
Algebraic Solutions For Solving Discrete Multiobjective ProblemsAlgebraic Solutions For Solving Discrete Multiobjective Problems

SOLUCIONES ALGEBRAICAS A LA RESOLUCIÓN DE SOLUCIONES ALGEBRAICAS A LA RESOLUCIÓN DE
PROBLEMAS MULTIOBJETIVO DISCRETOSPROBLEMAS MULTIOBJETIVO DISCRETOS

Víctor Blanco IzquierdoVíctor Blanco Izquierdo

TE
SI

S
D

O
CT

O
RA

L
TE

SI
S

D
O

CT
O

RA
L

Dpto. de Estad́ıstica e Investigación Operativa

Soluciones algebraicas a la resolución
de problemas multiobjetivo discretos

Vı́ctor Blanco Izquierdo

Tesis Doctoral

Director: Justo Puerto Albandoz

Sevilla, Marzo 2009

A todos los que han contribuido

en la realización de esta tésis.

Departamento de Estad́ıstica e Investigación Operativa

Algebraic solutions for solving
discrete multiobjective problems

by

Vı́ctor Blanco Izquierdo

Doctoral Dissertation

Advisor: Justo Puerto Albandoz

Sevilla, Marzo 2009

“Ni negro del todo, ni del todo blanco

entre los extremos siempre hay más espacio”

f&f - Los sueños locos

Contents

Contents iii

Exordio v

Preface xi

Chapter 1. Preliminaries 1

1.1. Multiobjective Optimization 1

1.2. Partially ordered sets (posets) 5

1.3. Gröbner Bases 7

1.4. Short Generating Functions 14

Chapter 2. Partial Gröbner bases: a polynomial approach 17

2.1. Elements in the partial theory 18

2.2. Gröbner bases for partial orders 20

2.3. Application to integer multiobjective programming 26

Chapter 3. Partial Gröbner bases: a geometric approach 37

3.1. From polynomials to vectors 38

3.2. Test families and Partial Gröbner bases 46

3.4. Computational Experiments 58

Chapter 4. Short generating functions 63

4.1. The multiobjective problem 63

4.2. A short rational function expression of the entire set of

nondominated solutions 64

4.3. Digging algorithm for the set of nondominated solutions of

MOILP 66

4.4. Computational Experiments 74

4.5. Counting numerical semigroups of given genus 78

iii

iv CONTENTS

Chapter 5. Non linear multiobjective optimization 83

5.1. Obtaining nondominated solutions solving systems of polynomial

equations 83

5.2. Obtaining nondominated solutions by the Chebyshev norm

approach 90

5.3. Obtaining nondominated solutions by nondominance conditions 103

5.4. Computational Experiments 105

Chapter 6. Conclusions 115

Chapter 7. Conclusiones 117

List of Figures 119

List of Tables 121

Bibliography 123

Exordio

La Optimización Multiobjetivo consiste, a grandes rasgos, en calcular los

elementos maximales (o minimales) de un conjunto parcialmente ordenado.

Este problema ya fue clasicamente tratado por Cantor [25], Cayley [26] y

Hausdorff [58] al final del siglo XIX. Sin embargo, el problema de optimización

multiobjetivo en śı aparece en un contexto económico en los trabajos de Edge-

worth [40] y Pareto [85] tratando de definir un equilibrio económico. Desde

entonces, la programación multiobjetivo ha sido fruto de numerosos trabajos

de investigación en áreas como la matemática aplicada, la investigación opera-

tiva o la economı́a. Un gran número de libros de texto abordan esta temática,

como por ejemplo los libros de Sawaragi, Nakayama y Tanino [92], Chankong

y Haimes [28], Yu [113], Miettinen [81], Ehrgott y Figueira [45] o Ehrgott,

Figueira y Gandibleux [43; 42].

La importancia de la optimización multiobjetivo no es sólo debida a sus

implicaciones teóricas si no también a todas sus aplicaciones prácticas. Muchos

problemas reales de toma de decisiones aparecen en la literatura formulados

como programas multiobjetivo. Algunos de estos son el diseño de horarios con

flujo [62], análisis financieros [45] (Caṕıtulo 20), diseño de redes de transporte

[38], problemas de rutas de veh́ıculos [66; 49] u organización de viajes [97].

La mayor parte de los problemas de optimización del mundo real son nat-

uralmente multiobjetivo. Esto es, suelen tener dos o más funciones objetivo

que deben satisfacerse simultáneamente y que posiblemente están en conflicto

entre śı. Sin embargo, a fin de simplificar su solución, muchos de estos proble-

mas tienden a modelarse como mono-objetivo usando sólo una de las funciones

originales y manejando las adicionales como restricciones.

Usualmente, no es posible minimizar simultáneamente todas las funciones

objetivo, ya que las funciones objetivo inducen un orden parcial sobre los

vectores de la región factible. Aśı, surge la necesidad de definir un nuevo

concepto de solución para este tipo de problemas. Una solución factible será

Pareto óptima, no-dominada o de Edgeworth-Pareto si no existe otra solución

factible con todos los valores objetivo iguales o menores (con al menos una

componente menor estricta).

v

vi EXORDIO

En esta memoria tratamos problemas multiobjetivo discretos, luego supon-

dremos que las soluciones de estos problemas son vectores con componentes

enteras no negativas.

Para resolver problemas multiobjetivo lineales (con todas la funciones

involucradas: objetivos y restricciones, lineales) y enteros existen varias me-

todoloǵıas (ver [45]), aunque dos de estás han causado un mayor interés: la

enumeración impĺıcita multiobjetivo [115; 116] y la programación dinámica

multiobjetivo [110]. Sin embargo, aunque en principio estas pueden ser apli-

cados a cualquier número de objetivos, mayormente aparecen en la literatura

aplicaciones a problemas biobjetivo (dos funciones objetivo). Además de estos

métodos generales, existen algunos métodos espećıficos para resolver proble-

mas biobjetivo que no extienden al caso general. De hecho, en lo que se refiere

a algoritmos para resolver problemas multiobjetivo, podemos hablar de dos

tipos diferenciados de metodoloǵıas atendiendo al número de objetivos: una

primera en la que se da el salto de uno a dos objetivos y una segunda, y más

profunda, de dos a más de dos objetivos.

Por otra parte, algunos métodos ni siquiera calculan el conjunto completo

de soluciones Pareto óptimas, si no sólo las soluciones soportadas (aquellas que

pueden obtenerse como soluciones de alguna escalarización lineal del problema

multiobjetivo).

En esta memoria se presentan metodoloǵıas generales para resolver com-

pletamente problemas multiobjetivo lineales y enteros con cualquier número

de objetivos.

Aparte de métodos generales, hay algoritmos espećıficos para proble-

mas combinatorios con dos objetivos: knapsack [111], problema del árbol de

caminos mas cortos a mı́nimo coste [95] o problemas de asignación [87], aśı

como heuŕısticos y metaheuŕısticos que disminuyen los tiempos de computación

para calcular algunas soluciones del problema.

Sin embargo, la eficiencia computacional no es algo importante a la hora

de analizar, con algoritmos exactos, los problemas enteros multiobjetivo pues

la mayoŕıa de los problemas multiobjetivo lineales enteros son NP-duros y #P-

duros (ver [44] para más detalles). De hecho, existen problemas cuya versión

con un sólo objetivo es resoluble en tiempo polinomial mientras que la versión

multiobjetivo es NP-dura. Este es el caso de los problemas spanning tree [57] y

min-cost flow [41], entre otros. El objetivo de esta memoria es desarrollar her-

ramientas que permitan tratar estos problemas desde su naturaleza intŕınseca.

La otra clase de problemas multiobjetivo que abordamos es la de los prob-

lemas de optimización polinómica discretos. En estos problemas se supone que

EXORDIO vii

las funciones y las restricciones (de igualdad o desigualdad) son polinómicas y

que las variables toman valores enteros no negativos.

La programación polinómica discreta también tiene un gran espectro de

aplicaciones. Ejemplos de estas son gestión de presupuestos [72], planificación

de la capacidad [21], problemas de optimización engrafos [12], modelos de se-

lección de carteras con caracteŕısticas discretas [11],

[64] o ingenieŕıa qúımica [91], entre muchas otras. Algunas aplicaciones más

pueden ser encontradas en [76].

La programación polinómica generaliza la programación lineal y cuadrática

y sirve como herramienta para modelar aplicaciones de la ingenieŕıa que se

pueden expresar en términos de ecuaciones polinómicas. Incluso problemas

con términos trascendentes como senos, logaŕıtmos o radicales pueden refor-

mularse en términos de series de Taylor como problemas polinómicos. En

[31] podemos encontrar algunos de los trabajos realizados con respecto a la

optimización discreta no lineal.

En esta tesis tratamos desde una perspectiva algebraica los problemas lin-

eales y polinómicos multiobjetivo discretos. En la mayoŕıa de las metodoloǵıas

que presentamos usamos como herramienta las Bases de Gröbner. Las bases

de Gröbner fueron introducidas por Bruno Buchberger en 1965 en su tesis doc-

toral [23]. Las llamó báses de Gröbner como tributo a su director Wolfgang

Gröbner. En principio, estas surgen como una generalización, del caso de una

variable al caso multivariado, del máximo común divisor de polinomios.

Una de la aplicaciones posteriores de las bases de Gröbner es en pro-

gramación lineal y entera (mono-objetivo) a partir del trabajo de Conti y

Traverso [30]. A partir de ah́ı, aparecieron multitud de publicaciones haciendo

uso, mejoras o generalizaciones de este trabajo.

Uno de estos trabajos, de Hosten y Sturmfels [60], describe mejoras en el

algoritmo de Conti y Traverso que en muchos casos mejora en los procedimien-

tos de ramificación y acotación para resolver problemas enteros de forma ex-

acta. Sin embargo, el lenguaje de estos algoritmos, de ideales tóricos de anillos

de polinomios, resultaba dif́ıcil de comprender en el área de la optimización,

hasta que Thomas presentó en [103] una descripción geométrica e intuitiva

de estas metodoloǵıas y del procedimiento más conocido para calcular bases

de Gröbner: el algoritmo de Buchberger. Otra de las mejoras importantes

se da en [105] donde se simplifica el algoritmo de Buchberger para calcular

bases de Gröbner cuando se parte de un problema de programación lineal y

entero. En [108] se resumen de forma muy clara, para optimizadores, estas

metodoloǵıas. Algunos de los libros donde también se describen claramente

estas metodoloǵıas son: Adams y Loustanau [2], Sturmfels [98], Cox et al.

viii EXORDIO

[32] o Bertsimas y Weissmantel [15], y en los art́ıculos de Aardal et al. [1],

Sturmfels [99], [100], Sturmfels y Thomas [101] y Thomas [104].

Además, las bases de Gröbner permiten resolver problemas de optimización

polinomial basándose en las propiedades de las bases de Gröbner lexicográficas

para resolver sistemas de ecuaciones polinómicas (ver [99] para más detalles).

Bertsimas et al. [14] presentaron un método para resolver problemas lineales

y enteros utilizando esta propiedad. El caso polinómico y continuo se analiza

igualmente en el trabajo de Hägglof et al. [56].

Aparte de las bases de Gröbner, en esta tesis usamos también funciones

generatrices para resolver problemas multiobjetivo. Barvinok [7] las presenta

como una herramienta para contar los puntos enteros dentro de politopos con-

vexos, basandose en los trabajos previos de Brion [22], Khovanskii y Puhlikov

[68], y Lawrence [73].

La idea principal de Barvinok es codificar tales puntos enteros en una

función racional con tantas variables como la dimensión del espacio. Esto es,

si P ⊂ Rd es un poliedro convexo, los puntos enteros de P se pueden codificar

en la suma formal f(P, z) =
∑
α z

α con α = (α1, . . . , αd) ∈ P ∩ Zd, y donde

zα = zα1
1 · · · z

αd
d . La aportación de Barvinok consistió en representar tal suma

formal de monomios como una suma “corta” de funciones racionales. De hecho,

el algoritmo de Barvinok calcula estas funciones en tiempo polinomial para

dimensión fija. Un ejemplo claro es el poliedro P = [0, N] ⊂ R: la expresión

larga seŕıa f(P, z) =
∑N
i=0 z

i, mientras que es sobradamente conocido que su

representación como suma corta de funciones racionales es 1−xN+1

1−x .

El uso de funciones generatrices en optimización tampoco es nuevo pues

existen algoritmos para resolver, exactamente, problemas de programación lin-

eal y entera, basados en funcione generatrices. En DeLoera y varios [35] se

describen cinco métodos distintos para resolver programas lineales y enteros

usando las funciones racionales cortas de Barvinok sobre el politopo dado por

las restricciones del problema. Además, el grupo de DeLoera ha desarrollado

un software, LattE4 [36], dónde se han implementado gran cantidad de algorit-

mos y aplicaciones de las funciones cortas de Barvinok. En particular, LattE

permite calcular las soluciones de un problema de programación entera mono–

objetivo usando tales funciones. Recientemente, DeLoera y varios [37] han

desarrollado un algoritmo para obtener las soluciones Pareto-óptimas de prob-

lemas multiobjetivo lineales y enteros en tiempo polinomial para dimensión y

número de objetivos fijos. En esta memoria presentamos una mejora de ese

algoritmo en el que la complejidad es polinomial para dimensión fija pero sin

ser necesario fijar el número de objetivos.

EXORDIO ix

Esta tesis doctoral estudia algunos de los aspectos algebraicos de la opti-

mización multiobjetivo lineal y polinomial. Primeramente, en el Caṕıtulo 1 se

introducen los conceptos básicos necesarios para el desarrollo de los métodos

presentados: la presentación del problema multiobjetivo, y el concepto de

solución no dominada (o Pareto óptima); algunas definiciones básicas sobre

conjuntos parcialmente ordenados (posets); las nociones necesarias sobre la

teoŕıa de Bases de Gröbner para ideales polinómicos; y finalmente los resulta-

dos más importantes sobre funciones racionales, en especial, para su aplicación

a la Programación Lineal y Entera. Los caṕıtulos 2 y 3 están dedicados a la res-

olución de problemas multiobjetivo lineales y enteros usando bases de Gröbner

parciales. En el Caṕıtulo 2 se trata el problema desde una visión totalmente

polinómica, presentando los algoritmos sobre anillos de polinomios. Sin em-

bargo, en el Caṕıtulo 3, se presenta una traducción geométrica de los resultados

del caṕıtulo anterior. En el Caṕıtulo 4 el mismo problema es abordado usando

funciones racionales. En éste se estudia el problema multiobjetivo lineal y

entero, y se prueban algunos resultados sobre la complejidad de los métodos

que se presentan. Al final del caṕıtulo se describe un método para calcular

el número de semigrupos numéricos con genero dado, como aplicación de las

funciones generatrices. En el Caṕıtulo 5 se describen distintas metodoloǵıas

para resolver problemas multiobjetivo polinómicos discretos usando Bases de

Gröbner, aprovechando las propiedades de estas para resolver sistemas de ecua-

ciones polinómicas.

Preface

Multiobjective optimization, in general terms, consists of determining the

maximal (minimal) elements of a partially ordered set. This problem was

already addressed by Cantor [25], Cayley [26] and Hausdorff [58] at the end of

the nineteenth century. However, the multiobjective optimization problem in

itself appeared in Economic Theory in the nineteenth century in the seminal

papers by Edgeworth [40] and Pareto [85] to define an economic equilibrium.

Since then, multiobjective programming (including multicriteria optimization)

has been a fruitful research field within the areas of applied mathematics,

operations research, and economic theory. Excellent textbooks and surveys

papers are available in the literature, the interested reader is referred to the

books of Sawaragi, Nakayama and Tanino [92], Chankong and Haimes [28],

Yu [113], Miettinen [81] or Ehrgott, Figueira and Gandibleux [42], and to the

surveys in [45] and [43].

The importance of multiobjective optimization is not only due to its the-

oretical implications but also to its many applications. Witnesses of that are

the large number of real-world decision problems that appear in the literature

formulated as multiobjective programs. Examples of them are flowshop sched-

uling (see [62]), analysis in Finance (see [45], Chapter 20), railway network

infrastructure capacity (see [38]), vehicle routing problems (see [66; 49]) or trip

organization (see [97]) among many others.

Many real world problem are naturally multiobjective, i.e. they use to

have two or more objective functions that must be simultaneously optimized,

and possibly they are in conflict. However, to simplify the resolution of these

problems, many of them are formulated as single-objective problems.

Usually, it is not possible to minimize all the objective functions simulta-

neously since objective functions induce a partial order over the vectors in the

feasible region, so a different notion of solution is needed. A feasible vector

is said to be Pareto-optimal, non-dominated or Edgeworth-Pareto solutions if

no other feasible vector has componentwise smaller objective values (with at

least one component strictly smaller).

xi

xii PREFACE

In this thesis we study multiobjective discrete problems. First, we treat

multiobjective integer linear problems (MOILP). Thus, we assume that both

objective functions and constraints that define the feasible region are linear,

and that the feasible vectors are non-negative integers.

There are nowadays several exact methods to solve MOILP [45]. Two

of them claimed to be of general use and have attracted the attention of

researchers over the years: multiobjective implicit enumeration [115; 116] and

multiobjective dynamic programming [110]. Neverthless, although in principle

they may be applied to any number of objectives, one can only find, in the

literature, applications to bicriteria problems. On the other hand, there are

several methods that apply to bicriteria problems but that do not extend to the

general case. Thus, one can see that there are two thresholds in multiobjective

programming, a first step from 1 to 2 objectives and a second, and deeper one,

from 2 to more than two objectives. Thus, most of the times, algorithms

to solve multiobjective integer problems are designed to compute only the

solutions for the bicriteria case.

Moreover, some methods even do not provide the entire set of Pareto-

optimal solutions, but the supported ones (those that can be obtained as the

solution of a linear scalarization of the multiobjective problem).

