter; Section §4.2 de-
scribes RoadRunner; Section §4.3 describes FiVaTech, Section §4.4

describes EXALG, Section §4.5 describes IEPAD, and Section §4.6 describes
DeLa. Finally, Section §4.7 summarises this chapter.

31

32 Chapter 4. Unsupervised rule-based information extraction

4.1 Introduction
Handcrafting extraction rules is usually a difficult and laborious task. Fur-

thermore, these rules tend to be difficult to maintain. This has motivated
many authors to work on proposals that learn them automatically.

Earlier proposals in the field of information extraction from semi-
structured web documents focused on learning extraction rules starting from
annotated samples provided by a user. Producing these annotations is a time-
consuming, cumbersome, and error-prone task. In fact, after extraction rules
have been learnt for a collection of annotated web documents, a small change
in the HTML code can make the information extractor to fail and, as a
consequence, the annotation and learning phases have to be repeated.

The previous costly tasks motivated researches to work on learning these
rules using unsupervised techniques. The idea is to make the rule learn-
ing process completely automatic, without relying on a prior knowledge
about the input web documents and their contents. The proposals in this field
are intended to learn a rule that describes the template that was used to
generate a number of similar web documents, namely: RoadRunner [31], Fi-
VaTech [81], EXALG [7], IEPAD [21], and DeLa [162], which we study in the
following sections.

4.2 RoadRunner
RoadRunner [31] is intended to learn a union-free regular expression that

describes the server-side template that was used to create the input web
documents. It is based on the hypothesis that input web documents were
generated using the same server-side template and that comparing these
documents side-by-side allows to learn a regular expression that describes it.

The RoadRunner algorithm works as follows:

i. It applies JTidy to mend the HTML code, which is then tokenised using
a text-tag tokenisation schema.

ii. The algorithm considers the first web document as an initial template
and then compares it to the second input document. The compari-
son is performed sequentially, token after token. Therefore a mismatch
can be of the following types: text to text, tag to tag, tag to text, or tex
to tag. In the following paragraphs, we explain how each kind of
mismatch is dealt with.

4.3. FiVaTech 33

iii. A text-to-text mismatch indicates that there can be relevant data at the
position where the mismatch occurs. It can be easily resolved by gener-
alising both pieces of text to a variable that indicates that they must be
extracted.

iv. Tag-to-tag, tag-to-text, or text-to-tag mismatches are more difficult to
solve since they imply that there may be repeated or optional patterns in
the template, i.e., similar subsequences of tokens that occur in sequence
or similar sequences of tokens that do not occur in every input docu-
ment. For the sake of brevity, a subsequence of tokens is also referred to
as a fragment. Next we describe how each kind of pattern is detected.

v. To detect repeated patterns, the algorithm first searches for the closing
tag that caused the mismatch and checks if its followed by the corre-
sponding opening tag, e.g., if the mismatch is caused by tag , then it
searches for . If such tags are found, then this is a strong evi-
dence that there is a repeated pattern; in that case, the algorithm tries to
identify every fragment that is repeated and substitutes them all by a
regular expression.

vi. If no repeating pattern is found, the algorithm applies two steps
to detect optional token sequences: i) the algorithm finds the mis-
matched token sequence that is located between two matching tokens;
ii) the mismatched sequence is added to the template using an optional
operator as long as it only occurs in the document.

4.3 FiVaTech
FiVaTech [81] is intended to learn a context-free grammar that repre-

sents the template used to generate the input web documents and the
schema of the information in these documents. It is based on the hypothe-
sis that the input web documents share the same template, that attributes of
same type have the same path from the root of the DOM tree, and that similar
subtrees contain the same attributes.

The FiVaTech algorithm works as follows:

i. The HTML code of the input web documents is mended and their DOM
trees are built using JTidy.

ii. The algorithm tries to merge the DOM trees of the input web document
into a so-called fixed/variant pattern tree.

34 Chapter 4. Unsupervised rule-based information extraction

iii. The algorithm iterates over the DOM tree nodes from the root to
the leaves level after level. For each node, it collects its direct child
nodes and performs four steps, namely: peer-node recognition, ma-
trix alignment, pattern mining, and optional and disjunctive node
identification.

iv. The peer-node recognition step creates a so-called peer matrix. The
rows of this matrix contain the nodes that should be aligned; the
columns contain the nodes in the same web document that occur at the
same level in the DOM tree. It assigns a computer-generated label to
each node in the matrix such that similar nodes share the same label.
The similarity algorithm is a version of the one proposed by Yang [165],
in which two nodes may match only if they occur at the same level in
the DOM trees, two nodes may match although they have different tags,
and two leaf nodes may match although they have different text values.

v. The algorithm aligns the peer matrix by iterating over its rows. For each
row, it checks if it is aligned or not. If all the labels in a row are the
same, then the row is considered aligned and the algorithm works
on the next row; in other case, it tries to align the row by search-
ing for the node(s) in the row that should be shifted down, and the
number of rows to be shifted.

vi. Once the peer matrix is aligned, the algorithm converts it into a vector
in which each row corresponds to a label in the aligned peer matrix.

vii. The algorithm works on mining patterns inside this vector and on
constructing a pattern tree. It searches for repeating patterns in the vec-
tor starting from size one until no pattern occurs more than once.
When a repeating pattern is found, the algorithm removes every occur-
rence, but the first one, and it is considered as a list of information. The
algorithm also creates an occurrence vector for each label in the re-
sult pattern. The vector has a one if the corresponding label appears in
an occurrence of the pattern in the peer matrix or a zero in other case.

viii. The algorithm considers that a label is optional if its occurrence vector
contains a zero. Three rules are applied before a pattern can be consid-
ered optional: i) optional labels that have the same occurrence vector
are grouped together; ii) optional labels that have complementary
occurrence vectors are grouped together and considered disjunctive;
iii) optional labels should be grouped with non-optional labels that
occur before them in the pattern.

4.4. EXALG 35

ix. After learning a template, FiVaTech works on learning an informa-
tion schema. For each node in the pattern tree, if the node is repeated,
then a set type is added to the schema, if the node is optional, then op-
tionality is added to the schema, and the leaf nodes that in the pattern
tree that are variant are considered as basic type.

FiVaTech can also be applied to identify the data regions in a web docu-
ment starting from the schema thus learnt. It builds on the hypothesis that a
data region contains several data records and that the node in the schema that
identifies the data region is a node whose path from the root of the schema
does not contain any nodes of type set.

4.4 EXALG
EXtraction ALGorithm [7], or EXALG for short, is intended to learn a reg-

ular expression that represents the server-side template that was used to
generate a collection of web documents and the schema of the informa-
tion in these documents. It is based on the hypothesis that tokens that have
the same path from the root node and have the same context share the same
role in the web document, that tokens that do not occur in many in-
put web documents are part of the relevant information to be extracted, and
that the tokens that occur several times in a large number of web documents
are part of the template.

The EXALG algorithm works as follows:

i. The algorithm mends the HTML code and builds the DOM trees of
the input web document, tokenises their mended HTML code, and
computes the path from the root to each token in the web documents.

ii. The algorithm computes an occurrence vector for each token in the
input web documents. The i-th position of this vector contains the num-
ber of occurrences of the corresponding token in the i-th document.
Two tokens are considered equal if they have the same text and the
same path from the root.

iii. It then creates so-called equivalent classes, which are subsets of tokens
that have the same occurrence vectors.

iv. Equivalence classes whose number of tokens is less than a threshold or
whose total number of occurrences in the input web documents is less
than a given threshold, are not considered since they are supposed to be
part of the relevant information.

36 Chapter 4. Unsupervised rule-based information extraction

v. An equivalence class is said to be empty if its tokens always occur
consecutively without any separators between them. EXALG uses non-
empty equivalence classes to learn the template using a recursive
algorithm. For each non-empty equivalence class, the algorithm con-
structs a template for the token at position i and the separators between
it and the next token in the equivalence class, if any. The final template
is the concatenation of the templates learnt for each equivalence class.

vi. The algorithm checks if there are some patterns that can be identi-
fied in each occurrence of the equivalence class. These patterns are used
to identify basic, set, optional, and disjunction types inside the template
and to construct the schema of the information.

4.5 IEPAD

IEPAD [21] is an information extractor that is based on a pattern discov-
ery technique. It is based on the hypothesis that relevant information in a
web document is often displayed regularly and closely together using repeti-
tive patterns, and that they include at least two data records. The IEPAD
algorithm works as follows:

i. The algorithm takes a web document that contains two or more data
records as input.

ii. The input document is tokenised using TAG and TEXT tokens, but this
is not an intrinsic feature of the proposal. Other tokenisation schemes
can be used, as well.

iii. Each type of token is encoded as a binary string, which produces a
sequence of 0s and 1s.

iv. This sequence is used to create a structure called PAT tree [116], which
identifies a unique path to each token (a unique prefix).

v. The algorithm now counts the occurrence and the reference posi-
tions in the leaf nodes of the PAT tree. This helps know how many times
a pattern is repeated and where it occurs.

vi. The patterns thus detected are now filtered by calculating three parame-
ters: regularity, compactness, and coverage. These parameters are now
compared with their respective thresholds.

4.6. DeLa 37

vii. It uses a centre-star multiple string alignment algorithm [54] to
generalise the detected patterns.

viii. These patterns are shown to the user in order to select the target pattern
thay extracts the relevant information from the input web documents.

4.6 DeLa

Data extraction and Label assignment, or DeLa [162], was inspired by
IEPAD [21]. It is based on the hypothesis that a web document contains mul-
tiple data records, that these data records are displayed together, and that
they create a repetitive pattern inside the web document.

The DeLa algorithm works as follows:

i. The algorithm takes a web document that contains two or more data
records as input.

ii. It builds the DOM tree of the input document and tokenises its content
using TAG and TEXT tokens.

iii. The data region is located using a region extractor [161] that com-
pares the DOM trees of resulting web documents and discards similar
nodes since they are supposed to contain irrelevant information.

iv. The algorithm works on detecting repeating patterns using a structure
that is calles suffix tree and is similar to the one used by IEPAD [21],
called suffix tree. A suffix tree contains all possible paths to obtain each
type of tokens, which are the leaves of this tree. It is used to de-
tect repeated patterns in the input token sequence. These patterns are
represented in an additional structure that is called pattern tree.

v. The patterns thus detected but one are removed from the original in-
put sequence of tokens and the process is repeated again by creating a
new suffix tree and adding detected patterns as children to the previ-
ously detected ones. The learning process ends when every repeating
pattern is detected.

vi. Once the patterns are detected, string alignment is used to detect
optional tokens and mark them as optional in the regular expressions.

38 Chapter 4. Unsupervised rule-based information extraction

4.7 Summary

In this chapter, we have presented the unsupervised proposals that are in-
tended to learn an extraction rule that represents the template that was
used at the server-side to generate the input web documents. The pro-
posals in this field take a collection of input web documents and work
on identifying shared patterns that are shared amongst them. These pat-
terns are supposed to be part of the server-side template that generated them.
The techniques used for this purpose range from multi-string alignment, tree
similarity and an ad-hoc matrix alignment technique that is used to detect op-
tional and repetitive patterns, and statistical techniques to differentiate the
role of individual tokens.

Chapter5

Heuristic-basedinformation
extraction

By three methods we may learn wisdom: First, by reflection, which is no-

blest; second, by imitation, which is easiest; and third by experience, which

is the bitterest.

Confucius, Chinese teacher, editor, politician, and philosopher

(551-479 BC)

H
euristic-based information extractors rely on a collection of pre-
defined rules and heuristics that have proven to perform well
in practice. In this chapter we survey the heuristic-based in-
formation extraction proposals in the literature. It is organised

as follows: Section §5.1 introduces the heuristic-based information extrac-
tors; Sections §5.2–§5.8 describe the proposals in this field, namely: Álvarez
and others’ proposal, ViPER, WISH, DEPTA, NET, ViDE, and ListExtract;
finally, Section §5.9 summarises this chapter.

39

40 Chapter 5. Heuristic-based information extraction

5.1 Introduction
Heuristic-based proposals are very appealing from a practical point of

view since they need not be configured to deal with a particular class of docu-
ments. Instead, they build on a number of heuristics that have proven to
extract the information of interest in many common cases [6, 38, 72, 101, 103,
136, 169].

The existing proposals work on one input web document and search for
repetitive patterns that hopefully identify the regions where the relevant in-
formation resides; implicitly, they assume that the input web documents
contain similar information records since they all rely on finding repetitive
patterns within a web document.

5.2 Álvarez and others’ proposal

The proposal by Álvarez and others [6] is intended to extract data records
and their attributes from an input web document. It builds on the hypothe-
sis that a web document contains a unique data region, that the data records
are usually under the same node in the DOM subtree that represents the data
region, that these data records are similar, that each data record is com-
posed of several sibling DOM subtrees, and that the same attributes in
different data records have the same tag path.

Below we describe the algorithm by Álvarez and others:

i. It takes one web document that contains several data records as input
and builds its DOM tree.

ii. For each text node in the DOM tree, it computes its tag path and uses it
to group them. Each node in this tree is initially assigned a zero score
that shall later be used to identify the data region.

iii. For each pair of nodes in each group of text nodes, the algorithm com-
putes their deepest common ancestor, and increases the score of this
common ancestor node in the DOM tree by one. The node that has the
highest score, is considered as the root node of the main data region. To
prevent large menus from being considered data regions, the authors
use a simple heuristic: they require the data region to contain some of
the key words in the user query that generated the input web document.

5.3. ViPER 41

iv. The algorithm now works on breaking the data region into data records
by converting each direct child node of the data region root node into a
string and then calculating a similarity matrix between these strings us-
ing a string edit distance algorithm. This matrix is used to assign each
child node to a cluster and a code to each cluster.

v. It then creates a sorted list that contains the codes of the clusters and
searches for a combination that separates the data records. For this pur-
pose, the algorithm creates multiple record candidates by partitioning
the list into every possible sublist. Each sublist is called a candidate
record list.

vi. For each candidate record list, the algorithm computes the similarity be-
tween each pair of nodes in the list and assigns an average similarity
score to this list. The candidate record list that has the highest similar-
ity average score is considered as the list of data records since data
records are supposed to be similar.

vii. A string alignment algorithm is applied now to separate the attributes
inside each data record. This is performed by converting data records
subtrees into string sequences which are then aligned using a variation
of the center star approximation algorithm for string alignment [54].

viii. If the first and the last data record in a candidate record list can-
not be aligned to the others, then they are discarded since they are
usually the header and the footer of the data region.

5.3 ViPER

Visual Perception-based Extraction of Records [136], or ViPER for short, is
intended to extract data records and their attributes from a web document. It
builds on the hypothesis that web documents contain one or more data re-
gions, that data regions are centered in the web document, that they cover a
large part of the web document, that each data region contains repetitive pat-
terns, and that these repetitive patterns are the data records. The algorithm
tries to improve on the MDR [100] algorithm for region extraction by consid-
ering repeated patterns, and visual information for separating data records
and extracting their attributes.

Below we describe the ViPER algorithm:

42 Chapter 5. Heuristic-based information extraction

i. It takes a web document that contains two or more data records as in-
put. It build its DOM tree, renders it, and computes the coordinates of
the rendering box for each node in the DOM tree. Then, scripts, style
tags, and tag attributes are removed to create a so-called restricted tag
tree, which is serialised into a so-called plain tag sequence structure.

ii. The algorithm now searches for so-called tandem repeats using a suf-
fix tree; such repeats are repeated sequences of tokens that happen
inside a plain tag sequence structure.

iii. It creates a similarity matrix in which the string representations of the
nodes in the DOM tree are compared using a string edit distance algo-
rithm. Tandem repeats are used in this step to reduce the costs of
calculating the similarity matrix.

iv. The algorithm now analyses the similarity matrix to identify the sib-
ling nodes that are similar. Each group of similar sibling nodes are
considered as a data region candidate.

v. It now works on separating the data region candidates into data records
by searching for the separators inside them. It uses the rendering infor-
mation to sketch up a diagram based on the projection profiles of
the rendering boxes. The valleys between peeks in this diagram are
considered as potential data records separators.

vi. Once candidate data regions are identified and separated into data
records, they are filtered to keep only the data regions. Candidate data
regions are weighted based on their visual location, i.e., they should be
centered and cover a large part of the web document. The key words in
the query that generated the input web document can be also used to
weight the regions.

vii. The algorithm aligns the data records to extract their attributes. The
alignment algorithm is based on global sequence alignment using suf-
fix trees, which is an alignment algorithm similar to the algorithms used
in aligning protein sequences in bioinformatics [60].

5.4 WISH

Wrapper Incorporating Set of Heuristic Techniques [72], or WISH for
short, is intended to extract data records and their attributes from a web doc-
ument. It is based on the hypothesis that data records in the input web

5.4. WISH 43

document are similar, follow a repetitive pattern, contain more than three
HTML tags, that the web document contains a unique data region that is
usually large, and that the data region contains at least three data records.

Below we describe the WISH algorithm:

i. It takes a web document that contains three or more data records as in-
put, mends its HTML, builds its DOM tree, and tokenises the mended
HTML code.

ii. A breadth-first search technique, which is an improved version of MDR
[100], searches and groups the nodes in the DOM tree that have the
same tag. Groups with at least two nodes are considered candidate data
records.

iii. A filtering phase is performed to remove advertisements. This is per-
formed by removing candidate data records that have less than three
HTML tags.

iv. The algorithm checks the similarity between the candidate data records
inside each group using a so-called dummy tree matching algorithm.
This algorithm first counts the number of distinct tags inside each can-
didate data record subtree and keeps only those that have a similar
number of distinct tags in each group. Then, the tags at each level
inside the candidate data records subtrees are compared; only the sub-
trees that have a very similar number of distinct tags at each level are
kept inside each group.

v. Groups that contain less than three data records candidates are removed
since data regions are supposed to contain at least three data records.

vi. The algorithm filters the remaining groups by applying a scoring func-
tion that gives a high score to the groups whose candidate data records
have images, a large number of tokens, and separating tags such
as
 and <hr/>. The group that has the largest score is consid-
ered as the main data region in the web document and each candidate
data record inside it is considered as a data record.

vii. It aligns the data records inside the data region by building a so-
called template tree. This is performed by merging the data records
subtrees into a unique tree in which dissimilar nodes are merged un-
der a disjunction node; if they do not occur in every subtree, they are
then put under an optional node.

44 Chapter 5. Heuristic-based information extraction

viii. The template tree is used to extract the attributes of the data records.
This is performed by putting the text nodes in the template tree that
share the same parent node under the same column in a results table.

ix. Adjacent columns in the results table that are only separated by decora-
tive tags are merged together; such tags include , <i>, . A
column may be partitioned if every attribute in it shares a common
sequence of tokens.

Although this proposal is considered heuristic-based, the authors reported on
a simple idea that helps use the template tree as a rule that can be used to
extract and align data records from other similar web documents. Unfortu-
nately, this was not evaluated and it is not clear whether the rule learnt from a
single document may achieve a good effectiveness.

5.5 DEPTA
Data Extraction based on Partial Tree Alignment [169], or DEPTA for short,

is intended to extract data records and their attributes from a web document.
It is based on the hypothesis that a web document contains one or more data
regions, that each data region contains two or more data records, that the data
records inside the same data region are similar, and that the same attributes
in different data records share some common words that help aligning them.

The DEPTA algorithm works as follows:

i. It builds the DOM tree of the input web document and computes the
rendering information of its nodes.

ii. An improved version of MDR [100], which is referred to as MDR-2, is
applied to detect the data regions and the data records embedded in-
side them. MDR-2 analyses the rendering boxes of the nodes in the
DOM tree and builds a so-called containment tree that contains the
rendering boxes and the parent-child relations between them.

iii. The algorithm searches for the data regions in the web document by
searching for so-called generalised nodes. A generalised node is a com-
bination of adjacent nodes that have more than one level of children and
that share the same parent node in the DOM tree. This is performed us-
ing an algorithm that searches for combinations of adjacent nodes in the
DOM tree. Each collection of adjacent generalised nodes that have the
same parent, the same size, and whose tree edit distance is less than a
user-defined threshold are extracted as data region candidates.

5.6. NET 45

iv. Visual information is used to remove candidate data regions that are
rendered inside another candidate data region.

v. The algorithm now works on extracting the data records from each data
region using the following heuristics: i) if the region consists of only one
generalised node, it then checks if this node is not a table row, but all of
its children are similar; if the condition is met, then the children are re-
turned as independent data records; otherwise the generalised node
itself is returned as a data record. ii) If the generalised node con-
tains two or more nodes with the same number of children and these
children are similar to each other, then it means that they are non-
contiguous data records, i.e., the data region is an HTML table in which
each data record is formatted in columns and not in rows; otherwise,
the whole generalised node is returned.

vi. It aligns the extracted data records using a partial tree alignment algo-
rithm. First, data records that are composed of more than one subtree
are embedded under a ghost node that is used during the alignment
process. The algorithm aligns the data records progressively by grow-
ing a seed tree. The data record that has the largest number of text
nodes is considered as the initial seed tree, then, each node in the re-
maining trees that has no match in the seed tree is inserted into it.
Nodes match when the text they contain is similar.

vii. The seed tree is used to create a table. For each leaf node, a col-
umn is created. Each row in the table represents a data record, and
nodes that match belong to the same column. Each unmatched node in
a data record occupies a single column.

5.6 NET

Nested data Extraction using Tree matching and visual cues [101], or NET
for short, is intended to extract data records and their attributes from a web
document. It is based on the hypothesis that a web document contains one or
more data regions, that each data region contains two or more data records,
that the data records are formatted using similar HTML tags, rendered con-
tiguously, share the same parent node in the DOM tree, and that each data
record usually contains more than one level of tags. NET was inspired by
MDR [100] and DEPTA [169].

The NET algorithm works as follows:

46 Chapter 5. Heuristic-based information extraction

i. It renders the input web document in a browser and creates a DOM
tree that takes the rendering boxes of each HTML element into ac-
count, i.e., an element is a child of another element in the resulting
DOM tree as long as the former is rendered inside the latter.

ii. It traverses the DOM tree using a bottom-up algorithm that compares
every pair of nodes using a tree edit distance. It applies a dynamic pro-
gramming algorithm that computes the tree edit distance between all of
the subtrees in the web documents and also uses visual informa-
tion to compute the similarity between the subtrees. Similar subtrees
are considered as data records inside the same data region.

iii. Similar data records are aligned together to create an output table. The
nodes that match are inserted into the same columns, whereas nodes
that do not match are considered as optional attributes.

iv. The rendering boxes and their relationships are used to detect nested
data records and to create their relations in the tables produced by the
algorithm.

5.7 ViDE
Vision-based Data Extractor [103], ViDE for short, is intended to extract

data records and their attributes from web documents. It is based on the hy-
pothesis that visual features are important for information extraction, that the
data region is centrally located on a web document, the size of the data re-
gion is usually large compared to the size of the input web document, that
the data region contains several data records, these data records are adja-
cent, aligned to the left, have the same distance from the left, do not
overlap, the separating space between them is the same, they are visu-
ally similar, use the same fonts, the first attribute in a data record is always
mandatory, the presentation of the data attributes follows a fixed order, the
attributes of same type in different data records have the same visual pre-
sentation, neighbour attributes inside the same data record usually have
different fonts, and that the data records usually contain some static text.

The ViDE algorithm works as follows:

i. It builds the visual block tree of the input web document using VIPS
[16]. The visual block tree represents a visual segmentation of the input
web document in which each block in the tree corresponds to a rectan-
gular region in the web document, i.e., the root block represents the

5.7. ViDE 47

whole web document and leaf blocks are blocks that represent the mini-
mum semantic units that cannot be segmented again, e.g., images or
text.

ii. ViDE relies on a component called ViDRE, which searches for the data
region and partitions it into data records. ViDRE searches inside the vi-
sual block tree for the largest block that is centered horizontally, and
extracts this block as the data region. Then, it removes the child blocks
that are not aligned to the left since they are supposed to contain
irrelevant information.

iii. ViDRE clusters the remaining blocks in the data region according to
their visual similarity. The similarity function considers the size of the
images in the block and the fonts of the links and text blocks.

iv. Each cluster is now supposed to contain the attributes of same type
from every data record. They are now regrouped so that the blocks from
each data record are now grouped together. The cluster that has the
largest number of blocks is considered as the cluster that contains the
first attribute in every data record and it is selected as a seed clus-
ter. For each block in the seed cluster, the algorithm creates a group
that contains the blocks from the other clusters that are located be-
tween this block and the next block in the seed cluster. Each group is
considered as a data record.

v. The second component of ViDE is called ViDIE. It works on align-
ing the extracted data records to extract their attributes. A matching
algorithm is applied: visual blocks inside the data records match to-
gether if they have the same fonts and have the same distance from the
left (absolute position) or are located between two matching blocks (rel-
ative position). Blocks that match are put together in the same column
in the results table, whereas optional attributes that do not occur in a
data record has empty values in the results table.

Although this proposal is considered heuristic-based, the authors re-
ported on a simple idea that helps use the blocks thus identified and their
alignments to create an extraction rule that contains the position informa-
tion to locate the data region in the visual block tree, and some visual
information that helps separate the data records and align them. Unfortu-
nately, this was not evaluated and it is not clear whether the rule learned
from a single document may achieve a good effectiveness.

48 Chapter 5. Heuristic-based information extraction

5.8 ListExtract

ListExtract [38] is intended to extract data records and their attributes
from HTML lists. It builds on the hypothesis that every element in an HTML
list is a data record, that some separators are usually used to separate at-
tributes in each data record, that counting on a corpus helps aligning and
extracting data records attributes, and that the same attributes for different
data records are similar.

For each HTML list in the input web document, ListExtract works as
follows:

i. It separates the HTML list and considers each item as an independent
data record.

ii. It computes every possible text fragment for each data record and con-
siders each fragment as an attribute candidate. A scoring function is
used to score each attribute candidate. This function evaluates three fea-
tures, namely: if the type of the attribute candidate usually occurs as an
attribute type in the corpus, if the words in the attribute candidate usu-
ally occur together in the corpus (cohesive scores), and if the corpus
contains an attribute that has the same text as the attribute candidate.
The score is then normalised to interval [0.00, 1.00]

iii. The attribute candidates are now sorted according to their score in a list
on which a greedy algorithm iterates. This algorithm selects the at-
tribute candidate that has the highest score as a data attribute, removes
it from the list, and removes the ones that overlap with it.

iv. Now that the data records are fragmented into data attributes, the algo-
rithm works on aligning these attributes to create a table. It creates an
initial table that contains k columns, where k is the number of attributes
in the majority of data records.

v. The algorithm aligns the data records that contain more or less than k

attributes into these columns. Data records that contain more than k

attributes are fragmented again to force them to have k attributes by us-
ing a modified version of the previous fragmentation algorithm. Data
records that contain less than k attributes are aligned by inserting nil

values in some columns. Each attribute in this data record is compared

5.9. Summary 49

to the information in each column in the initial table, and a matching
score is assigned to it. It is inserted to the column that has the high-
est matching score. A nil value is inserted into a column if no attribute
matches the information it contains.

vi. The last step refines the initial table by analysing the whole table. For
each column in the table, it computes a consistency score and consid-
ers the columns with the lowest scores as inconsistent. Inconsistent
columns are merged again, fragmented and aligned. The main differ-
ence between the algorithms in this step and the previous ones is that
they also compare the attribute candidates to the columns in the re-
sults table. This step is repeated until every column in the table has a
consistency score that is more than a user-defined threshold.

5.9 Summary

In this chapter we have surveyed the heuristic-based information extrac-
tion techniques in the literature. Without an exception, these proposals rely
on building the DOM tree of the input web document and on a group of simi-
lar hypothesis, e.g., that the input web document contains several data
records and that these data records are similar. Some of these techniques
build only on visual features, others build only on structural features, and
others build on both visual and structural features.

50 Chapter 5. Heuristic-based information extraction

Chapter6

Evaluatinginformationextractors

The only relevant test of the validity of a hypothesis is comparison of

prediction with experience.

Milton Friedman, American economist, statistician, and author

(1912-2006)

S
oftware engineers and researchers are usually interested in eval-
uating their new proposals and wish to compare their performance
to third-party proposals. In this chapter, we report on how to eval-
uate information extraction proposals. It is organised as follows:

Section §6.1 introduces the chapter and sketches a simple evaluation method-
ology; Section §6.2 presents a number of repositories to evaluate information
extractors; Section §6.3 describes how to partition these repositories during
the evaluation; Section §6.4 reports on the standard performance mea-
sures to evaluate a proposal; Section §6.5 presents a metrology to rank several
techniques statistically; finally, Section §6.6 summarises this chapter.

51

52 Chapter 6. Evaluating information extractors

6.1 Introduction

During the last years, many proposals on information extraction have
been introduced. Researchers and software engineers are usually interested
in evaluating their new proposals and wish to compare their performance to
third-party proposals. (In the sequel, we use term performance to refer
to both effectiveness and efficiency.) Performing the side-by-side compari-
son within a homogeneous evaluation environment is a key requirement for
the comparisons to be useful.

The evaluation of information extraction proposals has become a necessity
due to the large number of proposals in the literature. The first information
extraction evaluation methodologies and repositories were made available at
the MUC conferences [69]. However, information extraction has evolved and
new methodologies and repositories are now used for this purpose [95].

The following steps sketch how a proposal should be evaluated:

i. The user should choose one or more repositories that contain an-
notated documents, i.e., documents in which the information to be
extracted is made explicit by means of user annotations. Generally
speaking, an annotation is a label that endows a piece of text with se-
mantics. Examples of annotations include Book to mean that a piece of
text is a book record, Title to mean that it is the title of a book or Sub-
ject to mean that it is the subject of a sentence. Note that it is important
that public repositories be used, since otherwise other researchers
would not be able to compare their results.

ii. If the proposal to be tested is rule-based, then the repository must
be partitioned into two parts, namely: a training set that must be
used to lean the extraction rules and a testing partition that must be
used to evaluate the effectiveness and efficiency of the rules learnt.
If the proposal is heuristic-based, then it is not necessary to parti-
tion the repository since these proposals do not learn any rules; the
whole repository can be used for evaluation purposes.

iii. The proposal must now be executed on the training partitions, if
any, and on the testing partitions. The information extracted and per-
formance measures must be collected so that they can be analysed
later.

6.2. Repositories 53

iv. The information collected in the previous step is used to compute aver-
aged performance measures from which intuitive conclusions can be
drawn in many cases.

v. Rank the techniques using statistically sound procedures that confirm
the conclusions drawn in the previous step.

The previous steps must be applied to every technique to be com-
pared. Once we have gathered performance measures, we must use statistical
inference to rank the proposals according to these measures.

6.2 Repositories
The MUC conferences were the first to provide repositories to evalu-

ate free-text information extraction systems [69]. Later, more repositories
were made available to the research community. In the following, we briefly
describe some of the repositories used to evaluate information extraction
proposals.

6.2.1 RISE
Repository of online Information Sources used in information Extrac-

tion tasks [117], or RISE for short, provides datasets used to evaluate machine
learning techniques and information extraction proposals for both semi-
structured and free-text documents. The motivation behind this repository
was to provide researchers in the field of information extraction with a repos-
itory similar to the well-known UCI repository [160], which is a key reference
for researchers in the field of data mining. RISE contains a collection of
datasets from 10 web sites, each of which provides from 9 to 255 web docu-
ments. Half of these datasets contain free-text web documents, whereas the
other half contains semi-structured web documents. This repository is not
maintained since 2004 and one of the datasets has four different versions
produced by different authors.

6.2.2 TBDW
Test Bed for information extraction from Deep Web [164], or TBDW for

short, provides datasets to evaluate information extraction proposals from
semi-structured web documents. TBDW contains a collection of datasets
from 51 web sites and each dataset provides five documents. TBDW only in-
cludes the annotations of the first data records inside each web document.
The annotations in TBDW are included in a separate document, but do not
have an explicit model. This repository is not maintained since 2006.

54 Chapter 6. Evaluating information extractors

6.2.3 TIPSTER

The TIPSTER project [156] was sponsored by the Software and Intelli-
gent Systems Technology Office of the Advanced Research Projects Agency in
an effort to advance information extraction from toy to large real-world web
documents. The project includes a repository of web documents for evalua-
tion purposes [64]. The documents provided by the repository range from
documents from the Wall Street Journal to the USA Federal Register. The an-
notations in TIPSTER are formatted using SGML-like tags in separated
documents. This repository is not maintained since 1993.

6.2.4 The Pascal Challenge

This repository was proposed by Ireson and others [77] in The Pascal
Challenge on the Evaluation of Machine Learning for Information Extrac-
tion [77]. This repository contains a unique dataset that is composed of
a total of 1 100 documents on call for papers, 850 of which are work-
shop call for papers and 250 of which are conference call for papers. The
majority of the call for papers are related to Computer Science. The docu-
ments are divided into three parts, namely: a training dataset that contains
400 documents, a test dataset that contains 200 documents, and an en-
rich dataset that contains 500 documents. The annotations are embedded
inside the documents. This repository is not maintained since 2008.

6.2.5 Ad-hoc repositories

Some authors have produced repositories of their own, e.g., Álvarez
and others [6], Arasu and Garcia-Molina [7], Crescenzi and Mecca [31], Krish-
namurthy and others [88], Suchanek and others [154]. Lavelli and others
[95] identified some problems in these repositories, namely: errors in the
annotated data, problems in creating versions of these repositories, the anno-
tations that could be embedded or separated, and the heterogeneous format
of the annotations. Furthermore, these datasets are usually unavailable and
not maintained [142].

6.3 Partitioning repositories
When evaluating rule-based information extractors on a given reposi-

tory, it is necessary to partition the repository into two parts, namely: training
and testing partitions. This can be accomplished as follows:

6.4. Collecting performance measures 55

N repeated random partitions: This technique partitions the dataset ran-
domly into training and testing partitions, uses the training partition to
learn the extraction rules and test these rules on the testing parti-
tion. This procedure is repeated N times using different randomly
selected train/test partitions. Each time, performance measures are col-
lected and at the end the weighted arithmetic mean of each computed
value is returned. Note that the results computed by this technique are
usually different each time this technique is run.

k-fold cross validation: The k-fold cross validation technique partitions the
dataset into k subsets of web documents with their corresponding anno-
tations and then starts iterating over them. At each iteration, it considers
one of these partitions for testing, whereas the remaining partitions are
considered as a unique set which is used to learn rules. The rules learnt
at each iteration are tested on the selected testing partition, and perfor-
mance measures are collected. At the end, the weighted arithmetic
mean of each computed value is returned. Note that this technique pro-
duces the same results on different runs as long as the input documents
are ordered according to some criterion, e.g., URL or download time.

Note that partitioning repositories does not make sense in the case of
heuristic-based information extraction proposals since they do not have to
learn extraction rules. The entire dataset is considered as a test partition in
this case.

6.4 Collecting performance measures
The performance measures that are usually reported by the information

extraction proposals can be classified into two types, namely: effectiveness
measures and efficiency measures. In this section we study them both.

6.4.1 Effectiveness measures

Effectiveness measures aim to characterise how well a proposal works in
terms of its ability to extract relevant information and annotate it as ex-
pected and/or not to extract irrelevant information. These measures come
from the field of classification, where the problem is to classify data in-
stances into one or more classes. In information extraction, the classes are the
types of information to be extracted from a document, e.g., attributes like Ti-
tle, Author, or Price or records like Book or Offer. In other words, we may see an

56 Chapter 6. Evaluating information extractors

1981

$15.95

PASCAL-S

Soft: Pract & Exper.

Extracted

information

I.B.M. Computer

P.S. System

C.A.R Hoare

J.E Hopcroft

Correct

Information

N. Wirth

K. Jensen

Information

space

True positive

False negative

False positive

True negative

Figure 6.1: Sample correct versus extracted information.

information extractor as a text classifier that puts every piece of text in the in-
put document it analyses in a user-defined class; the information that is not
extracted is usually classified in a pre-defined class to which we refer to as NA
(Not assigned).

Recall that prior to evaluating an information extractor we need a test-
ing set, which is a collection of documents in which the information to be
extracted is annotated. We refer to this information as the correct informa-
tion to emphasise that this is the information that is expected to be extracted.
Unfortunately, information extractors are rarely perfect since they make mis-
takes that are referred to as false positives and false negatives, cf. Figure §6.1.
Given a class, the false positives are the pieces of information that an infor-
mation extractor returns as belonging to that class but are actually of another
class; similarly, the false negatives are the pieces of text that an information
extractor returns as belonging to another class. For instance, if an informa-
tion extractor returns “John E. Hopcroft” as a piece of information of class Title,
then it is very likely to be wrong since this is quite likely a piece of informa-
tion of class Author; that is, this information is a false positive for class Title
and a false negative for class Author. For the sake of completeness, the pieces
of information that an information extractor returns as belonging to the
correct class are called true positives and the rest are called true negatives.

Building on the previous concepts, it is common to define the following

6.4. Collecting performance measures 57

effectiveness measures regarding a class:

Precision, aka positive predictive value: This measure refers the ratio of
true positives of a class to the total amount of information returned by
an information extractor as belonging to that class. Intuitively, the
higher the precision, the less incorrect information is extracted as
belonging to a given class. This measure is formally defined as follows:

P =
tp

tp+ fp

Recall, aka sensitivity or true positive rate: This measure refers to the ratio
of true positives of a class to the total amount of information that actu-
ally belongs to that class. Intuitively, the higher the recall, the more
correct information is extracted as belonging to a class. This measure is
formally defined as follows:

R =
tp

tp+ fn

Fβ measure: Note that neither a high precision or recall indicates that an in-
formation extractor is good. For instance, an information extractor
that achieves perfect precision might be the worst information extrac-
tor in the world, e.g., an information extractor that does not extract any
information at all has perfect precision since it does not make any mis-
takes; similarly, an extractor that achieves perfect recall might not be
useful at all, e.g., an information extractor that returns every piece of in-
formation as belonging to a given class has perfect recall with respect to
that class. The Fβ measure combines both precision and recall in a β-
harmonic mean that is close to 1.00 when both precision and recall are
high and close to 0.00 when any of them is not good enough. Usually, β
is set to 1, which results in the standard harmonic mean of preci-
sion and recall. The F1 measure is indistinctly referred to as F1 or F1.
This measure is formally defined as follows:

Fβ = (1+ β2)
P R

(β2 P) + R

Note that previous measures are defined at the class level. To compute
these measures at the information extractor level we must compute the so-
called weighted average for each measure, i.e., the sum of the product of
each measure times its number of occurrences divided by the total num-
ber of occurrences. Assume that we are working with n classes that have

58 Chapter 6. Evaluating information extractors

mi (1 ≤ i ≤ n) correct instances each, and that Pi and Ri denote, respec-
tively, the precision and recall of an information extractor on those classes.
We then define the information-extractor-level precision and recall as follows:

P =

∑n

i=1 mi Pi∑n

i=1mi

, R =

∑n

i=1 mi Ri∑n

i=1 mi

The information-extractor-level Fβ can be computed as usual, using the
β-harmonic mean of the information-extractor-level precision and recall.

In the previous paragraphs, we have assumed that the classes that an
information extractor returns are meaningful. This is true in the case of super-
vised proposals since they are trained to extract information of a number of
user-defined classes; in the case of unsupervised proposals, the classes
returned by the information extractor are not meaningful since they are
computer-generated. Typical classes returned by an unsupervised proposal
are A, _B_, $C, or D007; it is the responsibility of the user to assign a meaning
to them. This makes computing the effectiveness measures of an unsuper-
vised proposal a little more difficult since prior to computing them, we need
map each computer-generated class onto a class in the testing set. A sim-
ple solution to this problem is to compute the measures on every possible
mapping and select the ones with higher F1 measure.

6.4.2 Efficiency measures

Efficiency measures characterise how well an information extractor works
in terms of how much computing resources it requires. Typical efficiency
measures include the following:

Heap memory: This measure refers to the amount of heap memory that an
algorithm consumes when it is executed. The heap memory is used
to store the input, intermediate results, and the output during the
execution.

Time: This measure refers to the amount of time an algorithm requires to
execute. It is common to distinguish between CPU time, which is the ac-
tual time the CPU is allocated to run the algorithm, IO time, which is
the time the IO devices are allocated to reading or writing data that be-
longs to the algorithm, and total time, or simply time, which is the total
amount of time that elapses since the algorithm starts running until it
finishes (this includes the CPU time, the IO time and the time the algo-
rithm waits for the CPU or the IO devices to be allocated). CPU and IO

6.5. Ranking proposals 59

times are quite stable, i.e., when an algorithm is repeatedly executed on
the same input they do not vary largely; contrarily, total times are not so
stable because they depend on many other processes that can run con-
currently on the same machine. As a conclusion, to measure accurate
total times it is a good idea to repeat the experiments a sufficiently large
number of times, typically 25 times and to average the results after dis-
carding outliers using, for instance, the well-known Cantelly inequality
or other more sophisticated methods [70].

Regarding information extraction, heap memory and timings may be
computed regarding a proposal to learn extraction rules or regarding an in-
formation extractor (being based on rules or built-in heuristics). Although
they provide valuable evaluation information, this information is related to a
particular implementation run on a particular computing system. This is the
reason why it is also worth analysing the theoretical memory or time com-
plexity of a proposal. Memory complexity refers to the theoretical minimum
upper limit to the heap memory an algorithm consumes in terms of the size
of the input; similarly, the time complexity refers to the theoretical minimum
upper limit to the number of elementary operations an algorithm per-
forms in terms of the size of the input. Some algorithms are far too difficult to
analyse since their complexity depends on too many variables or vari-
ables that are very difficult to characterise. In such cases, it generally suffices
to compute an upper bound that proves that the algorithm is computation-
ally tractable, i.e., is not exponential or worse in the size of the input, neither
regarding heap memory nor time.

6.5 Ranking proposals
Intuitively, the techniques we have evaluated can be ranked according to

the average values of the performance measures we have gathered before.
For instance, assume that the CPU learning times of technique A on a given
training set are 4.50, 4.60, 4.80, 4.30, 4.10, and 2.70 seconds, i.e., the mean is
4.17 seconds and the standard deviation is 0.69 seconds; assume now that the
CPU learning times of technique B on the same training set are 4.30, 4.20, 4.40,
4.50, 4.30, and 4.10 seconds, i.e., the mean is 4.31 seconds and the standard
deviation is 0.12 seconds. As a conclusion, technique A seems to perform bet-
ter than technique B in the selected training dataset, but the question we
really need address when performing an experimental evaluation is whether
the difference is actually significant from a statistical point of view. In other
words, we need discern if the difference in performance is actually a key dif-
ference between these techniques or if they are just a consequence of the

60 Chapter 6. Evaluating information extractors

randomness factors that underlie the evaluation: the selection of the dataset,
how it was partitioned into a training set and a test set, the documents that
were selected, and so on. In our previous example, note that the performance
of technique A seems worse than the performance of technique B in general; it
is the last experiment that makes its average learning time better than the av-
erage learning time of the other technique. Our goal is to discern if this
difference is significant enough or not from a statistical point of view.

Fortunately, the research on statistics has produced a number of statis-
tical tests that help us rank a number of techniques with regard to a
performance variable or a ranking [53, 135]. The tests to be applied de-
pend on whether the experimental data are distributed normally and have
equal variances or not; the former are usually referred to as parametric
tests and the latter are known as non-parametric tests. Since our experi-
ence is that we are very unlikely to gather normally-distributed experimental
data and even less likely that two performance variables have the same
variance, we restrict our attention to non-parametric tests.

Whatever particular test we use, the goal is to contrast two hypotheses,
namely: the null hypothesis, which states that the techniques evaluated be-
have similarly, and the alternative hypothesis, which states that they do not
behave similarly. They rely on computing a so-called statistic, which is a for-
mula that operates on the experimental data and the evaluation data and
transforms them into a real value; the distribution of the statistic is obvi-
ously known beforehand. The idea is that if the probability of the value of the
statistic is high, then the experimental data does not provide enough evi-
dence to reject the null hypothesis; we then have to admit that the differences
in performance we have observed in our evaluation are not significant from a
statistical point of view. Contrarily, if the value of the probability of the statis-
tic is very low, then we have to admit that the differences in performance are
significant, in which case, it proceeds to rank the techniques. The probabil-
ity value of the statistic is usually referred to as the p-value and to determine
if it is high or low, the literature proposes to compare it to a so-called
significance level, which is usually denoted as α and set to 0.05.

The ranking of several proposals is usually performed in three steps: i) we
compute the average rank of each technique from the evaluation data; ii) we
perform a bulk test to determine if the differences in ranks are significant or
not; iii) if the differences are significant, we then have to perform a post-hoc
test to find out which ranks differ significantly; otherwise, the differences ob-
served are not significant, and we cannot conclude that a technique ranks
better than the others. To perform the bulk test, Iman and Davenport [76] de-
veloped a proposal that is considered the state of the art in this field [37]. The

6.6. Summary 61

array of choices is more ample regarding post-hoc tests. According to Der-
rac and others [37], the most powerful proposal was devised by Bergmann
and Hommel [13]. Unfortunately, it is computationally intractable, which
does not make it appropriate to compare more than nine techniques; if more
techniques need be compared, then we can use the proposal by Shaffer [133].

Once the proposals have been ranked, we might need determine how
some input features correlated to their results. This usually helps under-
stand what features of the input have an impact on performance. The most
common non-parametric procedure is Kendall’s Tau [82].

6.6 Summary

In this chapter, we have reported on the evaluation of information extrac-
tion proposals. First, we presented a simple evaluation methodology: we
then studied the existing repositories that are used for this purpose; next, we
reported on the standard measures that are usually used to evaluate informa-
tion extraction proposals; finally, we reported on how to rank a number of
proposals building on experimental data and statistical procedures.

62 Chapter 6. Evaluating information extractors

Part III

OurProposal

Chapter7

Devisinginformationextractors
withCEDAR

One cannot step twice in the same river.

Heraclitus, Greek philosopher (535-475 BC)

I
n this chapter, we propose a reference architecture to build information
extractors for semi-structured web documents and describe its accom-
panying software framework. It is organised as follows: Section §7.1
introduces this chapter; In Section §7.2, we describe the logical view of

the reference architecture; In Section §7.3 we describe the development view;
Section §7.4 describes the scenarios view; Section §7.5 reports on our reposi-
tory of datasets; Section §7.6 reports on the experiments we have conducted to
validate our reference architecture; finally, Section §7.7 concludes the chapter.

65

66 Chapter 7. Devising information extractors with CEDAR

7.1 Introduction
Several articles in the literature have highlighted the lack of a reference ar-

chitecture to help software engineers develop extraction rule learners from
semi-structured web documents [25, 95, 107]. This is problematic insofar re-
searchers need implement their proposals from scratch in order to validate
them, i.e., they need pay attention to a variety of details that are ancillary and
common to many other proposals, but do not constitute the core of their re-
search [41]. The lack of a reference architecture has also led to a variety of
terminologies, which makes communication amongst software engineers dif-
ficult, and experimental results that are not comparable empirically due to
differences in the designs and the implementations.

We use the 4 + 1 architectural view model proposed by Kruchten [89] to
describe our reference architecture. Note that since our proposal is not in-
tended to be a functioning system, the process and the physical views, which
focus on non-functional requirements like concurrency, distribution, topology
or communication, do not actually make sense in this case.

7.2 Logical view
The logical view of an architecture represents the functional require-

ments a system must provide to its end users. In our case, the end user is a
software engineer who aims to devise a new proposal to learn extrac-
tion rules, so we describe the subsystems, the services they provide, and the
interactions amongst them in this view.

The architecture is divided into the following subsystems, whose
relationships are shown in Figure §7.1:

Annotation tool: The reference architecture relies on an annotation tool with
which users can download and annotate web documents according
to an OWL ontology in which he or she describes classes, proper-
ties, and their relationships. Ontology classes are used to represent
records of information, object properties represent nested records, and
data properties represent attributes.

Dataset: This subsystem provides services that allow end users to work with
annotations and persist them. During the annotation process, this sub-
system allows users to instantiate ontology classes and properties in

7.2. Logical view 67

Annotation tool Dataset

LearnerCross Validator

RulesUtilities

<<creates>>

<<uses>>

<<uses>>
<<uses>>

<<uses>>

Figure 7.1: Relationships amongst the subsystems of our architecture.

addition to their position in the corresponding web document. Dur-
ing the learning process, end users can use a dataset to work with a text
view or a tree view of the documents they have annotated, get the an-
notations sorted according to their position or to their type, obtain
separating texts between annotations or work with DOM trees and
annotation nodes. During the extraction process, this subsystem al-
lows end users to persist the information that is extracted to OWL
documents.

Learner: This subsystem provides end users with services to develop rule
learners. For example, there is a service to create the skeleton of a trans-
ducer for a given dataset, i.e., its states and transitions, but not the
transition conditions. It saves end users from the burden of infer-
ring the structure of a transducer from the annotations in a dataset,
since this is common to every learning algorithm. Note that this subsys-
tem is a point of variability where software engineers only have to focus
on devising their own learning algorithms to learn extraction rules.

Rules: This subsystem provides a service to construct extraction rules and to
execute them on web documents in order to extract information.

Cross Validator: This subsystem provides a tool with which end users can
k-cross validate their rule learners. It helps collect precision, recall,
specificity, accuracy, and the F1 measure. Thanks to this tool, the results
about a given proposal are empirically comparable to other proposals.

Utilities: This subsystem offers some utilities to the rest of subsystems,

68 Chapter 7. Devising information extractors with CEDAR

Learner

Annotation tool

Cross validator, Statistics

LR, SM, FT, PT, Specific learners

Rules

Dataset, Resultset, WebPage, Views, Locators

Tokeniser, StringAligner, PatriciaTree, Downloader, HTML

cleaner, …

Figure 7.2: Layers of our reference architecture.

namely: a configurable tokeniser, a web documents downloader, pre-
processors such as an HTML cleaner, and a few string and tree
alignment algorithms.

7.3 Development view

This view shows the system from a developer’s perspective by illustrat-
ing the component organisation of the system and the class diagrams of each
component, which are the basis for assigning work packages to the mem-
bers of a development team. Our reference architecture is composed of
several layers each of which has a well-defined responsibility and pro-
vides services to the layers above it. These layers are illustrated in Figure §7.2
and are explained in the following paragraphs.

The annotation tool layer: This is the upper layer in our reference ar-
chitecture. It provides a tool that end users can use to create Datasets. It
uses the lower layers to download, clean HTML, add annotations, and to
save Datasets. Ontologies are used to create the annotations of each web
documents.

The cross validator layer: Cross validation is used to estimate the perfor-
mance of a system in practice and to obtain comparable results on a Dataset.

7.3. Development view 69

- compare(originalRS : Resultset, extractedRS : Resultset) : Statistics
+ perform(dataset : Dataset, int k : int, tokeniser : Tokeniser, technique : String) : List<Statistics>

CrossValidator

+ getAccuracy() : double
+ getSpecificity() : double
+ getF1Measure() : double
+ getRecall() : double
+ getPrecision() : double

- className : String

Statistics

+ stDev() : double
+ sumOfSquares() : double
+ sum() : double
+ meanSquare() : double
+ mean() : double
+ collect(value : double) : void

- name : String

Stat

truePositive

falsePositive

trueNegative

falseNegative

weight

+ createResultSet(webPage : WebPage) : Resultset

<<package:Dataset>>
Dataset

<<uses>>

<<creates>>

totalNumber

+ tokenise(text : CharSequence) : TokenList

<<package:Tokeniser>>
Tokeniser

<<uses>>

+ createLearner(clazz : String) : Learner

<<package:Learner>>
LearnerFactory

<<uses>>

<<package:Learner>>
Learner

<<creates>>

Figure 7.3: Class diagram of the cross validation layer.

Given a Dataset obtained from a web site, the k-fold cross validation tech-
nique partitions the Dataset into k subsets of web documents with their
corresponding Resultsets and then starts iterating over them. At each itera-
tion, it considers one of these subsets for testing, and the remaining subsets
are considered as a unique set which is used to learn rules. The rules learnt at
each iteration are tested on the selected subset, and some statistics are
collected. At the end, the weighted arithmetic means are returned.

The fifth layer contains the classes of the CrossValidator and the classes to
collect results during a k-cross validation, cf. Figure §7.3. These classes are
the following:

CrossValidator: This class provides methods to perform a k-cross valida-
tion on a given Dataset for a specific Learner. It uses a LearnerFactory to

70 Chapter 7. Devising information extractors with CEDAR

create the Learner to be tested, and during the cross validation pro-
cess, it compares the Resultsets obtained with the annotated ones to
collect the previous Statistics.

Statistics: This class provides methods to collect the following statistics:
true positives, false positives, true negatives, false negatives, the to-
tal number of annotations at each iteration and the weight of each class
and property in the Dataset. The methods in this class to compute
effectiveness and efficiency measures use these attributes.

Stat: A statistics class in which measures can be collected. It provides meth-
ods to compute statistical measures such as arithmetic mean and
standard deviation.

The learners layer: The key of this layer is that it is open, i.e., is in-
tended to provide an extension point that software engineers can use to
create their own rule learners, cf. the gray band in Figure §7.2. In our accom-
panying framework we have implemented a number of extensions, c.f. §7.4.
The classes in this layer are the following:

LearnerFactory: This class is intended to provide a method to create a Learner
of a given type.

Learner: An interface that should be implemented by the rule learners
devised by users.

SkeletonCreator, LearnerInformation, and TransducerRulesLearner: These are
classes that model the rule learners that learn transducers. The Skeleton-
Creator allows to create the skeleton of a transducer, LearnerInformation
models information related to each state and to each transition in the
transducer, and the TransducerRulesLearner is intended to learn the
transition condition using a specific learning technique.

SM, LR, FT, and PT: These classes model specific learners that learn transition
conditions using four techniques that were inspired by SoftMealy [73],
WIEN [92], FivaTech [81], and IEPAD [21], respectively.

The rules layer: The third layer provides the classes required to implement
extraction rules. In our accompanying framework we have implemented
rules as transducers, cf. Figure §7.5. The classes in this layer are the following:

7.3. Development view 71

+ run(textView : TextView) : Resultset

<<package:Transducer>>
Transducer

+ updateLI(resultset : Resultset, li : LearnerInformation) : void
+ createLI(dataset : Dataset) : LearnerInformation

SkeletonCreator

SMLearner

+ <<template>> learnTransitionConditions(transition : Transition, separators : SeparatorList) : void
+ learnTransducerConditions(LI : LearnerInformation) : void

TransducerRulesLearner

<<package:Tokeniser>>
Tokeniser

<<package:Learner>>
Learner

LRLearner

<<creates>>

FTLearner

+ learnConditions(dataset : Dataset, learner : Learner, Tokeniser tokeniser : int) : void
+ run(dataset : Dataset) : Dataset

LearnerInformation

transducer<<creates>>

LEentry
LearnerInformationState,

hierarchy

<<uses>>

Separators
SeparatorListTransition,

separators

ExtractedInds
Set<Individual>State,

extractedInds
tokeniser

+ createLearner(clazz : String) : Learner

<<package:Learner>>
LearnerFactory

PTLearner

Figure 7.4: Class diagram of the learners layer.

Rules: This is an interface that should be implemented by the different types
of extraction rules learnt by the Learners in the upper layer.

Transducer: This class models a type of rules some information extrac-
tion techniques learn. It contains a collection of States, which represent
data to be extracted, and Transitions amongst them whose conditions are
modeled as regular expressions.

The dataset layer: The second layer contains the dataset classes that help
model user annotations and extracted data. The classes in this layer are

72 Chapter 7. Devising information extractors with CEDAR

+ run(textView : TextView) : Resultset

<<package:Transducer>>
Transducer

- description : URI

State

- R2 : Regex
- L2 : Regex
- R1 : Regex
- L1 : Regex

Transition

transitions

source

target

initialState finalStatestates

+ apply(textView : TextView) : Resultset

<<interface>>
Rules

Figure 7.5: Class diagram of the rules layer.

shown in Figure §7.6, namely:

Dataset: It models a collection of Resultsets and web documents. They are ac-
tually a map from a set of web documents onto their corresponding
Resultsets.

Resultset: This class models the annotations on a web documents and allows
to save them as an instance of an ontology.

WebPage: This class is used to represent a web document. It keeps a refer-
ence to where it is stored in a local cache (cachedURI) and its original
location (uri).

TextLocator and TreeLocator: These classes are used to provide locations
to the annotations. Each instance of a class and property in the Re-
sultset has two locators. The TextLocator provides information about
the offset and length of an annotation, whereas the TreeLocator pro-
vides the Path of the annotation in the DOM Tree. Both locators allow to
retrieve the text in each annotation.

7.3. Development view 73

+ createResultSet(webPage : WebPage) : Resultset

<<package:Dataset>>
Dataset

+ setTreeLocator(prop : DataTypeProperty, treeLocator : TreeLocator) : void
+ setTextLocator(prop : DataTypeProperty, textLocator : TextLocator) : void
+ setTreeLocator(ind : Individual, treeLocator : TreeLocator) : void
+ setTextLocator(ind : Individual, textLocator : TextLocator) : void
+ addObjectProperty(src : Individual, prop : ObjectProperty, target : Individual) : ObjectProperty
+ addDataTypeProperty(ind : Individual, prop : DataTypeProperty, value : String) : DataTypeProperty
+ createIndividual(type : OntClass) : Individual

- structure : OntModel

Resultset

+ getText() : String

- cachedURI : URI
- uri : URI

WebPage

<<interface>>
Map DatasetEntry

ResultsetWebPage,

1..*
entries

1

resultset

1
webPage

+ getText() : CharSequence

- length : int
- offset : int

TextLocator

+ getText() : CharSequence

- xpath : XPath

TreeLocator

webPage

webPage

+ getText() : CharSequence

TextView

- domTree : Node

TreeView

webPage webPage

Figure 7.6: Class diagram of the dataset layer.

TextView and TreeView: These classes model the views used in the learn-
ing process. The TextView provides a view over the text contents of a
WebPage and the TreeView provides a view over the DOM tree.

DatasetPersistence: This is a class used to save and load Datasets.

The utility layer: This layer provides a number of very reusable classes that
are used by the upper layers, namely:

Tokeniser: A class to implement a configurable tokeniser, cf. Figure §7.7. The
tokeniser is configured by means of an XML document that defines a hi-
erarchy of token classes and their definitions as regular expressions
(class TokenClass). When a piece of text is tokenised, the Tokeniser re-
turns a TokenList, which is a Map of Tokens sorted by their offset in the

74 Chapter 7. Devising information extractors with CEDAR

+ tokenise(text : CharSequence) : TokenList

<<package:Tokeniser>>
Tokeniser

+ generalise(tClass : TokenClass) : TokenClass

TokeniserConfig

+ getAsLiteral() : Regex

- offset : int
- text : String

Token

- regex : Regex
- name : String

TokenClass
parent

type

<<uses>>

+ getTokenAt(position : int) : Token
+ reverseIterator() : void

TokenList

<<interface>>
Map

<<creates>>

tokens

<<creates>>

Figure 7.7: Class diagram of the tokeniser utility.

tokenised text. The methods generalise in TokeniserConfig and getAsLiteral
in class Token allow to generalise and specialise tokens, respectively.

StringAligner: This class provides an implementation of a multiple string
alignment algorithm that is similar to the one proposed by Kayed and
Chang [81].

PatriciaTree: This class constructs a PatriciaTree starting from a set of token se-
quences. It provides methods to update them by adding new token
sequences and to build the regular expression that corresponds to a tree.

Downloader: This class downloads web documents locally. To ensure the re-
producibility of tests, annotated web documents are downloaded and
saved locally to avoid that changes in web sites have an impact on user
annotations and tests.

Pre-processors: They are usually used before rule learning or information ex-
traction. HTMLCleaner can be used to fix the HTML code of downloaded
web documents.

7.4 Scenarios view
According to Kruchten [89], this view shows how an architecture is in-

stantiated in typical use cases. It serves two purposes: as an illustration of

7.4. Scenarios view 75

how the architecture can be used and as a validation since the scenar-
ios are supposed to be an abstraction of the most important requirements.
Below, we describe four non-trivial scenarios.