Apart from those generic methods, there are specific algorithms for solving

some combinatorial biobjective problems: biobjective knapsacks [111], biobjec-

tive minimum spanning tree problems [95] or biobjective assignment problems

[87], as well as heuristics and metaheuristics algorithms that decrease the CPU

time for computing the nondominated solutions for specific biobjective prob-

lems.

It is worth noting that most of MOILP problems are NP-hard and in-

tractable [44]. Even in most cases where the single-objective problem is poly-

nomially solvable the multiobjective version becomes NP-hard. This is the

case of spanning tree [57] and min-cost flow problems [41], among others..

Therefore, computational efficiency is not an issue when analyzing MOILP.

The important point is to develop tools that can handle these problems and

that give insights into their intrinsic nature.

The second family of problems that we treat is that of multiobjective poly-

nomial discrete optimization problems. For these problems, we assume that

both objective functions and functions that define the constrains if the problem

are polynomial, and that the feasible vectors are non-negative integers.

Polynomial programs have a wide spectrum of applications. Examples of

them are capital budgeting [72], capacity planning [21], optimization problems

in graph theory [12], portfolio selection models with discrete features [11; 64]

PREFACE xiii

or chemical engineering [91], among many others. The reader is referred to

[76] for further applications.

Polynomial programming generalizes linear and quadratic programming

and can serves as a tool to model engineering applications that are expressed

by polynomial equations. Even those problems with transcendental terms such

as sin, log, and radicals can be reformulated by means of Taylor series as a

polynomial program. A survey of the publications on general nonlinear integer

programming can be found in [31].

In this thesis we treat linear and polynomial multiobjective problems with

an algebraic perspective. One of the elements that we use for solving mutiob-

jective these problems are the Gröbner bases. Gröbner bases were introduced

by Bruno Buchberger in 1965 in his PhD Thesis [23]. He named it Gröbner

basis paying tribute to his advisor Wolfgang Gröbner. This theory emerged

as a generalization, from the one variable case to the multivariate polynomial

case, of the greatest common divisor, in an ideal sense. Although, this is only

a part of the developed theory from Buchberger’s contribution. One of the

outcomes of Gröbner Bases Theory was its application to Integer Program-

ming, firstly published by Conti and Traverso [30]. After this paper, a number

of publications using Gröbner bases to solve integers programs, appeared in

the literature.

In [60], Hosten and Sturmfels gave two ways to implement Conti and

Traverso algorithm, that improve in many cases branch-and-bound algorithm

to solve, exactly, integer programs. Thomas presented in [103] a geometric

point of view of Buchberger algorithm as a method to obtain solutions of an

integer program. Later, Thomas and Weissmantel [105] improve Buchberger

algorithm in its application to solve integer programs introducing truncated

Gröbner basis. At the same time, Urbaniak et al [108], published a clear

geometric interpretation of the reduction steps of this kind of algorithms in

the original space (decision space). The interested reader can find excellent

descriptions of this methodology in the books by Adams and Loustanau [2],

Sturmfels [98], Cox et al [32] or Bertsimas and Weissmantel [15], and in the

papers by Aardal et al. [1], Sturmfels [99], [100], Sturmfels and Thomas [101]

and Thomas [104].

With a different approach of the use of Gröbner bases for solving opti-

mization problems, Bertsimas et al. [14] presented a method for solving linear

integer programs, based on the application of Gröbner bases for solving system

of polynomial equations. This advantage of Gröbner bases is also used in the

paper by Hägglof et al. [56] for solving continuous polynomial optimization

problems. Further details about Gröbner bases can be found in [32; 33].

xiv PREFACE

The other tool that we use in this work are the short rational functions.

They were initially used by Barvinok [7] as a tool to develop an algorithm for

counting the number of integer points inside convex polytopes, based in the

previous geometrical papers by Brion [22],Khovanskii and Puhlikov [68], and

Lawrence [73]. The main idea is encoding those integral points in a rational

function in as many variables as the dimension of the space where the body

lives. Let P ⊂ Rd be a given convex polyhedron, the integral points may be

expressed in a formal sum f(P, z) =
∑
α z

α with α = (α1, . . . , αd) ∈ P ∩ Zd,
where zα = zα1

1 · · · z
αd
d . Barvinok’s aimed objective was representing that

formal sum of monomials in the multivariate polynomial ring Z[z1, . . . , zn], as

a “short” sum of rational functions in the same variables. Actually, Barvinok

presented a polynomial-time algorithm when the dimension, n, is fixed, to

compute those functions. A clear example is the polytope P = [0, N] ⊂ R: the

long expression of the generating function is f(P, z) =
∑N
i=0 z

i, and it is easy

to see that its representation as sum of rational functions is the well known

formula 1−zN+1

1−z .

Brion proved in 1988 [22], that for computing the short generating function

of the formal sum associated to a polyhedron, it is enough to do it for tangent

cones at each vertex of P . Barvinok applied this function to count the number

of integral points inside a polyhedron P , that is, limz→(1,...,1) f(P, z), that is

not possible to compute using the original expression, but it may be obtained

using tools from complex analysis over the rational function f .

The above approach, apart from counting lattice points, has been used to

develop some algorithms to solve, exactly, integer programming. Actually, De

Loera et al [35] and Woods and Yoshida [112] presented different methods to

solve this family of problems using Barvinok’s rational function of the polytope

defined by the constraints of the given problem.

This doctoral thesis studies some of the algebraic aspects of polynomial

and lineal multiobjective discrete optimization. First, in Chapter 1 some back-

ground for the methods that have been developed: the multiobjective problem,

and the notion of nondominated solution; some basic definitions for partially

ordered sets (posets); a brief introduction to Gröbner bases for polynomial

ideals; and finally, some results about generating functions, specially, for its

application to linear integer programming. In chapters 2 and 3 are dedicated

to solve MOILP using partial Gröbner bases. In Chapter 2 the problem is tack-

led from a polynomial viewpoint, introducing the algorithms for toric ideals.

In Chapter 3, the results of the above chapter are translated to a geometrical

language. In Chapter 4 the same problem is tackled using generating func-

tions. Here, some complexity results about this approach are proven. At the

PREFACE xv

end of the chapter we describe a method for counting the number of numerical

semigroups with given gender using generating functions. In the last chapter

we present some methodologies for solving general polynomil multiobjective

integer programs based on the construction of the reduced Gröbner bases of

certain ideals related to the problem and on solving triangular systems of

polynomial equations given by those bases.

CHAPTER 1

Preliminaries

The objective of this first chapter of preliminaries is to provide the reader

with the basic background and the notation used throughout the text. First,

the multiobjective programming problem is introduced. The notion of solution

considered for this kind of problems is given. Then, a brief introduction to

Gröbner bases is presented and finally, the most important results on gener-

ating functions are described.

1.1. Multiobjective Optimization

The usual way to present multiobjective optimization problem (MOP) is

the following:

(1)

min {f1(x), . . . , fk(x)}
s.t. hr(x) = br r = 1, . . . , s

gi(x) ≤ di i = 1, . . . ,m

x ∈ Rn

with f1, . . . , fk, g1, . . . , gm, h1, . . . , hs some functions over Rn and b1, . . . , br,

d1, . . . , dm real numbers.

The functions that want to be minimized, f1, . . . , fk, are called the objec-

tive functions of the problem. The collection of equation, hr, and inequations,

gi, that have to be satisfied are said the constraints, and the space generated

by that equations and inequations is called the feasible region.

When it is supposed that the variables have to be integer and the ob-

jectives functions and restriction are linear expressions, the problem is called

multiobjective linear integer problem (MOLIP), that is :

min (c1 x, . . . , ck x)

s.t.

n∑
j=1

erj xj = br i = 1, . . . , s

n∑
j=1

aij xj ≤ di i = 1, . . . ,m(2)

xj ∈ Z+ j = 1, . . . , n

1

2 1. PRELIMINARIES

with cl, aij , br, di integers and xi non negative. From now on, without loss of

generality, we will consider the above problem in its standard form, i.e., the

coefficient of the objective functions are non-negative and the constraints are

in equation form and defining a polytope (bounded).

Indeed, let A = (aij) ∈ Zm×n, E = (erj) ∈ Zs×n, b = (br) ∈ Zs+,

d = (di) ∈ Zm+ , and C = (cij) ∈ Zk×n. If C has negative components, set

wj = min{0,min{
n∑
i=1

cij xi : Ax ≤ d,E x = b, xi ∈ Z+}} and define new

variables yj =
∑

cijxi − wj , j = 1, . . . , k. Then, Problem (11) is equivalent

to solving:

min (y1, . . . , yk)

s.t.

E x = b

Ax+ Idm xs = d

yj =

n∑
i=1

cijxi − wj j = 1, . . . , k

xj ∈ Z+ j = 1, . . . , n

yi ∈ Z+ i = 1, . . . , k

(xs)i ∈ Z+ i = 1, . . . ,m

where Idm is the identity matrix of order m. This equivalent formulation has

nonnegative coefficients in the objective matrix and constraints in equation

form.

Therefore, from now on we deal with MIPA,C(b) in its standard form,

which is usually written as:

v −min{Cx : Ax = b, x ∈ Zn+}

where A ∈ Zm×n, b ∈ Zm+ , C ∈ Zk×n+ and v −min stands for obtaining all the

minimal elements in the partially ordered set with the order induced by the

matrix C. Then, MIPA,C represents the family of multiobjective problems

where the right-hand side varies.

It is clear that the above problem is not a usual optimization problem

since the objective function is a vector, thus inducing a partial order among

its feasible solutions. Hence, solving the above problem requires an alternative

concept of solution, namely the set of non-dominated or Pareto-optimal points

(vectors).

1.1. MULTIOBJECTIVE OPTIMIZATION 3

A vector x̂ ∈ Rn is said to be a Pareto optimal solution of MIPA,C if

there is no other feasible vector y such that

cj y ≤ cj x̂ ∀j = 1, . . . , k

with at least one strict inequality for some j. If x is a Pareto optimal solution,

the vector (c1 x, . . . , ck x) is called efficient.

We will say that a point, y, is dominated by x if ci x � ci y for all i =

1, . . . , k, with at least one strict inequality1. According to the above concept,

solving a multiobjective problem consists of finding its entire set of Pareto

optimal solutions.

From the objective function C, we obtain a linear partial order over Zn

as follows:

x ≺C y :⇐⇒ C x � C y.

Notice that since C ∈ Zm×n+ , the above relation is not complete. Hence, there

may exist non-comparable vectors. We will use this partial order, induced by

the objective function of Problem MIPA,C as the input for the multiobjective

integer programming algorithm developed in this paper.

If the functions involved in a multiobjective program are all polynomials

and it is required that the variables are integer numbers, the problem is called

multiobjective polynomial integer program (MOPIP):

(MOPIPf ,g,h)

min (f1(x), . . . , fk(x))

s.t. gj(x) ≤ 0 j = 1, . . . ,m

hr(x) = 0 r = 1, . . . , s

x ∈ Zn+

with f1, . . . , fk, g1, . . . , gm, h1, . . . , hs polynomials in R[x1, . . . , xn] and the con-

straints defining a bounded feasible region. Therefore, from now on we deal

with MOPIPf ,g,h and we denote f = (f1, . . . , fk), g = (g1, . . . , gm) and h =

(h1, . . . , hr). If the problem has not equality (resp. inequality) constraints, we

denote the problem by MOPIPf ,g (resp. MOPIPf ,h), avoiding the nonexistent

term.

However, MOPIPf ,g,h can be transformed to an equivalent multiobjective

polynomial binary problem as follows: The feasible region {x ∈ Rn : gj(x) ≤
0, hs(x) = 0, j = 1, . . . ,m, r = 1, . . . , s, x ≥ 0}, that is assumed to be bounded,

can be always embedded in an hypercube

n∏
i=1

[0, ui]
n, then, every component

in x, xi, has an additional, but redundant, constraint xi ≤ ui. We write xi in

1We are denoting by � the binary relation ”less than or equal to” and where it is assumed
that at least one of the inequalities in the list is strict.

4 1. PRELIMINARIES

binary form, introducing new binary variables zij :

xi =

bloguic∑
j=0

2j zij

substituting every xi in MOPIPf ,g,h we obtain an equivalent {0, 1}-problem.

Alternatively, we can include the polynomials constraints

ui∏
j=0

(xi−j) = 0 to

restrict xi to have values in {0, 1, . . . , ui} to obtain a continuous optimization

problem (not binary in this case).

Then, from now on, we will restrict to multiobjective polynomial binary

programs (MOPBP) in the form:

(MOPBPf ,g,h)

min (f1(x), . . . , fk(x))

s.t. gj(x) ≤ 0 j = 1, . . . ,m

hr(x) = 0 r = 1, . . . , s

x ∈ {0, 1}n

The number of solutions of the above problem is finite, since the decision space

is finite. Thus, the number of feasible solutions is, at most |{0, 1}n| = 2n.

In this case, a feasible vector x̂ ∈ Rn is a nondominated solution of

MOPIPf ,g,h if there is no other feasible vector y such that

fj(y) ≤ fj(x̂) ∀j = 1, . . . , k

with at least one strict inequality for some j. If x is a nondominated solution,

the vector f(x) = (f1(x), . . . , fk(x)) ∈ Rk is called efficient.

Also, a dominated point, y, is dominated by a feasible solution, x, if

fi(x) ≤ fi(y) for all i = 1, . . . , k.

As in the linear case, the objective functions f = (f1, . . . , fk) induces a

partial order on Rn as follows:

x ≺f y :⇐⇒ f(x) � f(y) or x = y.

It is clear that this binary relation is reflexive, transitive and antisymmetric.

However, notice that since f : Rn → Rk, the above relation is not complete.

Hence, there may exist incomparable vectors.

The above order distinguishes solutions with the same objective values

and handles them as incomparable. This order can be refined to obtain an

antisymmetric partial order over Zn as follows:

x �f y :⇐⇒

{
f(x) � f(y) or

f(x) = f(y) and x ≺lex y

1.2. PARTIALLY ORDERED SETS (POSETS) 5

This alternative order allows us rank the solutions those that have the same

objective values using the lexicographically order of their components.

Let us consider the following equivalence relation in Zn:

x ∼C y :⇐⇒ f(x) = f(y)

The above partial order, �C , allows to solve a simplified version of the mul-

tiobjective problem. In this version, we obtain solutions in Zn\ ∼C , thus

having a representative element of each class of nondominated solutions (the

lexicographically smallest). With those efficient values, {v1, . . . , vt}, the re-

mainder solutions can be obtained solving the following polynomial system of

equations, in x, for each i = 1, . . . , t:
f(x) = vi

g(x) = 0

x ∈ {0, 1}n

In special cases, the order ≺C can be refined to be adapted to specific

problems. It is usual to consider slack variables in mathematical programming

problems. Two feasible solutions (x, s1) and (x, s2), where s1 and s2 are the

slack component, have the same objective values. Our order, ≺f , considers

both solutions as incomparable, but, they are the same, because we are looking

just for the x-part of the solution. In these cases, we consider the following

refined partial order in Zn × Zr,

(3) (x, s) ≺sf (x)(y, s
′
) :⇐⇒

{
f(x) � f(y) or

f(x) = f(y) and s ≺lex s
′

where x, y ∈ Zn+ and s, s
′
∈ Zr+ represent the slack variables of our problem.

Through this doctoral thesis, we are looking for the entire set of nondom-

inated solutions, and then, unless it is not specifically indicated we use the

partial order ≺f(x).

1.2. Partially ordered sets (posets)

In this section we recall some definitions and constructions related to

partially ordered sets as well as extensions of some well-known structures in

totally ordered sets to the partial case. They will be useful in the development

of the partial theory of Gröbner bases for solving multiobjective problems.

First, we give the basic element to define a partially ordered set: the

ordering.

Definition 1.2.1 (Partial ordering). A partial ordering, �, in a set S is

a binary relation that is reflexive, transitive and antisymmetric, i.e.

6 1. PRELIMINARIES

(1) ∀a ∈ S, a � a. Reflexivity

(2) ∀a, b, c ∈ S, if a � b and b � c then a � c. Transitivity

(3) ∀a, b ∈ S, if a � b and b � a then a = b. Antisymmetry

We assume an additional property to be a partial order: a � 0 for all

a ∈ S.

We will use indifferently ≺ to denote the opposite binary relation (but

also partial ordering) to �.

A partial order is a total order if any two different elements of the set

are comparable on the order way, that is, for all a, b ∈ S, either a � b or

b � a. An example of partial order in Nn that is not a total order, is the usual

componentwise order on Nn. We will say that a partial order is strict if the

reflexive condition is not satisfied. A partial ordered set (poset) is a pair (S,�)

where S is a set and � is a partial order that orders S.

For x, y in a poset (S,�), we write x ∼ y if x and y are comparable

elements, that is x � y or y � x. If x and y are not comparable, denoted by x ‖
y, then they are incomparable. The relation ∼ is reflexive and antisymmetric,

but not necessarily transitive.

A poset is said locally finite if between each pair of element of it, there is

a finite number of elements. N is locally finite for all orderings over it.

If (S,�) is a poset and S a monoid , we say that � is partially admissible

if it is compatible with the sum operation, i.e., for all a, b, c ∈ S, if a � b then

a + c � b + c. A total order is a well order if any non empty subset of S has

a maximal element.

Nn with the usual vector sum and the scalar product is a ring, and the

lexicographic order is an admissible total order over it.

Let A ⊆ S, a nonempty set:

• An element x ∈ A is minimal in A, if for all y ∈ A, x ≺ y. If A has

a unique minimal element then it is called the minimum element of

A. If the full poset S has a minimum element, it is called the bottom

element of S.

• An element x ∈ A is maximal in A, if for all y ∈ A, y ≺ x. If A has

a unique maximal element then it is called the maximum element of

A. If the full poset S has a maximum element, it is called the top

element of S.