Developing a new learning technique: This scenario aims to show how a
software engineer can devise his or her own technique to learn the extraction
rules of type transducers. The steps he or she should perform are as follows:

i. The user imports the rule learning framework.

ii. The user creates a class that extends class TransducerRuleLearner and
implements interface Learner.

iii. A Tokeniser should be created by defining an XML document with the
tokenisation hierarchy that shall be used by the new technique.

iv. The user defines the template method learnTransitionConditions in the
new class created. This method includes the code necessary to learn the
transition conditions for a transducer.

Testing a new learning technique: This scenario aims to show how a soft-
ware engineer can test his or her own technique and obtain comparable
results by using a 10-fold cross validation. The steps to validate a learning
technique are defined below.

i. The user downloads our testing Datasets.

ii. An instance of class CrossValidator is created and the perform method is
invoked. This method receives k = 10, the Tokeniser and the name of the
learning technique that shall be tested.

iii. The CrossValidator performs a 10-fold cross validation and saves the
results to a Statistics object. These Statistics are returned by the CrossVal-
idator and allow to compute measures such as precision and recall for
each class and property in the ontologies used.

Learning extraction rules: This scenario describes how a user can learn ex-
traction rules for a given web site and save them for future use. The steps to
learn these rules, represented as transducers in this case, are the following:

76 Chapter 7. Devising information extractors with CEDAR

i. The user annotates a Dataset using web documents from the web site for
which he or she wishes to learn extraction rules. Annotations must be
handcrafted using the annotation tool provided with our framework.

ii. The user should create a SkeletonLearner and call method create with the
Dataset as a parameter. It returns a LearnerInformation object.

iii. The user creates an object of the appropriate class to implement a
learner.

iv. The user can now learn the transition conditions by calling method
LearnConditions with the Dataset as input.

Applying rules on an input web documents: This scenario describes how
users can apply extraction rules to web documents to extract information
from them. The user should perform the following steps:

i. The user loads a Transducer using the TransducerPersistence class.

ii. The user should create a Resultset for the web document of interest. The
information extracted shall be saved there.

iii. The user creates a TextView over the input web document and calls
method apply of the transducer with the TextView, a zero to indicate the
starting offset, and the Resultset as parameters.

iv. The transducer runs on this TextView and saves the information ex-
tracted into the Resultset. A Dataset with the input WebPage and the
final Resultset is created.

v. DatasetPersistence should be used now to save the resulting Dataset.

7.5 Our repository

Our datasets consist of a collection of 55 datasets that contain a to-
tal of 2 084 web documents that can be classified into two groups: the first
group is composed of datasets gathered from 41 real-world web sites and the
second group is composed of 14 datasets downloaded from two public repos-
itories. The first group contains datasets on books, cars, conferences, doctors,
jobs, movies, real estates, and sports. These categories were randomly sam-
pled from The Open Directory sub-categories, and the web sites inside each

www.dmoz.org

7.5. Our repository 77

Repository Category Records

 Books Book{title, author, price, year, isbn}

 Cars
Vehicle{model, year, description, price, type, color, milage,

transmission, engine, doors}

 Conferences Event{title, date, place, url}

 Doctors Doctor{name, address, phone, fax, specialty}

 Jobs Offer{location, company}

 Movies Movie{title, director, actor, year, runtime}

 Real estate Property{address, bedrooms, bathrooms, price, size }

 Sports Player{name, birth, hight, weight, age, college, country, club, position}

 cars.amazon.com Car{model, make, price}

 players.uefa.com Player{name, country}

 popartist.amazon.com Artist{name}

 teams.uefa.com
Team{FIFA-affiliation, founded, general-secretary, president, press-

officer, UEFA-affiliation}

 ausopen.com Player{birthdate, birthplace, country, height, money, name, weight}

 ebay.com Item{price, bids, location}

 majorleaguebaseball.com Player{name, position, team}

 netflix.com Film{title, director, length, year}

 rpmfind.net Package{name, description, operative-system}

 bigbook.com Record{name, city, phone, street}

 iaf.net Record{name, email, organisation, service-provider}

 laweekly.com/restaurants Restaurant{name, address, speciality}

 okra.ucr.edu Record{name, email}

 zagat.com Restaurant{name, address, type}

Ours

EXALG

RISE

Table 7.1: Records extracted from our datasets in each category.

category were randomly selected from the 100 best-ranked web sites be-
tween December 2010 and March 2011 according to Google’s search engine.
We downloaded 30 web documents from each web site and handcrafted a set
of annotations with the information that we would like to extract from each
site. The second group contains all of the datasets available online at the
EXALG repository [7] and the datasets composed of semi-structured web
documents available at the RISE repository [117]. Table §7.1 shows the struc-
ture of the records of information that we were interested in extracting. Note
that the datasets in the EXALG and RISE repositories are not classified by
categories, so we list the sites from which they originated.

Since the datasets are obtained from real-world web sites, they usu-
ally contain errors in their HTML code. Table §7.2 presents the results we

78 Chapter 7. Devising information extractors with CEDAR

Error Mean

<TAG> is not recognised! 0.16 ± 0.57

<TAG> missing '>' for end of tag 0.41 ± 1.07

Discarding unexpected <TAG> 1.50 ± 6.46

Missing quote mark for attribute value 0.01 ± 0.10

<TAG> element not empty or not closed 24.31 ± 42.45

<TAG> is not approved by W3C 2.70 ± 6.14

<TAG> isn't allowed after elements 0.03 ± 0.17

<TAG> isn't allowed in <TAG> element 13.71 ± 11.14

<TAG> shouldn't be nested 0.07 ± 0.46

<TAG> unexpected or duplicate quote mark 3.65 ± 30.00

Adjacent hyphens within comment 1.32 ± 2.29

Discarding unexpected <TAG> 3.33 ± 6.12

Inserting implicit <TAG> 1.23 ± 4.95

Link isn't allowed in <TAG> elements 0.00 ± 0.02

Meta isn't allowed in <TAG> elements 0.06 ± 0.45

Missing <TAG> before <TAG> 3.21 ± 7.36

Missing <TAG> declaration 1.00 ± 0.00

Missing <TAG> 4.68 ± 8.02

Plain text isn't allowed in <TAG> elements 0.74 ± 0.45

Replacing element <TAG> by <TAG> 0.09 ± 0.29

Replacing unexpected <TAG> by <TAG> 0.21 ± 1.01

Table 7.2: Subset of common errors reported by JTidy on our datasets.

have gathered regarding a subset of common HTML errors that are reported
by JTidy; the full report is too large to be reproduced here. Our only purpose
was to make it clear that we have dealt with actual documents, and that they
usually contain errors that must be fixed heuristically. JTidy is a constituent
part of many information extraction proposals that build on DOM trees.

Table §7.3 reports on the datasets. The first column lists the categories of
the datasets; the second and the third columns list the web sites and an iden-
tifier that we use to refer to them in forth coming result tables; the fourth
column presents the number of documents inside each dataset; the fifth col-
umn shows the mean size of documents in KiB; the sixth column shows the
mean number of errors reported by JTidy inside each dataset; the seventh col-
umn lists the mean time in seconds required to clean and fix a web document

7.6. Experimentation 79

Category ID Url Num. of Docs Size Errors JTidy Tokenisation

S01 www.abebooks.com 30 37.65 ± 3.05 2.94 ± 0.28 0.03 ± 0.04 0.01 ± 0.01

S02 www.awesomebooks.com 30 20.15 ± 2.42 2.16 ± 0.58 0.01 ± 0.01 0.00 ± 0.01

S03 www.betterworldbooks.com 30 125.23 ± 11.57 2.30 ± 0.00 0.02 ± 0.01 0.00 ± 0.01

S04 www.manybooks.net 30 26.84 ± 9.61 6.50 ± 2.31 0.01 ± 0.01 0.00 ± 0.01

S05 www.waterstones.com 30 79.68 ± 26.22 6.46 ± 0.96 0.01 ± 0.01 0.01 ± 0.01

S06 www.autotrader.com 30 183.51 ± 17.78 13.66 ± 2.43 0.05 ± 0.01 0.01 ± 0.01

S07 www.carmax.com 30 67.26 ± 2.74 9.57 ± 0.74 0.02 ± 0.01 0.01 ± 0.01

S08 www.carzone.ie 30 71.05 ± 1.65 5.94 ± 0.33 0.01 ± 0.01 0.00 ± 0.01

S09 www.classiccarsforsale.co.uk 30 76.02 ± 16.76 1.25 ± 0.06 0.01 ± 0.01 0.01 ± 0.01

S10 www.internetautoguide.com 30 154.22 ± 16.35 8.20 ± 0.53 0.02 ± 0.01 0.01 ± 0.01

S11 events.linkedin.com 30 9.89 ± 3.81 1.18 ± 0.24 0.00 ± 0.01 0.00 ± 0.00

S12 www.allconferences.com 30 17.83 ± 2.27 1.52 ± 0.03 0.01 ± 0.01 0.00 ± 0.00

S13 www.mbendi.com 30 6.95 ± 0.09 1.35 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

S14 www.netlib.org 30 2.13 ± 0.86 0.35 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

S15 www.rdlearning.org.uk 30 4.23 ± 0.64 0.70 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

S16 doctor.webmd.com 30 59.23 ± 0.94 1.20 ± 0.03 0.01 ± 0.01 0.01 ± 0.01

S17 extapps.ama-assn.org 30 24.87 ± 0.18 1.80 ± 0.00 0.01 ± 0.01 0.00 ± 0.01

S18 www.dentists.com 30 11.92 ± 1.43 5.16 ± 2.11 0.01 ± 0.01 0.00 ± 0.00

S19 www.drscore.com 30 23.78 ± 0.67 1.65 ± 0.82 0.00 ± 0.01 0.00 ± 0.00

S20 www.steadyhealth.com 30 81.39 ± 0.25 1.20 ± 0.00 0.01 ± 0.01 0.00 ± 0.01

S21 careers.insightintodiversity.com 30 30.36 ± 1.45 3.35 ± 0.45 0.01 ± 0.01 0.01 ± 0.01

S22 www.4jobs.com 30 79.76 ± 3.57 5.52 ± 2.23 0.02 ± 0.01 0.01 ± 0.01

S23 www.6figurejobs.com 30 72.79 ± 1.82 8.47 ± 0.06 0.02 ± 0.01 0.00 ± 0.01

S24 www.careerbuilder.com 30 54.17 ± 3.10 4.70 ± 0.30 0.01 ± 0.01 0.01 ± 0.01

S25 www.jobofmine.com 30 23.90 ± 2.86 2.05 ± 0.01 0.00 ± 0.01 0.00 ± 0.00

S26 www.albaniam.com 30 5.70 ± 0.10 0.60 ± 0.00 0.00 ± 0.00 0.00 ± 0.00

S27 www.allmovie.com 30 33.79 ± 5.24 2.97 ± 0.10 0.01 ± 0.01 0.00 ± 0.01

S28 www.citwf.com 30 19.50 ± 0.54 1.05 ± 0.02 0.00 ± 0.01 0.00 ± 0.01

S29 www.disneymovieslist.com 30 47.26 ± 8.84 1.62 ± 0.20 0.01 ± 0.01 0.00 ± 0.00

S30 www.imdb.com 30 97.35 ± 3.63 6.94 ± 0.16 0.02 ± 0.01 0.01 ± 0.01

S31 www.soulfilms.com 30 28.48 ± 7.89 3.31 ± 0.14 0.00 ± 0.01 0.00 ± 0.01

S32 realestate.yahoo.com 30 93.94 ± 12.22 14.61 ± 0.30 0.02 ± 0.01 0.01 ± 0.01

S33 www.haart.co.uk 30 89.64 ± 8.85 2.00 ± 0.21 0.02 ± 0.01 0.00 ± 0.01

S34 www.homes.com 30 59.32 ± 10.07 5.00 ± 0.82 0.01 ± 0.01 0.00 ± 0.01

S35 www.remax.com 30 69.98 ± 3.19 3.79 ± 0.14 0.01 ± 0.01 0.00 ± 0.01

S36 www.trulia.com 30 175.39 ± 6.43 15.64 ± 0.49 0.05 ± 0.01 0.01 ± 0.01

Books

Cars

Events

Doctors

Jobs

Movies

Real Estate

Table 7.3: Properties of our datasets.

using JTidy; finally, the last column lists the mean tokenisation time.

7.6 Experimentation
We have developed a framework to check the viability of our reference ar-

chitecture. This framework was used to develop some of the most cited
proposals in the literature that are based on transducers or that can be
adapted to be used with transducers. We have implemented SM, LR, FT, and

80 Chapter 7. Devising information extractors with CEDAR

Category ID Url Num. of Docs Size Errors JTidy Tokenisation

S37 baseball.playerprofiles.com 30 20.89 ± 6.86 1.75 ± 0.18 0.00 ± 0.01 0.00 ± 0.00

S38 en.uefa.com 30 63.42 ± 12.22 1.59 ± 0.00 0.02 ± 0.01 0.00 ± 0.01

S39 www.atpworldtour.com 30 135.55 ± 12.29 4.60 ± 1.49 0.05 ± 0.01 0.01 ± 0.01

S40 www.nfl.com 30 94.92 ± 1.82 4.21 ± 0.07 0.02 ± 0.01 0.01 ± 0.01

S41 www.soccerbase.com 30 85.02 ± 21.04 7.82 ± 0.52 0.02 ± 0.01 0.01 ± 0.01

S42 cars.amazon.com 21 25.16 ± 1.88 1.00 ± 0.00 0.00 ± 0.01 0.00 ± 0.01

S43 players.uefa.com 20 12.09 ± 1.06 0.52 ± 0.03 0.00 ± 0.01 0.00 ± 0.00

S44 popartist.amazon.com 19 34.17 ± 10.26 1.75 ± 0.00 0.00 ± 0.01 0.01 ± 0.01

S45 teams.uefa.com 20 6.87 ± 0.05 1.64 ± 0.44 0.00 ± 0.01 0.00 ± 0.00

S46 www.ausopen.com 29 41.22 ± 4.73 3.34 ± 0.03 0.01 ± 0.01 0.00 ± 0.01

S47 www.ebay.com 50 26.43 ± 2.34 0.91 ± 0.94 0.01 ± 0.01 0.00 ± 0.01

S48 www.majorleaguebaseball.com 9 40.10 ± 7.74 1.30 ± 0.00 0.00 ± 0.01 0.00 ± 0.01

S49 www.netflix.com 50 43.90 ± 2.76 6.29 ± 0.49 0.01 ± 0.01 0.00 ± 0.01

S50 www.rpmfind.net 20 34.68 ± 81.49 0.50 ± 0.02 0.00 ± 0.01 0.00 ± 0.01

S51 www.bigbook.com 235 24.73 ± 5.91 1.03 ± 0.30 0.00 ± 0.01 0.00 ± 0.01

S52 www.iaf.net 252 14.24 ± 3.60 0.66 ± 0.21 0.00 ± 0.00 0.00 ± 0.00

S53 okra.ucr.edu 10 7.76 ± 8.13 0.77 ± 0.82 0.00 ± 0.01 0.00 ± 0.00

S54 www.laweekly.com/restaurants 28 5.16 ± 3.76 0.25 ± 0.14 0.00 ± 0.00 0.00 ± 0.00

S55 www.zagat.com 91 18.23 ± 1.04 1.60 ± 0.49 0.00 ± 0.01 0.00 ± 0.00

Sports

EXALG

RISE

Table 7.3: Properties of our datasets. (Cont’d)

Technique Using Java only Using CEDAR Reduction percentage

SM 123hrs 87hrs 29.27%

LR 145hrs 32hrs 77.94%

FT 176hrs 61hrs 65.34%

PT 110hrs 30hrs 72.72%

Table 7.4: Comparing implementation times for SM, LR, FT, and PT.

PT with the help of Master Degree students who had been working in the
industry for at least one year.

The aim of our reference architecture is to reduce the costs of devising
rule learners and to allow to compare learners with each other. To vali-
date it, we have conducted an experiment following the guidelines reported
in [85]. This experiment was conducted to check if relying on our refer-
ence architecture and an accompanying framework, development costs were
reduced remarkably. For this purpose, we requested four postgraduate stu-
dents with a degree in Software Engineering to study the previous proposals.
Then, they were requested to implement them using Java 1.6. The time to

7.7. Summary 81

study the requirements, design, develop, and test these proposals was mea-
sured in hours. Since their development processes were totally independent,
each of the participants had to create their datasets for testing.

New postgraduate students were requested to develop the same tech-
niques, but this time using our framework. First, they went through to
a training period that was added to the total time that was necessary
to study the requirements, design, develop and test the developed tech-
niques. In this case, datasets were reused between the different participants
to compare the techniques side by side too.

Table §7.4 shows the time in hours that was necessary to develop and test
the techniques on which we report in the first column. The second and the
third columns show the time that was necessary to develop these tech-
niques using only Java libraries and using our framework, respectively. The
fourth column shows the time reduction for each technique. The costs reduc-
tion is clear since the framework allowed to reuse components during
the development phase and reusing datasets in the testing phase. The last
column shows the reduced time percentage; the arithmetic mean of the
reduction percentage is 61.31± 21.98%.

7.7 Summary

We have presented a reference architecture to help software engineers de-
vise new learning techniques in the domain of information extraction from
semi-structured web documents. This is the first reference architecture in the
literature which provides an abstract, reusable, easy-to-maintain, and easy-
to-adapt design that should allow software engineers and researchers to face
the development of a new rule learning technique, for information ex-
traction from semi-structured web documents, without incurring the high
costs of developing it from scratch. The reference architecture was vali-
dated by an accompanying framework, that was used to implement four
transducer-based information extractors.

82 Chapter 7. Devising information extractors with CEDAR

Chapter8

ExtractingattributeswithTEX

I paint objects as I think of them, not as I see them.

Pablo Picasso, Spanish painter (1881-1973)

T
EX is an information extractor that focuses on extracting individual
attributes from a number of similar documents. The chapter is or-
ganised as follows: Section §8.1 introduces the chapter; Section §8.2
describes the algorithms on which TEX relies; Section §8.3 reports on

their complexity; Section §8.4 reports on the experimental analysis we have
conducted to evaluate TEX empirically; Section §8.5 reports on the statistical
analysis conducted to rank TEX; finally, Section §8.6 summarises this chapter.

83

84 Chapter 8. Extracting attributes with TEX

8.1 Introduction

In this chapter, we introduce TEX, which is a heuristic-based information
extractor that focuses on extracting attributes. Contrarily to other heuristic-
based proposals, it does not require the input web documents to be translated
into DOM trees, i.e., it can work on malformed web documents without cor-
recting them, and does not require the relevant information to be formatted
using repetitive patterns inside a web document.

It works on two or more web documents and compares them in an at-
tempt to discover shared patterns (token strings) that are not likely to provide
any relevant information, but parts of the template used to generate the
web documents. TEX relies on quite a simple multi-string alignment algo-
rithm that has proven to be very effective and efficient in practice. We
have computed an upper limit to the worst-case space and time complexi-
ties of our algorithm and we have proved that it is computationally tractable
(note that there are very few complexity results in this field); furthermore, we
have conducted a series of experiments on real-world web sites and our re-
sults confirm that our proposal can achieve a mean precision as high as 96%,
a mean recall as high as 95%, with a mean execution time of 0.81 seconds. We
conducted the same experiments using other well-known techniques in the
literature, and our conclusion is that our proposal outperforms them.

8.2 Algorithms

In this section, we describe the algorithms that lie at the heart of TEX. The
main extraction algorithm searches for shared patterns in the input web doc-
uments and fragments them, and then is applied recursively to each fragment
until no more shared patterns are found. In the following, we first de-
scribe the structures used by TEX, and then we explain the main and ancillary
algorithms.

8.2.1 Structures

TEX works on a collection of web documents, which we denote as TextSet,
and a range of integers, which can introduce a bias to our search proce-
dure. Intuitively, a TextSet is a set of Texts, which are sequences of Tokens. TEX
is not bound with a particular tokenisation schema; our implementation and

8.2. Algorithms 85

1: TEX(ts: TextSet; min, max: int): List⟨TextSet⟩
2: l = extract(ts, min, max)
3: result = filter(l)
4: return result

Program 8.1: Algorithm TEX.

<html><head><title>Results</title></head><body>Raylan
Elmore Leonard
$19.30
Wonderstruck
Brian Selznick
$19.54
</body></html>

<html><head><title>Results</title></head><body>Catch Me
Lisa Gardner
$14.94
</body></html>
<html><head><title>Results</title></head><body>Divergent
Veronica Roth
$9.99
West
R.J. Singer
$3.49
</body></html>

�� �� ��

���

RaylanCatch MeDivergent Elmore LeonardVeronica Roth
��� ���

$19.54$14.94$3.49
����

Brian SelznickLisa GardnerR.J. Singer
��	 $19.30$9.99

���� WonderstruckWest
����

�

TEX

Figure 8.1: A running example: input and output of TEX.

our experiments were carried out using a simple tokenisation schema accord-
ing to which tokens represent either script blocks, style blocks, HTML tags, or
#PCDATA. Note that we use Text as a data type that allows to repre-
sent both web documents and fragments of web documents, as well as the
information that is extracted from them.

We present the algorithm that lies at the heart of TEX in Program §8.1.

86 Chapter 8. Extracting attributes with TEX

1: extract(ts: TextSet; min, max: int): List⟨TextSet⟩
2: result = ⟨ts⟩
3: for size = max down to min do
4: buffer = ⟨⟩
5: while result ̸= ⟨⟩ do
6: ts = dequeue(result)
7: expansion = expand(ts, size)
8: if expansion = ⟨⟩ then
9: enqueue(buffer, ts)

10: else
11: enqueue(result, expansion)
12: end
13: end
14: result = buffer

15: end
16: return result

Program 8.2: Algorithm extract.

The algorithm works in two steps: at line §2, we invoke Algorithm ex-
tract, which makes an attempt to extract the information that varies from
document to document; in other words, it attempts to discard informa-
tion that is likely to belong to the template used to generate the input web
documents. Algorithm extract works on the collection of input web docu-
ments and searches for shared patterns of size max,max − 1, . . . ,min. If
min > 1 or max is less than the size of the shortest input document, then the
search has a bias that may lead to situations in which Algorithm extract re-
turns information that actually belongs to the template, which is the reason
why we invoke a filtering algorithm at line §3.

Figure §8.1 presents a running example. We assume that the algorithm is
executed on TextSet TS1, which is composed of documents T1, T2, and T3; the
result is the list of TextSets L1, which contains the extracted TextSets TS4, TS7,
TS11, TS12, TS9, and TS10.

8.2.2 Algorithm extract

Algorithm extract searches for shared patterns of size max down to min

in a TextSet. For instance, assume that it is invoked on the TextSet de-
noted as TS1 in Figure §8.2 and that it has to search for shared patterns

8.2. Algorithms 87

<html>

<head>

<title>Results</title>
</head>

<body>
Raylan

Elmore Leonard

$19.30

Wonderstruck

Brian Selznick

$19.54

</body>
</html>

<html>

<head>

<title>Results</title>
</head>

<body>
Catch Me

Lisa Gardner

$14.94

</body>

</html>

<html>

<head>

<title>Results</title>
</head>

<body>
Divergent

Veronica Roth

$9.99

West

R.J. Singer

$3.49

</body>
</html>

T1 T2 T3

TS1

Raylan

Elmore Leonard

$19.30

Wonderstruck

Brian Selznick

$19.54

</body>

</html>

Catch Me

Lisa Gardner

$14.94

</body>

</html>

Divergent

Veronica Roth

$9.99

West

R.J. Singer

$3.49

</body>

</html>

TS2

Raylan

Elmore Leonard

$19.30

Wonderstruck

Brian Selznick

$19.54

Catch Me

Lisa Gardner

$14.94

Divergent

Veronica Roth

$9.99

West

R.J. Singer

$3.49

TS3

T4 T5 T6

T7

T8 T9

Figure 8.2: Expansion of a TextSet during extraction.

whose size is in the range 10 down to 1. Note that there are nei-
ther shared patterns of size 10, 9, nor 8; the longest shared pattern is
<html><head><title>Results</title></head><body>, whose size is 7 tokens. The
algorithm then attempts to expand TextSet TS1 into three additional TextSets
that contain the prefixes, the separators, and the suffixes into which the

88 Chapter 8. Extracting attributes with TEX

1: expand(ts: TextSet; s: int): List⟨TextSet⟩
2: result = ⟨⟩
3: shortest = find the shortest text in ts

4: if shortest ̸= ⟨⟩ and size(shortest) >= s then
5: shared = findPattern(ts, shortest, s)
6: if shared ̸= {} then
7: result = createExpansion(ts, shared)
8: end
9: end

10: return result

Program 8.3: Algorithm expand.

shared pattern partitions the Texts in TS1. In this example, there are neither
prefixes nor separators, since the shared pattern is found at the begin-
ning of the Texts in TS1; there are, however, three suffixes that are stored in
TextSet TS2. The algorithm then discards TextSet TS1 and proceeds with the
new TextSet TS2. The longest shared pattern that is discovered in TS2 is

</body></html>, which results in a new TextSet that is denoted as TS3. The
same procedure is applied as many times as necessary until no more shared
patterns are discovered.

We present Algorithm extract in Program §8.2. It works on a TextSet ts, a
minimum pattern size min and a maximum pattern size max; it returns a list
of TextSets that should contain as much prospective information as possible.
The main loop at lines §3–§15 iterates over all possible sizes from max down
to min; for each size, the inner loop at lines §5–§13 searches for a shared
pattern of that size. Note that variable result acts as a queue in which we ini-
tially put the TextSet on which the algorithm has to work, and then the new
TextSets into which it is expanded. In each iteration of the inner loop, a
TextSet is removed from result and expanded at line §7. Algorithm expand,
which is presented in the following section, searches for shared patterns of a
given size in a TextSet; if one such pattern is found, then it is used to expand
the current TextSet into new TextSets with prefixes, separators, and suf-
fixes, which are added to result so that they can be analysed later in the inner
loop; if no shared pattern is found, then the original TextSet is added to a
buffer. Once the inner loop finishes, the buffer contains all of the new TextSets
that have been produced, and it is transferred to the result variable so that
the algorithm can search for new shared patterns of a smaller size, if possible.

8.2. Algorithms 89

Elmore Leonard

$19.30

Wonderstruck

Veronica Roth

$9.99

West

Brian Selznick

$19.54

Lisa Gardner

$14.94

R.J. Singer

$3.49

TS5 TS6

Raylan

Catch Me

Divergent

TS4

Raylan

Elmore Leonard

$19.30

Wonderstruck

Brian Selznick

$19.54

Catch Me

Lisa Gardner

$14.94

Divergent

Veronica Roth

$9.99

West

R.J. Singer

$3.49

TS3

T7

T8 T9

T10

T11

T12

T13

T14

T15

T17

Elmore Leonard

Veronica Roth

TS7

T18

T19

$19.30

Wonderstruck

$9.99

West

TS8

T20

T21
Brian Selznick

Lisa Gardner

R.J. Singer

TS9

T22

T23

T24

$19.54

$14.94

$3.49

TS10

T25

T26

T27

$19.30

$9.99

TS11

T28

T29

Wonderstruck

West

TS12

T30

T31

T16

Figure 8.3: Expansion of a sample TextSet.

Algorithm expand: This algorithm searches for a shared pattern of a given
size inside a given TextSet; if such a pattern is found, it then expands the
TextSet into a collection of new TextSets with prefixes, separators, and suf-
fixes. We have already illustrated how Algorithm expand works on two
simple cases in which the expansion led to prefixes or suffixes only, cf. Fig-
ure §8.2. Assume now that it is invoked on TextSet TS3 in Figure §8.3 to
search for a shared pattern of size two tokens. The algorithm can easily de-
tect that the first 2-token shared pattern is
 and expands TextSet TS3
into the following new TextSets: i) TS4, which contains the prefixes of the Texts
in TS3 up to the first occurrence of the shared pattern; ii) TS5, which contains

90 Chapter 8. Extracting attributes with TEX

Raylan

Elmore Leonard

$19.30

Wonderstruck

Brian Selznick

$19.54

Catch Me

Lisa Gardner

$14.94

Divergent

Veronica Roth

$9.99

West

R.J. Singer

$3.49

TS3

T7

T8 T9

Catch Me

Lisa Gardner

$14.94

T7

Raylan

Elmore Leonard

$19.30

Wonderstruck

Brian Selznick

$19.54

Divergent

Veronica Roth

$9.99

West

R.J. Singer

$3.49

T8 T9

x

TS3

Figure 8.4: Searching for a pattern in a base Text.

the separators, i.e., the Texts in TS3 in between successive occurrences of the
shared pattern; iii) and TS6, which contains the suffixes of the Texts in TS3 re-
garding the last occurrence of the shared pattern. When expand is invoked on
TextSet TS5 to find a shared pattern of size 2 tokens, it finds
, and cre-
ates TS7 and TS8, which contain the prefixes and suffixes of the shared pattern
respectively. The same happens when expand is invoked on the TextSet TS6 to
search for a shared pattern of size 2 tokens, and creates TS9 and TS10. If we
invoke expand on TextSet TS8 to search for a shared pattern of one token, then,
it finds pattern
 and creates TextSets TS11 and TS12.

We present Algorithm expand in Program §8.3. Line §3 searches for the
shortest Text in ts, which is used at line §5 as a basis to search for shared pat-
terns by means of Algorithm findPattern, which is described in the following
section. If this algorithm can find a shared pattern, then line §7 expands ts us-
ing that shared pattern and updates variable result; if not, result remains an
empty list, which indicates that TextSet ts cannot be expanded.

Algorithm findPattern: This algorithm works on a TextSet ts, a Text base,
which is assumed to be the shortest non-empty Text in ts, and a size s. Its goal
is to find a pattern inside base that occurs in every Text in ts. For instance, as-
sume that the algorithm is invoked on TextSet TS3 in Figure §8.4 to search for
a pattern of size 2; we implicitly assume that base is the shortest Text in TS3,
i.e., base = Catch Me
Lisa Gardner
$14.94 in this example. The
algorithm first searches for Catch Me
 in every Text in TS3, but does not

8.2. Algorithms 91

1: findPattern(ts: TextSet; base: Text; s: int): Map<Text, List⟨int⟩>
2: found = false
3: for i = 0 until size(base) - s while not found do
4: result = {}
5: found = true
6: foreach text in ts while found do
7: matches = findMatches(text, base, i, s)
8: found = size(matches) > 0
9: result = result ∪ {text 7→ matches}

10: end
11: end
12: return result

Program 8.4: Algorithm findPattern.

find it; then it searches for
, which is found in every Text in TS3. As a
conclusion
 is a shared pattern that can be used to expand TextSet
TS3. Note that Algorithm findPattern returns a map from Text onto lists of inte-
gers; the map represents the positions where the search pattern is found. In
our example, this map is {T7 7→ ⟨1⟩, T8 7→ ⟨1, 9⟩, T9 7→ ⟨1, 9⟩}.