If S is finite, is usual to associate to it a directed graph on this way : for

x, y ∈ S, if x � y , then we draw a line connecting x and y. So, each finite

poset can be represented by a zero− one incidence matrix M , where:

Mx,y = 1⇔ x = y or x � y, Mx,y = 0 otherwise

1.3. GRÖBNER BASES 7

The successive powers of M represent the chain connecting each pair of element

in S, that is, may be, a pair x, y ∈ S are not directly comparable, but can

exists a way y � y1 � · · · yk � x, so, the power M
k· · ·M represents this case.

Example 1.2.1 (Total order induced by a matrix). Let ω in Nn×m. The

ω-order, ≺ω is defined as:

α ≺ω β ⇔



ω1 α 6 ω1 β or

ω1 α = ω1 β, ω2 α 6 ω2 β or
... or

ω1 α = ω1 β, · · · , ωm−1 α = ωm−1 β, ωm α 6 ωm β

Taking ω = Idn(N), the induced order is the lexicographical order. In fact,

every total and admissible order in M is a ω-order for a specific value of ω

[84].

For a fixed vector c ∈ Nn, we will use the notation c-induced order, ≺c, for the

order induced for the matrix: (
c

Idn(N)

)
Therefore, ≺c is a total order for any c ∈ Nn.

Example 1.2.2 (Partial order induced by a matrix). Let the monoid Nn,

and Ω in Nn×m, with rows {Ω1, . . . ,Ωm}. The Ω-order, ≺Ω is defined as:

α ≺Ω β ⇔ α ≺Ωi β for all i = 1 . . . ,m

This order is an admissible partial order on Nn, that generally is not a total

order. Taking Ω = Idn, is the usually named the componentwise order on M .

1.3. Gröbner Bases

In the following, we give a short description of polynomial algebra giving

all necessary definitions and results to present our algorithm.

If x = (x1, . . . , xn) is a list of formal variables, then xα = xα1
1 xα2

2 · · ·xαnn ,

αi ∈ N, is called a monomial of degree |α| = α1 + α2 + · · ·+ αn.

Let R be a field. Finite sums like
∑

α∈S⊂Nn
fα x

α, where fα ∈ R, are called

polynomials in x over R. The set of polynomials over R is denoted by R[x] or

R[x1, . . . , xn]. The set of monomials of f is denoted by mon(f) = {xα : α ∈ S}
and the set of monomials in R[x1, . . . , xn] is denoted by Mon[x1, . . . , xn].

When the number of variables is one, there is an unique way to sort the

exponents of monomial, since they are real numbers, and R is well-ordered.

However, if the number of variables is greater than one, n, there is not a unique

8 1. PRELIMINARIES

way to sort the exponents, since they are in Rn. A fundamental definition

for ordering monomials of a polynomial is that of admissible (or monomial)

ordering.

A total ordering ≺ over Nn induces an ordering over the monomials in

R[x1, . . . , xn] through the identification α 7→ xα. From now on, we denote by

≺ either the ordering for Nn or the monomials in R[x1, . . . , n].

If f =
∑
α

fα x
α ∈ R[x] and ≺ is an admissible ordering over Nn, we define

the leading monomial as lm(f) = xβ if β = max
≺
{α : xαmonomial in f}, and

the leading coefficient as lc(f) = fβ if lm(f) = xβ . The leading term of f is

defined as lt(f) = lc(f) lm(f).

An ideal I is a nonempty subset of R[x] such that

(1) f, g ∈ I =⇒ f + g ∈ I, and

(2) f ∈ R[x] and g ∈ I =⇒ f g ∈ I.

Let {f1, . . . , fm} ⊂ R[x], the smallest ideal containing f1, . . . , fm is:

〈f1, . . . , fm〉 = {
m∑
i=1

hi fi : hi ∈ R[x], i = 1, . . . ,m}

The following result states that every ideal can be expressed in the above

form:

Lemma 1.3.1 (Hilbert basis Theorem). Every ideal I in R[x] is finitely

generated, that is, I = 〈f1, . . . , fm〉, for some f1, . . . , fm ∈ R[x].

Other fundamental notion in algebraic geometry is the reduction or com-

putation of remainders of the division between polynomials. We describe here

how to obtain these remainders.

Given polynomials f and g in R[x], and ≺ an admissible ordering, we

write f →g h if h = f − c xγg for some c ∈ R and some γ ∈ Nn, such that

xγ lm(g) 6∈ mon(h) = {xα : hα 6= 0}.
For a subset G ∈ R[x], we write f →G h if there exist polynomials

h1, . . . , hm−1 ∈ R[x], and g1, . . . , gm ∈ G, such that f →g1 h1 →g2 · · ·hm−1 →gm

h.

If moreover h cannot be reduced by any polynomial in G we say that h is

the remainder or normal form of f by G with respect to ≺ and is denoted by

nfG(f) or R(f,G).

The following result characterizes the remainder of a polynomial by a set

of polynomials with respect to a total admissible ordering. This remainder is

computed using the classical extension of the Euclidean division algorithm. A

pseudocode for this procedure is shown in Algorithm 1.

1.3. GRÖBNER BASES 9

Algorithm 1: Usual reduction algorithm

Input: f ∈ Z[x1, . . . , xn], G = {g1, . . . , gt} ⊆ Z[x1, . . . , xn]. A total
term order, ≺, and the polynomials of G ordered by ≺ from the
largest to the least.

Output: R(f,G).
Initialization: R(f,Gi) = f
Algorithm: r = R(f,G). While
{d ∈ {1, . . . , t} : lt(gd)|h with gd ∈ G} 6= Ø :

r = r − lt(r)

lt(gj)
gj where

j = min{d ∈ {1, . . . , t} : lt(gd)|h with gd ∈ G}
: R(f,G) = r

Proposition 1.3.1 (Characterization of the Remainder). Let f ∈ R[x1, . . . , xn]

and G = {g1, . . . , gt} ⊂ R[x1, . . . , xn]. The above construction of R(f,G) gives

a decomposition for f :

f =

t∑
i=1

fi gi + r

such that, the following properties hold:

(1) r = 0 or no power product that appears in r is divisible by one of the

leadings in G.

(2) lt(f) = max{r,max
i
{fi gi}}.

The more important definition is the one given by Buchberger in [23]:

Definition 1.3.1 (Gröbner Basis). G is called a Gröbner basis if every

polynomial has an unique normal form with respect to G.

If F is a finite set of polynomials in R[x], a Gröbner basis for F is a

Gröbner basis, G, such that 〈F 〉 = 〈G〉.
The most central and original definition towards the algorithm for com-

puting Gröbner bases for any finite set of polynomials, is the concept of S-

polynomial.

Let f, g ∈ R[x], and choose multiindices α and β such that xα lm(f) =

xβ lm(g) = LCM(lm(f), lm(g)) (LMC denotes the least common multiple).

Now, define the S-polynomial of f and g as:

Spol(f, g) = xα
f

lc(f)
− xβ g

lc(g)

Theorem 1.3.1 (Buchberger). A finite set G of polynomials is a Gröbner

basis if and only if R(Spol(f, g), G) = 0, for all f, g ∈ G.

This result allowed to present an algorithm for computing a Gröbner basis

for a given finite set of polynomials in R[x].

10 1. PRELIMINARIES

Algorithm 2: Buchberger algorithm

Input : G := F
≺ an admissible ordering

Initizalization: B := {(f1, f2) ∈ G×G : f1 6= f2}
while B 6= ∅ do

Choose (f, g) ∈ B;
B := B\{(f, g)};
if h := R(Spol(f, g), G) 6= 0 then

B := B ∪ (G× {h});
G := G ∪ {h};

end

end
Output: A Gröbner basis for F : G

If a Gröbner basis for an ideal I in R[x1, x2, . . . , xn] is computed relative

to the lexicographic ordering with x1 � x2 � · · · � xn, the intersection of I

and R[xl+1, . . . , xn], with l from 0 to n− 1, that we will denote by Il, is given

by the intersection of the Gröbner basis with R[xl+1, . . . , xn]. In particular a

polynomial f lies in R[xl+1, . . . , xn], if and only if its leading term lies in this

subring. This is known as the elimination property.

One of the main application of Gröbner bases is the use of these structures

for solving systems of polynomial equations with finite number of solutions.

Let {f1, . . . , ft} ⊂ R[x1, . . . , xn], its affine variety is defined as:

V (f1, . . . , ft) = {z ∈ R : fi(z) = 0, ∀i = 1, . . . , t}

Analogously, let I be an ideal in R[x1, . . . , xn]. We define its affine variety

as the set of common roots of all the polynomials in I:

V (I) = {z ∈ R : f(z) = 0,∀f ∈ I}

By the Hilbert Basis Theorem, every ideal is finitely generated, so it is

clear that, if I = 〈f1, . . . , ft〉, V (I) = V (f1, . . . , fn).

In particular, this gives us a method for solving simultaneous polynomial

equations. If there are only finitely many solutions (over an algebraic closure

of the field in which the coefficients lie) to the system of equations
f1(x1, . . . , xn) = 0
...

...

fm(x1, . . . , xn) = 0

we should be able to manipulate these equations to get something of the

form g(xn) = 0.

1.3. GRÖBNER BASES 11

The elimination property says that if we compute a Gröbner basis for

the ideal generated by {f1(x), . . . , fm(x)}, relative to the right lexicographic

ordering, then we can find the polynomial g as one of the elements of our basis.

Furthermore, there will be another polynomial in the basis involving only xn−1

and xn, so we can take our possible solutions for xn and find corresponding

values for xn−1. This lifting continues all the way up until we’ve found the

values of all the variables.

The result to describe this procedure is called the Extension Theorem. It

can be stated as follows:

Theorem 1.3.2 (The Extension Theorem). If R is algebraically closed,

then, a partial solution (al+1, . . . , an) in V (Il) extends to (al, al+1, . . . , an) in

V (Il−1) provided that the leading coefficient polynomials of the elements of a

lex Gröbner basis for Il−1 do not all vanish at (al+1, . . . , an).

These properties allow us to develop an algorithm for solving multiobjec-

tive integer programming problems, using Gröbner bases for solving certain

system of polynomial equations related to the mathematical program.

1.3.1. Gröbner bases of toric ideals. When the ideals are generated

by binomials as follows:

I = 〈xα − xβ : Aα = Aβ〉 ⊆ R[x1, . . . , xn]

where A ∈ Zm×n+ , such ideal is called toric.

There are some methods to apply the toric algebraic geometry to (single-

objective) integer programming. All of them have common strategies:

(1) Translate the integer programming problem into a problem about

polynomials;

(2) Use the Gröbner bases techniques developed so far to solve the poly-

nomial problem;

(3) Translate the solution of the polynomial problem back into a solution

of the integer programming problem.

The first approach to those methods was given by Conti and Traverso [30].

There, from an specific linear integer problem, they build an ideal and the re-

duced Gröbner basis for it. Then, the optimal solution for the integer problem

is the remainder of a certain monomial by the basis. The more important

results to go through that method are given here.

First, we consider the following integer programming problem:

(4)

min c x

s.t. A x = b

x ∈ Zn+

12 1. PRELIMINARIES

where c = (ci) ∈ Zn+, b = (bj) ∈ Zm+ and A = (aij) ∈ Zm×n+ . We denote by

IPA,c(b) the above problem and by IPA,c the family of problems where the

right-hand side varies.

Introducing the following map φ : C[w1, . . . , wn] → C[z1, . . . , zm] defined

as φ(wj) =

m∏
i=1

z
aij
i , and extending to the entire polynomial ring conveniently,

the following result is clear.

Lemma 1.3.2. A vector x ∈ Zn+ is feasible for Problem (4) if and only if

φ maps the monomial wx = wx1
1 · · ·wxnn to the monomial zb = zb11 · · · zbmm .

Then, let fj = φ(wj) =

m∏
i=1

z
aij
i and consider the ideal

JA = 〈f1 − w1, . . . , fn − wn〉 ⊂ C[z1, . . . , zm, w1, . . . , wm]

With these assumptions, the following result can be stated.

Theorem 1.3.3. Algorithm 3 correctly solves Problem (4).

Proof. The original proof of this result can be seen in [30]. For an

easier understanding, the reader is referred to the explanations given in [2] or

[15]. �

Algorithm 3: Conti-Traverso algorithm for single objective IP.

input : A ∈ Zm×n+ , b ∈ Zm+ , c ∈ Zn+

output: An optimal solution for Problem (4)
Algorithm:

(1) Compute a Gröbner basis for JA.

(2) Compute the remainder g = R(

m∏
i=1

zibi, G).

(3) If g = w
x∗1
1 · · ·w

x∗n
n ∈ C[w1, . . . , wn], then (x∗1, . . . , x

∗
n) is an optimal

solution to Problem (4). If g 6∈ C[w1, . . . , wn], then, Problem (4) is
infeasible.

The assumption about the nonnegativity of the objective costs can be

done without loos of generality. Furthermore, Algorithm 3 may be modified

to allow for A, b having negatives entries. See details of that modification, e.g.

[15].

Algorithm 3 raises several computational issues. The Conti and Traverso

algorithm has its limitation as the size of A increases since it requires n extra

variables over those present in IA and the Buchberger algorithm for computing

Gröbner bases is sensitive to the number of variable involved. A different

1.3. GRÖBNER BASES 13

algorithm for computing a generating set for IA without using extra variables

can be found in [60].

Once the generating set of IA has been found, one needs to compute the

reduced Gröbner basis of IA. This can be done by any computer algebra

package that does Gröbner basis computation like Maple, Singular, CoCoa,

Macaulay2 or Mathematica to name a few. As the size of the problem in-

creases, a straightforward computation of reduced Gröbner bases of IA can

become expensive and even impossible. Several tricks can be applied to help

computation, many of which are problem specific.

In the third step of the algorithm, one requires an initial solution to the

problem. The original Conti- Traverso algorithm achieves this indirectly dur-

ing the elimination procedure. Theoretically this task can be as hard as solving

the problem, although in practice this depends on the specific problem at hand.

The last step, to compute the normal form of a monomial with respect to the

current reduced Gröbner basis, is (relatively speaking) a computationally easy

task.

In practice, one is, generally, only interested in solving the integer program

for a fixed b. In this situation, the Buchberger algorithm can be truncated to

produce a sufficient set of binomials that will solve this integer program [105].

This idea was originally introduced in [108] in the context of binary integer

programs in which all the data are nonnegative.

A geometric interpretation of Algorithm 3 and more generally of the Buch-

berger algorithm for toric ideals can be found in [103]. There, a test set for the

family IPA,c is a finite subset of vectors in KerZ(A) such that for the integer

program IPA,c(b) and a non-optimal solution v to this program, there is some

u in the test set such that c v > c (v−u). By interpreting a binomial xαi −xβi

in the Gröbner basis as the vector αi − βi ∈ KerZ(A), it can be seen that the

Gröbner basis is the unique minimal test set for the family IPA,c.

Furthermore, in [103] the binomial αi − βi can also be viewed as the

directed line segment [αi, βi] directed from αi to βi. For each b ∈ Zm+ we

now construct a directed graph as follows: the vertices of this graph are the

solutions to IPA,c(b) and the edges of this graph are all possible directed line

segments from the Gröbner basis that connect two vertices of this graph. Then

this basis is a necessary and sufficient set of directed line segments such that

this graph is a connected graph with a unique sink (at the optimal solution)

for each b ∈ Zm+ that makes the problem feasible.

14 1. PRELIMINARIES

1.4. Short Generating Functions

In this section, we recall some results on generating functions for poly-

topes, that we use in our development. For details the interested reader is

referred to [7; 8; 9].

Let P = {x ∈ Rn : Ax ≤ b} be a rational polytope in Rn. The main

idea of Barvinok’s Theory was encoding the integer points inside a rational

polytope in a “long” sum of monomials:

f(P ; z) =
∑

α∈P∩Zn
zα

where zα = zα1
1 · · · zαnn .

The following results, due to Barvinok, allow us to re-encode, in polynomial-

time for fixed dimension, these integer points in a “short” sum of rational

functions.

Theorem 1.4.1 (Theorem 5.4 in [7]). Assume n, the dimension, is fixed.

Given a rational polyhedron P ⊂ Rn, the generating function f(P ; z) can be

computed in polynomial time in the form

f(P ; z) =
∑
i∈I

εi
zui

n∏
j=1

(1− zvij)

where I is a polynomial-size indexing set, and where ε ∈ {1,−1} and ui, vij ∈
Zn for all i and j.

As a corollary of this result, Barvinok gave an algorithm for counting

the number of integer points in P . It is clear from the original expression

of f(P ; z) that this number is f(P ; 1), but 1 = (1, . . . , 1) is a pole for the

generating function, so, the number of integer points in the polyhedron is

lim
z→1

f(S; z). This limit can be computed using residue calculation tools from

elementary complex analysis.

Another useful result due to Barvinok and Wood [9], states that comput-

ing the short generating function of the intersection of two polytopes, given the

respective short generating function for each polytope, is doable in polynomial

time.

Theorem 1.4.2 (Theorem 3.6 in [9]). Let P1, P2 be polytopes in Rn and

P = P1∩P2. Let f(P1; z) and f(P2; z) be their short generating functions with

at most k binomials in each denominator. Then there exists a polynomial time

1.4. SHORT GENERATING FUNCTIONS 15

algorithm that computes

f(P ; z) =
∑
i∈I

γi
zui

s∏
j=1

(1− zvij)

with s ≤ 2k, where the γi are rational numbers and ui, vij are nonzero integral

vectors for i ∈ I and j = 1, . . . , s.

In the proof of the above theorem, the Hadamard product of a pair of

power series is used. Given g1(z) =
∑
m∈Zd

βm z
m and g2(z) =

∑
m∈Zd

γm z
m, the

Hadamard product g = g1 ∗ g2 is the power series

g(z) =
∑
m∈Zn

ηm z
m where ηm = βmγm.