We present Algorithm findPattern in Program §8.4. The main loop at
lines §3–§11 allows to implement a sliding window over base: index i iter-
ates from 0 until size(base) − s as long as no shared pattern is found, i.e.,
it searches for all patterns of size s in base. The actual search is per-
formed in the inner loop at lines §6–§10: in this loop, the algorithm iterates
over every Text in the input TextSet and finds all of the matches of the subse-
quence of base that starts at position i and has size s. We do not provide any
additional details on Algorithm findMatches since it is implemented us-
ing the well-known Knuth-Pratt-Morris pattern search algorithm [86]. This
algorithm returns a list of integers that indicate the non-overlapping posi-
tions at which the previous subsequence of base matches text; if there is at
least one match, we record it in variable result and go ahead to exam-
ine the next Text in ts; otherwise, the inner loop finishes and the outer loop
slides the window on base and resets result, if possible. If the algorithm
returns an empty map, this means that no shared pattern has been found.

Algorithm createExpansion: When a shared pattern is found in a TextSet,
the TextSet is expanded to three new TextSets, namely: prefixes, separators,
and suffixes. We present Algorithm createExpansion in Program §8.5. This al-

92 Chapter 8. Extracting attributes with TEX

1: createExpansion(ts: TextSet; r: Map⟨Text, List⟨int⟩⟩; s: int): List⟨TextSet⟩
2: result = ⟨⟩
3: ts1 = new TextSet()
4: ts2 = new TextSet()
5: ts3 = new TextSet()
6: foreach text in ts do
7: matches = get(r, text)
8: if prefix(matches, text) ̸= ⟨⟩ then
9: add prefix(matches, text) to ts1

10: end
11: add non-empty separators(matches, text) to ts2

12: if suffix(matches, text) ̸= ⟨⟩ then
13: add suffix(matches, text) to ts3

14: end
15: end
16: if ts1 is not empty then
17: add ts1 to result

18: end
19: if ts2 is not empty then
20: add ts2 to result

21: end
22: if ts3 is not empty then
23: add ts3 to result

24: end
25: return result

Program 8.5: Algorithm createExpansion.

gorithm works on a TextSet called ts and a map r that contains the indexes of
the shared pattern inside each Text of ts. The loop at lines §6–§15 iterates over
all of the Texts in ts and adds the prefixes, separators, and suffixes to vari-
ables ts1, ts2, and ts3, respectively. Later, we add these intermediate TextSets
to the result variable as long as they are not empty.

8.2.3 Algorithm filter

Algorithm extract returns a list of TextSets that are expected to have the
variable information in the initial TextSet. Note, however, that min and max

introduce a bias to the search algorithm if min is greater than one or max is
less than the size of the shortest Text in the initial TextSet. Our experimen-
tal results prove that this bias helps effectively reduce the amount of effort

8.2. Algorithms 93

<html>

<head>

<title>Results</title>
</head>

<body>
<h1>Results:</h1>

Raylan

Elmore Leonard

$19.30

Wonderstruck

Brian Selznick

$19.54

</body>
</html>

<html>

<head>

<title>Results</title>
</head>

<body>
<h1>Results:</h1>

Catch Me

Lisa Gardner

$14.94

</body>
</html>

<html>

<head>

<title>Results</title>
</head>

<body>
<h1>Results:</h1>

Divergent

Veronica Roth

$9.99

West

R.J. Singer

$3.49

</body>
</html>

T’1 T’2 T’3
TS’1

Catch Me

L’1

TS’2

Raylan

Divergent

Elmore Leonard

TS’3

Veronica Roth

Lisa Gardner

TS’4

Brian Selznick

R.J. Singer

$19.30

TS’5

$9.99

Wonderstruck

TS’6

West

$14.94

TS’7

$19.5

$3.49

</html>

TS’8

</html>

</html>

L’2

extract

filter

Catch Me

TS’2

Raylan

Divergent

Elmore Leonard

TS’3

Veronica Roth

Lisa Gardner

TS’4

Brian Selznick

R.J. Singer

$19.30

TS’5

$9.99

Wonderstruck

TS’6

West

$14.94

TS’7

$19.5

$3.49

Figure 8.5: A case in which filtering TextSets is required.

1: filter(tss: List⟨TextSet⟩): List⟨TextSet⟩
2: result = ⟨⟩
3: foreach ts in tss do
4: if ts has variability then
5: add ts to result

6: end
7: end
8: return result

Program 8.6: Algorithm filter.

94 Chapter 8. Extracting attributes with TEX

required to extract information from typical web documents, without sacrific-
ing effectiveness. There are, however, cases in which setting min to a value
greater than one and setting max to a small value, may prevent Algorithm ex-
tract from finding small shared patterns. For instance, assume that we set
min = 2 and max = 2 and that Algorithm extract returns the list of TextSets
L ′1 in Figure §8.5: if the algorithm was allowed to search for patterns of size
one, then it would discover that <html> is a shared pattern and would dis-
card TextSet TS ′8; however, min was set to 2, which prevents the algorithm
from finding this pattern.

We present Algorithm filter in Program §8.6. The main loop at lines §3–§7
iterates over the list of input TextSets and simply removes those without vari-
ability from the result, i.e., those TextSets in which all of the Texts are the
same.

8.2.4 Limitations

A limitation of TEX is that it does not extract data records, but only their
attributes. A possible solution for this limitation is to apply a post-processing
phase to reconstruct the data records starting from the attributes extracted by
TEX. Another limitation of TEX is in extracting information from multi-
record web documents. When the input is a collection of list web documents,
TEX groups the attributes from the first data record and from the last data
records together, whereas the attributes of the remaining data records are
grouped correctly. For instance, the TextSets TS4, TS9, and TS10 in Figure §8.1,
which contain the titles, authors, and prices of the first and last data records,
are grouped together, but not with the other titles in TS12, authors in TS7, and
prices in TS11. The main reason of this limitation is that TEX searches for the
largest shared pattern amongst the web documents, and usually the header of
the data records is shared, but it includes some part of the data record tags.
Once the previous tokens of the first data records and the posterior tokens of
the last data records are removed since they are shared amongst the web doc-
uments, it is not possible to align the data records attributes with the
attributes of the remaining data records in the web documents.

8.3 Complexity analysis

In this section, we provide an upper limit to the worst-case space and time
complexities of Algorithm TEX. Note that it is not common to find a complex-
ity analysis in the literature regarding information extraction, but we think

8.3. Complexity analysis 95

that it is important to make sure that the proposal is computationally
tractable.

We have characterised an upper bound to the worst-case time complex-
ity building on two sensible assumptions: i) simple instructions like adding
an item to a set, comparing two tokens, or constructing a tuple can be imple-
mented in O(1) time with regard to the other algorithms in our proposal;
ii) the number of input documents is generally very small as compared with
the number of tokens of the longest document to be analysed.

In the following subsections, we first report on the space requirements,
then on time requirements, and conclude with the theorems that prove that
TEX is computationally tractable. In the sequel, we use variable n to de-
note the number of documents that TEX has to analyse and m to denote the
size of the longest such document.

8.3.1 Space requirements
Proposition 8.1 (Maximum size of a TextSet) Assume that we are extracting
information from a TextSet denoted as ts using Algorithm TEX. n ⌊m

2
⌋ is an

upper bound to maximum size of a TextSet generated by TEX.

Proof Algorithm expand is the unique algorithm that generates new TextSets,
which happens when a shared pattern p is found in a given TextSet. The new
TextSets correspond to the prefixes, separators, and suffixes to which p leads.
Regarding the prefix and suffix TextSets, note that there cannot be more than
n such prefixes or suffixes; that is, n is an upper bound to the maxi-
mum size of a TextSet that contains prefixes or suffixes. Regarding separator
TextSets the worst case happens when p is a one-token pattern that oc-
curs every two tokens; that is, ⌊m

2
⌋ is an upper bound to the number of

separators in this case, or, otherwise, n ⌊m
2
⌋ is an upper bound to the maxi-

mum size of a TextSet that contains separators. As a conclusion, n ⌊m
2
⌋ is an

upper bound to the maximum size of a TextSet generated by TEX. 2

Proposition 8.2 (Maximum number of TextSets) 3m is an upper bound to
the number of TextSets created by TEX.

Proof Algorithm expand creates three new TextSets when a shared pat-
tern p is found in a given TextSet. The new TextSets correspond to the
prefixes, separators, and suffixes to which p leads. We know that m is an up-
per bound to the number of partitions of a Text of size m, which means that m
is an upper bound to the number partitions in the worst-case. Since parti-
tion has three TextSets, then 3m is an upper bound to the number of TextSet
created by TEX. 2

96 Chapter 8. Extracting attributes with TEX

8.3.2 Time requirements

Proposition 8.3 (Algorithm createExpansion) Let ts be a Textset, r a map
from the Texts in ts to lists of indices that denote where a shared pattern oc-
curs, and s the size of the shared pattern. O(nm2) is an upper bound to its
worst-case time required to execute createExpansion(ts, r, s).

Proof The algorithm iterates through every Text in ts. According to Proposi-
tion §8.1, n ⌊m

2
⌋ is an upper bound to the maximum size of a TextSet, which

means that nm is an upper bound to the number of iterations of this loop. In-
side this loop, accessing the map and calculating the prefix and suffix of the
shared pattern can be performed in O(1) time, whereas computing the sepa-
rators requires variable time. According to the proof of Proposition §8.1, the
maximum number of separators in a given Text is ⌊m

2
⌋, which is less than m.

Then, O(m) is an upper bound to the time required to compute the sepa-
rators. As a conclusion, O(nmm) = O(nm2) is an upper bound to the
worst-case time required to execute createExpansion(ts, r, s). 2

Proposition 8.4 (Algorithm findPattern) Let ts be a TextSet, base the short-
est Text in ts, and s the size of the pattern for which the algorithm searches.
O(nm3) is an upper bound to the worst-case time required to execute
findPattern(ts, base, s).

Proof The main loop iterates through base until finding a pattern of s tokens
that occurs in every other Text in ts. In the worst case, base has the maximum
size m and the shared pattern is found at the end of base, which means that
the main loop iterates m − s times, i.e., O(m) times. In each iteration of the
main loop, the inner loop iterates through the Texts in ts. According to Propo-
sition §8.1, n ⌊m

2
⌋ is an upper bound to the maximum size of a TextSet, which

implies that the inner loop does not iterate more than n ⌊m
2
⌋ times. In

each iteration, it invokes Algorithm findMatches, whose worst-time complex-
ity is O(k), where k denotes the size of the text in which a pattern is
searched [86]. This implies that O(m) is an upper bound to the worst-case
time complexity of the instructions inside the inner loop. As a conclu-
sion, O(mn ⌊m

2
⌋m) ⊆ O(nm3) is an upper bound to the worst-case time

required to execute findPattern(ts, base, s). 2

Proposition 8.5 (Algorithm expand) Let ts be a TextSet, and s be a pat-
tern size. O(nm3) is an upper bound to the worst-case time required to
execute expand(ts, s).

8.3. Complexity analysis 97

Proof The algorithm first searches for the shortest Text in ts. According to
Proposition §8.1, n ⌊m

2
⌋ is an upper bound to the maximum size of a TextSet,

which implies that n ⌊m
2
⌋ is also an upper bound to the maximum time re-

quired to find the shortest Text in a TextSet. In the worst case, the invocation to
Algorithm expand requires to invoke Algorithms findPattern and createExpan-
sion in sequence, which according to Propositions §8.4 and §8.3 require
no more than O(nm3) and O(nm2) time in the worst case. As a conclu-
sion, O(n ⌊m

2
⌋+ nm3 + nm2) ⊆ O(nm3) is an upper bound to the worst-case

time required to execute expand(ts, s). 2

Proposition 8.6 (Algorithm extract) Let ts be a TextSet, min and max be the
minimum and maximum sizes of the shared patterns for which the algo-
rithm searches, respectively. O(nm5) is an upper bound to the worst-case
time required to execute extract(ts,min,max).

Proof The algorithm first iterates through all possible sizes between min and
max, which amounts to m times in the worst case. In each iteration, the algo-
rithm executes an inner loop that iterates through successive expansions of
ts. Note that m puts an upper bound to the number of times that a TextSet can
be expanded, which implies that m is also an upper bound to the num-
ber of iterations of the inner loop. Within this loop, the only significant
instruction regarding our complexity analysis is the invocation of Algo-
rithm expand, which according to Proposition §8.5 requires no more than
O(nm3) time. As a conclusion, O(mmnm3) = O(nm5) is an upper bound to
the worst-case time required to execute extract(ts,min,max). 2

Proposition 8.7 (Algorithm filter) Let L be a list of TextSets of size k. O(knm)
is an upper bound to the worst-case time required to execute filter(L).

Proof The algorithm iterates through every Text in L. If we denote the
size of L as k, then this loop iterates k times. In each iteration, the algo-
rithm checks the variability of the current TextSet, which requires to compare
the first Text to every other in order to determine whether the TextSet has vari-
ability or not. According to Proposition §8.1, n ⌊m

2
⌋ is an upper bound to the

number of Texts in a TextSet, which implies that O(kn ⌊m
2
⌋) ⊆ O(knm) is an

upper bound to the worst-case time required to execute filter(L). 2

8.3.3 Computational tractability

Theorem 8.1 (Space requirements of Algorithm TEX) Let ts be a TextSet and
min and max be the minimum and maximum sizes of the shared pat-
terns for which TEX searches. O(nm2) is an upper bound to the space
required to execute TEX(ts,min,max) in the worst case.

98 Chapter 8. Extracting attributes with TEX

Proof The proof follows straightforwardly from Propositions §8.1 and §8.2. If
O(n ⌊m

2
⌋) is an upper bound to the maximum size of a TextSet and O(3m) is

an upper bound to the maximum number of TextSets the algorithm cre-
ates, then O(n ⌊m

2
⌋ 3m) ⊆ O(nm2) is an upper bound to the space required to

execute TEX(ts,min,max) in the worst case. 2

Theorem 8.2 (Time requirements of Algorithm TEX) Let ts be a TextSet and
min and max be the minimum and maximum sizes of the shared pat-
terns for which TEX searches. O(nm5) is an upper bound to the worst-case
time required to execute TEX(ts,min,max).

Proof The proof follows straightforwardly from the previous propositions.
Note that Algorithm TEX invokes Algorithms extract and filter in sequence,
which, according to Propositions §8.6 and §8.7 require no more than O(nm5)
and O(knm) time to complete, where k denotes the size of the list of TextSets
returned by Algorithm extract. Note that m puts an upper bound to the size of
this list, which implies that O(nm5 + nm2) ⊆ O(nm5) is an upper bound to
the worst-case time required to execute TEX(ts,min,max). 2

Corollary 8.1 If we assume that n ≪ m, then (nm2) is an upper bound to the
space required to execute Algorithm TEX and O(m5) is an upper bound to
the worst-case time complexity. Since both results are polynomial, we can
conclude that Algorithm TEX is computationally tractable.

8.4 Experimental analysis
In this section, we present the results of the experiments we have carried

out to compare our proposal to other techniques in the literature from an em-
pirical point of view. We ran RoadRunner, FiVaTech, SM, and LR on CEDAR
repository in order to learn extraction rules and then applied these rules and
compared the results with TEX. We measured the standard effectiveness mea-
sures (precision, recall, and the F1 measure) and two efficiency measures
(learning and extraction time). We did not measure memory since the heap
size was set to the default value and it was never exceeded.

8.4.1 Experimentation environment
We have developed a Java 1.7 prototype of TEX using our framework. We

performed a series of experiments on a cloud machine that was equipped
with a four-threaded Intel Core i7 processor that ran at 2.93 GHz, had 4 GiB
of RAM, Windows 7 Pro 64-bit, Oracle’s Java Development Kit 1.7.0_02, and
GNU Regex 1.1.4. The configuration parameters of the Java Virtual Machine
were set to their default values.

8.4. Experimental analysis 99

8.4.2 Effectiveness analysis

In the case of SM and LR, it was easy to compute the precision and re-
call for each attribute since both techniques are supervised. Contrarily, TEX,
RoadRunner, and FiVaTech are unsupervised, so we used a technique simi-
lar to the one used to evaluate RoadRunner, FiVaTech, and EXALG, i.e., given
an annotation, we can consider that the precision and recall to extract it
correspond to the extracted TextSet with the highest F1 measure.

Recall that TEX can introduce a bias to the algorithm that searches for
shared patterns. In our experiments, we used the following heuristics to find
the most appropriate bias: we first set min to one and max to the size of the
longest input document, let it be m, and we measured precision and re-
call; note that this does not introduce any bias, since these values allow TEX
to find every possible shared pattern. We then set max = ⌊m

2
⌋ and measured

precision and recall again; if there were no changes, we then set max = ⌊m
4
⌋

and repeated the procedure until precision or recall was affected. Simi-
larly, we explored changes to min. We experimentally found that setting
min = 2 and max = ⌊0.05m⌋ was the maximum allowable bias. This re-
sulted in a significant reduction of CPU time without having an impact on
neither precision nor recall.

Table §8.1 shows our results regarding effectiveness. The first few rows
provide a summary in terms of mean and standard deviation of preci-
sion (P), recall (R), and F1 measure. In average, TEX seems to outperform the
other techniques in both precision and recall. The remaining rows pro-
vide the results computed for each web site. Note that some cells contain a
dash, which indicates that the corresponding technique was not able to learn
an extraction rule in 15 CPU minutes.

According to Table §8.1, TEX outperforms the other techniques regard-
ing effectiveness. Figure §8.6 illustrates this conclusion since the majority
of points that correspond to TEX are very close to the upper right cor-
ner, whereas the points that correspond to the other techniques are more
scattered. Intuitively, the closer the points to (1.00, 1.00) the higher the F1

measure; similarly, the closer to (0.00, 0.00) the lower the F1 measure.

To discern if errors in the input documents have an impact from a statisti-
cal point of view on the effectiveness of the proposals, we need compute
the correlation from the number of errors to the F1 measure using non-
parametric Kendall’s Tau procedure. Table §8.2 presents the results of this

100 Chapter 8. Extracting attributes with TEX

Summary P R F1 P R F1 P R F1 P R F1 P R F1

Mean 0.96 0.95 0.95 0.36 0.36 0.36 0.80 0.87 0.81 0.84 0.61 0.66 0.72 0.61 0.64

StDev 0.07 0.11 0.09 0.45 0.45 0.45 0.20 0.17 0.17 0.15 0.32 0.30 0.24 0.31 0.29

Site P R F1 P R F1 P R F1 P R F1 P R F1

S01 1.00 1.00 1.00 - - - 0.92 0.99 0.95 0.87 0.58 0.70 0.52 0.16 0.24

S02 1.00 0.87 0.93 1.00 1.00 1.00 0.85 1.00 0.92 1.00 0.39 0.56 0.77 0.26 0.39

S03 0.99 1.00 0.99 0.00 0.00 0.00 0.99 0.96 0.97 0.98 0.99 0.98 0.43 0.35 0.39

S04 0.99 0.99 0.99 - - - 0.77 0.97 0.86 0.99 0.99 0.99 0.25 0.23 0.24

S05 0.96 1.00 0.98 1.00 0.89 0.94 1.00 0.94 0.97 1.00 1.00 1.00 0.71 0.67 0.69

S06 0.99 1.00 1.00 0.00 0.00 0.00 - - - 0.89 0.87 0.88 0.89 0.00 0.00

S07 1.00 1.00 1.00 0.00 0.00 0.00 0.45 0.89 0.60 0.89 0.89 0.89 0.88 0.88 0.88

S08 0.98 1.00 0.99 0.00 0.00 0.00 0.92 1.00 0.96 0.92 0.02 0.05 0.82 0.83 0.83

S09 0.86 0.90 0.88 0.00 0.00 0.00 - - - 0.90 0.90 0.90 0.17 0.13 0.15

S10 1.00 1.00 1.00 0.00 0.00 0.00 0.97 0.94 0.96 - - - 0.11 0.11 0.11

S11 0.96 0.96 0.96 0.74 0.74 0.74 - - - 0.87 0.55 0.68 0.57 0.20 0.30

S12 0.98 0.99 0.99 - - - 0.84 0.90 0.87 0.99 0.25 0.40 0.80 0.40 0.53

S13 1.00 1.00 1.00 0.90 1.00 0.95 0.90 1.00 0.95 0.60 0.60 0.60 0.80 0.40 0.53

S14 0.96 0.98 0.97 0.00 0.00 0.00 0.39 0.50 0.44 0.87 0.44 0.59 0.40 0.40 0.40

S15 0.99 0.99 0.99 0.00 0.00 0.00 0.99 0.79 0.88 0.52 0.39 0.45 0.62 0.23 0.34

S16 1.00 1.00 1.00 0.00 0.00 0.00 0.77 1.00 0.87 0.86 0.45 0.59 0.60 0.60 0.60

S17 0.98 1.00 0.99 - - - - - - 0.79 0.39 0.53 0.60 0.60 0.60

S18 0.92 1.00 0.96 1.00 1.00 1.00 0.56 0.99 0.72 0.61 0.61 0.61 1.00 1.00 1.00

S19 1.00 1.00 1.00 1.00 1.00 1.00 0.78 1.00 0.88 0.91 0.87 0.89 0.78 0.80 0.79

S20 1.00 1.00 1.00 0.00 0.00 0.00 0.83 0.83 0.83 0.75 0.25 0.38 0.75 0.75 0.75

S21 0.83 0.83 0.83 0.70 0.70 0.70 1.00 0.74 0.85 0.57 0.47 0.52 1.00 1.00 1.00

S22 0.92 0.98 0.95 0.00 0.00 0.00 - - - 0.45 0.25 0.32 0.94 0.94 0.94

S23 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.75 0.00 0.00 0.25 0.25 0.25

S24 1.00 1.00 1.00 0.00 0.00 0.00 0.80 0.83 0.82 0.75 0.00 0.00 0.75 0.75 0.75

S25 0.86 1.00 0.93 0.86 1.00 0.93 - - - 0.75 0.03 0.06 0.50 0.50 0.50

S26 0.95 0.98 0.96 0.81 1.00 0.89 0.82 0.81 0.81 0.85 0.40 0.54 0.87 0.24 0.38

S27 0.97 0.96 0.96 0.27 0.30 0.28 0.79 0.74 0.77 0.93 0.29 0.44 0.13 0.07 0.09

S28 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.72 0.81 0.39 0.30 0.34

S29 1.00 1.00 1.00 0.00 0.00 0.00 0.71 0.67 0.69 0.97 0.97 0.97 0.72 0.72 0.72

S30 0.93 0.86 0.89 0.00 0.00 0.00 - - - 0.88 0.85 0.86 0.38 0.38 0.38

S31 0.99 0.92 0.95 0.00 0.00 0.00 0.59 1.00 0.74 0.99 0.95 0.97 0.91 0.81 0.86

S32 1.00 1.00 1.00 0.00 0.00 0.00 0.77 0.97 0.86 1.00 1.00 1.00 0.83 0.83 0.83

S33 1.00 1.00 1.00 0.00 0.00 0.00 0.94 1.00 0.97 1.00 1.00 1.00 0.78 0.75 0.76

S34 0.99 0.99 0.99 0.00 0.00 0.00 - - - 0.80 0.79 0.79 0.92 0.92 0.92

S35 0.70 0.98 0.82 - - - 0.77 0.99 0.87 0.84 0.84 0.84 1.00 1.00 1.00

S36 0.63 1.00 0.77 0.00 0.00 0.00 - - - 0.88 0.92 0.90 1.00 0.89 0.94

Doctors

Events

Cars

Books

LRTEX RoadRunner FivaTech SM

Real Estate

Jobs

Movies

Table 8.1: Comparison of TEX’s effectiveness to other techniques.

8.4. Experimental analysis 101

Site P R F1 P R F1 P R F1 P R F1 P R F1

S37 1.00 1.00 1.00 0.00 0.00 0.00 0.36 0.99 0.52 0.83 0.13 0.23 1.00 1.00 1.00

S38 1.00 1.00 1.00 0.00 0.00 0.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00

S39 0.97 0.99 0.98 0.00 0.00 0.00 0.99 0.88 0.93 0.94 0.94 0.94 0.71 0.71 0.71

S40 1.00 1.00 1.00 0.93 1.00 0.97 0.53 0.81 0.64 0.71 0.71 0.71 0.86 0.86 0.86

S41 0.97 1.00 0.98 0.00 0.00 0.00 - - - 0.89 0.89 0.89 0.89 0.89 0.89

S42 0.93 0.73 0.82 0.27 0.33 0.30 0.60 0.67 0.63 0.98 1.00 0.99 0.97 1.00 0.98

S43 1.00 0.90 0.95 0.92 0.92 0.92 0.91 0.94 0.92 0.92 0.90 0.91 0.92 0.51 0.66

S44 1.00 0.98 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.94 0.72 0.82 0.92 0.58 0.71

S45 0.99 0.99 0.99 0.90 0.92 0.91 0.97 0.99 0.98 0.81 0.89 0.85 0.64 0.75 0.69

S46 1.00 1.00 1.00 0.37 0.39 0.38 0.24 0.82 0.37 0.65 0.28 0.39 0.67 0.32 0.43

S47 0.97 1.00 0.98 0.00 0.00 0.00 0.83 1.00 0.91 0.70 0.12 0.20 0.70 0.12 0.20

S48 0.98 0.55 0.70 0.00 0.00 0.00 0.99 1.00 0.99 0.99 0.46 0.63 0.65 0.33 0.44

S49 0.99 0.99 0.99 - - - 0.82 0.80 0.81 0.94 0.82 0.88 0.99 0.99 0.99

S50 0.95 0.97 0.96 0.98 0.99 0.98 0.99 0.41 0.58 0.72 0.03 0.06 0.99 0.99 0.99

S51 0.95 0.94 0.94 1.00 1.00 1.00 - - - 0.81 0.77 0.79 0.68 0.98 0.80

S52 0.84 0.38 0.52 0.00 0.00 0.00 0.53 0.69 0.60 0.37 0.43 0.40 1.00 1.00 1.00

S53 1.00 0.82 0.90 0.96 0.56 0.71 0.49 0.34 0.40 0.83 0.82 0.82 0.60 0.67 0.63

S54 0.97 0.92 0.94 0.00 0.00 0.00 0.83 0.57 0.68 0.87 0.49 0.63 0.90 0.80 0.85

S55 1.00 0.86 0.92 0.00 0.00 0.00 1.00 0.98 0.99 0.81 0.63 0.71 0.81 0.72 0.76

TEX RoadRunner FivaTech SM LR

Sports

EXALG

RISE

Table 8.1: Comparison of TEX’s effectiveness to other techniques. (Cont’d)

procedure and Figure §8.7 illustrates the F1 measures we gathered for ev-
ery pair of datasets and techniques and the number of errors in a radial chart.
Note that the p-value of the correlation coefficients is smaller than the stan-
dard significance level α = 0.05 except for the case of RoadRunner and
FiVaTech; in these cases the correlation coefficient is negative, which means
that the effectiveness of these techniques is expected to decrease as the
number of errors in the input documents increases. As a conclusion, our ex-
periments do not show any statistical evidence that the effectiveness of our
technique is sensible to malformed input documents.

8.4.3 Efficiency analysis
Table §8.3 shows our results regarding efficiency of TEX and the other

techniques. The table shows the learning time LT and the extraction time ET

for each technique. (Note that TEX does not learn extraction rules, so we use
NA in the corresponding column to mean not applicable. All timings are ex-
pressed in seconds.) The first few rows provide a summary in terms of mean

102 Chapter 8. Extracting attributes with TEX

0.000.100.200.300.400.500.600.700.800.901.00

0.00 0.20 0.40 0.60 0.80 1.00

R
e
c
a
ll

Precision

TEXRoadRunnerFivaTechSMLR
Figure 8.6: Precision versus recall in our experiments regarding TEX.

Technique Correlation coefficient P-Value

TEX 0.01 0.932

RoadRunner -0.36 0.007

FiVaTech -0.27 0.047

SM 0.04 0.758

LR 0 0.99

Table 8.2: Impact of errors on TEX effectiveness.

and standard deviation for each of the variables. The learning time and the
extraction time do not account for the time consumed by JTidy in the case of
RoadRunner and FiVaTech, neither account them for the tokenisation time in
the case of TEX, SM, and LR. The reason is that the time to clean or tokenise a
document is not actually an intrinsic feature of the proposals being analysed.

The results in Table §8.3 support the idea that TEX is more effective
regarding the extraction time than the other techniques, but has a similar ex-
traction time to RoadRunner. (In the table, 0.00± 0.00 means that the time
was less than one millisecond, but the resolution of our timer was not enough

8.4. Experimental analysis 103

0.010.101.0010.00100.00
TEXRoadRunnerFivaTechSMLRErrors

Figure 8.7: Correlation from number of errors to the F1 measure in TEX.

��� ������		
� ����
�� �� ��������
���	����
��	������������
��
������������������������������

0.00 0.67 10.81 3.01 3.92
0.00 0.17 0.27 1.00 0.90

0.00 0.98 29.70 6.07 7.43

0.00 867.63 849.27 25.55 25.18
0.00 1.86 158.33 9.40 9.66

Figure 8.8: Comparison of learning times regarding TEX.