The following Lemma is instrumental to prove Theorem 1.4.2.

Lemma 1.4.1 (Lemma 3.4 in [9]). Let us fix k. Then there exists a poly-

nomial time algorithm, which, given functions g1(z) and g2(z) such that

(5)

g1(z) =
zp1

(1− za11) · · · (1− za1k)
and g2(z) =

zp2

(1− za21) · · · (1− za2k)

where pi, aij ∈ Zd and such that there exists l ∈ Zl with 〈l, aij〉 < 0 for all i, j,

computes a function h(z) in the form

h(z) =
∑
i∈I

βi
zqi

(1− zbi1) · · · (1− zbis)

with qi, bij ∈ Zd, βi ∈ Q and s ≤ 2k such that h possesses the Laurent expan-

sion in a neighborhood U of z0 = (el1 , . . . , eln) and h(z) = g1(z) ∗ g2(z).

For proving Theorem 1.4.2, it is enough to assure that for given polytopes

P1, P2 ⊆ Zn, their generating functions satisfy conditions (5). It is not dif-

ficult to ensure that the conditions are verified after some changes are done

in the expressions for the short generating functions (for further details, the

interested reader is referred to [9]).

Actually, with this result a general theorem can be proved ensuring that

for a pair of polytopes, P1, P2 ⊆ Zn, there exists a polynomial time algorithm

to compute, given the generating functions for P1 and P2, the short generating

function of any boolean combination of P1 and P2.

Finally, we recall that one can find, in polynomial time, generating func-

tions for polytopes that are images of polytopes with known generating func-

tion.

16 1. PRELIMINARIES

Lemma 1.4.2 (Theorem 1.7 in [7]). Let us fix n. There exists a number

s = s(n) and a polynomial time algorithm, which, given a rational polytope

P ⊆ Rn and a linear transformation T : Rn → Rr such that T (Zn) ⊆ Zr,
computes the function f(S; z) for S = T (P ∩ Zn), S ⊆ Zr in the form

f(S; z) =
∑
i∈I

αi
zpi

(1− zai1) · · · (1− zais)

where αi ∈ Q, pi, aij ∈ Zr and aij 6= 0 for all i, j.

To finish this section, we mention the application of short generating

functions to solve single-objective integer programming. The interested reader

is referred to [35; 112] for further details.

Theorem 1.4.3 (Theorem 1 in [35]). Let A ∈ Zm×n, b ∈ Zm, c ∈ Zn.

Assume that m and n are fixed. Rational functions can be used to encode the set

of vectors {u− v : u is an optimal solution, v is a feasible solution, u, v ∈ Zn},
and then solve the MIP problem in time polynomial in the size of the input.

This result gives an alternative proof of the result by Lenstra [75] where

the polynomiallity (for fixed dimension) of integer linear programs is proven.

CHAPTER 2

Partial Gröbner bases: a polynomial

approach

The goal of this chapter is to present a new general methodology for solv-

ing MOILP using tools borrowed from algebraic geometry. The ideas described

here are extensions of some results either for Gröbner bases or its application

to solve single objective integer programs.

We present here a methodology to solve exactly multiobjective problems,

i.e. providing the whole set of Pareto-optimal solutions (supported and non-

supported ones). The approach is done in a polynomial algebra language. An

algorithm to compute remainders in the case when the corresponding ordering

over the monomials is not total, but partial, is presented. This reduction allows

us to extend the concept of Gröbner basis when a partial ordering rather than a

total order is considered over Nn. We call these new structures partial Gröbner

bases or p-Gröbner bases. We prove that p-Gröbner bases can be generated

by a variation of Buchberger Algorithm in a finite number of steps. The main

property of p-Gröbner bases of a toric ideal is that, for each element in the

ideal, the reduction by maximal chains in the basis is the zero set.

We propose two different approaches to solve multiobjective integer pro-

grams. The first method consists of three stages. The first one only uses the

constraint matrix of the problem and it produces a system of generators for

the toric ideal IA. In the second step, a p-Gröbner basis is built using the

initial basis given by the system of generators computed in the first step. This

step requires to fix the objective matrix since it is based on the partial order

induced by the objectives. Once the right-hand-side is fixed, in the third step

the Pareto-optimal solutions are obtained. This computation uses the new

concept of partial reduction of an initial feasible solution by the p-Gröbner

basis.

This algorithm extends, to some extent, Hosten-Sturmfels’ algorithm [60]

for integer programs, in the sense that, if we apply our method to single-

objective problems, partial reductions and p-Gröbner bases are the standard

notion of reductions and Gröbner bases, respectively.

17

18 2. PARTIAL GRÖBNER BASES: A POLYNOMIAL APPROACH

We also analyze a different methodology based in the original idea by

Conti and Traverso [30]. It consists of using the big-M method that results

in an increasing number of variables, in order to have an initial system of

generators. Moreover, this approach also provides an initial feasible solution.

Therefore, the first step in the above algorithm can be ignored and the third

step is highly simplified. In any case, our first method (the one extending

Hosten-Sturmfels approach) has proved to be more efficient than this second

one since computation of p-Gröbner basis is highly sensitive to the number of

variables.

Both algorithms have been implemented in MAPLE 10. In this chapter

we report on some computational experiments based on two different families

of problems with different number of objective functions.

2.1. Elements in the partial theory

Given an admissible total order ≺ on Nn, we can order the monomials

of any polynomial in the polynomial ring R[x1, . . . , xn] using the following

bijection between monomials and non negative integer vectors:

η : Mon[x1, . . . , xn] −→ Nn

xα1
1 · · · xαnn 7→ (α1, . . . , αn)

Using the same application, we can establish a similar relation, when the

order is not total, but partial. The following definitions extend those given for

total orderings:

Definition 2.1.1. Let ≺ a fixed partial ordering over Nn, and f(x) =∑
α∈S⊆Nn

fα xα be a polynomial in R[x1, . . . , xn], we will use the following no-

tation:

• setdeg(f) = max≺{α : α ∈ S} (the maximal set of S with respect to

≺).

• setlc(f) = {fα : α ∈ setdeg(f)}
• setlm(f) = {xα : α ∈ setdeg(f)}
• setlt(f) = {fα xα : α ∈ setdeg(f)}

In the case where the order is not total, there is not an unique maximal

element of a subset of vectors. Though, it is possible to group any subset of

M in comparable subsets, and where its elements can be totally ordered. For

each f in R[x1, . . . , xn]:

F(f) := {(f, h) : h ∈ setlt(f)}

2.1. ELEMENTS IN THE PARTIAL THEORY 19

defining a function F : R[x1, . . . , xn] → P(R[x1, . . . , xn] ×Mon[x1, . . . , xn]).

The key is to consider the same polynomial as a different polynomial of itself,

depending of the leading term considered. Denoting by π1 and π2 the usual

projections of R[x1, . . . , xn] × R[x1, . . . , xn] over R[x1, . . . , xn], is easy to see

that:

π1(F(f)) = {f} and π2(F(f)) = setlt(f)

This definition can be extended to a set of polynomials as follows: Let

{f1, . . . , ft} be a set of polynomials in R[x1, . . . , xn], define:

F(f1, . . . , ft) :=

t⋃
i=1

F(fi) = {(fi, h) : h ∈ setlt(fi), i = 1, . . . , t}

If ≺ is a partial order over Nn, then we have the relation, R, induced by

≺:

αRβ ⇔ α ≺ β or β ≺ α.

By definition is reflexive and symmetric. For a fixed partial order and for each

p ∈ Mon[x1, . . . , xn], we denote by Cp the set of comparable monomial with

p, i.e.,

Cp := {q ∈Mon[x1, . . . , xn] : qRp}

According to this binary relation, for a set of polynomial G = {g1, . . . , gt},
the comparable blocks of G are going to be the maximal chains of the di-

rected graph whose elements are the leading terms of G ordered by ≺, that

is, the ordered paths between maximal and minimal elements in {setlt(gj) :

j = 1, . . . , t}. In other words, if we write Ψ = {hkjj } j=1...,t
kj=1,...,uj

where uj =

#setlt(gj), setlt(gi) = {h1
i , . . . , h

ui
i }, and Max(Ψ) = {M1, . . . ,MQ}, Min(Ψ)

= {m1, . . . ,mT }, then Gji for i = 1, . . . , Q and j = 1, . . . , T , is the ordered

path (if it exists) that goes from Mi to mj .

The following basic example shows the easy way to compute the internally

comparable blocks of a set of polynomials.

Example 2.1.1 (Computing connected blocks of a set of polynomials). Let

G = {g1 = x2y3 +xy4, g2 = y2−xy3 +xy, g3 = x3 +x4y2, g4 = x2y+xy2, g5 =

xy − x} and ≺ the Ω-partial order given by the following matrix:

Ω =

(
2 1

3 5

)
setlt(g1) = {x2y3, xy4}, setlt(g2) = {xy3}, setlt(g3) = {x4y2}, setlt(g4) =

{x2y, xy2} and setlt(g5) = {xy}. Then, F(G) = {(g1, x
2y3), (g1, xy

4), (g2, xy
3),

(g3, x
4y2), (g4, x

2, y), (g4, xy
2), (g5, xy)}, and Ψ = { x2y3, xy4, xy3, x4y2,

x2y, xy2, xy} and Max(Ψ) = {xy4, x4y2}, Min(Ψ) = {xy}.

20 2. PARTIAL GRÖBNER BASES: A POLYNOMIAL APPROACH

Figure 2.1 corresponds to the directed graph associated to G, i.e., Hasse

Diagram for the leading terms according to the construction of this diagram in

N2, and using η.

?>=<89:;x4y2

≺

��

?>=<89:;xy4

≺

		������������������

?>=<89:;x2y3

≺

��666666666

?>=<89:;xy3

≺

��555555555

≺

�����������

?>=<89:;x2y

≺

��777777777
?>=<89:;xy2

≺

�����������

/.-,()*+xy

Figure 2.1. Hasse diagram of Example 2.1.1

There are four maximal chains:

G1 = {(g3, x
4y2), (g1, x

2y3), (g2, xy
3), (g4, x

2y), (g5, xy)}
G2 = {(g3, x

4y2), (g1, x
2y3), (g2, xy

3), (g4, xy
2), (g5, xy)}

G3 = {(g1, xy
4), (g2, xy

3), (g4, x
2y), (g5, xy)}}

G4 = {(g1, xy
4), (g2, xy

3), (g4, xy
2), (g5, xy)}}

There many different ways to compute the maximal chains of a directed

graph, see [5] and [93].

2.2. Gröbner bases for partial orders

In this section an adaptation of the reduction and the Buchberger algo-

rithm when we have an order that is not total, but partial, is presented. This

generalization is based on the usual algorithm but it has been thought to be

used to get solutions of a multiobjective optimization problem.

2.2.1. Partial remainders. The reduction of the pair (f, h) where f ∈
R[x1, . . . , xn] and h ∈ setlt(f), by an ordered set G with respect to an admis-

sible partial ordering consists of the process described in Algorithm 4. This

2.2. GRÖBNER BASES FOR PARTIAL ORDERS 21

Algorithm 4: Partial reduction algorithm by ordered sets.

input : R = {(f, h)}, ≺ an admissible partial order over Nn,
S = {(f, h)}, G = {(g1, h1), . . . , (gt, ht)} with hi+1 ≺ hi.

Set i := 1, So = {}.
repeat

for (f̃ , h̃) ∈ S \ So do

while hi divides h̃ do

Set rm = f̃ − h̃
hi
gi and Ro = {rm} × setlt(rm)

For each (r, q) ∈ Ro and (s, p) ∈ R:
if q ≺ p then

R = R\{(s, p)};
end
S = Ro.
R = R ∪Ro.
So = So ∪ {(f̃ , h̃)}.

end

end
i = i+ 1;

until i ≤ t ;
output: pR((f, h), G), the partial remainder set of (f, h) by G

reduction process extends to the case of a finite collection of ordered sets of

pairs by establishing the sequence in which the sets of pairs are considered. Let

fix an admissible partial ordering ≺. For f ∈ R[x1, . . . , xn] and h ∈ setlt(f) we

denote by pR((f, h), G)σ the partial reduction of the pair (f, h) by the family

G = {G1, . . . , Gt} for a fixed sequence of indices σ = (i1, . . . , it).

Proposition 2.2.1. The above construction of pR((f, h), G)σ for every

permutation σ, gives a decomposition for f :

f =

t∑
i=1

fi gi + r

for all r ∈ pR((f, h), G))σ, gi ∈ G and fi ∈ R[x1, . . . , xn] that satisfy yhe

following properties:

(1) r = 0 or no power product that appears in r is divisible by one of the

leadings monomials in G obtaining a smaller one.

(2) h = max
≺

{
r ∩ Ch,max

≺
{pi qi : pi ∈ setlt(fi) ∩ Ch, qi ∈ setlt(gi) ∩ Ch}

}
,

where Ch ⊂ Mon[x1, . . . , xn] is the set of leading monomials com-

parable to h by ≺. (Note that h is uniquely well defined since every

element involved to take maximal elements is in the same chain of

elements that are comparable with h)

22 2. PARTIAL GRÖBNER BASES: A POLYNOMIAL APPROACH

2.2.2. p-Gröbner bases. Using the above construction of partial re-

duction, it is possible to give the main definition of this section:

Definition 2.2.1 (p-Gröbner base). Let G = {G1, . . . , Gt} be a finite fam-

ily in R[x1, . . . , xn] and I the ideal generated by the elements in {G1, . . . , Gt}.
G is said to be a partial Gröbner basis (or a p-Gröbner basis for short) of

I with respect to an admissible partial order, ≺, on Mon[x1, . . . , xn] if and

only if, Gi is a maximal chain of G, for each i = 1, . . . , t, and for all f ∈
I and h ∈ setlt(f) such that f 6= 0 and for all sequences of indices σ,

pR((f, h), G)σ = {0}.
A p-Gröbner basis is said to be reduced if every element in each maximal

chain cannot be obtained by reducing any other element of the same chain.

Given a p-Gröbner basis, computing a reduced p-Gröbner basis is done

by deleting the elements that can be reduced by other elements in the basis.

After the removing process, the family is a p-Gröbner basis having only non

redundant elements. For computing a p-Gröbner basis we describe an algo-

rithm ’a la’ Buchberger. Then, we need a definition of Spolynomial for the

partial case.

For any two polynomials f1 and f2, the Spolynomial with respect to the

leading monomials h1 = c1 x
α1 ∈ setlm(f1), h2 = c2 x

α2 ∈ setlm(f2) is:

(6) Sk((f1, h1), (f2, h2)) =
xγ

h1
f1 −

xγ

h2
f2 k = 1, 2

where γ ∈ Nn and γi = max{(α1)i, (α2)i}, i = 1, . . . , n. This definition

is exactly the same that in the total (complete order) case, except by the

elements where it applies. The main difference will appear when we need to

divide these Spolynomial, and then fixing the leading term of them: for S1 the

leading term will be the one with positive coefficient and for S2 the one with

negative coefficient, in the case when both terms are incomparable by ≺.

The following lemma is used in the proof of our extended criterion and it is

an adaptation of the analogous result for total orders and usual Spolynomials.

Lemma 2.2.1. Let f1, . . . , fs ∈ R[x1, . . . , xn] be such that there exists p ∈
s⋂
i=1

setlm(fi). Let f =

s∑
i=1

ci fi with ci ∈ R. If there exists q ∈ setlm(f) such

that q ≺ p, then f is a linear combination with coefficients in R of Spolynomials

of fi and fj, 1 ≤ i < j ≤ s.

2.2. GRÖBNER BASES FOR PARTIAL ORDERS 23

Proof. By hypothesis, fi = ai p+ other smaller or incomparable terms,

with ai ∈ R, for all i. Then, f can be rewritten as f =

s∑
i=1

ci fi =

s∑
i=1

ci ai p+

other smaller or incomparable terms. Since q ≺ p, then

s∑
i=1

ci ai = 0.

By definition, for S((fi, p), (fj , p)) = 1
ai
fi − 1

aj
fj , thus,

f = c1 f1 + · · ·+ cs fs = c1 a1(
1

a1
f1) + · · ·+ cs as(

1

as
fs)

= c1 a1(
1

a1
f1 −

1

a2
f2) + (c1 a1 + c2 a2) (

1

a2
f2 −

1

a3
f3) + · · ·

+ (c1 a1 + · · ·+ cs−1 as−1) (
1

as−1
fs−1 −

1

as
fs) + (c1 a1 + · · ·+ cs as)

1

as
fs

= dk1 Sk((f1, p), (f2, p)) + · · ·+ dks−1 Sk((fs−1, p), (fs, p)) +

(
1

as

s∑
i=1

ci ai

)
fs

=

s−1∑
i=1

dki Sk((fi, p), (fi−1, p)).

where dki =

i∑
j=1

cj aj , for i = 1, . . . , s and k = 1, 2. This proves the lemma. �

In the following, we will simplify our notation, whenever it does not cause

confusion, and we shall not write the dependence of the leading terms in the S
polynomials. Note that it is possible for maximal chains because their elements

only have a leading term.

Theorem 2.2.1 (Buchberger’s Criterion for pGröbner basis). Let G =

{G1, . . . , Gt} be a finite family of subsets of R[x1, . . . , xn]. The following are

equivalent:

(1) G = {G1, . . . , Gt} is a p-Gröbner basis for an ideal I generated by

the elements in G.

(2) For all gi ∈ Gi, gj ∈ Gj, hi ∈ setlm(gi) and hj ∈ setlm(gj),

pR((S((gi, hi), (gj , hj), h), G)σ = {0} for some σ and for all h ∈
setlm(S((gi, hi), (gj , hj)).

Proof. If G is a p-Gröbner basis for I, then as S((gi, hi), (gj , hj)) is in I,

and by definition of pGröbner basis, pR((S((gi, hi), (gj , hj), h), G)σ = {0} for

any σ.