104 Chapter 8. Extracting attributes with TEX

Summary LT ET LT ET LT ET LT ET LT ET

Mean NA 0.01 20.03 0.01 122.94 0.25 7.10 46.30 7.80 10.93

StDev NA 0.02 123.71 0.02 196.42 0.36 5.13 54.45 5.15 12.88

Site LT ET LT ET LT ET LT ET LT ET

S01 NA 0 - - 15.46 0.12 9.09 26.96 9.66 10.26

S02 NA 0 0.92 0.00 8.14 0.14 5.68 16.52 5.01 6.27

S03 NA 0.03 0.98 0.00 85.32 0.39 16.15 41.39 15.57 17.04

S04 NA 0.02 - - 65.49 0.12 7.38 30.33 6.74 8.14

S05 NA 0.01 1.14 0.02 51.53 1.98 8.67 77.36 8.02 8.72

S06 NA 0.04 0.83 0.02 - - 14.87 103.82 14.18 14.02

S07 NA 0.03 1.72 0.02 34.21 0.20 7.66 22.90 7.43 7.63

S08 NA 0.01 0.69 0.00 446.90 0.59 5.30 28.88 4.80 4.76

S09 NA 0.02 1.47 0.00 - - 10.92 78.55 10.03 10.28

S10 NA 0.02 4.74 0.00 117.16 0.19 8.74 - 7.78 9.02

S11 NA 0.01 2.57 0.00 - - 5.04 42.04 4.15 3.34

S12 NA 0.01 - - 42.96 0.08 10.06 62.24 7.27 4.74

S13 NA 0 0.45 0.02 1.56 0.03 2.61 5.74 1.86 1.28

S14 NA 0 0.17 0.00 0.27 0.03 6.65 7.86 4.43 2.31

S15 NA 0 0.45 0.00 6.21 0.02 4.62 7.10 3.24 1.95

S16 NA 0 0.73 0.00 11.81 0.03 8.28 29.94 9.45 14.54

S17 NA 0 - - - - 6.07 10.53 6.99 7.38

S18 NA 0 867.63 0.00 9.94 0.08 2.28 8.16 1.97 1.84

S19 NA 0 3.28 0.02 25.35 0.06 4.49 17.50 3.88 3.62

S20 NA 0.1 0.67 0.02 9.59 0.11 9.70 40.00 9.56 9.77

S21 NA 0 0.78 0.02 13.76 0.11 7.77 16.72 7.49 7.14

S22 NA 0.01 0.69 0.02 - - 9.09 36.60 9.02 9.50

S23 NA 0.01 1.83 0.03 90.78 0.34 11.76 26.79 11.56 11.93

S24 NA 0.01 0.53 0.00 266.00 0.31 8.13 50.72 8.11 7.72

S25 NA 0.01 1.86 0.00 - - 5.19 22.56 5.09 4.77

S26 NA 0 0.64 0.02 1.59 0.00 3.65 3.45 2.70 1.67

S27 NA 0.03 1.64 0.03 14.84 0.11 11.29 38.86 7.78 5.91

S28 NA 0 0.69 0.02 29.70 0.05 3.70 10.39 2.79 3.79

S29 NA 0.01 0.59 0.00 259.23 0.08 4.34 44.69 3.95 3.82

S30 NA 0.06 0.97 0.02 - - 16.38 63.24 15.87 16.46

S31 NA 0 0.47 0.03 17.24 0.05 10.64 37.58 9.73 9.36

S32 NA 0.02 3.10 0.00 246.95 0.89 16.32 86.55 15.62 16.75

S33 NA 0.01 2.75 0.02 20.76 0.09 7.43 100.85 7.04 6.96

S34 NA 0.02 1.39 0.02 - - 8.25 65.88 8.22 8.17

S35 NA 0.04 - - - - 7.60 25.65 7.52 7.49

S36 NA 0.12 2.18 0.00 - - 25.55 284.94 25.18 25.37

Cars

Events

Doctors

Jobs

Movies

Real Estate

Books

LRSMFiVaTechRoadRunnerTEX

Table 8.3: Comparison of TEX’s efficiency to other techniques.

to measure such small amounts of time.) Figure §8.8 illustrates this idea: note
that the learning time of TEX is set to zero since it does not learn extraction
rules. The extraction time is similar to RoadRunner’s, but clearly smaller than
the other techniques’; the dispersion from the minimum values to the first
quartile and from the third quartile to the maximum are also a clear indication

8.4. Experimental analysis 105

Site LT ET LT ET LT ET LT ET LT ET

S37 NA 0.02 1.37 0.02 14.68 0.06 5.51 17.43 5.34 4.96

S38 NA 0.01 0.64 0.00 - - 5.99 33.23 5.83 5.71

S39 NA 0.06 1.11 0.02 111.03 0.83 19.14 182.38 18.75 18.33

S40 NA 0.02 1.65 0.00 159.39 0.39 10.14 39.91 9.64 9.56

S41 NA 0.04 2.01 0.02 - - 11.54 47.80 11.04 10.87

S42 NA 0 0.55 0.02 2.29 0.05 1.06 10.09 19.47 8.10

S43 NA 0.01 0.51 0.02 10.81 0.05 1.34 11.64 3.53 3.70

S44 NA 0 0.98 0.03 246.97 0.11 3.42 23.35 15.66 10.22

S45 NA 0.01 0.28 0.02 0.89 0.02 1.00 3.32 1.79 2.28

S46 NA 0.01 1.15 0.02 132.24 0.27 1.98 22.06 9.67 16.96

S47 NA 0.04 2.51 0.02 577.97 0.48 2.23 16.04 5.44 19.55

S48 NA 0.11 0.95 0.02 158.33 0.06 1.29 19.61 3.60 6.13

S49 NA 0.01 - - 706.64 0.76 3.68 34.15 7.47 31.54

S50 NA 0 1.31 0.03 - 0.56 1.40 26.22 1.29 10.42

S51 NA 0 12.04 0.08 - - 1.50 166.23 2.68 89.14

S52 NA 0 0.89 0.02 14.41 0.06 1.39 13.34 2.00 2.40

S53 NA 0.02 11.23 0.08 849.27 0.37 1.73 216.36 1.64 35.08

S54 NA 0 0.37 0.00 4.24 0.05 2.18 23.45 0.90 2.73

S55 NA 0 33.60 0.02 158.48 0.06 2.57 20.39 13.60 19.75

FiVaTech SM LR

Sports

EXALG

RISE

TEX RoadRunner

Table 8.3: Comparison of TEX’s efficiency to other techniques. (Cont’d)

TEX RoadRunner FiVaTech SM LR

Quartile 1 0.00 0.00 0.05 16.90 4.75
Minimum 0.00 0.00 0.00 3.32 1.28

Median 0.01 0.02 0.11 27.92 8.10

Maximum 0.12 0.08 1.98 284.94 89.14

Quartile 3 0.02 0.02 0.31 47.02 11.40

0.00

0.10

1.00

10.00

100.00

1000.00

Figure 8.9: Comparison of extraction times regarding TEX.

106 Chapter 8. Extracting attributes with TEX

Criterion Iman-Davenport's testTechnique Rank P -value P -value TEX RoadRunner FiVaTech SM LR Technique RankTEX 1.64 TEX - 2.38E-15 3.56E-06 2.76E-04 2.06E-07 TEX 1 SM 2.84 RoadRunner - 3.04E-03 1.46E-04 1.46E-02 SM 2FiVaTech 3.12 FiVaTech - 3.72E-01 5.46E-01 FiVaTech 2LR 3.30 SM - 3.72E-01 LR 2RoadRunner 4.11 LR - RoadRunner 3Technique Rank P -value P -value TEX RoadRunner FiVaTech SM LR Technique RankTEX 1.68 TEX - 7.58E-13 2.02E-02 4.05E-08 2.96E-08 TEX 1FiVaTech 2.53 RoadRunner - 1.78E-05 2.41E-01 2.41E-01 FiVaTech 2SM 3.41 FiVaTech - 6.97E-03 6.97E-03 SM 3LR 3.45 SM - 9.04E-01 LR 3RoadRunner 3.94 LR - RoadRunner 3Technique Rank P -value P -value TEX RoadRunner FiVaTech SM LR Technique RankTEX 1.55 TEX - 3.93E-15 6.48E-05 1.93E-07 8.15E-09 TEX 1FiVaTech 2.85 RoadRunner - 7.71E-04 2.19E-02 7.50E-02 FiVaTech 2SM 3.20 FiVaTech - 2.52E-01 2.41E-01 SM 2LR 3.38 SM - 5.46E-01 LR 2RoadRunner 4.01 LR - RoadRunner 2Technique Rank P -value P -value TEX RoadRunner FiVaTech SM LR Technique RankTEX 1.51 TEX - 9.04E-01 7.60E-06 1.07E-29 5.20E-16 TEX 1RoadRunner 1.55 RoadRunner - 7.60E-06 2.59E-29 7.15E-16 RoadRunner 1FiVaTech 2.95 FiVaTech - 5.76E-11 7.48E-04 FiVaTech 2LR 4.02 SM - 2.79E-03 LR 3SM 4.98 LR - SM 4

Sample ranking Bergmann-Hommels's test Statistical rankingP 2.11E-17

7.72E-124
4.79E-18
2.74E-17

ET

R
F1

Table 8.4: Results of ranking TEX statistically.

that our technique performs more homogeneously than the others regarding
extraction time, with the only exception of RoadRunner, c.f. Figure §8.9.

8.5 Statistical analysis
Once we have evaluated the proposals on datasets, it is necessary to per-

form a statistical ranking to check whether the conclusions we have drawn
are statistically significant or not, cf. Section §6.5. We need perform a statisti-
cal ranking regarding our performance measures and determine if there is a
significant correlation from the number of errors in the web documents to the
effectiveness of the techniques we have evaluated.

We have conducted a Shapiro-Wilk test at the standard significance level
α = 0.05 on every measure and we have found out that the majority of
them do not behave normally. For instance, Shapiro-Wilk’s statistic regard-
ing the normality of TEX’s precision is W(55) = 0.59, whose p-value is
0.00, which is a strong indication that the data is not distributed nor-
mally. This is not surprising at all; a quick look at the scatter plot in

8.6. Summary 107

Figure §8.6 makes it clear that these cloud of points are far from a Gaus-
sian circle. As a conclusion, we have performed a non-parametric analysis
whose results are presented in Table §8.4. Note that the p-value of Iman-
Devenport’s statistic is nearly zero in every case, which is a strong indication
that there are statistically significant differences in the ranks we have com-
puted from our experiments. There is also a strong statistical evidence that
TEX outperforms RoadRunner, FiVaTech, SM, and LR in terms of preci-
sion, recall, and, consequently, F1 measure. For the sake of readability, we
also provide an explicit ranking in the last column. Regarding extraction
time TEX has a performance similar to that one achieved by RoadRun-
ner, but outperforms the other techniques. Note that regarding F1 measure,
Bergmann-Hommel’s test found that there is a strong statistical indication
that TEX outperforms the other techniques, but that there is not enough evi-
dence to confirm that the difference between the F1 measure of the other
techniques is significant when these techniques are compared to each other.

8.6 Summary

In this chapter, we have presented an information extraction proposal
called TEX that focuses on extracting attributes. It is based on the idea that
web documents that are generated by the same server side template share to-
kens, and that these tokens contain irrelevant information since they are parts
of the server-side template that was used to generate them.

TEX is a completely unsupervised information extractor that saves end
users from the burden of annotating training examples to learn extraction
rules, and from maintaining extraction rules. It allows to work on mal-
formed web documents since it does not require converting HTML code into
XHTML or to build DOM trees, which reduces its extraction time. Further-
more, it does not need the information in the input web documents to be
formatted using repetitive patterns.

We have studied the complexity of TEX and demonstrated that it is com-
putationally tractable. Our empirical analysis of TEX on a collection of
real-world datasets has proven that our technique achieves a very high preci-
sion and recall, which are very close to 100%. Our comparison and statistical
analysis has shown that our technique performs better than other techniques
in the literature.

108 Chapter 8. Extracting attributes with TEX

Chapter9

Extractinginformationrecordswith
Trinity

Simplicity is the ultimate sophistication.

Leonardo da Vinci, Italian Renaissance polymath: painter, sculptor, archi-

tect, musician, scientist, mathematician, engineer, inventor, anatomist,

geologist, cartographer, botanist, and writer (1452-1519)

T
rinity is an information extractor that learns a regular expression
that represents the template used to generate a number of similar
web documents. The chapter is organised as follows: Section §9.1
introduces the chapter; Section §9.2 describes the algorithms on

which Trinity relies; Section §9.3 reports on their complexity; Section §9.4 re-
ports on our experimental analysis we have conducted to evaluate Trinity
empirically; Section §9.5 reports on the statistical analysis conducted to rank
Trinity; finally, Section §9.6 summarises this chapter.

109

110 Chapter 9. Extracting information records with Trinity

9.1 Introduction

Software engineers use scripts to retrieve information from server-side
databases and fill in templates that present the information retrieved in
human-friendly formats. These templates are based on HTML, and they
usually introduce irrelevant information, e.g., formatting tags, headers, or
footers. This makes it difficult to extract relevant information from web
documents.

In this chapter, we introduce a technique called Trinity; it allows to learn a
regular expression that describes the template used to generate a num-
ber of similar web documents and the information in these documents. It
works on two or more documents and compares them in order to dis-
cover shared patterns that are common to all of the input documents and,
thus, are not likely to contain any relevant information.

Our proposal relies on a multi-string alignment algorithm that has proven
to be very effective and efficient in practice. Contrarily to the other propos-
als, Trinity does not require the input web documents to be translated into
DOM trees and thus does not require the input documents to be corrected so
that they are well-formed HTML. We have conducted a series of experiments
with 2 084 web documents from 55 real-world web sites and our results con-
firm that our proposal can achieve a mean precision as high as 96%, a mean
recall as high as 95%, with a mean learning time of 0.13 seconds and a
mean extraction time of 0.02 seconds using a commodity computer. We con-
ducted the same experiments using other well-known techniques in the
literature, and our conclusion is that our proposal outperforms them.

9.2 Algorithms

In this section, we describe the rule learning algorithm that lies at the
heart of our proposal. Trinity searches for shared patterns in the input web
documents and builds a structure called trinary tree in which it tries to align
the prefixes, suffixes, and the separators between successive occurrences of
the shared pattern, if any. This structure is then used to learn a regular ex-
pression that models the template that was used to generate the input web
documents and the schema of the information inside these web documents.
Figure §9.1 illustrates a running example, in which we assume that our algo-
rithm is executed on the root node N1, which contains three input web

9.2. Algorithms 111

<html><head><title>Results</title></head><body><h1>Results:</h1>PHP
Gilmore
$34.99

PHP Solutions

Powers
$26.99
</body></html>

<html><head><title>Results</title></head><body><h1>Results:</h1>Java
Bloch
$43.53
</body></html>

<html><head><title>Results</title></head><body><h1>Results:</h1>C++
Prata
$35.99

Effective C++

Meyer
$33.95
</body></html>

PHP
Gilmore
$34.99

PHP Solutions
Powers
$26.99
</body></html>

Java
Bloch
$43.53
</body></html>

C++
Prata
$35.99

Effective C++
Meyer
$33.95
</body></html>

PHP
Gilmore
$34.99

PHP Solutions
Powers
$26.99

Java
Bloch
$43.53

C++
Prata
$35.99

Effective C++
Meyer
$33.95

PHP

Java

C++

Gilmore
$34.99

PHP Solutions

Prata
$35.99

Effective C++

Powers
$26.99

Bloch
$43.53

Meyer
$33.95

Gilmore

Prata

$34.99

PHP Solutions

$35.99

Effective C++

Robson

Collins

Shelly

$26.99

$43.53

$33.95

$34.99

$35.99

PHP Solutions

Effective C++

N2:Prefixes N3:Separators N4:Suffixes

N7:SuffixesN6:SeparatorsN5:Prefixes

N1:Input

N8:Prefixes N9:Separators N10:Suffixes

N11:Prefixes N12:Separators N13:Suffixes

N14:Prefixes N15:Separators N16:Suffixes

N17:Prefixes N18:Separators N19:Suffixes

εεε

nil

nil

nil

nil

nil

nil εεεnil

nil

nil

nil

nil

nil

nil

nil

Figure 9.1: A sample trinary tree. (Shared patterns are underlined.)

documents. Note that these are intentionally simple HTML documents that
are used for illustration purpose only. In the following subsections, we first
introduce the structures used by the algorithm and then describe it.

9.2.1 Structures

Our proposal requires to tokenise the input web documents, but it is not
bound with a particular tokenisation schema. Our implementation and our
experiments were carried out using the same tokenisation schema as in TEX.
A sequence of tokens is called Text. We define a trinary tree as a collec-
tion of Nodes, each of which is a tuple of the form (T, a, p, e, s), where
T is a collection of Text, a is of type Text and contains a shared pat-
tern in T , p is a Node called prefixes, e is a Node called separators, and s is

112 Chapter 9. Extracting information records with Trinity

1: Trinity(root: Node; min, max: int): Regex, Schema
2: createTrinaryTree(root, min, max)
3: template = "ˆ" + learnTemplate(root, "") + "$"
4: schema = "<?xml version=\"1.0\"> <schema>" + learnSchema(root, "") + "</schema>"
5: return template , schema

Program 9.1: Algorithm Trinity.

a Node called suffixes. The root node of a trinary tree contains a collec-
tion of Text, such that each Text is the tokenisation of an input document; leaf
nodes are of the form (T, ϵ, nil, nil, nil), where ϵ denotes an empty sequence
of Texts and nil denotes either a missing Node or Text .

In Figure §9.1, N1 is the root node, and it contains three Texts that repre-
sent three input documents; N2, N3, and N4 are the child nodes of the root
Node, namely: prefixes, separators, and suffixes.

9.2.2 Main algorithm

We present the main algorithm in Program §9.1. It works on a Node
called root, and a range of integers called min and max, which limit the
search for shared patterns to those of size max down to min. The algo-
rithm works in three steps: line §2 expands the input root Node to create a
full trinary tree, line §3 uses the previous tree to learn a regular expres-
sion that models the template used to generate the input documents, and
line §4 uses it to learn the information schema. In the following subsections,
we provide additional details on the ancillary algorithms.

9.2.3 Creating a trinary tree

Algorithm createTrinaryTree searches for shared patterns of size max down
to min in a Node. If a shared pattern of size s is found, then the Texts in-
side the node are partitioned to create three children for the input
node, and the algorithm is executed recursively on them to search for
patterns of size s down to min. For instance, assume that it is invoked
on Node N1 in Figure §9.1, and that it has to search for a shared pat-
tern whose size is in the range 12 down to one. The algorithm searches
for a shared pattern of size 12 tokens, 11 tokens, until it finds the fol-
lowing 10-token pattern: <html><head><title>Results</title></head><body><h1>

9.2. Algorithms 113

1: createTrinaryTree(node: Node; min, max: int)
2: expanded = false
3: size = max

4: while size ≥ min and not expanded do
5: expanded = expand(node, size)
6: size = size− 1

7: end
8: if expanded then
9: leaves = getLeaves(node)

10: foreach leaf in leaves do
11: createTrinaryTree(leaf, min, size+ 1)
12: end
13: end
14: end

Program 9.2: Algorithm createTrinaryTree.

Results:</h1>. The algorithm tries to expand Node N1 into three additional
nodes, namely: N2, N3, and N4. Since the shared pattern is found at the be-
ginning of the Texts in N1 and it is not repeated in any of them, then Node N2

contains three empty Texts that we denote as ϵ. Node N3, which con-
tains the separators between the occurrences of the shared pattern in each
Text, only contains three nil Texts that indicate that there are not actu-
ally any separators; contrarily, if there are three suffixes that are stored in
Node N4. Then, the algorithm is applied recursively to N2, N3, and N4 to
search for shared patterns of size 10 down to 1. N2 and N3 are not pro-
cessed again since they only contain empty or nil Texts; only Node N4, whose
Texts share the 3-token pattern
</body></html>, is expanded again to cre-
ate Nodes N5, N6, and N7. The same procedure is applied as many times as
necessary until no more shared patterns are discovered.

We present Algorithm createTrinaryTree in Program §9.2. The loop at
lines §4-§7 iterates over every possible size from max down to min until Al-
gorithm expand finds a shared pattern of the current size. If such a pattern is
found, then expand creates the child nodes of the input Node and returns true,
which breaks the loop after decreasing size; if no shared pattern is found,
then the loop decreases size, and invokes expand again with the new size. If a
shared pattern is found and the loop is broken, the leaves of the input node
are obtained at line §9, and the loop at lines §10-§12 iterates over them and ex-
ecutes the same algorihm recursively. The algorithm is executed recursively

114 Chapter 9. Extracting information records with Trinity

1: expand(node: Node; s: int): boolean
2: result = false
3: if size(node) > 1 then
4: map, pattern = findPattern(node, s)
5: if map ̸= {} then
6: result = true
7: createChildren(node, map, pattern)
8: end
9: end

10: return result

Program 9.3: Algorithm expand.

at line §11 taking size+ 1 as max parameter since the loop at lines §4-§7 has
decreased it after invoking expand at line §5. Note that min and max intro-
duce a bias to the search algorithm if min is greater than one or max is less
than the size of the shortest input document. Our experimental results prove
that this bias helps effectively reduce the amount of effort required to extract
information from typical web documents, without sacrificing effectiveness.

Algorithm expand: This algorithm searches for a shared pattern of a given
size in a Node; if such a pattern is found, it then expands this Node by creat-
ing its child nodes (prefixes, separators, and suffixes). For instance, assume
that Algorithm expand is invoked on Node N5 in Figure §9.1 to search for a
shared pattern of size two tokens. The algorithm can easily find that pat-
tern
 is the first 2-token pattern shared amongst the Texts in Node N5.
It expands Node N5 by creating its three children, namely: N8, N9, and N10.
N8 contains the prefixes of each Text in N5, i.e., the Text fragments be-
tween the beginning of each Text and the first occurrence of the shared
pattern; N9 contains the separators of each Text in N5, i.e., the Text frag-
ments between successive occurrences of the shared pattern in each Text in
N5, or nil if only one occurrence is found; N10 contains the suffixes of each
Text in N5, i.e., the Text fragments between the last occurrence of the shared
pattern and the end of each Text.

We present Algorithm expand in Program §9.3. Line §3 checks if node con-
tains more than one Text; if so, it searches for a shared pattern by invoking
Algorithm findPattern at line §4, which is described in the next section; the
algorithm checks if findPattern has found a shared pattern at line §5, and in-
vokes Algorithm createChildren at line §7. Algorithm createChildren, which is

9.2. Algorithms 115

1: findPattern(node: Node; s: int): Map<Text, List⟨int⟩>, Text
2: found = false
3: base = findShortestText(node)
4: pattern = ⟨⟩
5: for i = 0 until size(base) - s while not found do
6: map = {}
7: found = true
8: foreach non-empty text in node while found do
9: matches = findMatches(text, base, i, s)

10: found = size(matches) > 0
11: map = map ∪ {text 7→ matches}
12: end
13: if found then
14: pattern = subsequence(base, i, s)
15: end
16: end
17: return map, pattern

Program 9.4: Algorithm findPattern.

described below, partitions the Text collection inside the input Node, and cre-
ates its child nodes; if no shared pattern is found, then the input Node
remains unchanged.

Algorithm findPattern: Algorithm findPattern works on a Node node and a
pattern size s. Its goal is to find a pattern of size s that has at least one occur-
rence in each non-empty Text in node. For instance, assume that the algorithm
is invoked on Node N5 in Figure §9.1 to search for a shared pattern of size two.
The shortest Text in N5 is the first one (Java
Bloch
$43.53),
which makes it the basis to search for a shared pattern. The algorithm first
searches for Java
 in every Text in N5, but does not find it; then, the search
starts from the second token, and the algorithm searches for
, which
is shared amongst all of the Texts in N5. The algorithm returns a map from
Text onto lists of integers and a pattern; the map represents the positions
where the search pattern is found in each Text in the input Node. In our exam-
ple, this map is {t1 7→ ⟨1⟩, t2 7→ ⟨1, 10⟩, t3 7→ ⟨1, 10⟩}, where t1, t2, and t3 denote
the first, the second, and the third Text in N5 respectively.

We present Algorithm findPattern in Program §9.4. First it searches for the
shortest non-empty Text inside node at line §3 and stores it in base. The main

116 Chapter 9. Extracting information records with Trinity

1: createChildren(node: Node; map: Map⟨Text, List⟨int⟩⟩; pattern: Text)
2: prefixes = new Node()
3: separators = new Node()
4: suffixes = new Node()
5: setPattern(node, pattern)
6: foreach text in node do
7: matches = getValue(map, text)
8: add(prefixes, computePrefix(matches, text))
9: add(separators, computeSeparators(matches, text))

10: add(suffixes, computeSuffix(matches, text))
11: end
12: setPrefix(node, prefixes)
13: setSeparators(node, separators)
14: setSuffix(node, suffixes)
15: end

Program 9.5: Algorithm createChildren.

loop at lines §5-§16 allows to implement a sliding window over base: index i

iterates from 0 until size(base) − s as long as no shared pattern is found, i.e.,
it searches for all patterns of size s in base. The actual search is performed in
the inner loop at lines §8-§12: in this loop, the algorithm iterates over every
Text in the input Node, and finds all of the matches of the subsequence of base
that starts at position i and has size s. Algorithm findMatches is implemented
using the well-known Knuth-Pratt-Morris pattern search algorithm [86]. This
algorithm returns a list of integers that indicate the non-overlapping posi-
tions at which the previous subsequence of base matches text; if there is at
least one match, we record it in variable result and go ahead to exam-
ine the next Text in node; otherwise, the inner loop finishes and the outer loop
slides the window on base and resets map, if possible. If the algorithm
returns an empty map, this means that no shared pattern has been found.

Algorithm createChildren: When a shared pattern is found in a Node, Algo-
rithm createChildren creates three child nodes, namely: prefixes, separators,
and suffixes, and adds them to their parent Node. For instance, assume that
the algorithm is invoked on Node N5 in Figure §9.1 to create its children. The
algorithm creates the prefixes Node N8, which contains the fragments from
the beginning of each Text in N5 until the first occurrence of the shared pat-
tern; it creates the separators Node N9, which contains the fragments of each
Text in N5 between consecutive occurrences of the shared pattern, if any; fi-

9.2. Algorithms 117

nally, it creates the suffixes Node N10, which contains the fragments from the
last occurrence of the shared pattern until the end of each Text in N5.

We present Algorithm createChildren in Program §9.5. This algorithm
works on a Node, a map, and a pattern. Lines §2-§4 create three empty Nodes,
namely prefixes, separators, and suffixes. Line §5 sets the node’s shared
pattern to pattern. Then, the loop at lines §6-§11 iterates over the Texts in
map: for each Text text in the map, lines §8-§10 get the matches where the
shared pattern occurs, computes the prefix, separators, and suffix of the pat-
tern in text, and adds them to the prefixes, separators, and suffixes Nodes
respectively. If pattern is found at the beginning of text, the prefix is then an
empty Text; if pattern is found at the end of text, the suffix is then an empty
Text; if two occurrences of pattern are consecutive in text, their separa-
tor is an empty Text, but if text contains only one occurrence of pattern,
we add the special value nil to separators. We do not provide a pseu-
docode to the algorithms to compute prefixes, separators, and suffixes since
they are quite straightforward.

9.2.4 Algorithm learnTemplate

Algorithm learnTemplate works on a trinary tree node, constructs a regular
expression that represents a template, and returns it, cf. Program §9.6. It re-
lies on two ancillary algorithms, namely: isOptional and isRepeatable. A Node
is optional if one or more of its Texts, but not all, are empty. A Node is repeat-
able if one or more of its non-empty Texts have more than one occurrence of
the shared pattern, which implies that the size of its child Node separators is
greater than the size of this Node. The core of the algorithm is the if-then-else
sentence at lines §5-§23, which distinguishes between leaf and non-leaf nodes.

If node is a leaf and not all of its Texts are empty, this means that it contains
variable information. In such cases, line §7 assigns a new label that repre-
sents the piece of text that has to be extracted by invoking freshLabel. Note
that we enclose such label in curly brackets to denote that the pieces of text
that match it have to be extracted, aka information groups. The exact notation
depends on the regular expression engine used to implement the algorithm.

If the node being processed is not a leaf, then line §10 builds the regular
expression that corresponds to the prefixes, which is performed recursively.
The shared pattern is added to result at line §11 and the regular expression
that corresponds to the separators is built at lines §12-§20: if the node is re-
peatable, then the regular expression of the separators Node is built at
line §14, the shared pattern is added to result at line §15, and the plus or star

118 Chapter 9. Extracting information records with Trinity

1: learnTemplate(node: Node; result: Regex): Regex
2: if isOptional(node) then
3: result += "("
4: end
5: if isLeaf(node) then
6: if not allTextsEmpty(node) then
7: result += "{" + freshLabel() + "}"
8: end
9: else

10: result += learnTemplate(getPrefix(node), result)
11: result += getPattern(node)
12: if isRepeatable(node, getSeparators(node)) then
13: result += "("
14: result += learnTemplate(getSeparators(node), result)
15: result += getPattern(node)
16: if contains(getSeparators(node), nil) then
17: result += ")*"
18: else
19: result += ")+"
20: end
21: end
22: result += learnTemplate(getSuffix(node), result)
23: end
24: if isOptional(node) then
25: result += ")?"
26: end
27: return result

Program 9.6: Algorithm learnTemplate.

closures are added at lines §16-§20. If the separators node contains the spe-
cial value nil, this means that the shared pattern has occurred only once in at
least one of the Texts in node, thus a star closure must be used; contrar-
ily, the shared pattern has two or more occurrences in each Text in node, and a
plus closure must be added. The algorithm builds now the regular expression
that corresponds to the suffixes at line §22, which is performed recursively.

Lines §2-§4 and §24-§26 check if the node being processed is optional, in
which case parenthesis and an optional operator are added to the resulting
regular expression.

In our running example, the template learnt for the input Node in

9.2. Algorithms 119(<html><head><title>Results</title></head><body><h1>Results:</h1>) {_A_} (
) (({_B_} (
) {_C_} (

) {_D_})? (
))*{_E_} (
) {_F_} (
</body></html>)
Figure 9.2: The regular expression learnt for our running example.

Figure §9.1 is illustrated in Figure §9.2.

9.2.5 Algorithm learnSchema

Algorithm learnSchema works on a trinary tree node, constructs an XML
document that represents the schema of the relevant information. (A formal
definition of the schema can be found elsewhere [7].) We present Algo-
rithm learnSchema in Program §9.7. The core is the if-then-else sentence at
lines §5-§25, which distinguishes between leaf and non-leaf nodes.