24 2. PARTIAL GRÖBNER BASES: A POLYNOMIAL APPROACH

Then, by hypothesis f can be written as a linear combinations of the

elements in G∗ (this representation is not unique):

f =

d∑
i=1

pi g
∗
i

for some pi ∈ R[x1, . . . , xn] for i = 1, . . . , d.

Let X = {X1, . . . , XN} be the set of maximal elements of the set {PiRi :

Pi ∈ setlm(pi),

Ri ∈ setlm(g∗i)} with respect to ≺.

If X ⊇ setlm(f), the polynomial f can be partially reduced by the ele-

ments in G∗. This proves the result.

Otherwise, there must exist l ∈ setlm(f)\X. We will prove by contradic-

tion that this case is not possible. Indeed, if l ∈ setlm(f), it must come from

some simplification (reduction) of the linear combination defining f . Then,

the construction ensures that it must exist at least one element, Xi ∈ X, such

that l ≺ Xi.
Set J(Xi) = {j : Pj Rj = Xi with Pj ∈ setlm(pj), Rj ∈ setlm(g∗j)}. For

any j ∈ J(Xi), we can write pj = Pj+ other terms and define q =
∑

j∈J(Xi)

Pj g
∗
j .

Then, Xi ∈ setlm(Pj g
∗
j), for all j ∈ J(Xi). However, by hypothesis there ex-

ists Q ∈ setlm(q), with Q ≺ Xi.
Hence, by Lemma 2.2.1, there exist dks,r ∈ R, k = 1, 2, such that:

q =
∑

r,s∈J(Xi),r 6=s,g∗s ,g∗r∈G∗
dks,r Sk((Ps g

∗
s , Ls), (Pr g

∗
r , Ls)) k = 1, 2.

for some Lj ∈ setlm(Pj g
∗
j) for all g∗j ∈ G∗.

Now, for any r, s ∈ J(Xi), we have that Xi = lcm(Lr, Ls) for some

Lr ∈ setlm(Pr g
∗
r) and Ls ∈ setlm(Ps g

∗
s) and therefore we can write:

Sk((Pr g
∗
r , Lr), (Ps g

∗
s , Ls)) =

Xi
Lr

Pr g
∗
r −

Xi
Ls

Ps g
∗
s

=
Xi
lr
g∗r −

Xi
ls
g∗s =

Xi
Pr,s

Sk((g∗r , lr), (g
∗
s , ls))

where lr = Lr
Pr

, ls = Lr
Ps

, Pr,s = lcm(lr, ls) and k = 1, 2.

By hypothesis, pR
(
Sk((g∗r , lr), (g

∗
s , ls)),G∗

)
= {0}. Thus, from the last

equation we deduce that:

pR(Sk((Pr g
∗
r , Lr), (Ps g

∗
s , Ls)),G) = {0}

this gives a representation:

Sk((Pr g
∗
r , Lr), (Ps g

∗
s , Ls)) =

∑
g∗ν∈G∗

pk,νr,s g
∗
ν

2.2. GRÖBNER BASES FOR PARTIAL ORDERS 25

with pk,νr,s ∈ R[x1, . . . , xn] and k = 1, 2.

Then, {P k,νr,s R
ν : g∗ν ∈ G∗, P k,νr,s ∈ setlm(pk,νr,s), Rν ∈ setlm(g∗ν) and do

not exist P k,ν̃r,s and Rν̃ satisfying P k,ν̃r,s ∈ setlm(pk,ν̃r,s), Rν̃ ∈ setlm(g∗ν̃) such

that P k,νr,s R
ν ≺ P k,ν̃r,s R

ν̃} = setlm(Sk(Pr g
∗
r , Ps g

∗
s)).

To simplify the notation, denote Skr,s = setlm(Sk(Pr g
∗
r , Ps g

∗
s)).

By construction of Spolynomial, we have that there exists p ∈ Skr,s such

that p ≺ Xi, so, substituting these expressions into q above, we have

f =
∑

j 6∈J(Xi)

pj g
∗
j +

∑
j∈J(Xi)

pj g
∗
j =

∑
j 6∈J(Xi)

pj g
∗
j + q

=
∑

j 6∈J(Xi)

pj g
∗
j +

∑
r,s

dkr,s Sk((Ps g
∗
s , Ls), (Pr g

∗
r , Lr))

=
∑

j 6∈J(Xi)

pj g
∗
j +

∑
r,s

∑
ν

pk,νr,s g
∗
ν .

Thus, we have expressed f as:

f =

d∑
i=1

p′i g
∗
i

with one leading term, p, smaller than Xi. However, this is a contradiction

and the theorem is proved. �

This criterion allows us to describe an algorithm to compute p-Gröbner

bases. The pseudocode of that procedure is described in Algorithm 5.

Algorithm 5: Buchberger’s algorithm for pGröbner bases.

Input : F = {g1, . . . , gk} ⊆ R[x1, . . . , xm], I = 〈F 〉 and ≺ an

admissible partial order. {Fk}Nk=1 the partition of F(F) in

blocks of comparable elements.

Initialization: Gk = Fk for all k.

for p ∈ Gk, q ∈ Gl do

repeat

if pR((Sk((p, h1), (q, h2)), h), G) = {0} for some

h ∈ setlm(Sk(p, q)) then
G := G ∪ {r} for all

r ∈ pR((Sk((p, h1), (q, h2)), h), G) = {0} that is not in G

end

Part G in maximal chains.
until pR((Sk((p, h1), (q, h2)), h), G) = {0} for all p ∈ Gk, q ∈ Gl. ;

endfor

Output: G = {G1, . . . , Gt} pGröbner basis for I.

26 2. PARTIAL GRÖBNER BASES: A POLYNOMIAL APPROACH

By construction, as for the standard Gröbner bases, we can ensure that

Algorithm 5 ends. For standard Gröbner bases, it follows from the fact that

polynomial rings over a field are noetherian. In the partial case, the same

result can be applied taking into account that at each step, instead of one

polynomial, several polynomials may be added. The other fact in this proof is

that of the notion of initial ideal of a given polynomial ideal (further details

can be seen in [2]). The extension of this monomial ideal can be defined as

the partial initial ideal of an ideal I ⊆ R[x1, . . . , xn] with respect to a partial

order, ≺, as p− in≺(I) = {h : ∃f ∈ I with h ∈ setlt(f)}.
Furthermore, using the notion of Universal Gröbner basis (see [100] for

further details), the p-Gröbner basis is (without taking into account the parti-

tion in maximal chains but only its elements) at most as big as the Universal

Gröbner basis .

Proposition 2.2.2. After a finite number of iterations, Algorithm 5, com-

putes a p-Gröbner basis for I = 〈F 〉.

Corollary 2.2.1. Let G = {Gk}tk=1 be a pGröbner basis for an ideal

I ⊆ R[x1, . . . , xn]. A reduced pGröbner basis can be computed from G as

follows:

(1) For each k = 1, . . . , t, remove from Gk all gki for which there exists

j 6= i such that the unique element in π2(F(gkj) ∩ Gk) divides the

unique element in π2(F(gki)∩Gk), and divide each remaining gki by

its leading coefficient.

(2) Compute the following reduction process for each Gk = {gk1 , . . . , gkik}:
For j = 1, . . . , ik:

Compute Pj := pR(gkj , Gk\{gkj }). If there exists an element in Pj,

hj, such that it is comparable with every element in Gk: Gk :=

Gk\{gkj } ∪ {hj}

2.3. Application to integer multiobjective programming

In the following, we present algorithms to solve multiobjective problems

analogous to the methods that solve the single objective case, using standard

Gröbner basis.

The following lemma states the shape of a Gröbner basis for toric ideals.

The partial Gröbner bases Theory developed above will be applied to toric

ideals for solving multiobjective linear integer programs.

In the following, we will simplify our notation, whenever it does not cause

confusion, and we shall not write the leading terms of monomials since each

the leading term of a monomial coincides with itself.

2.3. APPLICATION TO INTEGER MULTIOBJECTIVE PROGRAMMING 27

Lemma 2.3.1. Let G = {G1, . . . , Gt} be a p-Gröbner basis for IA = 〈xu−
xv : Au = Av〉 with respect to the partially admissible ordering ≺. Then, every

element in Gi, i = 1, . . . , t, is a binomial.

Proof. It is clear taking into account that the Spolynomials of binomials

are binomials by construction, and that the remainders of binomials by bino-

mials are also binomial. Then, every element that is added to the basis with

the Buchberger algorithm is a binomial. �

Methods to solve multiobjective problems using p-Gröbner basis are based

on computing the reduction of a feasible solution by the partial basis of a toric

ideal. The key for that result is the fact that the partial remainder of any pair

of feasible solutions is the same, therefore the algorithm is valid for any initial

feasible solution. After the following theorem, Lemma 2.3.1 ensures the same

statement for the multiobjective case and p-Gröbner bases.

Theorem 2.3.1. Let G be the reduced p-Gröbner basis for IA = 〈xu−xv :

Au = Av〉 and α ∈ Zn+. Then, pR(xα, G)σ = pR(xα, G)σ′ , for any sequences

σ and σ′.

Proof. We first observe that the elements in pR(xα, G)σ are monomials.

Indeed, since the first step of Algorithm 4 reduces the element xα by a binomial

in G, (xα1 − xβ1 , xα1), then r = xα − xα

xα1 (xα1 − xβ1) = xα−α1+β1 . Then, the

remainders are all monomials.

On other hand, let xβ be an element in pR(xα, G)σ, then xα−xβ ∈ IA, so

α − β ∈ Ker(A) and by Definition 2.2.1, pR((xα − xβ , xα), G)σ′ = pR((xα −
xβ , xβ),G)σ′ = {0} for any σ′. So, xβ ∈ pR(xα, G)σ′ . �

The above result ensures that without loss of generality remainders of

monomials by p-Gröbner bases are independent of the permutation of indices

used. Therefore, we do not make reference to σ in the notation, referring

always to the natural sequence σ = (1, . . . , t).

Lemma 2.3.2. Let G be the reduced p-Gröbner basis for IA and α1, α2 ∈
Zn+ such that Aα1 = Aα2. Then, pR(xα1 , G) = pR(xα2 , G).

Proof. Let xβ ∈ pR(xα1 , G), then since Aα1 = Aα2, Aβ = Aα2. Next,

since xβ cannot be reduced because it is in the remainder set, then xβ ∈
pR(xα2 , G). �

The following theorem states how to solve MOILP using partial Gröbner

bases of toric ideals. First, we need to fix the partially admissible ordering

28 2. PARTIAL GRÖBNER BASES: A POLYNOMIAL APPROACH

over the monomials in R[x1, . . . , xn] to compute the basis. We use the partially

admissible ordering induced by the objective function as follows:

xu ≺C xv :⇐⇒ C u � C v.

Theorem 2.3.2. Let A ∈ Zm×n+ , C ∈ Zk×n+ and b ∈ Zm+ . If G =

{G1, . . . , Gt} is the reduced p-Gröbner basis for the toric ideal: IA := 〈xu−xv :

A · u = A · v〉 with the partial order defined by the cost matrix C, then, the set

of exponents of the monomials in pR(xα, G) coincides with the set of Pareto-

optimal solutions for MIPA,C(b).

Proof. Let pR(xα, G) = {xα1 , . . . , xαr} the set of remainders obtained

reducing the feasible monomial by a p-Gröbner basis. If β is a feasible solution

that dominated αi, for some i = 1, . . . r, then, xαi − xβ is clearly in IA since

Aαi = Aβ = b. By Definition 2.2.1, there is some Gj in G and an element

gj ∈ Gj such that the leading term of xαi − xβ , namely xαi , can be reduced

by gj , but xαi has been already reduced because it is in the partial remainder

set of xα. It is a contradiction.

Suppose now that there exists a Pareto optimal solution, α∗ that is differ-

ent of all αi. Then, xα−xα
∗

is in IA, and by definition of pGröbner basis and

because α∗ is a Pareto optimal solution, it cannot exists any feasible solution

smaller than α∗. Then, since xα is reduced to the elements in {xα1 , . . . , xαr },
there exists j such that xαj − xα

∗
is in pR(xα − xα

∗
, G), since, xα

∗
must be

contained in pR(xα, G) by construction. �

The above results states that once we have built a p-Gröbner basis for the

toric ideal IA and an initial feasible solution is given, reducing that solution by

that basis it is possible to obtain any Pareto-optimal solution of the problem.

However, in general, computing feasible solutions and Gröbner bases is not

easy. One way to compute a partial Gröbner basis is to use a system of

generators for the ideal. Even in the toric case, in general, it is not true that

given a basis, BA, for KerZ(A), BA, the toric ideal is generated by {xu
+
−xu

−
:

u ∈ BA}. Moreover, obtaining a feasible solution, in general, may be as difficult

as solving the problem since it consists of solving a system of diophantine

equations.

Two methods are described below for solving MOILP. A first one extend-

ing the ideas of Conti and Traverso for the single-objective case and another

one based on the extension of the improvement given by Hosten and Sturmfels.

The first approach to compute a p-Gröbner basis for a family of mul-

tiobjective programs is based on Conti and Traverso method for the single

2.3. APPLICATION TO INTEGER MULTIOBJECTIVE PROGRAMMING 29

objective case [30]. For this algorithm, the key is transforming the given mul-

tiobjective program into another one where computations are easier and so

that an initial set of generators for IA is known.

Notice that finding an initial set of generators for IA can be done by a

straightforward modification of the Big-M method [10].

Given the program MIPA,C(b), we consider the associated extended mul-

tiobjective program, EMIPA,C(b) as the problem MIPÃ,C̃(b) where

Ã =


−1

Idm
... A

−1

 ∈ Zm×(m+1+n),

C̃ = (M ·1|C) ∈ Z(m+1+n)×k, Idm stands for the m×m identity matrix, M is

a large constant and 1 is the (m+ 1)× k matrix whose components are all 1.

This problem adds m + 1 new variables, whose weights in the multiobjective

function are big, and so, solving this extended minimization program allows

us to solve directly the initial program MIPA,C . Indeed, any feasible solution

to the original problem is a feasible solution to the extended problem with

the first m components equal to zero, so any feasible solution of the form

(0,m+1. . . , 0, α1, . . . , αn) is non-dominated, upon the order ≺C̃ , by any solution

without zeros in the first m components. Then, computing a p-Gröbner basis

for the extended program using the partial Buchberger Algorithm, allows us

detecting infeasibility of the original problem. Furthermore, a trivial feasible

solution, x̃0 = (b1, . . . , bm, 0, n+1. . . , 0), is known and the initial set of generators

for IA = 〈zα1wβ1 − zα2wβ2 : Ã (α1, β1) = Ã (α2, β2) is given by {
m∏
i=1

zai1i −

w1, . . . ,
m∏
i=1

zaini − wn} (see [2] for further details). Here the z-variables are

used for the new slack variables of the extended problem and w for the original

variable of the problem.

With these considerations, let G = {G1, . . . , Gt} be a p-Gröbner basis

for the toric ideal IÃ = 〈
m∏
i=1

zai1i − w1, . . . ,
m∏
i=1

zaini − wn〉 and the admissible

partial order induced by C. Then, Algorithm 6 solves correctly MIPA,C(b).

Hoşten and Sturmfels [60] improved the method by Conti and Traverso

to solve single-objective programs using standard Gröbner bases. Their im-

provement is due to the fact that it is not necessary to increase the number

of variables in the problem, as Conti and Traverso’s algorithm does. Hoşten

and Sturmfels’s algorithm allows decreasing the number of steps in the com-

putation of the Gröbner basis, but on the other hand, it needs an algorithm to

30 2. PARTIAL GRÖBNER BASES: A POLYNOMIAL APPROACH

Algorithm 6: Conti-Traverso algorithm for solving MOILP.

input : A ∈ Zm×n+ , C ∈ Zk×n+ and b ∈ Zm+ .

Set IÃ = 〈
m∏
i=1

zai1i − w1, . . . ,

m∏
i=1

zaini − wn〉.

Step 1.: Compute a p-Gröbner basis, G, for IÃ, with the ordering
induced by C.

Step 2.: Compute the set of partial remainders, pR(

m∏
i=1

zbii ,G).

Step 3.: For each g∗ ∈ PR(

m∏
i=1

zbii , G) ∩ C[w1, . . . , wn], with

g = w
x∗1
1 · · ·w

x∗n
n , x∗ is a Pareto optimal solution for the program.

Step 4.: If g∗ 6∈ R[w1, . . . , wn] for all g∗ in pR(

m∏
i=1

zbii , G), the

problem is infeasible.

compute an initial feasible solution, which was trivial in the Conti and Traverso

algorithm. We have modified this alternative algorithm to compute the entire

set of Pareto-optimal solutions. The first step in the algorithm is computing

an initial basis for the polynomial toric ideal IA = 〈xu − xv : Au = Av〉.
This step does not depend on the order induced by the objective function, so

it can be used to solve multiobjective problems. Details can be seen in [60].

Algorithm 7 implements the computation of the set of generators of IA. This

procedure uses the notion of LLL-reduced basis (see [74] for further details).

In addition, we use a ω-graded reverse lexicographic term order, ≺griω , induced

by xi+1 > · · · > xi−1 > xi (with xn+1 := x1), that is defined as follows:

α ≺griω β :⇐⇒

{ n∑
j=1

ωjαj <
n∑
j=1

ωjβj or
n∑
j=1

ωjαj =
n∑
j=1

ωjβj and α ≺lex β

where ω ∈ Rn+ is chosen such that xi+1 > · · · > xi−1 > xi. Finally, for any

a ∈ R we denote by a+ = max{a, 0} and a− = −min{a, 0}. IA consists of

binomials xui−xvi with ui−vi ∈ Ker(A), for i = 1, . . . , s. We compute in the

next step a partial Gröbner basis from the initial set {xu1−xv1 , . . . , xus−xvs}
using our extended Buchberger algorithm.