If node is a leaf and not all of its Texts are empty, this means that it con-
tains information of basic type (a sequence of tokens). In such cases, line §7
assigns an ID to the information represented by this node and considers that
it is of a basic type. If the node being processed is not a leaf, then line §10
assigns tuple type to the information represented by this node, i.e., the infor-
mation in is prefixes, separators, and suffixes. Lines §12-§22 check if the
separators node is repeatable, then line §13 assigns the type set to the infor-
mation represented by this node. Line §23 builds the schema for the suffixes
Node recursively. Lines §2-§4 and §24-§26 check if the node being processed is
optional, in which case the appropriate XML tags are added to the schema.

In our running example, the schema learnt for the input Node in
Figure §9.1 is illustrated in Figure §9.3.

9.2.6 Limitations

When the input is a collection of multi-record web documents, Trin-
ity groups the attributes from the first data record and from the last data
records together, whereas the attributes of the remaining data records are ex-
tracted correctly. This limitation is shown in Figure §9.3: the basic types
"_A_", "_E_", and "_F_", which are the titles of the first data records, the au-
thors of the first data records, and the prices of the last data records

120 Chapter 9. Extracting information records with Trinity

1: learnSchema(node: Node; String result): String
2: if isOptional(node) then
3: result += "<optional>"
4: end
5: if isLeaf(node) then
6: if not allTextsEmpty(node) then
7: result += "<basic id=\"" + freshLabel() +"\"/>"
8: end
9: else

10: result += "<tuple id=\"" + freshLabel() +"\"/>"
11: result += learnSchema(getPrefix(node), result)
12: if isRepeatable(node, getSeparators(node)) then
13: result += "<set id=\"" + freshLabel() +"\"/>"
14: if contains(getSeparators(node), nil) then
15: result += "<optional>"
16: end
17: result += learnSchema(getSeparators(node), result)
18: if contains(getSeparators(node), nil) then
19: result += "</optional>"
20: end
21: result += "</set>"
22: end
23: result += learnSchema(getSuffix(node), result)
24: result += "</tuple>"
25: end
26: if isOptional(node) then
27: result += "</optional>"
28: end
29: return result

Program 9.7: Algorithm learnSchema.

respectively, are kept outside the list of data records, which are repre-
sented by the set type "_AA_". The problem of mapping the information from
this schema onto structured records was dealt with elsewhere [8].

9.3 Complexity analysis
In this section, we provide an upper limit to the worst-case space and time

complexities of Algorithm Trinity. Note that it is not common to find a com-
plexity analysis in the literature regarding information extraction, but we

9.3. Complexity analysis 121<?xml version="1.0"> <schema><basic id=“_A_”/><set id =“_AA_”><optional id = “”_AB_><basic id=“_B_”/><basic id=“_C_”/><basic id = “_D_”/></optional></set><basic id=“_E_”/><basic id=“_F_”/></schema>
Figure 9.3: The schema learnt for our running example.

think that it is important to make sure that the proposal is computationally
tractable.

We have characterised an upper bound to the worst-case time complex-
ity building on two sensible assumptions: i) simple instructions like adding
an item to a set, comparing two tokens, or constructing a tuple can be imple-
mented in O(1) time with regard to the other algorithms in our proposal;
ii) the number of input documents is generally very small with regard to the
number of tokens of the longest document to be analysed.

In the following subsections, we first report on the space requirements,
then on time requirements, and conclude with the theorems that prove that
Trinity is computationally tractable. In the sequel, we use variable n to de-
note the number of documents that Trinity has to analyse and m to denote the
size of the longest such document.

9.3.1 Space requirements

Proposition 9.1 (Maximum size of a Node) n ⌊m
2
⌋ is an upper bound to

maximum size of a Node created by Trinity.

Proof Algorithm expand is the unique algorithm that creates new Nodes,
which happens when a shared pattern p is found in a given Node. The new
Nodes correspond to the prefixes, separators, and suffixes to which p leads.
Regarding the prefix and suffix Nodes, note that there cannot be more than n

122 Chapter 9. Extracting information records with Trinity

such prefixes or suffixes since a document may not have more than one pre-
fix or one suffix; that is, n is an upper bound to the maximum size of a Node
that contains prefixes or suffixes. Regarding separators Nodes the worst-
case happens when p is a one-token pattern that occurs every two tokens;
that is, ⌊m

2
⌋ is an upper bound to the number of separators in this case, or,

otherwise, n ⌊m
2
⌋ is an upper bound to the maximum size of a Node that con-

tains separators. As a conclusion, n ⌊m
2
⌋ is an upper bound to the maximum

size of a Node created by Trinity. 2

Proposition 9.2 (Maximum number of Nodes) 3m is an upper bound to the
number of Nodes created by Trinity.

Proof Algorithm expand creates three new Nodes when a shared pattern p is
found in a given Node. The new Nodes correspond to the prefixes, separa-
tors, and suffixes to which p leads. We know that m is an upper bound to the
number of partitions of a Text of size m, which means that m is an up-
per bound to the number of levels of the trinary tree in the worst-case.
Since each level has three nodes, then 3m is an upper bound to the num-
ber of Nodes inside the trinary tree. As a conclusion, 3m is an upper bound to
the number of Nodes created by Trinity. 2

9.3.2 Time requirements

Proposition 9.3 (Algorithm createChildren) Let nd be a Node, r a map from
the Texts in nd onto lists of indices that denote where a shared pattern oc-
curs, and p the shared pattern. O(nm2) is an upper bound to the worst-case
time required to execute createChildren(nd, r, p).

Proof The algorithm iterates through every Text in nd. According to Proposi-
tion §9.1, n ⌊m

2
⌋ is an upper bound to the maximum size of a Node, which

means that the nm is an upper bound to the number of iterations of this loop.
Inside this loop, accessing the map and calculating the prefix and suf-
fix of the shared pattern can be performed in O(1) time, whereas computing
the separators requires variable time. According to the proof of Proposi-
tion §9.1, the maximum number of separators in a given Text is ⌊m

2
⌋, which is

less than m. Then, O(m) is an upper bound to the time required to com-
pute the separators. The instructions to create new nodes at lines §2-§4
and the instructions to link them to the input Node at lines §12-§14 re-
quire O(1) time. As a conclusion, O(nmm) = O(nm2) is an upper bound to
the worst-case time required to execute createChildren(nd, r, p). 2

9.3. Complexity analysis 123

Proposition 9.4 (Algorithm findPattern) Let nd be a Node and s the size of
the pattern for which the algorithm searches. O(nm3) is an upper bound to
the worst-case time required to execute findPattern(nd, s).

Proof The algorithm first searches for the shortest Text in nd. According to
Proposition §9.1, n ⌊m

2
⌋ is an upper bound to the maximum size of a Node,

which implies that O(n ⌊m
2
⌋) is an upper bound to the maximum time re-

quired to find the shortest Text in a Node. The main loop iterates through base

until finding a pattern of s tokens that occurs in every other Text in nd. In the
worst-case, base has the maximum size m and the shared pattern is found at
the end of base, which means that the main loop iterates m − s times, i.e.,
O(m) times. In each iteration of the main loop, the inner loop iterates through
the Texts in nd. According to Proposition §9.1, n ⌊m

2
⌋ is an upper bound to the

maximum size of a Node, which implies that the inner loop does not iter-
ate more than n ⌊m

2
⌋ times. In each iteration, it invokes Algorithm findMatches,

whose worst-time complexity is O(k), where k denotes the size of the text in
which a pattern is searched [86]. This implies that O(m) is an upper bound to
the worst-case time complexity of the instructions inside the inner loop. As
a conclusion, O(n ⌊m

2
⌋ +mn ⌊m

2
⌋m) ⊆ O(nm +mnmm) ⊆ O(nm3) is an

upper bound to the worst-case time required to execute findPattern(nd, s). 2

Proposition 9.5 (Algorithm expand) Let nd be a Node, and s be a pattern
size. O(nm3) is an upper bound to the worst-case time required to execute
expand(nd, s).

Proof In the worst-case, the invocation to Algorithm expand requires to in-
voke Algorithms findPattern and createChildren in sequence, which according
to Propositions §9.4 and §9.3 require no more than O(nm3) and O(nm2) time
in the worst-case. As a conclusion, O(nm3 + nm2) ⊆ O(nm3) is an upper
bound to the worst-case time required to execute expand(nd, s). 2

Proposition 9.6 (Algorithm createTrinaryTree) Let nd be a Node, min and
max be the minimum and maximum sizes of the shared patterns for which
the algorithm searches, respectively. O(nm5) is an upper bound to the
worst-case time required to execute createTrinaryTree(nd,min,max).

Proof The algorithm first iterates through every possible size between min

and max, which amounts to m times in the worst-case. In each iteration, the
algorithm executes Algorithm expand, which according to Lemma §9.5 re-
quires no more than O(nm3) time. Then, O(nm4) is an upper bound to the
first loop. If nd is expanded, then another loop iterates through its leaves
and executes Algorithm createTrinaryTree recursively. According to Proposi-
tion §9.2, 3m is an upper bound to the number of Nodes created by Trinity. As

124 Chapter 9. Extracting information records with Trinity

a conclusion, O(nm4 3m) ⊆ O(nm5) is an upper bound to the worst-case
time required to execute createTrinaryTree(nd,min,max). 2

Proposition 9.7 (Algorithm learnTemplate) O(nm2) is an upper limit to the
worst-case time required to execute learnTemplate(nd, “”)., where nd denotes
the root node of a trinary tree.

Proof The algorithm works on every node in the input trinary tree, which in
the worst-case are 3m nodes according to Proposition §9.2. If the Node is a
leaf, the algorithm iterates on its Texts no more than n ⌊m

2
⌋ times according to

Proposition §9.1. Otherwise, the algorithm is invoked recursively on the chil-
dren of this node, namely: prefixes, separators, and suffixes. In the case of the
separators, whose number is limited by the upper bound n ⌊m

2
⌋, the algo-

rithm iterates on them twice to check for repeatability and searching for nil

values. As a conclusion, O(3m2n ⌊m
2
⌋) ⊆ O(nm2) is an upper bound to the

worst-case time required to execute learnTemplate(nd, “”). 2

Proposition 9.8 (Algorithm learnSchema) O(nm2) is an upper limit to the
worst-case time required to execute learnSchema(nd, “”)., where nd denotes
the root node of a trinary tree.

Proof The algorithm works on every node in the input trinary tree, which in
the worst-case is 3m according to Proposition §9.2. If the Node is a leaf, the
algorithm iterates on its Texts, no more than m

2
times according to Proposi-

tion §9.1. Otherwise, the algorithm is invoked recursively on the children of
this node, namely: prefixes, separators, and suffixes. The number of separa-
tors is limited by the upper bound n ⌊m

2
⌋, and the algorithm iterates on them

twice to check for repeatability and searching for nil values. As a conclu-
sion, O(3m2n ⌊m

2
⌋) ⊆ O(nm2) is an upper bound to the worst-case time

required to execute learnSchema(nd, “”). 2

9.3.3 Computational tractability

Theorem 9.1 (Space requirements of Algorithm Trinity) Let nd be a Node
and min and max be the minimum and maximum sizes of the shared pat-
terns for which Trinity searches. O(nm2) is an upper bound to the space
required to execute Trinity(nd,min,max) in the worst case.

Proof The proof follows straightforwardly from Propositions §9.1 and §9.2. If
O(n ⌊m

2
⌋) is an upper bound to the maximum size of a node and O(3m) is

an upper bound to the maximum number of nodes the algorithm cre-
ates, then O(n ⌊m

2
⌋ 3m) ⊆ O(nm2) is an upper bound to the space required to

execute Trinity(nd,min,max) in the worst case. 2

9.4. Experimental analysis 125

Theorem 9.2 (Time requirements of Algorithm Trinity) Let nd be a Node and
min and max be the minimum and maximum sizes of the shared pat-
terns for which Trinity searches. O(nm5) is an upper bound to the worst-case
time required to execute Trinity(nd,min,max).

Proof The proof follows straightforwardly from the previous propositions.
Note that Algorithm Trinity invokes Algorithms createTrinaryTree, learnTem-
plate, and buildTemplate in sequence, which, according to propositions §9.6,
§9.7, and §9.8 require no more than O(nm5), O(nm2), and O(nm2) time to
complete, respectively. This implies that O(nm5 + nm2 + nm2) ⊆ O(nm5)
is an upper bound to the worst-case time required to execute
Trinity(nd,min,max). 2

Corollary 9.1 If we assume that n ≪ m, then (nm2) is an upper bound to its
space required to execute Algorithm Trinity and O(m5) is an upper bound to
the worst-case time complexity. Since both results are polynomial, we can
conclude that Algorithm Trinity is computationally tractable.

9.4 Experimental analysis
In this section, we present the results of the experiments we have carried

out to compare our proposal to other techniques in the literature from an em-
pirical point of view. We ran Trinity, RoadRunner, FiVaTech, SM, and LR on
CEDAR repository in order to learn extraction rules. We measured the stan-
dard effectiveness measures (precision, recall, and the F1 measure) and
two efficiency measures (learning and extraction time). We did not mea-
sured memory since the heap size was set to the default value and it was
never exceeded.

9.4.1 Experimentation environment

We have developed a Java 1.7 prototype of Trinity using the our frame-
work. We performed a series of experiments on a cloud machine that was
equipped with a four-threaded Intel Core i7 processor that ran at 2.93 GHz,
had 4 GiB of RAM, Windows 7 Pro 64-bit, Oracle’s Java Development Kit
1.7.0_02, and GNU Regex 1.1.4. The configuration parameters of the Java
Virtual Machine were set to their default values.

9.4.2 Effectiveness analysis

In the case of SM and LR, it was easy to compute the precision and re-
call since both techniques are supervised. Contrarily, Trinity, RoadRunner,

126 Chapter 9. Extracting information records with Trinity

Summary P R F1 P R F1 P R F1 P R F1 P R F1Mean 0.96 0.95 0.95 0.36 0.36 0.36 0.80 0.87 0.81 0.84 0.61 0.66 0.72 0.61 0.64StDev 0.07 0.11 0.09 0.45 0.45 0.45 0.20 0.17 0.17 0.15 0.32 0.30 0.24 0.31 0.29Site P R F1 P R F1 P R F1 P R F1 P R F1S01 1.00 1.00 1.00 - - - 0.92 0.99 0.95 0.87 0.58 0.70 0.52 0.16 0.24S02 1.00 0.87 0.93 1.00 1.00 1.00 0.85 1.00 0.92 1.00 0.39 0.56 0.77 0.26 0.39S03 0.99 1.00 0.99 0.00 0.00 0.00 0.99 0.96 0.97 0.98 0.99 0.98 0.43 0.35 0.39S04 0.99 0.99 0.99 - - - 0.77 0.97 0.86 0.99 0.99 0.99 0.25 0.23 0.24S05 0.96 1.00 0.98 1.00 0.89 0.94 1.00 0.94 0.97 1.00 1.00 1.00 0.71 0.67 0.69S06 0.99 1.00 1.00 0.00 0.00 0.00 - - - 0.89 0.87 0.88 0.89 0.00 0.00S07 1.00 1.00 1.00 0.00 0.00 0.00 0.45 0.89 0.60 0.89 0.89 0.89 0.88 0.88 0.88S08 0.98 1.00 0.99 0.00 0.00 0.00 0.92 1.00 0.96 0.92 0.02 0.05 0.82 0.83 0.83S09 0.86 0.90 0.88 0.00 0.00 0.00 - - - 0.90 0.90 0.90 0.17 0.13 0.15S10 1.00 1.00 1.00 0.00 0.00 0.00 0.97 0.94 0.96 - - - 0.11 0.11 0.11S11 0.96 0.96 0.96 0.74 0.74 0.74 - - - 0.87 0.55 0.68 0.57 0.20 0.30S12 0.98 0.99 0.99 - - - 0.84 0.90 0.87 0.99 0.25 0.40 0.80 0.40 0.53S13 1.00 1.00 1.00 0.90 1.00 0.95 0.90 1.00 0.95 0.60 0.60 0.60 0.80 0.40 0.53S14 0.96 0.98 0.97 0.00 0.00 0.00 0.39 0.50 0.44 0.87 0.44 0.59 0.40 0.40 0.40S15 0.99 0.99 0.99 0.00 0.00 0.00 0.99 0.79 0.88 0.52 0.39 0.45 0.62 0.23 0.34S16 1.00 1.00 1.00 0.00 0.00 0.00 0.77 1.00 0.87 0.86 0.45 0.59 0.60 0.60 0.60S17 0.98 1.00 0.99 - - - - - - 0.79 0.39 0.53 0.60 0.60 0.60S18 0.92 1.00 0.96 1.00 1.00 1.00 0.56 0.99 0.72 0.61 0.61 0.61 1.00 1.00 1.00S19 1.00 1.00 1.00 1.00 1.00 1.00 0.78 1.00 0.88 0.91 0.87 0.89 0.78 0.80 0.79S20 1.00 1.00 1.00 0.00 0.00 0.00 0.83 0.83 0.83 0.75 0.25 0.38 0.75 0.75 0.75S21 0.83 0.83 0.83 0.70 0.70 0.70 1.00 0.74 0.85 0.57 0.47 0.52 1.00 1.00 1.00S22 0.92 0.98 0.95 0.00 0.00 0.00 - - - 0.45 0.25 0.32 0.94 0.94 0.94S23 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.99 0.75 0.00 0.00 0.25 0.25 0.25S24 1.00 1.00 1.00 0.00 0.00 0.00 0.80 0.83 0.82 0.75 0.00 0.00 0.75 0.75 0.75S25 0.86 1.00 0.93 0.86 1.00 0.93 - - - 0.75 0.03 0.06 0.50 0.50 0.50S26 0.95 0.98 0.96 0.81 1.00 0.89 0.82 0.81 0.81 0.85 0.40 0.54 0.87 0.24 0.38S27 0.97 0.96 0.96 0.27 0.30 0.28 0.79 0.74 0.77 0.93 0.29 0.44 0.13 0.07 0.09S28 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.92 0.72 0.81 0.39 0.30 0.34S29 1.00 1.00 1.00 0.00 0.00 0.00 0.71 0.67 0.69 0.97 0.97 0.97 0.72 0.72 0.72S30 0.93 0.86 0.89 0.00 0.00 0.00 - - - 0.88 0.85 0.86 0.38 0.38 0.38S31 0.99 0.92 0.95 0.00 0.00 0.00 0.59 1.00 0.74 0.99 0.95 0.97 0.91 0.81 0.86S32 1.00 1.00 1.00 0.00 0.00 0.00 0.77 0.97 0.86 1.00 1.00 1.00 0.83 0.83 0.83S33 1.00 1.00 1.00 0.00 0.00 0.00 0.94 1.00 0.97 1.00 1.00 1.00 0.78 0.75 0.76S34 0.99 0.99 0.99 0.00 0.00 0.00 - - - 0.80 0.79 0.79 0.92 0.92 0.92S35 0.70 0.98 0.82 - - - 0.77 0.99 0.87 0.84 0.84 0.84 1.00 1.00 1.00S36 0.63 1.00 0.77 0.00 0.00 0.00 - - - 0.88 0.92 0.90 1.00 0.89 0.94

Doctors
Jobs
Movies

Real Estate

Events

FivaTech SM LRTrinity RoadRunner
Books
Cars

Table 9.1: Comparison of Trinity’s effectiveness to other techniques.

and FiVaTech are unsupervised, i.e., they learn an extraction rule that ex-
tracts as much information as possible, give each group of information a
computer-generated label, and it is the responsibility of the user to as-
sign a meaning to these labels. We then used the method described in
Section §6.5 to compute their effectiveness measures.

Table §9.1 reports on the results of our experiments. The columns report

9.4. Experimental analysis 127

Site P R F1 P R F1 P R F1 P R F1 P R F1S37 1.00 1.00 1.00 0.00 0.00 0.00 0.36 0.99 0.52 0.83 0.13 0.23 1.00 1.00 1.00S38 1.00 1.00 1.00 0.00 0.00 0.00 - - - 1.00 1.00 1.00 1.00 1.00 1.00S39 0.97 0.99 0.98 0.00 0.00 0.00 0.99 0.88 0.93 0.94 0.94 0.94 0.71 0.71 0.71S40 1.00 1.00 1.00 0.93 1.00 0.97 0.53 0.81 0.64 0.71 0.71 0.71 0.86 0.86 0.86S41 0.97 1.00 0.98 0.00 0.00 0.00 - - - 0.89 0.89 0.89 0.89 0.89 0.89S42 0.93 0.73 0.82 0.27 0.33 0.30 0.60 0.67 0.63 0.98 1.00 0.99 0.97 1.00 0.98S43 1.00 0.90 0.95 0.92 0.92 0.92 0.91 0.94 0.92 0.92 0.90 0.91 0.92 0.51 0.66S44 1.00 0.98 0.99 0.99 0.99 0.99 1.00 1.00 1.00 0.94 0.72 0.82 0.92 0.58 0.71S45 0.99 0.99 0.99 0.90 0.92 0.91 0.97 0.99 0.98 0.81 0.89 0.85 0.64 0.75 0.69S46 1.00 1.00 1.00 0.37 0.39 0.38 0.24 0.82 0.37 0.65 0.28 0.39 0.67 0.32 0.43S47 0.97 1.00 0.98 0.00 0.00 0.00 0.83 1.00 0.91 0.70 0.12 0.20 0.70 0.12 0.20S48 0.98 0.55 0.70 0.00 0.00 0.00 0.99 1.00 0.99 0.99 0.46 0.63 0.65 0.33 0.44S49 0.99 0.99 0.99 - - - 0.82 0.80 0.81 0.94 0.82 0.88 0.99 0.99 0.99S50 0.95 0.97 0.96 0.98 0.99 0.98 0.99 0.41 0.58 0.72 0.03 0.06 0.99 0.99 0.99S51 0.95 0.94 0.94 1.00 1.00 1.00 - - - 0.81 0.77 0.79 0.68 0.98 0.80S52 0.84 0.38 0.52 0.00 0.00 0.00 0.53 0.69 0.60 0.37 0.43 0.40 1.00 1.00 1.00S53 1.00 0.82 0.90 0.96 0.56 0.71 0.49 0.34 0.40 0.83 0.82 0.82 0.60 0.67 0.63S54 0.97 0.92 0.94 0.00 0.00 0.00 0.83 0.57 0.68 0.87 0.49 0.63 0.90 0.80 0.85S55 1.00 0.86 0.92 0.00 0.00 0.00 1.00 0.98 0.99 0.81 0.63 0.71 0.81 0.72 0.76
EXALG
RISE

Sports Trinity RoadRunner FivaTech SM LR

Table 9.1: Comparison of Trinity’s effectiveness to other techniques. (Cont’d)

on the precision (P), recall (R), the F1 measure (F1). The first few rows provide
a summary in terms of mean and standard deviations of the previous mea-
sures. The remaining rows provide the results we computed for each web site.
Note that some cells contain a dash, which indicates that the corresponding
technique was not able to learn an extraction rule in 15 CPU minutes.

According to Table §9.1, Trinity outperforms the other techniques regard-
ing effectiveness. Figure §9.4 illustrates this conclusion since the majority
of points that correspond to Trinity are very close the upper right cor-
ner, whereas the points that correspond to the other techniques are more
scattered. Intuitively, the closer the points to (1.00, 1.00) the higher the F1

measure; similarly, the closer to (0.00, 0.00) the lower the F1 measure.

To discern if errors in the input documents have an impact from a statisti-
cal point of view on the effectiveness of the proposals, we need compute
the correlation from the number of errors to the F1 measure using non-
parametric Kendall’s Tau procedure. Table §9.2 presents the results of this
procedure and Figure §9.5 illustrates the F1 measures we gathered for ev-
ery pair of datasets and techniques and the number of errors in a radial chart.
Note that the p-value of the correlation coefficients is smaller than the stan-
dard significance level α = 0.05 except for the case of RoadRunner and
FiVaTech; in these cases the correlation coefficient is negative, which means

128 Chapter 9. Extracting information records with Trinity

0.000.100.200.300.400.500.600.700.800.901.00

0.00 0.20 0.40 0.60 0.80 1.00

R
e
c
a
ll

Precision

TrinityRoadRunnerFivaTechSMLR

Figure 9.4: Precision versus recall in our experiments regarding Trinity.

Technique Correlation coefficient P-Value

Trinity 0.01 0.932

RoadRunner -0.36 0.007

FiVaTech -0.27 0.047

SM 0.04 0.758

LR 0 0.99

Table 9.2: Impact of errors on Trinity effectiveness.

that the effectiveness of these techniques is expected to decrease as the
number of errors in the input documents increases. As a conclusion, our ex-
periments do not show any statistical evidence that the effectiveness of our
technique is sensible to malformed input documents.

9.4.3 Efficiency analysis

Table §9.3 shows our results regarding efficiency of Trinity and the other
techniques. The columns report on the learning time in CPU seconds (LT)
and the extraction time in CPU seconds (ET). The first two rows provide a
summary of these measures in terms of mean values and standard devia-
tions. A dash in a cell means that the corresponding technique was not able
to learn an extraction rule in 15 CPU minutes. The learning time and the ex-

9.5. Statistical analysis 129

0.010.101.0010.00100.00
TrinityRoadRunnerFivaTechSMLRErrors

Figure 9.5: Correlation from number of errors to the F1 measure in Trinity.

traction time do not account for the time consumed by JTidy in the case of
RoadRunner and FiVaTech, neither they include the tokenisation time in the
case of Trinity, SM, and LR. The reason is that the time to clean or tokenise a
document is not actually an intrinsic feature of the proposals being analysed.

The results in Table §9.3 support the idea that Trinity is more effective re-
garding learning time than the other techniques, and that it is comparable to
RoadRunner regarding extraction time and clearly better than the other tech-
niques. Figure §9.6 and §9.6 illustrate this idea: note that the range from the
first to the third quartile is smaller for Trinity than for the other techniques re-
garding learning time and similar to RoadRunner’s regarding the extraction
time, but clearly smaller than for the other techniques; the dispersion from
the minimum values to the first quartile and from the third quartile to the
maximum are also a clear indication that our technique performs more homo-
geneously than the others regarding learning and extraction time, with the
only exception of RoadRunner regarding the extraction time.

9.5 Statistical analysis

To confirm that the conclusions we have drawn from our empirical evalu-
ation are valid, we need perform a statistical analysis, which consists of

130 Chapter 9. Extracting information records with Trinity

������� ��	
������ ��	���� �� ��

��	�������

�������

��
�	�

�	�����

��	�������

����

����

����

�����

������

�������

0.03 0.67 10.81 3.01 3.92
0.00 0.17 0.27 1.00 0.90

0.07 0.98 29.70 6.07 7.43

0.79 867.63 849.27 25.55 25.18
0.17 1.86 158.33 9.40 9.66

Figure 9.6: Comparison of learning times regarding Trinity.

Trinity RoadRunner FiVaTech SM LR

Quartile 1 0.00 0.00 0.05 16.90 4.75
Minimum 0.00 0.00 0.00 3.32 1.28

Median 0.00 0.02 0.11 27.92 8.10

Maximum 0.23 0.08 1.98 284.94 89.14

Quartile 3 0.02 0.02 0.31 47.02 11.40

0.00

0.10

1.00

10.00

100.00

1000.00

Figure 9.7: Comparison of extraction times regarding Trinity.

9.5. Statistical analysis 131

Summary LT ET LT ET LT ET LT ET LT ETMean 0.13 0.02 20.03 0.01 122.94 0.24 7.10 46.30 7.80 10.93StDev 0.16 0.03 123.71 0.02 196.42 0.36 5.13 54.45 5.15 12.88Site LT ET LT ET LT ET LT ET LT ETS01 0.03 0.00 - - 15.46 0.12 9.09 26.96 9.66 10.26S02 0.03 0.00 0.92 0.00 8.14 0.14 5.68 16.52 5.01 6.27S03 0.17 0.00 0.98 0.00 85.32 0.39 16.15 41.39 15.57 17.04S04 0.11 0.02 - - 65.49 0.12 7.38 30.33 6.74 8.14S05 0.07 0.00 1.14 0.02 51.53 1.98 8.67 77.36 8.02 8.72S06 0.28 0.03 0.83 0.02 - - 14.87 103.82 14.18 14.02S07 0.21 0.02 1.72 0.02 34.21 0.20 7.66 22.90 7.43 7.63S08 0.04 0.00 0.69 0.00 446.90 0.59 5.30 28.88 4.80 4.76S09 0.11 0.02 1.47 0.00 - - 10.92 78.55 10.03 10.28S10 0.12 0.05 4.74 0.00 117.16 0.19 8.74 - 7.78 9.02S11 0.04 0.02 2.57 0.00 - - 5.04 42.04 4.15 3.34S12 0.11 0.00 - - 42.96 0.08 10.06 62.24 7.27 4.74S13 0.01 0.00 0.45 0.02 1.56 0.03 2.61 5.74 1.86 1.28S14 0.00 0.00 0.17 0.00 0.27 0.03 6.65 7.86 4.43 2.31S15 0.02 0.00 0.45 0.00 6.21 0.02 4.62 7.10 3.24 1.95S16 0.02 0.00 0.73 0.00 11.81 0.03 8.28 29.94 9.45 14.54S17 0.02 0.02 - - - - 6.07 10.53 6.99 7.38S18 0.01 0.00 867.63 0.00 9.94 0.08 2.28 8.16 1.97 1.84S19 0.03 0.00 3.28 0.02 25.35 0.06 4.49 17.50 3.88 3.62S20 0.67 0.02 0.67 0.02 9.59 0.11 9.70 40.00 9.56 9.77S21 0.04 0.00 0.78 0.02 13.76 0.11 7.77 16.72 7.49 7.14S22 0.09 0.02 0.69 0.02 - - 9.09 36.60 9.02 9.50S23 0.04 0.02 1.83 0.03 90.78 0.34 11.76 26.79 11.56 11.93S24 0.05 0.00 0.53 0.00 266.00 0.31 8.13 50.72 8.11 7.72S25 0.06 0.00 1.86 0.00 - - 5.19 22.56 5.09 4.77S26 0.02 0.00 0.64 0.02 1.59 0.00 3.65 3.45 2.70 1.67S27 0.21 0.00 1.64 0.03 14.84 0.11 11.29 38.86 7.78 5.91S28 0.02 0.00 0.69 0.02 29.70 0.05 3.70 10.39 2.79 3.79S29 0.07 0.00 0.59 0.00 259.23 0.08 4.34 44.69 3.95 3.82S30 0.45 0.03 0.97 0.02 - - 16.38 63.24 15.87 16.46S31 0.03 0.00 0.47 0.03 17.24 0.05 10.64 37.58 9.73 9.36S32 0.15 0.02 3.10 0.00 246.95 0.89 16.32 86.55 15.62 16.75S33 0.05 0.00 2.75 0.02 20.76 0.09 7.43 100.85 7.04 6.96S34 0.10 0.00 1.39 0.02 - - 8.25 65.88 8.22 8.17S35 0.20 0.02 - - - - 7.60 25.65 7.52 7.49S36 0.79 0.05 2.18 0.00 - - 25.55 284.94 25.18 25.37
Movies

Real Estate

LRFivaTechRoadRunnerTrinity SM

Jobs

Books
Cars
Events
Doctors

Table 9.3: Comparison of Trinity’s efficiency to other techniques.

performing a statistical ranking regarding our performance measures and de-
termining if there is a significant correlation from the number of errors to the
effectiveness of the techniques we have evaluated, cf. Section §6.5.