Once we have obtained the partial Gröbner basis, we can compute the

entire set of Pareto-optimal solutions for MIPA,C(b) by Algorithm 8.

To illustrate the above approach, we solve an example of MOILP with

two objectives where all the computations are done in full detail.

2.3. APPLICATION TO INTEGER MULTIOBJECTIVE PROGRAMMING 31

Algorithm 7: setofgenerators(A)

input : A ∈ Zm×n

(1) Find a lattice basis B for Ker(A) (using the Hermite Normal
Form).

(2) Replace B by the LLL-reduced lattice basis Bred.
Let J0 := 〈xu+ − xu− : u ∈ Bred〉.
for i = 1, . . . , n do

Compute Ji = (Ji−1 : x∞i) as:
(a) Compute Gi−1 the reduced Gröbner basis for Ji−1 with

respect to ≺griω .
(b) Divide each element f ∈ Gi−1 by the highest power of xi

that divides f .

output: Jn = {xu1 −xv1 , . . . , xus −xvs} a system of generators for IA.

Algorithm 8: Pareto-optimal solutions computation for MIPA,C(b)

input : MIPA,C(b)

Step 1.: Compute an initial feasible solution, αo, for MIPA,C(b).
Step 2.: Compute a system of generators for IA:
{xu1 − xv1 , . . . , xus − xvs}, using setofgenerators(A).

Step 3.: Compute the partial reduced Gröbner basis for
IA = 〈xu1 − xv1 , . . . , xus − xvs〉, G = {G1, . . . , Gt}.

Step 4.: Calculate the set of partial remainders: R := pR(xαo ,GC).

output: Pareto-optimal Solutions : R.

Example 2.3.1.

(7)

min {10x+ y, x+ 10y}
s.a.

2x+ 2y > 17

y 6 11

x, y ∈ Z+

Transforming the problem to the standard form:

(8)

min {10x+ y + 0t, x+ 10y + 0t}
s.a.

2x+ 2y − z = 17

2y + t = 11

x, y, z, t ∈ Z+

Following the steps of algorithms 7:

(1) Basis for the Ker(A) : B := {(1,−1, 0, 2), (1, 0, 2, 0)}.

32 2. PARTIAL GRÖBNER BASES: A POLYNOMIAL APPROACH

(2) LLL-reduced basis for B : Bred := B := {(1,−1, 0, 2), (1, 0, 2, 0)}.1

(3) J0 := 〈xu+ − xu− : u ∈ Bred〉 = 〈x1x
2
4 − x2, x1x32 − 1〉

(4) Ji+1 := (Ji : x∞i)

(a) G0 := {x1x
2
3 − 1, x1x

2
4 − x2} ⇒ J1 := 〈x1x32 − 1, x1x

2
4 − x2〉

(b) G1 := {x1x
2
4−x2, x

2
4−x2x

2
3, x1x

2
3−1} ⇒ J2 := 〈x1x

2
4−x2, x

2
4−

x2x
2
3, x1x

2
3 − 1〉

(c) G2 := {x1x
2
3 − 1, x2

4 − x2x
2
3} ⇒ J3 := 〈x1x

2
3 − 1, x2

4 − x2x
2
3〉

(d) G3 := {x2
4−x2x

2
3, x1x

2
4−x2, x1x

2
3−1} ⇒ J4 := 〈x2

4−x2x
2
3, x1x

2
4−

x2, x1x
2
3 − 1〉

(5) p-Gröbner basis for IA = 〈x2
4 − x2x

2
3, x1x

2
4 − x2, x1x

2
3 − 1〉 :

G1 := : {(x2
4 − x2x

2
3,−x2x

2
3), (x1x

2
4 − x2,−x2), (x2

3 − x2
4, x

2
3)}

G2 := : {(x1x
2
4 − x2, x1x

2
4), (x1x

2
3 − 1, x1x

2
3), (x2

3 − x2
4, x

2
3)}

(6) Finding a feasible solution 2 u = (9, 0, 1, 11) is a feasible solution.

(7) Reduction of xu = x9
1x3x

1
41, by G and by all permutations of (1, 2),

i.e, {(1, 2), (2, 1)}
(a) PR(x9

1x3x
1
41,G1) = {(x9

1x3x
1
41)} and

PR(x9
1x3x

1
41,G2) = {x9

1x3x
1
41, x8

1x2x3x
9
4, x7

1x
2
2x3x

7
4, x6

1x
3
2x3x

5
4,

x5
1x

4
2x3x

3
4, x4

1x
5
2x3x4}.

(b) PR(x9
1x3x

1
41,G2) = {x9

1x3x
1
41, x8

1x2x3x
9
4, x7

1x
2
2x3x

7
4, x6

1x
3
2x3x

5
4,

x5
1x

4
2x3x

3
4, x4

1x
5
2x3x4} and:

• PR(x9
1x3x

1
41,G1) = {x9

1x3x
1
41}

• PR(x8
1x2x3x

1
41,G1) = {x8

1x2x3x
1
41, x9

1x3x
1
41}

• PR(x7
1x

2
2x3x

1
41,G1) = {x7

1x
2
2x3x

1
41, x8

1x2x3x
1
41, x9

1x3x
1
41}

• PR(x6
1x

3
2x3x

11
4 ,G1) = {x6

1x
3
2x3x

11
4 , x

7
1x

2
2x3x

11
4 , x8

1x2x3x
11
4 ,

x9
1x3x

11
4 }

• PR(x5
1x

4
2x3x

11
4 ,G1) = {x5

1x
4
2x3x

11
4 , x

6
1x

3
2x3x

11
4 , x7

1x
2
2x3x

11
4 ,

x8
1x2x3x

11
4 , x9

1x3x
11
4 }

• PR(x4
1x

5
2x3x

11
4 ,G1) = {x4

1x
5
2x3x

11
4 , x5

1x
4
2x3x

11
4 , x6

1x
3
2x3x

11
4 ,

x7
1x

2
2x3x

11
4 , x8

1x2x3x
11
4 , x9

1x3x
11
4 }

(c) Pareto Optimal Solutions:

{(9, 0, 1, 11), (8, 1, 1, 9), (7, 2, 1, 7), (6, 3, 1, 5), (5, 4, 1, 3), (4, 5, 1, 1)}

Figure 3.7 shows the feasible region and the Pareto-optimal solutions of the

example above.

1In this case, the LLL-reduced basis for the kernel of A is the same as the initial computed
basis.
2Mathematica allows to find instances for systems of diophantine linear equations with the
function FindInstance[]

2.3. APPLICATION TO INTEGER MULTIOBJECTIVE PROGRAMMING 33

Figure 2.2. Feasible region, Pareto-optimal solutions and
improvement cone for Example 2.3.1

The following example shows how to proceed to apply partial Gröbner

bases to obtain Pareto-optimal solutions of multiobjective linear integer prob-

lems with negative coefficient in the objective matrix.

Example 2.3.2. The same feasible region with some negative entries in

the objective matrix:

(9)

min {10x− y, x− 10y}
s.a.

2x+ 2y > 17

y 6 11

x 6 10

x, y ∈ Z+

We modify the problem to avoid inequalities and negative coefficients in

the objective matrix. The last equation corresponds with the identification w2 =

10 + c2 x. The 10 is added to avoid negative values in the variable w2 since

values are treated as exponents of polynomials and negative exponents are not

allowed.

(10)

min {w1, w2}
s.a. 2x+ 2y − q = 17

2y + t = 11

x+ z = 10

−10x+ y + w1 = 0

−x+ 10y + w2 = 10

x, y ∈ Z+, z, t, q, w1, w2 ∈ R

34 2. PARTIAL GRÖBNER BASES: A POLYNOMIAL APPROACH

With the same procedure as above we obtain the following p-Gröbner basis

G = {G1,G2,G3,G4,G5,G6,G7}:
G1 = {(x4

2x6
11x1 − x2x5x7

11, x4
2x6

11x1), (x1
2x3

2x4
2x6

21 − x2x5
2x7

12,

x1
2x3

2x4
2x6

21)}
G2 = {(x2

4x6 − x2x3
2x7

10, x2
4x6), (x2

1x3
2x4

2x6
21 − x2x5

2x7
12,

x1
2x3

2x4
2x6

21)}
G3 = (x1x4

4x6
12−x2

2x3
2x5x7

21, x1x4
4x6

12), (x1
2x3

2x4
2x6

21−x2x5
2x7

12,

x1
2x3

2x4
2x6

21)}
G4 = (−x5x7 + x1x3

2x6
10, x1x3

2x6
10), (x1

2x3
2x4

2x6
21 − x2x5

2x7
12,

x1
2x3

2x4
2x6

21)}
G5 = (x2x5x7

11 − x4
2x6

11x1, x2x5x7
11), (x2

2x3
2x5x7

21 − x1x4
4x6

12,

x2
2x3

2x5x7
21), (x2x5

2x7
12 − x1

2x3
2x4

2x6
21, x2x5

2x7
12)}

G6 = (x2
2x3

2x5x7
21−x1x4

4x6
12, x2

2x3
2x5x7

21), (x2x5
2x7

12−x1
2x3

2x4
2x6

21

, x2x5
2x7

12), (−x4
2x6 + x2x3

2x7
10, x2x3

2x7
10)}

G7 = (x2
2x3

2x5x7
21−x1x4

4x6
12, x2

2x3
2x5x7

21), (x2x5
2x7

12−x1
2x3

2x4
2x6

21,

x2x5
2x7

12), (x5x7 − x1x3
2x6

10, x5x7)}
From the initial solution (x, y, z, t, q, w1, w2) = (9, 4, 9, 3, 1, 86, 31) and

computing partial reductions:

• pR(x9
1 x

4
2 x

9
3 x

3
4 x5 x86

6 x41
7 , G1) = {x9

1 x
4
2 x

9
3 x

3
4 x5 x86

6 x41
7 , x10

1 x2
2 x

9
3 x4 x2

5 x
75
6 x52

7 }
• pR(x8

1 x
5
2 x

9
3 x4 x2

5 x
75
6 x52

7 , G2) = {x8
1 x

5
2 x

9
3 x4 x2

5 x
75
6 x52

7 }
• pR(x8

1 x
5
2 x

9
3 x4 x2

5 x
75
6 x52

7 , G3) = {x8
1 x

5
2 x

9
3 x4 x2

5 x
75
6 x52

7 }
• pR(x8

1 x
5
2 x

9
3 x4 x2

5 x
75
6 x52

7 , G4) = {x8
1 x

5
2 x

9
3 x4 x2

5 x
75
6 x52

7 , x7
1 x

5
2 x

7
3 x4 x3

5 x
65
6 x53

7 ,

x6
1 x

5
2 x

5
3 x4 x4

5 x
55
6 x54

7 , x5
1 x

5
2 x

3
3 x4 x5

5 x
45
6 x55

7 , x4
1 x

5
2 x3 x4 x6

5 x
35
6 x56

7 }
• pR(x8

1 x
5
2 x

9
3 x4 x2

5 x
75
6 x52

7 , G5) = {x8
1 x

5
2 x

9
3 x4 x2

5 x
75
6 x52

7 , x9
1 x

4
2 x

9
3 x

3
4 x5 x86

6 x41
7 ,

x10
1 x3

2 x
9
3 x

5
4 x

97
6 x30

7 }
pR(x7

1 x
5
2 x

7
3 x4 x3

5 x
65
6 x53

7 , G5) = {x7
1 x

5
2 x

7
3 x4 x3

5 x
65
6 x53

7 , x8
1 x

4
2 x

7
3 x

3
4 x

2
5 x

76
6 x42

7 ,

x9
1 x

3
2 x

7
3 x

5
4 x5 x87

6 x31
7 , x10

1 x2
2 x

7
3 x

7
4 x

98
6 x20

7 },
pR(x6

1 x
5
2 x

5
3 x4 x4

5 x
55
6 x54

7 , G5) = {x6
1 x

5
2 x

5
3 x4 x4

5 x
55
6 x54

7 , x7
1 x

4
2 x

5
3 x

3
4 x

3
5 x

66
6 x43

7 ,

x8
1 x

3
2 x

5
3 x

5
4 x

2
5 x

77
6 x32

7 , x9
1 x

2
2 x

5
3 x

7
4 x5 x88

6 x21
7 , x10

1 x3
3 x

11
4 x100

6 }
pR(x5

1 x
5
2 x

3
3 x4 x5

5 x
45
6 x55

7 , G5) = {x5
1 x

5
2 x

3
3 x4 x5

5 x
45
6 x55

7 , x6
1 x

4
2 x

3
3 x

3
4 x

4
5 x

56
6 x44

7 ,

x7
1 x

3
2 x

3
3 x

5
4 x

3
5 x

67
6 x33

7 , x8
1 x

2
2 x

3
3 x

7
4 x

2
5 x

78
6 x12

7 , x9
1 x2 x3

3 x
9
4 x5 x89

6 x11
7 ,

x10
1 x3

3 x
11
4 x100

6 }
pR(x4

1 x
5
2 x3 x4 x6

5 x
35
6 x56

7 , G5) = {x4
1 x

5
2 x3 x4 x6

5 x
35
6 x56

7 , x5
1 x

4
2 x3 x3

4 x
5
5 x

46
6 x45

7 ,

x6
1 x

3
2 x3 x5

4 x
4
5 x

57
6 x34

7 , x7
1 x

2
2 x3 x7

4 x
3
5 x

68
6 x23

7 , x8
1 x2 x3 x9

4 x
2
5 x

79
6 x12

7 ,

x9
1 x2 x3

3 x
9
4 x5 x89

6 x11
7 , x9

1 x3 x11
4 x5 x90

6 x7}
• pR(x8

1 x
5
2 x

9
3 x4 x2

5 x
75
6 x52

7 , G6) = {x8
1 x

5
2 x

9
3 x4 x2

5 x
75
6 x52

7 , x9
1 x

3
2 x

7
3 x

5
4 x5 x87

6 x31
7 ,

x10
1 x2 x5

3 x
9
4 x

99
6 x10

7 , x10
1 x3

3 x
11
4 x100

6 }
pR(x5

1 x
5
2 x

3
3 x4 x5

5 x
45
6 x55

7 , G6) = {x5
1 x

5
2 x

3
3 x4 x5

5 x
45
6 x55

7 , x6
1 x

3
2 x3 x5

4 x
4
5 x

57
6 x34

7 ,

x10
1 x2 x5

3 x
9
4 x

99
6 x10

7 ,

x8
1 x

2
2 x

3
3 x

7
4 x

2
5 x

78
6 x22

7 , x10
1 x3

3 x
11
4 x100

6 }
pR(x4

1 x
5
2 x3 x4 x6

5 x
35
6 x56

7 , G6) = {x10
1 x2 x5

3 x
9
4 x

99
6 x10

7 , x10
1 x2

2 x
7
3 x

7
4 x

98
6 x20

7 ,

2.3. APPLICATION TO INTEGER MULTIOBJECTIVE PROGRAMMING 35

x8
1 x

3
2 x

5
3 x

5
4 x

2
5 x

77
6 x32

7 , x6
1 x

4
2 x

3
3 x

3
4 x

4
5 x

56
6 x44

7 , x4
1 x

5
2 x3 x4 x6

5 x
35
6 x56

7 ,

x10
1 x3

3 x
11
4 x100

6 }
pR(x9

1 x
4
2 x

9
3 x

3
4 x5 x86

6 x41
7 , G6) = {x9

1 x
4
2 x

9
3 x

3
4 x5 x86

6 x41
7 , x10

1 x2 x5
3 x

9
4 x

99
6 x10

7 ,

x10
1 x2

2 x
7
3 x

7
4 x

98
6 x20

7 , x10
1 x3

3 x
11
4 x100

6 }
pR(x10

1 x3
2 x

9
3 x

5
4 x

97
6 x30

7 , G6) = {x10
1 x2 x5

3 x
9
4 x

99
6 x10

7 , x10
1 x2

2 x
7
3 x

7
4 x

98
6 x20

7 ,

x10
1 x3

2 x
9
3 x

5
4 x

97
6 x30

7 , x10
1 x3

3 x
11
4 x100

6 }
pR(x7

1 x
5
2 x

7
3 x4 x3

5 x
65
6 x53

7 , G6) = {x9
1 x2 x3

3 x
9
4 x5 x89

6 x11
7 , x8

1 x
3
2 x

5
3 x

5
4 x

2
5 x

77
6 x32

7 ,

x9
1 x3 x11

4 x5 x90
6 x7, x7

1 x
5
2 x

7
3 x4 x3

5 x
65
6 x53

7 }
pR(x8

1 x
4
2 x

7
3 x

3
4 x

2
5 x

76
6 x42

7 , G6) = {x9
1 x

2
2 x

5
3 x

7
4 x5 x88

6 x21
7 , x8

1 x
4
2 x

7
3 x

3
4 x

2
5 x

76
6 x42

7 ,

x10
1 x3

3 x
11
4 x100

6 }
pR(x9

1 x
3
2 x

7
3 x

5
4 x5 x87

6 x31
7 , G6) = {x9

1 x
3
2 x

7
3 x

5
4 x5 x87

6 x31
7 , x10

1 x2 x5
3 x

9
4 x

99
6 x10

7 ,

x10
1 x3

3 x
11
4 x100

6 }
pR(x10

1 x2
2 x

7
3 x

7
4 x

98
6 x20

7 , G6) = {x10
1 x2 x5

3 x
9
4 x

99
6 x10

7 , x10
1 x2

2 x
7
3 x

7
4 x

98
6 x20

7 ,

x10
1 x3

3 x
11
4 x100

6 }
pR(x6

1 x
5
2 x

5
3 x4 x4

5 x
55
6 x54

7 , G6) = {x8
1 x2 x3 x9

4 x
2
5 x

79
6 x12

7 , x6
1 x

5
2 x

5
3 x4 x4

5 x
55
6 x54

7 ,

x10
1 x3

3 x
11
4 x100

6 ,

x7
1 x

3
2 x

3
3 x

5
4 x

3
5 x

67
6 x33

7 }
pR(x7

1 x
4
2 x

5
3 x

3
4 x

3
5 x

66
6 x43

7 , G6) = {x7
1 x

4
2 x

5
3 x

3
4 x

3
5 x

66
6 x43

7 , x8
1 x

2
2 x

3
3 x

7
4 x

2
5 x

78
6 x22

7 ,

x9
1 x3 x11

4 x5 x90
6 x7}

pR(x8
1 x

3
2 x

5
3 x

5
4 x

2
5 x

77
6 x32

7 , G6) = {x9
1 x2 x3

3 x
9
4 x5 x89

6 x11
7 , x8

1 x
3
2 x

5
3 x

5
4 x

2
5 x

77
6 x32

7 ,

x9
1 x3 x11

4 x5 x90
6 x7}

pR(x9
1 x

2
2 x

5
3 x

7
4 x5 x88

6 x21
7 , G6) = {x9

1 x
2
2 x

5
3 x

7
4 x5 x88

6 x21
7 , x10

1 x3
3 x

11
4 x100

6 }
pR(x10

1 x3
3 x

11
4 x100

6 , G6) = {x10
1 x3

3 x
11
4 x100

6 }
pR(x6

1 x
4
2 x

3
3 x

3
4 x

4
5 x

56
6 x44

7 , G6) = {x9
1 x2 x3

3 x
9
4 x5 x89

6 x11
7 , x6

1 x
4
2 x

3
3 x

3
4 x

4
5 x

56
6 x44

7 ,

x7
1 x

2
2 x3 x7

4 x
3
5 x

68
6 x23

7 , x9
1 x3 x11

4 x5 x90
6 x7}

pR(x7
1 x

3
2 x

3
3 x

5
4 x

3
5 x

67
6 x33

7 , G6) = {x8
1 x2 x3 x9

4 x
2
5 x

79
6 x12

7 , x10
1 x3

3 x
11
4 x100

6 ,

x7
1 x

3
2 x

3
3 x

5
4 x

3
5 x

67
6 x33

7 }
pR(x8

1 x
2
2 x

3
3 x

7
4 x

2
5 x

78
6 x12

7 , G6) = {x10
1 x2 x5

3 x
9
4 x

99
6 , x8

1 x
2
2 x

3
3 x

7
4 x

2
5 x

78
6 x12

7 }
pR(x9

1 x2 x3
3 x

9
4 x5 x89

6 x11
7 , G6) = {x9

1 x2 x3
3 x

9
4 x5 x89

6 x11
7 , x9

1 x3 x11
4 x5 x90

6 x7}
pR(x5

1 x
4
2 x3 x3

4 x
5
5 x

46
6 x45

7 , G6) = {x5
1 x

4
2 x3 x3

4 x
5
5 x

46
6 x45

7 , x9
1 x2 x3

3 x
9
4 x5 x89

6 x11
7 ,

x9
1 x

2
2 x

5
3 x

7
4 x5 x88

6 x21
7 , x9

1 x3 x11
4 x5 x90

6 x7, x7
1 x

3
2 x

3
3 x

5
4 x

3
5 x

67
6 x33

7 }
pR(x6

1 x
3
2 x3 x5

4 x
4
5 x

57
6 x34

7 , G6) = {x6
1 x

3
2 x3 x5

4 x
4
5 x

57
6 x34

7 , x10
1 x2 x5

3 x
9
4 x

99
6 x10

7 ,

x8
1 x

2
2 x

3
3 x

7
4 x

2
5 x

78
6 x22

7 , x10
1 x3

3 x
11
4 x100

6 }
pR(x7

1 x
2
2 x3 x7

4 x
3
5 x

68
6 x33

7 , G6) = {x9
1 x3 x11

4 x5 x90
6 x11

7 , x7
1 x

2
2 x3 x7

4 x
3
5 x

68
6 x33

7 ,

x9
1 x2 x3

3 x
9
4 x5 x89

6 x21
7 }

pR(x8
1 x2 x3 x9

4 x
2
5 x

79
6 x12

7 , G6) = {x8
1 x2 x3 x9

4 x
2
5 x

79
6 x12

7 , x10
1 x3

3 x
11
4 x100

6 }
pR(x9

1 x2 x3
3 x

9
4 x5 x89

6 x11
7 , G6) = {x9

1 x2 x3
3 x

9
4 x5 x89

6 x11
7 , x9

1 x3 x11
4 x5 x90

6 x7}
pR(x9

1 x3 x11
4 x5 x90

6 x7, G6) = {x9
1 x3 x11

4 x5 x90
6 x7}

• pR(x5
1 x

5
2 x

3
3 x4 x5

5 x
45
6 x55

7 , G7) = {x10
1 x2 x5

3 x
9
4 x

99
6 x10

7 , x5
1 x

5
2 x

3
3 x4 x5

5 x
45
6 x55

7 ,

x8
1 x

2
2 x

3
3 x

7
4 x

2
5 x

78
6 x22

7 , x6
1 x

3
2 x3 x5

4 x
4
5 x

57
6 x34

7 }
pR(x4

1 x
5
2 x3 x4 x6

5 x
35
6 x56

7 , G7) = {x4
1 x

5
2 x3 x4 x6

5 x
35
6 x56

7 , x10
1 x2

2 x
7
3 x

7
4 x

98
6 x20

7 ,

x8
1 x

3
2 x

5
3 x

5
4 x

2
5 x

77
6 x32

7 , x6
1 x

4
2 x

3
3 x

3
4 x

4
5 x

56
6 x44

7 }

36 2. PARTIAL GRÖBNER BASES: A POLYNOMIAL APPROACH

pR(x10
1 x3

3 x
11
4 x100

6 , G7) = {x10
1 x3

3 x
11
4 x100

6 }
pR(x6

1 x
4
2 x

3
3 x

3
4 x

4
5 x

56
6 x44

7 , G7) = {x7
1 x

2
2 x3 x7

4 x
3
5 x

68
6 x23

7 , x10
1 x2 x5

3 x
9
4 x

99
6 x10

7 ,

x6
1 x

4
2 x

3
3 x

3
4 x

4
5 x

56
6 x44

7 , x9
1 x2 x3

3 x
9
4 x5 x89

6 x11
7 }

pR(x7
1 x

3
2 x

3
3 x

5
4 x

3
5 x

67
6 x33

7 , G7) = {x8
1 x2 x3 x9

4 x
2
5 x

79
6 x12

7 , x7
1 x

3
2 x

3
3 x

5
4 x

3
5 x

67
6 x33

7 ,

x10
1 x3

3 x
11
4 x100

6 }
pR(x8

1 x
2
2 x

3
3 x

7
4 x

2
5 x

78
6 x22

7 , G7) = {x10
1 x3

3 x
11
4 x100

6 , x8
1 x

2
2 x

3
3 x

7
4 x

2
5 x

78
6 x22

7 ,

x9
1 x3 x11

4 x5 x90
6 x7}

pR(x9
1 x2 x3

3 x
9
4 x5 x89

6 x11
7 , G7) = {x10

1 x2 x5
3 x

9
4 x

99
6 x10

7 , x9
1 x2 x3

3 x
9
4 x5 x89

6 x11
7 }

pR(x5
1 x

4
2 x3 x3

4 x
5
5 x

46
6 x45

7 , G7) = {x7
1 x

3
2 x

3
3 x

5
4 x

3
5 x

67
6 x33

7 , x10
1 x2

2 x
7
3 x

7
4 x

98
6 x20

7 ,

x9
1 x

2
2 x

5
3 x

7
4 x5 x88

6 x21
7 , x5

1 x
4
2 x3 x3

4 x
5
5 x

46
6 x45

7 }
pR(x6

1 x
3
2 x3 x5

4 x
4
5 x

57
6 x34

7 , G7) = {x10
1 x2 x5

3 x
9
4 x

99
6 x10

7 , x8
1 x

2
2 x

3
3 x

7
4 x

2
5 x

78
6 x22

7 ,

x6
1 x

3
2 x3 x5

4 x
4
5 x

57
6 x34

7 }
pR(x7

1 x
2
2 x3 x7

4 x
3
5 x

68
6 x23

7 , G7) = {x7
1 x

2
2 x3 x7

4 x
3
5 x

68
6 x23

7 , x10
1 x2 x5

3 x
9
4 x

99
6 x10

7 ,

x9
1 x2 x3

3 x
9
4 x5 x89

6 x11
7 }

pR(x8
1 x2 x3 x9

4 x
2
5 x

79
6 x12

7 , G7) = {x8
1 x2 x3 x9

4 x
2
5 x

79
6 x12

7 , x10
1 x3

3 x
11
4 x100

6 }
pR(x9

1 x3 x11
4 x5 x90

6 x7, G7) = {x10
1 x3

3 x
11
4 x100

6 , x9
1 x3 x11

4 x5 x90
6 x7}.

Then pR(x9
1 x

4
2 x

9
3 x

3
4 x5 x86

6 x41
7 ,G) = {x8

1 x2 x3 x9
4 x

2
5 x

79
6 x12

7

, x7
1 x

3
2 x

3
3 x

5
4 x

3
5 x

67
6 x33

7 , x7
1 x

2
2 x3 x7

4 x
3
5 x

68
6 x23

7 , x10
1 x3

3 x
11
4 x100

6 ,

x5
1 x

5
2 x

3
3 x4 x5

5 x
45
6 x55

7 , x8
1 x

2
2 x

3
3 x

7
4 x

2
5 x

78
6 x22

7 , x6
1 x

3
2 x3 x5

4 x
4
5 x

57
6 x34

7 ,

x4
1 x

5
2 x3 x4 x6

5 x
35
6 x56

7 , x6
1 x

4
2 x

3
3 x

3
4 x

4
5 x

56
6 x44

7 , x9
1 x2 x3

3 x
9
4 x5 x89

6 x11
7 ,

x9
1 x3 x11

4 x5 x90
6 x7, x5

1 x
4
2 x3 x3

4 x
5
5 x

46
6 x45

7 }
Hence, the entire set of Pareto Optimal Solutions (in the first two vari-

ables, the original ones) is:

{(5, 5), (4, 5), (10, 0), (6, 4), (7, 3), (8, 2), (9, 1), (5, 4), (6, 3), (7, 2), (8, 1), (9, 0)}

Figure 2.3 shows the feasible region and the Pareto-optimal solutions of

the example above.

Figure 2.3. Feasible region, Pareto-optimal solutions and
improvement cone for Example 2.3.2

CHAPTER 3

Partial Gröbner bases: a geometric

approach

This chapter describes the geometrical interpretation of the results given

in Chapter 2 for solving multiobjective linear integer problems. In that chapter

we presented a general theory for partial Gröbner bases and then, we applied

it to solve MOILP. For that application the results were applied to a special

kind of polynomial ideals: toric ideals. Here, an analogous theory is described

in a geometrical language and some of the results given for polynomials are

geometrically interpreted. The p-Gröbner bases for toric ideals can be seen as

geometric structures, a geometric p-Gröbner basis will be the vector translation

of that notion. The main property of a geometric p-Gröbner basis being that

for each pair in Zn × Zn+ with first component in Ker(A), the reduction by

maximal chains in the basis is the zero set. Then, we introduce the notion

of test family for a multiobjective integer linear problem where the right-

hand side varies (with objective and contraint matrices fixed). Then, the

relationship between the geometrical interpretation of a p-Gröbner basis and

test families is proven.

To show the analogy between the notions and the results of the algebraic

and the geometric approaches, the same examples analyzed in Chapter 2 are

presented here in terms of vectors rather than polynomials.

We propose, as in Chapter 2, two versions of the same algorithm to solve

multiobjective integer programs based on this new construction: those based

on the Conti-Traverso and the Hoşten-Sturmfels methods.

Both algorithms have been implemented and we report on some compu-

tational experiments based on the first version of the algorithm and on two

different families of problems with different number of objective functions.

The final part of the chapter is devoted to the results of the computational

experiments and its analysis. Here, we solve several families of MOILP, report

on the performance of the algorithms and draw some conclusions on its results

and their implications.

37

38 3. PARTIAL GRÖBNER BASES: A GEOMETRIC APPROACH

3.1. From polynomials to vectors

In this chapter we are also interested in solving multiobjective linear in-

teger problems (MOLIP) in the form:

min (c1 x, . . . , ck x)

s.t. A x = b

x ∈ Zn+

with A ∈ Zm×n, b ∈ Zm+ and C = (ci) ∈ Zk×n+ .

Our matrix A is encoded in the set

(11) JA = {{u, v} : u, v ∈ Nn, u− v ∈ Ker(A)}.

Let π : Nn −→ Zn denote the map x 7→ Ax. Given a right-hand side vector b in

Zn, the set of feasible solutions to MIPA,C(b) constitutes π−1(b), the preimage

of b under this map. In the rest of the chapter, we identify the discrete set

of points π−1(b) with its convex hull and we call it the b-fiber of MIPA,C .

Thus, π−1(b) or the b-fiber of MIPA,C is the polyhedron defined by the convex

hull of all feasible solutions to MIPA,C(b). First, we fix a partially admissible

ordering over N induced by the objective function as follows:

u ≺C v :⇐⇒ C u � C v.

Then, for any pair {u, v}, with u, v ∈ Nn, we define the set setld(u, v) as

follows:

setld(u, v) =


{u} if v ≺C u

{v} if u ≺C v

{u, v} if u and v are incomparable by ≺C

The reader may note that setld(u, v) is the set of degrees of the leading mono-

mials according to the identification {u, v} 7→ xu−xv ∈ R[x1, . . . , xn], induced

by the partial order ≺C .

From the above definition, setld(u, v) may have more than one leading

term, since ≺C is only a partial order. To account for all this information we

denote by Υ(u, v) the set of triplets

Υ(u, v) = {(u, v, w) : w ∈ setld(u, v)}.

With the identification between binomials and pairs described above, Υ(u, v)

is partially identified with F(xu − xv).As for the map F in Chapter 2, the

above concept extends to any finite set of pairs of vectors in Nn, accordingly.

For a pair of sets u = {u1, . . . , ut} and v = {v1, . . . , vt} the corresponding set

3.1. FROM POLYNOMIALS TO VECTORS 39

of ordered pairs is:

Υ(u,v) = {(ui, vi, w) : w ∈ setld(ui, vi), i = 1, . . . , t}.

Υ(u,v) can be partially ordered based on the third component of its ele-

ments. Therefore, we can see Υ(u,v) as a directed graph G(E, V) where V

is identified with the elements of Υ(u,v) and ((ui, vi, w
′
), (uj , vj , w)) ∈ E if

(ui, vi, w), (uj , vj , w
′
) ∈ V and w

′
≺C w. We are interested in the maximal

ordered chains of G. Note that they can be efficiently computed by different

methods, e.g. [5], [93].

The above concepts are clarified in the following example that is the same (but

in terms of vectors) that Example 2.1.1.

Example 3.1.1. Let u = {(2, 3), (0, 2), (3, 0), (2, 1), (1, 1)}, v = {(1, 4),

(1, 3), (4, 2), (1, 2), (1, 0)} and ≺C the partial order induced by the matrix

C =

[
2 1

3 5

]
then, setld((2, 3), (1, 4)) = {(2, 3),(1, 4)}, setld((0, 2), (1, 3)) = {(1, 3)},
setld((3, 0), (4, 2)) = {(4, 2)}, setld((2, 1), (1, 2)) = {(2, 1),(1, 2)} and setld((1, 1),

(1, 0)) = {(1, 1)}. Now, by definition we have:

Υ(u,v) ={
(
(2, 3), (1, 4), (2, 3)

)
,
(
(2, 3), (1, 4), (1, 4)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,(

(3, 0), (4, 2), (4, 2)
)
,
(
(2, 1), (1, 2), (2, 1)), ((2, 1), (1, 2), (1, 2)

)
,(

(1, 1), (1, 0), (1, 1)
)
}.

Figure 3.1 corresponds to the directed graph associated with Υ(u,v), according

to the partial ordering induced by C. There are four maximal chains:

M1 = {
(
(3, 0), (4, 2), (4, 2)

)
,
(
(2, 3), (1, 4), (2, 3)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,(

(2, 1), (1, 2), (2, 1)
)
,
(
(1, 1), (1, 0), (1, 1)

)
},

M2 = {
(
(3, 0), (4, 2), (4, 2)

)
,
(
(2, 3), (1, 4), (2, 3)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,(

(2, 1), (1, 2), (1, 2)
)
,
(
(1, 1), (1, 0), (1, 1)

)
},

M3 = {
(
(2, 3), (1, 4), (1, 4)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,
(
(2, 1), (1, 2), (2, 1)

)
,(

(1, 1), (1, 0), (1, 1)
)
},

M4 = {
(
(2, 3), (1, 4), (1, 4)

)
,
(
(0, 2), (1, 3), (1, 3)

)
,
(
(2, 1), (1, 2), (1, 2)

)
,(

(1, 1), (1, 0), (1, 1)
)
}.

For any pair of sets u = {u1, . . . , ut} and v = {v1, . . . , vt} with {ui, vi} ∈
JA, for all i = 1, . . . , t, the corresponding set Υ(u,v) may also be seen as a

set of pairs in Zn × Zn+ through the following map

φ : Nn × Nn × Nn −→Zn × Zn+

(u, v, w) 7→(u− v, w).