We have conducted a Shapiro-Wilk test at the standard significance level
α = 0.05 on every measure and we have found out that none of them behaves
normally. For instance, Shapiro-Wilk’s statistic regarding the normality of
Trinity’s precision is W(55) = 0.59, whose p-value is 0.00; this is a strong indi-
cation that the data is not distributed normally. This is not surprising at all; a

132 Chapter 9. Extracting information records with Trinity

Site LT ET LT ET LT ET LT ET LT ETS37 0.11 0.23 1.37 0.02 14.68 0.06 5.51 17.43 5.34 4.96S38 0.05 0.00 0.64 0.00 - - 5.99 33.23 5.83 5.71S39 0.29 0.03 1.11 0.02 111.03 0.83 19.14 182.38 18.75 18.33S40 0.19 0.00 1.65 0.00 159.39 0.39 10.14 39.91 9.64 9.56S41 0.27 0.03 2.01 0.02 - - 11.54 47.80 11.04 10.87S42 0.01 0.00 0.55 0.02 2.29 0.05 1.06 10.09 19.47 8.10S43 0.02 0.02 0.51 0.02 10.81 0.05 1.34 11.64 3.53 3.70S44 0.02 0.00 0.98 0.03 246.97 0.11 3.42 23.35 15.66 10.22S45 0.03 0.00 0.28 0.02 0.89 0.02 1.00 3.32 1.79 2.28S46 0.26 0.02 1.15 0.02 132.24 0.27 1.98 22.06 9.67 16.96S47 0.51 0.08 2.51 0.02 577.97 0.48 2.23 16.04 5.44 19.55S48 0.04 0.00 0.95 0.02 158.33 0.06 1.29 19.61 3.60 6.13S49 0.18 0.02 - - 706.64 0.76 3.68 34.15 7.47 31.54S50 0.03 0.05 1.31 0.03 - - 1.40 26.22 1.29 10.42S51 0.12 0.05 12.04 0.08 - - 1.50 166.23 2.68 89.14S52 0.12 0.00 0.89 0.02 14.41 0.06 1.39 13.34 2.00 2.40S53 0.08 0.00 11.23 0.08 849.27 0.37 1.73 216.36 1.64 35.08S54 0.01 0.00 0.37 0.00 4.24 0.05 2.18 23.45 0.90 2.73S55 0.17 0.05 33.60 0.02 158.48 0.06 2.57 20.39 13.60 19.75

Sports
EXALG
RISE

Trinity RoadRunner FivaTech SM LR

Table 9.3: Comparison of Trinity’s efficiency to other techniques. (Cont’d)

quick look at the scatter plot in Figure §9.4 makes it clear that these cloud
of points are far from a Gaussian circle. As a conclusion, we have per-
formed a non-parametric analysis whose results are presented in Table §9.4.
Note that the P-value of Iman-Davenport’s statistic is nearly zero in every
case, which is a strong indication that there are statistically significant differ-
ences in the ranks we have computed from our experiments. It then proceeds
to rank the techniques pairwise using Bergmann-Hommel’s test. For the sake
of readability, we also provide an explicit ranking in the last column. Note
that our proposal ranks the first regarding every effectiveness and effi-
ciency measure; the only tie is regarding extraction time, in which case the
difference with respect to RoadRunner does not seem to be statistically signif-
icant. As a conclusion, our experiments prove that there is enough statistical
evidence to conclude that our proposal outperform the others.

9.6 Summary

In this chapter, we have proposed a new effective and efficient unsuper-
vised information extractor called Trinity. It is based on the hypothesis
that web documents generated by the same server-side template share pat-
terns that do not provide any relevant information, but help delimit it. The
rule learning algorithm searches for these patterns and creates a trinary tree,

9.6. Summary 133

Criterion Iman-Davenport's testTechnique Rank P -value Trinity RoadRunner FiVaTech SM LR Technique RankTrinity 1.64 Trinity - 2.38E-15 3.56E-06 2.76E-04 2.06E-07 Trinity 1 SM 2.84 RoadRunner - 3.04E-03 1.46E-04 1.46E-02 SM 2FiVaTech 3.12 FiVaTech - 3.72E-01 5.46E-01 FiVaTech 2LR 3.30 SM - 3.72E-01 LR 2RoadRunner 4.11 LR - RoadRunner 3Technique Rank P -value Trinity RoadRunner FiVaTech SM LR Technique RankTrinity 1.68 Trinity - 7.58E-13 2.02E-02 4.05E-08 2.96E-08 Trinity 1FiVaTech 2.53 RoadRunner - 1.78E-05 2.41E-01 2.41E-01 FiVaTech 2SM 3.41 FiVaTech - 6.97E-03 6.97E-03 SM 3LR 3.45 SM - 9.04E-01 LR 3RoadRunner 3.94 LR - RoadRunner 3Technique Rank P -value Trinity RoadRunner FiVaTech SM LR Technique RankTrinity 1.55 Trinity - 3.93E-15 6.48E-05 1.93E-07 8.15E-09 Trinity 1FiVaTech 2.85 RoadRunner - 7.71E-04 2.19E-02 7.50E-02 FiVaTech 2SM 3.20 FiVaTech - 2.52E-01 2.41E-01 SM 2LR 3.38 SM - 5.46E-01 LR 2RoadRunner 4.01 LR - RoadRunner 2Technique Rank P -value Trinity RoadRunner FiVaTech SM LR Technique RankTrinity 1.01 Trinity - 6.36E-35 5.11E-06 1.77E-17 5.54E-12 Trinity 1RoadRunner 2.43 RoadRunner - 3.45E-14 1.82E-04 1.72E-02 RoadRunner 2LR 3.15 FiVaTech - 2.91E-04 2.29E-07 LR 3SM 3.64 SM - 1.03E-01 SM 3FiVaTech 4.78 LR - FiVaTech 4Technique Rank P -value Trinity RoadRunner FiVaTech SM LR Technique RankTrinity 1.50 Trinity - 8.56E-01 6.54E-06 7.57E-30 4.03E-16 Trinity 1RoadRunner 1.55 RoadRunner - 7.93E-06 3.66E-29 9.18E-16 RoadRunner 1FiVaTech 2.95 FiVaTech - 5.76E-11 7.48E-04 FiVaTech 2LR 4.02 SM - 2.79E-03 LR 3SM 4.98 LR - SM 4
LT
ET

P Bergmann-Hommels's test Statistical ranking

F1

Sample ranking

R
2.11E-17
2.74E-17
4.79E-18
7.90E-72

6.79E-124
Table 9.4: Results of ranking Trinity statistically.

which is then used to learn a regular expression that represents the tem-
plate that was used to generate input web documents and the schema of
the extracted information. Our experiments on 2 084 real-world web docu-
ments proved that our technique achieves very high precision and recall,
which are very close to 100%; furthermore, the rule learning time and the
extraction time are very small.

134 Chapter 9. Extracting information records with Trinity

Part IV

FinalRemarks

Chapter10

Conclusions

Even when we are unable to see the light at the end of the tun-

nel, we ought to believe that there is light, and that one day,

undoubtedly, we will see it.

Amin Maalouf, Lebanese author

In this dissertation, we have presented CEDAR, a reference architecture
that is accompanied with a software framework to help software engi-
neers devise new learning techniques in the domain of information extraction
from semi-structured web documents. It provides an abstract and reusable
design that should allow software engineers and researchers to face the de-
velopment of a new information extraction techniques without incurring the
high costs of developing it from scratch. The reference architecture was vali-
dated by implementing four techniques that got inspiration from classical
techniques in the literature, with an overall time reduction that goes beyond
60%. CEDAR was used to devise and implement two new information ex-
traction techniques that were also presented in this dissertation, namely: TEX
and Trinity.

TEX is a completely unsupervised information extractor that focuses on
extracting attributes. It saves end users from the burden of annotating train-
ing examples to learn extraction rules, and from maintaining extraction rules.
Trinity is an effective and efficient unsupervised information extraction tech-
nique that learns a regular expression that represents the template that was
used to generate the input web document. They both build on the hypothesis

137

138 Chapter 10. Conclusions

that web documents generated by the same server-side template share pat-
terns that do not provide any relevant information, but help delimit it. Both
TEX and Trinity achieve very good performance, which suggest that our pro-
posals seem promising enough to extract information from real-world web
documents.

In addition to enterprise information integration, the rules and the schema
learnt by Trinity have more potential uses in other fields, and it is our
plan to research on them as future work: they can be used in the con-
text of web site model discovery and on mapping semi-structured web sites
onto ontological models to populate them [66, 147]. The idea of using hy-
brid machine learning techniques in this field remains unexplored and shall
be paid much attention in future research activities.

Bibliography

[1] B. Adelberg. NoDoSE: a tool for semi-automatically extracting semi-
structured data from text documents. In SIGMOD Conference, pages
283–294, 1998.

[2] E. Agichtein and L. Gravano. Snowball: extracting relations from large
plain-text collections. In ICDL, pages 85–94, 2000.

[3] M. Agosti, F. Crivellari, and M. Melucci. Evaluation methods to im-
prove information content extraction from the web. In Workshop on
Web Information and Data Management, pages 25–28, 1998.

[4] H. Alani, S. Kim, D. E. Millard, M. J. Weal, W. Hall, P. H. Lewis, and
N. Shadbolt. Automatic ontology-based knowledge extraction from
web documents. IEEE Intelligent Systems, 18(1):14–21, 2003.

[5] R. Albert, H. Jeong, and A.-L. Barabási. The diameter of the world wide
web. Nature, 401:130–131, 1999.

[6] M. Álvarez, A. Pan, J. Raposo, F. Bellas, and F. Cacheda. Extract-
ing lists of data records from semi-structured web pages. Data Knowl.
Eng., 64(2):491–509, 2008.

[7] A. Arasu and H. Garcia-Molina. Extracting structured data from web
pages. In SIGMOD Conference, pages 337–348, 2003.

[8] J. L. Arjona, R. Corchuelo, D. Ruiz, and M. Toro. From wrapping to
knowledge. IEEE Trans. Knowl. Data Eng., 19(2):310–323, 2007.

[9] G. O. Arocena and A. O. Mendelzon. WebOQL: restructuring
documents, databases, and webs. TAPOS, 5(3):127–141, 1999.

[10] F. Ashraf, T. Özyer, and R. Alhajj. Employing clustering techniques
for automatic information extraction from HTML documents. IEEE
Transactions on Systems, Man, and Cybernetics, Part C, 38(5):660–673,
2008.

139

http://dx.doi.org/10.1145/276304.276330
http://dx.doi.org/10.1145/276304.276330
http://dx.doi.org/10.1145/336597.336644
http://dx.doi.org/10.1145/336597.336644
http://dx.doi.org/10.1109/MIS.2003.1179189
http://dx.doi.org/10.1109/MIS.2003.1179189
http://dx.doi.org/10.1038/43601
http://dx.doi.org/10.1038/43601
http://dx.doi.org/10.1016/j.datak.2007.10.002
http://dx.doi.org/10.1016/j.datak.2007.10.002
http://dx.doi.org/10.1145/872757.872799
http://dx.doi.org/10.1145/872757.872799
http://dx.doi.org/10.1109/TKDE.2007.31
http://dx.doi.org/10.1109/TKDE.2007.31
http://dx.doi.org/10.1002/(SICI)1096-9942(1999)5:3<127::AID-TAPO2>3.0.CO;2-X
http://dx.doi.org/10.1002/(SICI)1096-9942(1999)5:3<127::AID-TAPO2>3.0.CO;2-X
http://dx.doi.org/10.1109/TSMCC.2008.923882
http://dx.doi.org/10.1109/TSMCC.2008.923882

140 Bibliography

[11] R. Basili, M. T. Pazienza, and M. Vindigni. Corpus-driven learn-
ing of event recognition rules. In ECAI Workshop on Machine Learning
for Information Extraction, pages 1–7, 2000.

[12] R. Baumgartner, S. Flesca, and G. Gottlob. Visual web information
extraction with Lixto. In VLDB, pages 119–128, 2001.

[13] B. Bergmann and G. Hommel. Improvements of general multiple
test procedures for redundant systems of hypotheses. In Multiple
Hypothesis Testing Symposium, pages 100–115, 1988.

[14] L. Bing, W. Lam, and Y. Gu. Towards a unified solution: data record
region detection and segmentation. In CIKM, pages 1265–1274, 2011.

[15] D. Buttler, L. Liu, and C. Pu. A fully automated object extraction
system for the World Wide Web. In ICDCS, pages 361–370, 2001.

[16] D. Cai, S. Yu, J.-R. Wen, and W.-Y. Ma. Extracting content struc-
ture for web pages based on visual representation. In APWeb, pages
406–417, 2003.

[17] M. E. Califf and R. J. Mooney. Bottom-up relational learning of pat-
tern matching rules for information extraction. Journal of Machine
Learning Research, 4:177–210, 2003.

[18] A. Carlson and C. Schafer. Bootstrapping information extraction from
semi-structured web pages. In ECML/PKDD (1), pages 195–210, 2008.

[19] J. Y. Chai, A. W. Biermann, and C. I. Guinn. Two dimensional
generalization in information extraction. In AAAI, pages 431–438,
1999.

[20] C.-H. Chang and S.-C. Kuo. OLERA: semisupervised web-data ex-
traction with visual support. IEEE Intelligent Systems, 19(6):56–64,
2004.

[21] C.-H. Chang and S.-C. Lui. IEPAD: information extraction based on
pattern discovery. In WWW, pages 681–688, 2001.

[22] B. Chidlovskii, B. Roustant, and M. Brette. Documentum ECI self-
repairing wrappers: performance analysis. In SIGMOD Conference,
pages 708–717, 2006.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.3485&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.3485&rep=rep1&type=pdf
http://www.vldb.org/conf/2001/P119.pdf
http://www.vldb.org/conf/2001/P119.pdf
http://dx.doi.org/10.1145/2063576.2063761
http://dx.doi.org/10.1145/2063576.2063761
http://dx.doi.org/10.1109/ICDSC.2001.918966
http://dx.doi.org/10.1109/ICDSC.2001.918966
http://dx.doi.org/10.1007/3-540-36901-5_42
http://dx.doi.org/10.1007/3-540-36901-5_42
http://www.jmlr.org/papers/v4/califf03a.html
http://www.jmlr.org/papers/v4/califf03a.html
http://dx.doi.org/10.1007/978-3-540-87479-9_31
http://dx.doi.org/10.1007/978-3-540-87479-9_31
http://www.aaai.org/Papers/AAAI/1999/AAAI99-062.pdf
http://www.aaai.org/Papers/AAAI/1999/AAAI99-062.pdf
http://dx.doi.org/10.1109/MIS.2004.71
http://dx.doi.org/10.1109/MIS.2004.71
http://dx.doi.org/10.1145/371920.372182
http://dx.doi.org/10.1145/371920.372182
http://dx.doi.org/10.1145/1142473.1142555
http://dx.doi.org/10.1145/1142473.1142555

Bibliography 141

[23] H. L. Chieu and H. T. Ng. A maximum entropy approach to informa-
tion extraction from semi-structured and free text. In AAAI, pages
786–791, 2002.

[24] H. L. Chieu, H. T. Ng, and Y. K. Lee. Closing the gap: learning-
based information extraction rivaling knowledge-engineering methods.
In ACL, pages 216–223, 2003.

[25] L. Chiticariu, Y. Li, S. Raghavan, and F. Reiss. Enterprise informa-
tion extraction: recent developments and open challenges. In SIGMOD
Conference, pages 1257–1258, 2010.

[26] P. Cimiano and J. Völker. Text2Onto: A framework for ontology learn-
ing and data-driven change discovery. In Applications of Natural
Language to Databases, pages 227–238, 2005.

[27] F. Ciravegna, A. Dingli, Y. Wilks, and D. Petrelli. Amilcare: adap-
tive information extraction for document annotation. In Research and
Development in Information Retrieval, pages 367–368, 2002.

[28] W. W. Cohen, M. Hurst, and L. S. Jensen. A flexible learning sys-
tem for wrapping tables and lists in HTML documents. In WWW,
pages 232–241, 2002.

[29] C. Cox, J. Nicolson, J. R. Finkel, C. Manning, and P. Langley. Template
sampling for leveraging domain knowledge in information extraction.
In PASCAL Challenges Workshop, 2005.

[30] V. Crescenzi and G. Mecca. Grammars have exceptions. Inf. Syst., 23(8):
539–565, 1998.

[31] V. Crescenzi and G. Mecca. Automatic information extraction from
large websites. J. ACM, 51(5):731–779, 2004.

[32] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: towards auto-
matic data extraction from large web sites. In VLDB, pages 109–118,
2001.

[33] H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE:
a framework and graphical development environment for robust
NLP tools and applications. In Meeting of the Association for
Computational Linguistics, pages 1–8, 2002.

[34] N. N. Dalvi, A. Machanavajjhala, and B. Pang. An analysis of
structured data on the Web. PVLDB, 5(7):680–691, 2012.

https://www.aaai.org/Papers/AAAI/2002/AAAI02-118.pdf
https://www.aaai.org/Papers/AAAI/2002/AAAI02-118.pdf
http://dx.doi.org/10.3115/1075096.1075124
http://dx.doi.org/10.3115/1075096.1075124
http://dx.doi.org/10.1145/1807167.1807339
http://dx.doi.org/10.1145/1807167.1807339
http://dx.doi.org/10.1007/11428817_21
http://dx.doi.org/10.1007/11428817_21
http://dx.doi.org/10.1145/564376.564447
http://dx.doi.org/10.1145/564376.564447
http://dx.doi.org/10.1145/511446.511477
http://dx.doi.org/10.1145/511446.511477
http://nlp.stanford.edu/unhbox voidb@x penalty @M manning/papers/pascalMLIEAbstract.ps
http://nlp.stanford.edu/unhbox voidb@x penalty @M manning/papers/pascalMLIEAbstract.ps
http://dx.doi.org/10.1016/S0306-4379(98)00028-3
http://dx.doi.org/10.1145/1017460.1017462
http://dx.doi.org/10.1145/1017460.1017462
http://www.vldb.org/conf/2001/P109.pdf
http://www.vldb.org/conf/2001/P109.pdf
http://gate.ac.uk/sale/acl02/acl-main.pdf
http://gate.ac.uk/sale/acl02/acl-main.pdf
http://gate.ac.uk/sale/acl02/acl-main.pdf
http://vldb.org/pvldb/vol5/p680_nileshdalvi_vldb2012.pdf
http://vldb.org/pvldb/vol5/p680_nileshdalvi_vldb2012.pdf

142 Bibliography

[35] I. F. de Viana, I. Hernández, P. Jiménez, C. R. Rivero, and H. A. Sleiman.
Integrating deep-web information sources. In PAAMS (Special Sessions
and Workshops), pages 311–320, 2010.

[36] Denodo, September 2012. URL: http://www.denodo.com.

[37] J. Derrac, S. García, D. Molina, and F. Herrera. A practical tutorial on
the use of non-parametric statistical tests as a methodology for com-
paring evolutionary and swarm intelligence algorithms. Swarm and
Evolutionary Computation, 1(1):3–18, 2011.

[38] H. Elmeleegy, J. Madhavan, and A. Y. Halevy. Harvesting relational
tables from lists on the Web. PVLDB, 2(1):1078–1089, 2009.

[39] D. W. Embley, Y. S. Jiang, and Y.-K. Ng. Record-boundary discovery in
web documents. In SIGMOD Conference, pages 467–478, 1999.

[40] A. Esuli and F. Sebastiani. Evaluating information extraction. In CLEF,
pages 100–111, 2010.

[41] M. E. Fayad, D. C. Schmidt, and R. E. Johnson. Building applica-
tion frameworks: object-oriented foundations of framework design.
John Wiley & Sons, 1999.

[42] G. Fernández, H. A. Sleiman, and R. Corchuelo. An annotation tool for
semantic web. In CAEPIA, pages 1–8, 2011.

[43] G. Fernández, H. A. Sleiman, and R. Corchuelo. An experiment on
using datamining techniques to extract information from the web.
PAAMS (Workshops), pages 169–176, 2011.

[44] G. Fernández, H. A. Sleiman, R. Corchuelo, and R. Z. Frantz. On
mining dom trees to build information extractors. In ICOMP, pages
363–367, 2011.

[45] D. Ferrucci and A. Lally. UIMA: an architectural approach to unstruc-
tured information processing in the corporate research environment.
Nat. Lang. Eng., 10(3-4):327–348, 2004.

[46] Fetch technologies, January 2012. URL: http://www.fetch.com.

[47] A. Finn and N. Kushmerick. Information extraction by conver-
gent boundary classification. In AAAI Workshop on Adaptive Text
Extraction And Mining, 2004.

http://dx.doi.org/10.1007/978-3-642-12433-4_37
http://www.denodo.com
http://www.denodo.com
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://www.vldb.org/pvldb/2/vldb09-325.pdf
http://www.vldb.org/pvldb/2/vldb09-325.pdf
http://dx.doi.org/10.1145/304182.304223
http://dx.doi.org/10.1145/304182.304223
http://dl.acm.org/citation.cfm?id=1889174.1889192
http://aepia.aic.uniovi.es/revista/index.php/aia/article/download/911/734
http://aepia.aic.uniovi.es/revista/index.php/aia/article/download/911/734
http://dx.doi.org/10.1007/978-3-642-19931-8_21
http://dx.doi.org/10.1007/978-3-642-19931-8_21
http://www.guarana-project.net/rzfrantz/publications/gretel-icomp-2011.pdf
http://www.guarana-project.net/rzfrantz/publications/gretel-icomp-2011.pdf
http://dx.doi.org/10.1017/S1351324904003523
http://dx.doi.org/10.1017/S1351324904003523
http://www.fetch.com
http://www.fetch.com
http://www.aidanf.net/publications/atem-04finn.pdf
http://www.aidanf.net/publications/atem-04finn.pdf

Bibliography 143

[48] D. Freitag. Information extraction from HTML: application of a general
machine learning approach. In AAAI/IAAI, pages 517–523, 1998.

[49] D. Freitag. Toward general-purpose learning for information extraction.
In COLING-ACL, pages 404–408, 1998.

[50] D. Freitag and A. McCallum. Information extraction with HMM struc-
tures learned by stochastic optimization. In AAAI, pages 584–589,
2000.

[51] D. Freitag and A. K. Mccallum. Information extraction with HMMs and
shrinkage. In AAAI Workshop on Machine Learning for Information
Extraction, pages 31–36, 1999.

[52] R. J. Gaizauskas, K. Humphreys, H. Cunningham, and Y. Wilks. Uni-
versity of Sheffield: description of the LaSIE system as used for MUC-6.
In MUC, pages 207–220, 1995.

[53] S. García, A. Fernández, J. Luengo, and F. Herrera. Advanced non-
parametric tests for multiple comparisons in the design of experiments
in computational intelligence and data mining: experimental analysis
of power. Inf. Sci., 180(10):2044–2064, 2010.

[54] G. H. Gonnet, R. A. Baeza-Yates, and T. Snider. New indices for text:
PAT trees and PAT arrays. In W. B. Frakes and R. Baeza-Yates, editors,
Information retrieval, pages 66–82. Prentice-Hall, 1992.

[55] D. G. Gregg and S. Walczak. Exploiting the Information Web. IEEE
Transactions on Systems, Man, and Cybernetics, Part C, 37(1):109–125,
2007.

[56] P. Gulhane, A. Madaan, R. R. Mehta, J. Ramamirtham, R. Rastogi,
S. Satpal, S. H. Sengamedu, A. Tengli, and C. Tiwari. Web-scale
information extraction with Vertex. In ICDE, pages 1209–1220, 2011.

[57] P. Gulhane, R. Rastogi, S. H. Sengamedu, and A. Tengli. Exploiting con-
tent redundancy for web information extraction. In WWW, pages
1105–1106, 2010.

[58] A. Gulli and A. Signorini. The indexable Web is more than 11.5 billion
pages. In WWW (Special interest tracks and posters), pages 902–903,
2005.

[59] R. Gupta and S. Sarawagi. Answering table augmentation queries from
unstructured lists on the Web. PVLDB, 2(1):289–300, 2009.

http://blondie.cs.byu.edu/CS652/freitag98information.pdf
http://blondie.cs.byu.edu/CS652/freitag98information.pdf
http://www.aclweb.org/anthology/P98-1067
http://www.cs.washington.edu/education/courses/cse454/10au/papers/iehill.pdf
http://www.cs.washington.edu/education/courses/cse454/10au/papers/iehill.pdf
http://people.cs.umass.edu/unhbox voidb@x penalty @M mccallum/papers/ieshrink-aaaiws99.pdf
http://people.cs.umass.edu/unhbox voidb@x penalty @M mccallum/papers/ieshrink-aaaiws99.pdf
http://dx.doi.org/10.1145/1072399.1072418
http://dx.doi.org/10.1145/1072399.1072418
http://dx.doi.org/10.1016/j.ins.2009.12.010
http://dx.doi.org/10.1016/j.ins.2009.12.010
http://dx.doi.org/10.1016/j.ins.2009.12.010
http://dx.doi.org/10.1016/j.ins.2009.12.010
http://dl.acm.org/citation.cfm?id=129687.129692
http://dl.acm.org/citation.cfm?id=129687.129692
http://dx.doi.org/10.1109/TSMCC.2006.876061
http://dx.doi.org/10.1109/ICDE.2011.5767842
http://dx.doi.org/10.1109/ICDE.2011.5767842
http://dx.doi.org/10.1145/1772690.1772826
http://dx.doi.org/10.1145/1772690.1772826
http://dx.doi.org/10.1145/1062745.1062789
http://dx.doi.org/10.1145/1062745.1062789
http://www.vldb.org/pvldb/2/vldb09-652.pdf
http://www.vldb.org/pvldb/2/vldb09-652.pdf

144 Bibliography

[60] D. Gusfield. Algorithms on strings, trees, and sequences: Computer
Science and Computational Biology. Cambridge University Press,
1997.

[61] A. Y. Halevy, A. Rajaraman, and J. J. Ordille. Data integration: the
teenage years. In VLDB, pages 9–16, 2006.

[62] J. Hammer, J. McHugh, and H. Garcia-Molina. Semistructured data: the
Tsimmis experience. In ADBIS, pages 1–8, 1997.

[63] W. Han, D. Buttler, and C. Pu. Wrapping web data into XML. SIGMOD
Record, 30(3):33–38, 2001.

[64] D. Harman and M. Liberman. TIPSTER complete, 1993. URL:
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC93T3A.

[65] M. Hepple. Independence and commitment: assumptions for rapid
training and execution of rule-based POS taggers. In ACL, 2000.

[66] I. Hernández, C. R. Rivero, D. Ruiz, and R. Corchuelo. Towards
discovering conceptual models behind web sites. In ER, 2012.

[67] I. Hernández, H. A. Sleiman, D. Ruiz, and R. Corchuelo. A con-
ceptual framework for efficient web crawling in virtual integration
contexts. In WISM (2), pages 282–291, 2011.

[68] I. Hernández, H. A. Sleiman, D. Ruiz, and R. Corchuelo. A tool for web
links prototyping. In ICAI, pages 1–7, 2011.

[69] L. Hirschman. The evolution of evaluation: lessons from the Mes-
sage Understanding Conferences. Computer Speech & Language, 12
(4):281–305, 1998.

[70] V. J. Hodge and J. Austin. A survey of outlier detection methodologies.
Artif. Intell. Rev., 22(2):85–126, 2004.

[71] A. W. Hogue and D. R. Karger. Thresher: automating the unwrap-
ping of semantic content from the World Wide Web. In WWW, pages
86–95, 2005.

[72] J. L. Hong, E.-G. Siew, and S. Egerton. Information extraction for
search engines using fast heuristic techniques. Data Knowl. Eng., 69(2):
169–196, 2010.

http://www.vldb.org/conf/2006/p9-halevy.pdf
http://www.vldb.org/conf/2006/p9-halevy.pdf
http://dl.acm.org/citation.cfm?id=2227663.2227685
http://dl.acm.org/citation.cfm?id=2227663.2227685
http://dx.doi.org/10.1145/603867.603873
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC93T3A
http://www.ldc.upenn.edu/Catalog/catalogEntry.jsp?catalogId=LDC93T3A
http://www.aclweb.org/anthology/P00-1036
http://www.aclweb.org/anthology/P00-1036
http://dx.doi.org/10.1007/978-3-642-34002-4_13
http://dx.doi.org/10.1007/978-3-642-34002-4_13
http://dx.doi.org/10.1007/978-3-642-23982-3_35
http://dx.doi.org/10.1007/978-3-642-23982-3_35
http://dx.doi.org/10.1007/978-3-642-23982-3_35
http://dx.doi.org/10.1007/978-3-642-34002-4_13
http://dx.doi.org/10.1007/978-3-642-34002-4_13
http://dx.doi.org/10.1006/csla.1998.0102
http://dx.doi.org/10.1006/csla.1998.0102
http://dx.doi.org/10.1023/B:AIRE.0000045502.10941.a9
http://dx.doi.org/10.1145/1060745.1060762
http://dx.doi.org/10.1145/1060745.1060762
http://dx.doi.org/10.1016/j.datak.2009.10.002
http://dx.doi.org/10.1016/j.datak.2009.10.002

Bibliography 145

[73] C.-N. Hsu and M.-T. Dung. Generating finite-state transducers for
semi-structured data extraction from the Web. Inf. Syst., 23(8):521–538,
1998.

[74] S. B. Huffman. Learning information extraction patterns from exam-
ples. In Learning for Natural Language Processing, pages 246–260,
1995.

[75] Unstructured information: the knowledge rush, 2011. URL:
http://tinyurl.com/UIMA-KR.

[76] R. L. Iman and J. M. Davenport. Approximations to the critical region of
the Friedman statistic. Comm. Stat.: Theor. Meth, A9(6):571–595, 1980.

[77] N. Ireson, F. Ciravegna, M. E. Califf, D. Freitag, N. Kushmerick, and
A. Lavelli. Evaluating machine learning for information extraction. In
International Conference on Machine Learning, pages 345–352, 2005.

[78] T. S. Jayram, R. Krishnamurthy, S. Raghavan, S. Vaithyanathan, and
H. Zhu. Avatar information extraction system. IEEE Data Eng. Bull., 29
(1):40–48, 2006.

[79] N. Kambhatla. Combining lexical, syntactic, and semantic features with
maximum entropy models for extracting relations. In ACL (Interactive
poster & demonstration sessions), pages 1–4, 2004.

[80] J. Kang and J. Choi. Recognising informative web page blocks using vi-
sual segmentation for efficient information extraction. J. UCS, 14(11):
1893–1910, 2008.

[81] M. Kayed and C.-H. Chang. FiVaTech: page-level web data extrac-
tion from template pages. IEEE Trans. Knowl. Data Eng., 22(2):249–263,
2010.

[82] M. G. Kendall. A new measure of rank correlation. Biometrika, 30(1-2):
81–89, 1983.

[83] J.-T. Kim and D. I. Moldovan. Acquisition of linguistic patterns for
knowledge-based information extraction. IEEE Trans. Knowl. Data
Eng., 7(5):713–724, 1995.

[84] Y.-J. Kim. Emerging trends: 2010 through 2015, 2005. URL:
http://www.kait.or.kr/filedb/051207-it839/KAIT-1.pdf.

http://dx.doi.org/10.1016/S0306-4379(98)00027-1
http://dx.doi.org/10.1016/S0306-4379(98)00027-1
http://dx.doi.org/10.1007/3-540-60925-3_51
http://dx.doi.org/10.1007/3-540-60925-3_51
http://tinyurl.com/UIMA-KR
http://tinyurl.com/UIMA-KR
http://dx.doi.org/10.1016/j.ins.2009.12.010
http://dx.doi.org/10.1016/j.ins.2009.12.010
http://dx.doi.org/10.1145/1102351.1102395
http://sites.computer.org/debull/A06mar/jayram.ps
http://dx.doi.org/10.3115/1219044.1219066
http://dx.doi.org/10.3115/1219044.1219066
http://jucs.org/jucs_14_11/recognising_informative_web_page/jucs_14_11_1893_1910_kang.pdf
http://jucs.org/jucs_14_11/recognising_informative_web_page/jucs_14_11_1893_1910_kang.pdf
http://dx.doi.org/10.1109/TKDE.2009.82
http://dx.doi.org/10.1109/TKDE.2009.82
http://dx.doi.org/10.1093/biomet/30.1-2.81
http://dx.doi.org/10.1109/69.469825
http://dx.doi.org/10.1109/69.469825
http://www.kait.or.kr/filedb/051207-it839/KAIT-1.pdf
http://www.kait.or.kr/filedb/051207-it839/KAIT-1.pdf

146 Bibliography

[85] B. Kitchenham, S. L. Pfleeger, L. Pickard, P. Jones, D. C. Hoaglin,
J. Rosenberg, and K. E. Emam. Preliminary guidelines for empiri-
cal research in software engineering. IEEE Trans. Software Eng., 28(8):
721–734, 2002.

[86] D. E. Knuth, J. H. Morris, Jr., and V. R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977.

[87] R. Kosala, H. Blockeel, M. Bruynooghe, and J. V. den Bussche. Infor-
mation extraction from structured documents using k-testable tree
automaton inference. Data Knowl. Eng., 58(2):129–158, 2006.

[88] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, S. Vaithyanathan, and
H. Zhu. SystemT: a system for declarative information extraction.
SIGMOD Record, 37(4):7–13, 2008.

[89] P. Kruchten. The 4+1 view model of architecture. IEEE Software, 12(6):
42–50, 1995.

[90] N. Kumar, J. D. Beer, J. Vanthienen, and M.-F. Moens.
Evaluation of information retrieval and text mining tools on auto-
matic named entity extraction. In Internationales Symposium für
Informationswissenschaft, pages 666–667, 2006.

[91] N. Kushmerick. Regression testing for wrapper maintenance. In
AAAI/IAAI, pages 74–79, 1999.

[92] N. Kushmerick. Wrapper induction: efficiency and expressiveness.
Artif. Intell., 118(1-2):15–68, 2000.

[93] N. Kushmerick, D. S. Weld, and R. B. Doorenbos. Wrapper induction
for information extraction. In IJCAI (1), pages 729–737, 1997.

[94] A. H. F. Laender, B. A. Ribeiro-Neto, and A. S. da Silva. DEByE: data
extraction by example. Data Knowl. Eng., 40(2):121–154, 2002.

[95] A. Lavelli, M. E. Califf, F. Ciravegna, D. Freitag, N. Kushmerick, C. Giu-
liano, L. Romano, and N. Ireson. Evaluation of machine learning-based
information extraction algorithms: Criticisms and recommendations.
Language Resources and Evaluation, 42(4):361–393, 2008.

[96] K. Lerman, S. Minton, and C. A. Knoblock. Wrapper maintenance: a
machine learning approach. J. Artif. Intell. Res., 18:149–181, 2003.

http://dx.doi.org/10.1109/TSE.2002.1027796
http://dx.doi.org/10.1109/TSE.2002.1027796
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1016/j.datak.2005.05.002
http://dx.doi.org/10.1016/j.datak.2005.05.002
http://dx.doi.org/10.1016/j.datak.2005.05.002
http://dx.doi.org/10.1145/1519103.1519105
http://www.computer.org:80/software/so1995/s6042abs.htm
http://dx.doi.org/10.1007/11760146_81
http://dx.doi.org/10.1007/11760146_81
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.42.3288
http://dx.doi.org/10.1016/S0004-3702(99)00100-9
ftp://ftp.cs.washington.edu/pub/ai/kushmerick-ijcai97.ps.Z
ftp://ftp.cs.washington.edu/pub/ai/kushmerick-ijcai97.ps.Z
http://dx.doi.org/10.1016/S0169-023X(01)00047-7
http://dx.doi.org/10.1016/S0169-023X(01)00047-7
http://dx.doi.org/10.1007/s10579-008-9079-3
http://dx.doi.org/10.1007/s10579-008-9079-3
http://dx.doi.org/10.1613/jair.1145
http://dx.doi.org/10.1613/jair.1145

Bibliography 147

[97] L. Li, Y. Liu, A. Obregon, and M. Weatherston. Visual segmentation-
based data record extraction from web documents. In IRI, pages
502–507, 2007.

[98] Q. Li, Y. Ding, A. Feng, and Y. Dong. A novel method for extracting in-
formation from web pages with multiple presentation templates. JSW,
5(5):506–513, 2010.

[99] Y. Li, L. Chiticariu, H. Yang, F. Reiss, and A. Carreno-fuentes. WizIE:
a best practices guided development environment for information
extraction. In ACL, pages 109–114, July 2012.

[100] B. Liu, R. L. Grossman, and Y. Zhai. Mining web pages for data records.
IEEE Intelligent Systems, 19(6):49–55, 2004.

[101] B. Liu and Y. Zhai. NET: a system for extracting web data from flat and
nested data records. In WISE, pages 487–495, 2005.

[102] L. Liu, C. Pu, and W. Han. XWRAP: an XML-enabled wrapper con-
struction system for web information sources. In ICDE, pages 611–621,
2000.

[103] W. Liu, X. Meng, and W. Meng. ViDE: a vision-based approach for deep
web data extraction. IEEE Trans. Knowl. Data Eng., 22(3):447–460,
2010.

[104] W. Liu, D. Shen, and T. Nie. An effective method supporting data ex-
traction and schema recognition on the Deep Web. In APWeb, pages
419–431, 2008.

[105] Lixto, September 2012. URL: http://www.lixto.com.

[106] A. Machanavajjhala, A. S. Iyer, P. Bohannon, and S. Merugu. Collec-
tive extraction from heterogeneous web lists. In WSDM, pages 445–454,
2011.

[107] J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R. Jeffery, D. Ko,
and C. Yu. Web-scale data integration: you can afford to pay as you go.
In Conference on Innovative Data Systems Research, pages 342–350,
2007.

[108] D. Maynard and H. Cunningham. Multilingual adaptations of AN-
NIE, a reusable information extraction tool. In ACL, volume 2, pages
219–222, 2003.

http://dx.doi.org/10.1109/IRI.2007.4296670
http://dx.doi.org/10.1109/IRI.2007.4296670
http://dx.doi.org/10.4304/jsw.5.5.506-513
http://dx.doi.org/10.4304/jsw.5.5.506-513
http://www.aclweb.org/anthology/P12-3019
http://www.aclweb.org/anthology/P12-3019
http://www.aclweb.org/anthology/P12-3019
http://dx.doi.org/10.1109/MIS.2004.68
http://dx.doi.org/10.1007/11581062_39
http://dx.doi.org/10.1007/11581062_39
http://dx.doi.org/10.1109/ICDE.2000.839475
http://dx.doi.org/10.1109/ICDE.2000.839475
http://dx.doi.org/10.1109/TKDE.2009.109
http://dx.doi.org/10.1109/TKDE.2009.109
http://dx.doi.org/10.1007/978-3-540-78849-2_42
http://dx.doi.org/10.1007/978-3-540-78849-2_42
http://www.lixto.com
http://www.lixto.com
http://dx.doi.org/10.1145/1935826.1935894
http://dx.doi.org/10.1145/1935826.1935894
http://www.cidrdb.org/cidr2007/papers/cidr07p40.pdf
http://dx.doi.org/10.3115/1067737.1067789
http://dx.doi.org/10.3115/1067737.1067789

148 Bibliography

[109] D. Maynard, H. Cunningham, K. Bontcheva, R. Catizone, G. Demetriou,
R. Gaizauskas, O. Hamza, M. Hepple, and P. Herring. A survey of uses
of GATE. Technical report, University of Sheffield, 2000.

[110] X. Meng, D. Hu, and C. Li. Schema-guided wrapper maintenance for
web-data extraction. In WIDM, pages 1–8, 2003.

[111] G. Miao, J. Tatemura, W.-P. Hsiung, A. Sawires, and L. E. Moser. Ex-
tracting data records from the Web using tag path clustering. In WWW,
pages 981–990, 2009.

[112] R. C. Miller and B. A. Myers. Lightweight structured text process-
ing. In USENIX Annual Technical Conference, General Track, pages
131–144, 1999.

[113] S. Miller, H. Fox, L. A. Ramshaw, and R. M. Weischedel. A novel use of
statistical parsing to extract information from text. In ANLP, pages
226–233, 2000.

[114] S. Minton, S. I. Ticrea, and J. Beach. Trainability: developing a
responsive learning system. In IIWeb, pages 27–32, 2003.

[115] P. Montoto, A. Pan, J. Raposo, J. Losada, F. Bellas, and V. Carneiro. A
workflow language for web automation. J. UCS, 14(11):1838–1856,
2008.

[116] D. R. Morrison. Patricia - practical algorithm to retrieve information
coded in alphanumeric. J. ACM, 15(4):514–534, 1968.

[117] I. Muslea. RISE: repository of online information sources used in
information extraction, 1998. URL: http://www.isi.edu/info-agents/RISE.

[118] I. Muslea, S. Minton, and C. A. Knoblock. Hierarchical wrapper induc-
tion for semistructured information sources. Autonomous Agents and
Multi-Agent Systems, 4(1/2):93–114, 2001.

[119] N. Papadakis, D. Skoutas, K. Raftopoulos, and T. A. Varvarigou.
STAVIES: a system for information extraction from unknown web data
sources through automatic web wrapper generation using clustering
techniques. IEEE Trans. Knowl. Data Eng., 17(12):1638–1652, 2005.

[120] J. Park and D. Barbosa. Adaptive record extraction from web pages. In
WWW, pages 1335–1336, 2007.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.2691&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.33.2691&rep=rep1&type=pdf
http://dx.doi.org/10.1145/956699.956701
http://dx.doi.org/10.1145/956699.956701
http://dx.doi.org/10.1145/1526709.1526841
http://dx.doi.org/10.1145/1526709.1526841
http://www.usenix.org/events/usenix99/full_papers/miller/miller.pdf
http://www.usenix.org/events/usenix99/full_papers/miller/miller.pdf
http://aclweb.org/anthology-new/A/A00/A00-2030.pdf
http://aclweb.org/anthology-new/A/A00/A00-2030.pdf
http://www.isi.edu/info-agents/workshops/ijcai03/papers/Ticrea-ijcai_03_paper1.pdf
http://www.isi.edu/info-agents/workshops/ijcai03/papers/Ticrea-ijcai_03_paper1.pdf
http://www.jucs.org/jucs_14_11/a_workflow_language_for/jucs_14_11_1838_1856_montoto.pdf
http://www.jucs.org/jucs_14_11/a_workflow_language_for/jucs_14_11_1838_1856_montoto.pdf
http://doi.acm.org/10.1145/321479.321481
http://doi.acm.org/10.1145/321479.321481
http://www.isi.edu/info-agents/RISE
http://www.isi.edu/info-agents/RISE
http://www.isi.edu/info-agents/RISE
http://dx.doi.org/10.1023/A:1010022931168
http://dx.doi.org/10.1023/A:1010022931168
http://dx.doi.org/10.1109/TKDE.2005.203
http://dx.doi.org/10.1109/TKDE.2005.203
http://dx.doi.org/10.1109/TKDE.2005.203
http://dx.doi.org/10.1145/1242572.1242838

Bibliography 149

[121] L. Peshkin and A. Pfeffer. Bayesian information extraction network. In
IJCAI, pages 421–426, 2003.

[122] B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff, and
M. Goranov. KIM: semantic annotation platform. In International
Semantic Web Conference, pages 834–849, 2003.

[123] J. Raposo, A. Pan, M. Álvarez, and J. Hidalgo. Automatically gen-
erating labeled examples for web wrapper maintenance. In Web
Intelligence, pages 250–256, 2005.

[124] J. Raposo, A. Pan, M. Álvarez, J. Hidalgo, and Á. Viña. The Wargo Sys-
tem: semi-automatic wrapper generation in presence of complex data
access modes. In DEXA Workshops, pages 313–320, 2002.

[125] J. Raposo, A. Pan, M. Álvarez, and Á. Viña. Automatic wrapper main-
tenance for semi-structured web sources using results from previous
queries. In SAC, pages 654–659, 2005.

[126] L. F. Rau. Information extraction and evaluation. In MUC, page 349,
1993.

[127] E. Riloff. Automatically generating extraction patterns from untagged
text. In AAAI/IAAI, volume 2, pages 1044–1049, 1996.

[128] D. Roth and W.-T. Yih. Relational learning via propositional algorithms:
an information extraction case study. In IJCAI, pages 1257–1263, 2001.

[129] N. Sager. Medical language processing: computer management of
narrative data. Addison-Wesley, 1987.

[130] A. Sahuguet and F. Azavant. Building intelligent web applications
using lightweight wrappers. Data Knowl. Eng., 36(3):283–316, 2001.

[131] S. Sarawagi. Information extraction. Foundations and Trends in
Databases, 1(3):261–377, 2007.

[132] K. Seymore, A. McCallum, and R. Rosenfeld. Learning hidden Markov
model structure for information extraction. In AAAI, pages 37–42,
1999.

[133] J. P. Shaffer. Modified sequentially rejective multiple test procedures.
Journal of the American Statistical Association, 81(395):826–831, 1986.

http://dl.acm.org/citation.cfm?id=1630659.1630722
http://dx.doi.org/10.1007/978-3-540-39718-2_53
http://dx.doi.org/10.1109/WI.2005.40
http://dx.doi.org/10.1109/WI.2005.40
http://dx.doi.org/10.1109/DEXA.2002.1045916
http://dx.doi.org/10.1109/DEXA.2002.1045916
http://dx.doi.org/10.1109/DEXA.2002.1045916
http://dx.doi.org/10.1145/1066677.1066826
http://dx.doi.org/10.1145/1066677.1066826
http://dx.doi.org/10.1145/1066677.1066826
http://dx.doi.org/10.1145/1072017.1072053
http://www.aaai.org/Papers/AAAI/1996/AAAI96-155.pdf
http://www.aaai.org/Papers/AAAI/1996/AAAI96-155.pdf
http://research.microsoft.com/pubs/73702/RothYi-ijcai01.pdf
http://research.microsoft.com/pubs/73702/RothYi-ijcai01.pdf
http://dx.doi.org/10.1016/S0169-023X(00)00051-3
http://dx.doi.org/10.1016/S0169-023X(00)00051-3
http://dx.doi.org/10.1561/1900000003
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.5107&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.5107&rep=rep1&type=pdf
http://dx.doi.org/10.1080/01621459.1986.10478341

150 Bibliography

[134] Y. K. Shen and D. R. Karger. U-REST: an unsupervised record extraction
system. In WWW, pages 1347–1348, 2007.

[135] D. J. Sheskin. Handbook of parametric and non-parametric statistical
procedures. Chapman and Hall/CRC, edition 5, 2011.

[136] K. Simon and G. Lausen. ViPER: augmenting automatic information
extraction with visual perceptions. In CIKM, pages 381–388, 2005.

[137] M. Skounakis, M. Craven, and S. Ray. Hierarchical hidden Markov
models for information extraction. In IJCAI, pages 427–433, 2003.

[138] H. A. Sleiman. Information extraction from the World Wide Web. In
TJISBD, volume 3, pages 18–29, 2009.

[139] H. A. Sleiman and R. Corchuelo. An architecture for web information
agents. In ISDA, pages 18–23, 2011.

[140] H. A. Sleiman and R. Corchuelo. Information extraction framework. In
PAAMS (Workshops), pages 149–156, 2012.

[141] H. A. Sleiman and R. Corchuelo. A reference architecture to devise web
information extractors. In CAiSE Workshops, pages 235–248, 2012.

[142] H. A. Sleiman and R. Corchuelo. A survey on region extractors from
web documents. IEEE Trans. Knowl. Data Eng., 99(PrePrints), 2012.

[143] H. A. Sleiman and R. Corchuelo. TEX: An efficient and effective unsu-
pervised web information extractor. Knowledge-Based Systems, 2012.
(To be published).

[144] H. A. Sleiman and R. Corchuelo. Towards a method for unsupervised
web information extraction. In ICWE, pages 427–430, 2012.

[145] H. A. Sleiman and R. Corchuelo. An unsupervised technique to ex-
tract information from semi-structured web pages. In WISE, 2012. (To
be published).

[146] H. A. Sleiman, I. Hernández, G. Fernández, and R. Corchuelo. A trans-
ducer model for web information extraction. In ICAI, pages 1–8,
2011.

[147] H. A. Sleiman and I. Hernández. A framework for populating ontologi-
cal models from semi-structured web documents. In ER, pages 1–6,
2012.

http://dx.doi.org/10.1145/1242572.1242844
http://dx.doi.org/10.1145/1242572.1242844
http://dx.doi.org/10.1145/1099554.1099672
http://dx.doi.org/10.1145/1099554.1099672
http://www.biostat.wisc.edu/unhbox voidb@x penalty @M craven/papers/ijcai03.pdf
http://www.biostat.wisc.edu/unhbox voidb@x penalty @M craven/papers/ijcai03.pdf
http://www.sistedes.es/ficheros/actas-talleres-JISBD/Vol-3/No-6/ZOCO09.pdf
http://dx.doi.org/10.1109/ISDA.2011.6121624
http://dx.doi.org/10.1109/ISDA.2011.6121624
http://dx.doi.org/10.1007/978-3-642-28795-4_18
http://dx.doi.org/10.1007/978-3-642-31069-0_21
http://dx.doi.org/10.1007/978-3-642-31069-0_21
http://dx.doi.org/10.1109/TKDE.2012.135
http://dx.doi.org/10.1109/TKDE.2012.135
http://dx.doi.org/10.1007/978-3-642-31753-8_36
http://dx.doi.org/10.1007/978-3-642-31753-8_36
http://www.lidi.info.unlp.edu.ar/WorldComp2011-Mirror/ICA8307.pdf
http://www.lidi.info.unlp.edu.ar/WorldComp2011-Mirror/ICA8307.pdf
http://dx.doi.org/10.1007/978-3-642-34002-4_48
http://dx.doi.org/10.1007/978-3-642-34002-4_48

Bibliography 151

[148] H. A. Sleiman, C. R. Rivero, and R. Corchuelo. On a proposal to inte-
grate web sources using semantic-web technologies. In NWeSP, pages
326–331, 2011.

[149] H. A. Sleiman, A. W. Sultán, R. Z. Frantz, and R. Corchuelo. To-
wards automatic code generation for eai solutions using dsl tools. In
JISBD, pages 134–145, 2009.

[150] S. Soderland. Learning to extract text-based information from the
World Wide Web. In KDD, pages 251–254, 1997.

[151] S. Soderland. Learning information extraction rules for semi-structured
and free text. Machine Learning, 34(1-3):233–272, 1999.

[152] W. Su, J. Wang, and F. H. Lochovsky. ODE: ontology-assisted data
extraction. ACM Trans. Database Syst., 34(2), 2009.

[153] L. V. Subramaniam, S. Mukherjea, P. Kankar, B. Srivastava, V. S. Batra,
R. Kothari, and P. V. Kamesam. Information extraction from biomedical
literature: methodology, evaluation and an application. In Interna-
tional Conference on Information and Knowledge Management, pages
410–417, 2003.

[154] F. M. Suchanek, M. Sozio, and G. Weikum. SOFIE: a self-organizing
framework for information extraction. In WWW, pages 631–640, 2009.

[155] A. Sun, M.-M. Naing, E.-P. Lim, and W. Lam. Using support vector
machines for terrorism information extraction. In ISI, pages 1–12, 2003.

[156] B. Sundheim. TIPSTER/MUC-5: information extraction system
evaluation. In MUC, pages 27–44, 1993.

[157] C. Tao and D. W. Embley. Automatic hidden-web table interpreta-
tion, conceptualization, and semantic annotation. Data Knowl. Eng., 68
(7):683–703, 2009.

[158] J. Turmo, A. Ageno, and N. Català. Adaptive information extraction.
ACM Comput. Surv., 38(2), 2006.

[159] J. Turmo and H. Rodríguez. Learning rules for information extraction.
Nat. Lang. Eng., 8:167–191, 2002.

[160] The UCI repository, September 2012. URL: http://archive.ics.uci.edu/ml.

http://dx.doi.org/10.1109/NWeSP.2011.6088199
http://dx.doi.org/10.1109/NWeSP.2011.6088199
http://scholar.tdg-seville.info/Resources/Sleiman09.pdf
http://scholar.tdg-seville.info/Resources/Sleiman09.pdf
http://www.aaai.org/Papers/KDD/1997/KDD97-052.pdf
http://www.aaai.org/Papers/KDD/1997/KDD97-052.pdf
http://dx.doi.org/10.1023/A:1007562322031
http://dx.doi.org/10.1023/A:1007562322031
http://dx.doi.org/10.1145/1538909.1538914
http://dx.doi.org/10.1145/1538909.1538914
http://dx.doi.org/10.1145/956863.956941
http://dx.doi.org/10.1145/956863.956941
http://dx.doi.org/10.1145/1526709.1526794
http://dx.doi.org/10.1145/1526709.1526794
http://dx.doi.org/10.1007/3-540-44853-5_1
http://dx.doi.org/10.1007/3-540-44853-5_1
http://dx.doi.org/10.1145/1072017.1072023
http://dx.doi.org/10.1145/1072017.1072023
http://dx.doi.org/10.1016/j.datak.2009.02.010
http://dx.doi.org/10.1016/j.datak.2009.02.010
http://dx.doi.org/10.1145/1132956.1132957
http://dx.doi.org/10.1017/S1351324902002863
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

152 Bibliography

[161] J. Wang and F. H. Lochovsky. Data-rich section extraction from HTML
pages. In WISE, pages 313–322, 2002.

[162] J. Wang and F. H. Lochovsky. Data extraction and label assignment for
web databases. In WWW, pages 187–196, 2003.

[163] L. Wei, X. Meng, and W. Meng. Vision-based web data records
extraction. In WebDB, 2006.

[164] Y. Yamada, N. Craswell, T. Nakatoh, and S. Hirokawa. Testbed for in-
formation extraction from the Deep Web. In WWW (Alternate Track
Papers & Posters), pages 346–347, 2004.

[165] W. Yang. Identifying syntactic differences between two programs.
Softw., Pract. Exper., 21(7):739–755, 1991.

[166] R. Yangarber. Counter-training in discovery of semantic patterns. In
ACL, pages 343–350, 2003.

[167] L. Yi, B. Liu, and X. Li. Eliminating noisy information in web pages for
data mining. In KDD, pages 296–305, 2003.

[168] D. Zelenko, C. Aone, and A. Richardella. Kernel methods for relation
extraction. Journal of Machine Learning Research, 3:1083–1106, 2003.

[169] Y. Zhai and B. Liu. Structured data extraction from the Web based on
partial tree alignment. IEEE Trans. Knowl. Data Eng., 18(12):1614–1628,
2006.

[170] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. T. Yu. Fully automatic
wrapper generation for search engines. In WWW, pages 66–75, 2005.

[171] H. Zhao, W. Meng, and C. T. Yu. Automatic extraction of dy-
namic record sections from search engine result pages. In VLDB, pages
989–1000, 2006.

[172] S. Zhao and R. Grishman. Extracting relations with integrated
information using kernel methods. In ACL, 2005.

[173] J. Zhu, Z. Nie, J.-R. Wen, B. Zhang, and W.-Y. Ma. Simultaneous record
detection and attribute labeling in web data extraction. In KDD, pages
494–503, 2006.

http://dx.doi.org/10.1109/WISE.2002.1181667
http://dx.doi.org/10.1109/WISE.2002.1181667
http://dx.doi.org/10.1145/775152.775179
http://dx.doi.org/10.1145/775152.775179
http://db.ucsd.edu/webdb2006/camera-ready/paginated/04-144.pdf
http://db.ucsd.edu/webdb2006/camera-ready/paginated/04-144.pdf
http://dx.doi.org/10.1145/1013367.1013468
http://dx.doi.org/10.1145/1013367.1013468
http://dx.doi.org/10.1002/spe.4380210706
http://acl.ldc.upenn.edu/acl2003/main/pdfs/Yangarber.pdf
http://dx.doi.org/10.1145/956750.956785
http://dx.doi.org/10.1145/956750.956785
http://www.jmlr.org/papers/v3/zelenko03a.html
http://www.jmlr.org/papers/v3/zelenko03a.html
http://dx.doi.org/10.1109/TKDE.2006.197
http://dx.doi.org/10.1109/TKDE.2006.197
http://dx.doi.org/10.1145/1060745.1060760
http://dx.doi.org/10.1145/1060745.1060760
http://www.vldb.org/conf/2006/p989-zhao.pdf
http://www.vldb.org/conf/2006/p989-zhao.pdf
http://acl.ldc.upenn.edu/P/P05/P05-1052.pdf
http://acl.ldc.upenn.edu/P/P05/P05-1052.pdf
http://dx.doi.org/10.1145/1150402.1150457
http://dx.doi.org/10.1145/1150402.1150457

This document was typeset on November 15, 2013 at 12:54 using class RC–BOOK α2.14 for
LATEX2ϵ. As of the time of writing this document, this class is not publicly available since it is

in alpha version. Only members of The Distributed Group are using it to typeset their docu-
ments. Should you be interested in giving forthcoming public versions a try, please, do

contact us at contact@tdg-seville.info. Thanks!

mailto:contact@tdg-seville.info?subject=Inquiry about RC-BooK

	Enterprise Information Integration
	Document Lists
	Contents
	List of Figures
	List of Tables
	List of Programs

	Front Matter
	Acknowledgements
	Abstract
	Resumen

	Preface
	Introduction
	Research context
	Research rationale
	Hypothesis
	Thesis

	Summary of contributions
	Collaborations
	Structure of this dissertation

	Motivation
	Introduction
	Requirements
	Analysis of current solutions
	Discussion
	Our proposal
	Summary

	Background Information
	Software frameworks
	Introduction
	GATE
	UIMA
	Summary

	Unsupervised rule-based information extraction
	Introduction
	RoadRunner
	FiVaTech
	EXALG
	IEPAD
	DeLa
	Summary

	Heuristic-based information extraction
	Introduction
	Álvarez and others' proposal
	ViPER
	WISH
	DEPTA
	NET
	ViDE
	ListExtract
	Summary

	Evaluating information extractors
	Introduction
	Repositories
	RISE
	TBDW
	TIPSTER
	The Pascal Challenge
	Ad-hoc repositories

	Partitioning repositories
	Collecting performance measures
	Effectiveness measures
	Efficiency measures

	Ranking proposals
	Summary

	Our Proposal
	Devising information extractors with CEDAR
	Introduction
	Logical view
	Development view
	Scenarios view
	Our repository
	Experimentation
	Summary

	Extracting attributes with TEX
	Introduction
	Algorithms
	Structures
	Algorithm {sffamily smaller {}extract}
	Algorithm {sffamily smaller {}filter}
	Limitations

	Complexity analysis
	Space requirements
	Time requirements
	Computational tractability

	Experimental analysis
	Experimentation environment
	Effectiveness analysis
	Efficiency analysis

	Statistical analysis
	Summary

	Extracting information records with Trinity
	Introduction
	Algorithms
	Structures
	Main algorithm
	Creating a trinary tree
	Algorithm {sffamily smaller {}learnTemplate}
	Algorithm {sffamily smaller {}learnSchema}
	Limitations

	Complexity analysis
	Space requirements
	Time requirements
	Computational tractability

	Experimental analysis
	Experimentation environment
	Effectiveness analysis
	Efficiency analysis

	Statistical analysis
	Summary

	Final Remarks
	Conclusions

	Bibliography