40 3. PARTIAL GRÖBNER BASES: A GEOMETRIC APPROACH

(
(3, 0), (4, 2), (4, 2)

) (
(2, 3), (1, 4), (1, 4)

)

(
(2, 3), (1, 4), (2, 3)

)
≺C

OO

(
(0, 2), (1, 3), (1, 3)

)
≺C

??������������������������
≺C

ggOOOOOOOOOOOOOOO

(
(2, 1), (1, 2), (2, 1)

)
≺C

77ooooooooooooooo (
(2, 1), (1, 2), (1, 2)

)
≺C

ggOOOOOOOOOOOOOOO

(
(1, 1), (1, 0), (1, 1)

) ≺C

77ooooooooooooooo
≺C

ggOOOOOOOOOOOOOOO

Figure 3.1. Hasse diagram of the graph associated with the
data in Example 3.1.1

We denote by =A = φ(Υ(JA)), i.e.,

=A = {(u− v, w) : u− v ∈ Ker(A), w = setld(u, v)}.

It is clear that the maximal chains, F1, . . . , Fr, of the image of Υ(u,v)

under φ with respect to the order ≺C over the second components satisfy the

following properties:

(1) Fi is totally ordered by the second components with respect to ≺C ,

for i = 1, . . . , r.

(2) For all (α, β) ∈ Fi, i = 1, . . . , r, A (β − α) = Aβ.

The map φ and the above properties allow us to define the notion of test family

for MIPA,C . This notion is analogous to the concept of test set for a family

of single objective integer programs when we have a partial order rather than

a total order over Nn [103]. Test families are instrumental for finding the

Pareto-optimal set of each member MIPA,C(b) of the family of multiobjective

integer linear programs.

Definition 3.1.1 (Test Family). A finite collection G = {G1
C , . . . ,GrC} of

sets in Zn × Zn+ is a test family for MIPA,C if and only if:

(1) GjC is totally ordered by the second component with respect to ≺C ,

for j = 1, . . . , r.

3.1. FROM POLYNOMIALS TO VECTORS 41

(2) For all (g, h) ∈ GjC , j = 1, . . . , r, A (h− g) = Ah.

(3) If x ∈ Nn is a dominated solution for MIPA,C(b), with b ∈ Zn+, there

is some GjC in the collection and (g, h) ∈ GjC , such that x− g ≺C x.

(4) If x ∈ Nn is a Pareto-optimal solution for MIPA,C(b), with b ∈ Zn+,

then for all (g, h) ∈ GjC and for all j = 1, . . . , r either x − g is

infeasible or x− g is incomparable to x.

Given a test family for MIPA,C there is a natural approach for finding the

entire Pareto-optimal set. Suppose we wish to solve MIPA,C(b) for which x∗

is a feasible solution.

If x∗ is dominated then there is some j and (g, h) ∈ GjC such that x∗ − g
is feasible and x∗− g ≺C x∗, whereas for the remaining chains there may exist

some (g, h) such that x∗− g is feasible but incomparable to x∗. We keep track

of all of them.

If x∗ is non-dominated, we have to keep it as an element in our current

solution set. Then, reducing x∗ by the chains in the test family we can only ob-

tain either incomparable feasible solutions, that we maintain in our structure,

or infeasible solutions that are discarded.

The above two cases lead us to generate the following set. From x∗ we

compute the set of incumbent solutions:

IS(x∗) := {y∗ : y∗ =

x∗ − gji , (gji , hji) is the largest element (g, h) in the chain

GiC such that x∗ − g is feasible , i = 1, . . . , r}.

Now, the scheme proceeds recursively on each element of the set IS(x∗).

Finiteness of the above scheme is clear since we are generating a search tree

with bounded depth (cardinality of the test family) and bounded width, each

element in the tree has at most r (number of chains) followers. Correctness

of this approach is ensured since any pair of Pareto-optimal solutions must

be connected by a reduction chain through elements in the test family (see

Theorem 3.1.1 and Corollary 3.1.1).

The above approach assumes that a feasible solution to MIPA,C(b) is

known (thus implying that the problem is feasible). Methods to detect infea-

sibility and to get an initial feasible solution are connected to solving diophan-

tine systems of linear equations, the interested reader is referred to [86] for

further details.

The following lemmas help us in describing the geometric structure of a

test family for multiobjective integer linear problems.

Lemma 3.1.1 (Gordan-Dickson Lemma, Theorem 5 in [33]). If P ⊆ Nn,

P 6= ∅, then there exists a minimal subset {p1, . . . , pm} ⊆ P that is finite

42 3. PARTIAL GRÖBNER BASES: A GEOMETRIC APPROACH

and unique such that p ∈ P implies pj ≤ p (component-wise) for at least one

j = 1, . . . ,m.

Lemma 3.1.2. There exists a unique, minimal, finite set of vectors α1, . . . , αk ∈
Nn such that the set LC of all dominated solutions in all fibers of MIPA,C is

a subset of Nn of the form

LC =

k⋃
j=1

(αj + Nn).

Proof. The set of dominated solutions of all problems MIPA,C is:

LC = {α ∈ Nn : ∃β ∈ Nn with Aβ = Aα and β ≺C α}.

Let α be an element in LC and β a Pareto-optimal point in the fiber π−1(Aα)

that satisfies β ≺C α. Then, for any γ ∈ Nn, A(α + γ) = A(β + γ), α +

γ, β + γ ∈ Nn and β + γ ≺C α + γ, because the cost matrix, C, has only

nonnegative coefficients. Therefore, α+ γ is a feasible solution dominated by

β + γ in the fiber π−1(A(α + γ)). Then, α + γ ∈ LC for all γ ∈ Nn, so,

α+Nn ⊆ LC . By Lemma 3.1.1 we conclude that there exists a minimal set of

elements α1, . . . , αk ∈ Nn such that LC =
⋃k
j=1(αj + Nn). �

Once elements α1, . . . , αk generating LC (in the sense of the above re-

sult) have been obtained, one can compute the maximal chains of the set

{α1, . . . , αk} with respect to the partial order ≺C . We denote by C1
C , . . . , CµC

these maximal chains and set LiC =
⋃ki
t=1(αit + Nn), where αit ∈ CiC for

t = 1, . . . , ki and i = 1, . . . , µ. For details about maximal chains, upper bounds

on its cardinality and algorithms to compute them for a partially ordered set,

the reader is refereed to [5].

It is clear that with this construction we have: LC =

µ⋃
i=1

LiC .

Next, we describe a finite family of sets G≺C ⊆ Ker(A) ∩ Zn and prove

that it is indeed a test family for MIPA,C .

Let G≺C = {Gi≺C}
µ
i=1, being

(12)

Gi≺C = {(gkij , hkij) = (αij − βkij , αij), j = 1, . . . ki, k = 1, . . . ,mij}, i = 1, . . . , µ,

the maximal chains of G≺C (with respect to the order ≺C over the second

components) and where αi1, . . . , α
i
ki

are the unique minimal elements of Li≺C
and β1

ij , . . . , β
mij
ij the Pareto-optimal solutions to the problem MIPA,C(Aαij).

In the next section we give an algorithm that explicitly constructs G≺C .

Notice that for fixed i, j and k, gkij = (αij − βkij) is a point in the subspace

S = {x ∈ Qn : Ax = 0}, i.e., in the 0-fiber of MIPA,C . Geometrically we

think of (αij−βkij , αij) as the oriented vector −→g kij =
−−−−−→
[βkij , α

i
j] in the Aαij-fiber of

3.1. FROM POLYNOMIALS TO VECTORS 43

MIPA,C . The vector is directed from the Pareto-optimal point βkij to the non-

optimal point αij to due to the minimization criterion in MIPA,C which requires

us to move away from expensive points. Subtracting the point −→g kij = αij −βkij
to the feasible solution γ gives the new solution γ−αij+βkij which is equivalent

to translating −→g kij by a nonnegative integer vector.

Consider an arbitrary fiber of MIPA,C and a feasible lattice point γ in this

fiber. For each vector −→g kij in G≺C , check whether γ − gkij is in Nn. At γ draw

all such possible translations of vectors from G≺C . The head of the translated

vector is also incident at a feasible point in the same fiber as γ since gkij is in

the 0-fiber of MIPA,C . We do this construction for all feasible points in all

fibers of MIPA,C . From Lemma 3.1.2 and the definition of G≺C , it follows that

no vector (αij − βkij , αij) in G≺C can be translated by a ν in Nn such that its

tail meets a Pareto-optimal solution on a fiber unless the obtained vector is

incomparable to the Pareto-optimal point βkij .

Theorem 3.1.1. The above construction builds a connected directed graph

in every fiber of MIPA,C . The nodes of the graph are all the lattice points in

the fiber and (γ, γ
′
) is an edge of the directed graph if γ

′
= γ − gkij for some i,

j and k. Any directed path of this graph is non-increasing with respect to the

partial order ≺C .

Proof. Pick a fiber of MIPA,C and at each feasible lattice point construct

all possible translations of the vector −→g kij from the set Gi≺C as described above.

Let α be a lattice point in this fiber. By Lemma 3.1.2, α = αij + ν for some

i ∈ {1, . . . , t} and ν ∈ Zn+. Now, since the point α
′
k defined as α

′
k = βkij + ν

also lies in the same fiber that α, then α
′
k ≺C α or α

′
k and α are incomparable.

Therefore, −→g kij translated by ν ∈ Nn is an edge of this graph and we can move

along it from α to a point α
′

in the same fiber, such that α
′
≺C α or α and α

′

are incomparable. This proves that from every dominated point in the fiber

we can reach an improved or incomparable point (with respect to ≺C) in the

same fiber by moving along an edge of the graph. �

We call the graph in the b-fiber of MIPA,C built from elements in G≺C ,

the ≺C-skeleton of that fiber.

The reader may note that from each dominated solution α, one can easily

build paths to its comparable Pareto-optimal solutions subtracting elements

in G≺C . Indeed, let β a Pareto-optimal solution in the Aα-fiber such that β

dominates α. Then, let αi be a minimal element of LC such that α = αi + γ,

with γ ∈ Nn, and let βi be the Pareto-optimal solution in the Aαi-fiber that is

comparable to αi and such that βi+γ is comparable to β. Then α
′

= βi+γ is

a solution in the Aα-fiber with β ≺C α
′
≺C α. Now, one repeats this process

44 3. PARTIAL GRÖBNER BASES: A GEOMETRIC APPROACH

but starting with α
′

and β, until α
′

= β. Moreover, the case where α and

β are incomparable reduces to the previous one by finding a path from α to

any intermediate point β
′

that compares with β. This analysis leads us to the

following result.

Corollary 3.1.1. In the ≺C-skeleton of a fiber there exists a directed

path from every feasible point α to each Pareto-optimal point, β, in the same

fiber. The vectors of objective function values of successive points in the path

do not increase componentwise from α to β.

Corollary 3.1.2. The family G≺C is the unique minimal test family for

MIPA,C . It depends only on the matrix A and the cost matrix C.

Proof. By definition of G≺C , the conditions 1. and 2. of Definition 3.1.1

are satisfied. From Theorem 3.1.1 it follows that conditions 3. and 4. are also

satisfied, so G≺C is a test family for MIPA,C . Minimality is due to the fact that

removing any element (gkij , h
k
ij) from G≺C results in G≺C \{(g

k
ij , h

k
ij)}. However,

this new set is not a test family since no oriented vector in G≺C \ {(g
k
ij , h

k
ij)}

can be translated through a nonnegative vector in Nn such that its tail meets

αij . It is clear by definition that G≺C depends only on A and C. �

Example 3.1.2. Let MIPA,C be the family of multiobjective problems, with

the following constraints and objective function matrices:

A =

[
2 2 −1 0

0 2 0 1

]
, C =

[
10 1 0 0

1 10 0 0

]
.

Let (x1, x2, s1, s2) be the vector of variables, where s1 and s2 are slack variables.

In this example, using the order ≺sC (see Remark 24), G≺C = {G1
≺C ,G

2
≺C},

where G1
≺C = {−→g 1

1 = ((0, 1, 2,−1), (0, 1, 2, 0)),
−→g 1

2 = ((−1, 1, 0,−2), (0, 1, 0, 0))} and G2
≺C = {−→g 2

1 = ((1, 0, 2, 0), (1, 0, 2, 0)),
−→g 2

2 = ((1,−1, 0, 2), (1, 0, 0, 2))}.
Figure 3.2 shows, on the (x1, x2)-plane, the ≺C-skeleton of the fiber cor-

responding to the right-hand side vector (17, 11)t. In the box over the graph

of the ≺C-skeleton, we show the second components of the elements of G≺C .

The reader may note that in the graph, the arrows have opposite directions due

to the fact that the directed paths (improving solutions) are built subtracting

the elements in G≺C . We describe how to compute the sets G1
≺C and G2

≺C in

Section 3.2.

Given G≺C , there are several ways to build a path from each feasible point

in a fixed fiber to any Pareto-optimal solution. However, there is a canonical

way to do it: Fix σ a permutation of the set {1, . . . , µ} and subtract from the

3.1. FROM POLYNOMIALS TO VECTORS 45

g21

��????????????????

g22

//
g11

__

g12

OO

Elements in G≺C = {G1
≺C ,G

2
≺C }����������������������������������	�

��

����������������������������������	�

��
����������������������������������	�

��

����������������������������������	�

��
����������������������������������	�

��

����������������������������������	�

��

oooooo
(4, 5, 1, 1)

oo

oooooo
(5, 4, 1, 3)

oo

oooooo
(6, 3, 1, 5)

oo

oooooo
(7, 2, 1, 7)

oo

oooooo
(8, 1, 1, 9)

oo

oooooo
(9, 0, 1, 11)

oo

__????????

__????????

__????????

__????????

__????????

��

��

��

��

__????????__????????__????????__????????__????????

��

��

��

__????????

��

__????????

��

__????????__????????__????????

��

��

__????????__????????__????????__????????__???????? ��

__????????
__????????

__????????
__????????

__????????

��

��

��

��

��

��

��

��

�� ��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

��

�� ��

��

��

��

��

��

��

��

��

Figure 3.2. The ≺C-skeleton of the (17, 11)t-fiber of
MIPA,C projected on the x1, x2-plane.

initial point the elements of Gσ(i)
≺C , for i = 1, . . . , µ. Add this element to an

empty list. After each substraction by elements in Gσ(i)
≺C , i = 1, . . . , µ, remove

from the list those elements dominated by the new element. We prove in

Section 3 that this result does not depend on the permutation σ.

Example 3.1.2 (Continuation). This example shows the above mentioned

different ways to compute paths from dominated solutions to any Pareto-optimal

solution. The vector (9, 4, 9, 3) is a feasible solution for MIPA,C in the (17, 11)t-

fiber. Figure 3.3 shows the sequence of Pareto-optimal points obtained from the

feasible point (9, 4, 9, 3) using the permutation σ1 = (1, 2) (on the left) and us-

ing σ2 = (2, 1) (on the right).

Remark 3.1.1. Let ≺C be the partial order induced by C. Then, a directed

path from a dominated point α to each Pareto-optimal point β in a fiber, apply-

ing the above method, cannot pass through any lattice point in this fiber more

than µ times (recall that µ is the number of maximal chains in G≺C). This

implies that obtaining the Pareto-optimal solutions of a given MIPA,C using

G≺C cannot cycle.

46 3. PARTIAL GRÖBNER BASES: A GEOMETRIC APPROACH

����������������������������������	�

��
•��������������������������	�

��

����������������������������������	�

��
����������������������������������	�

��

����������������������������������	�

��
����������������������������������	�

��

x1 OO

x2//

oooooo
(4, 5, 1, 1)

oo

oooooo
(5, 4, 1, 3)

oo

oooooo
(6, 3, 1, 5)

oo

oooooo
(7, 2, 1, 7)

oo

oooooo
(8, 1, 1, 9)

oo

oooooo
(9, 0, 1, 11)

oo

__??????

__??????

__??????

__??????

(9, 4, 9, 3)

__??????

��

��

��

��

__??????__??????
__??????__??????__??????

��

��

��

__??????__??????__??????
__??????__??????

��

��

__??????__??????__??????__??????
__?????? ��

__??????
__??????

__??????
__??????

__??????

��

��

��

��

��

��

��

��

�� ��

����������������������������������	�

��
•��������������������������	�

��

��	�

��
��	�

��

��	�

��
��	�

��

oooooo
(4, 5, 1, 1)

oo

oooooooo
(9, 4, 9, 3)

__??????

__??????

__??????

__??????

__??????
(5, 4, 1, 3)

��

(6, 3, 1, 5)
��

(7, 2, 1, 7)
��

(8, 1, 1, 9)
��

(9, 0, 1, 11)
�� <

Figure 3.3. Different ways to compute paths from
(9, 4, 9, 3) to the Pareto-optimal solutions in its fiber.

3.2. Test families and Partial Gröbner bases

In the previous section we motivated the importance of having a test fam-

ily for MIPA,C since this structure allows us to obtain the entire set of Pareto-

optimal solutions of the above family of multiobjective integer programs (when

the right-hand side varies). Our goal in this section is to provide the necessary

tools to construct test families for any multiobjective integer problem. Our

construction builds upon an extension of Gröbner bases on partial orders.

In order to introduce this structure we define the reduction of a pair

(g, h) ∈ Zn×Zn+ by a finite set of ordered pairs in Zn×Zn+. Given is a collection

GC ⊆ Zn×Zn+ where GC = {(g1, h1), . . . , (gl, hl) : hk+1 ≺C hk, k = 1, . . . , l−1}.
The reduction of (g, h) by GC consists of the process described in Algo-

rithm 9. The above reduction process extends to the case of a finite collection

of ordered sets of pairs in Zn × Zn+ by establishing the sequence in which the

sets of pairs are considered. We denote by pRem((g, h),G)σ the reduction of

the pair (g, h) by the family G = {Gi}ti=1 for a fixed sequence of indices σ.

From now on, we denote by pRem((g, h),G) the set of remainders of (g, h)

by the family G = {Gi}ti=1 for the natural sequence of indices (1, · · · , t), i.e.

when σ is the identity.

The reduction of a pair that represents a feasible solution, by a test family,

gives the entire set of Pareto-optimal solutions. In order to obtain that test

family, we introduce the notion of geometric p-Gröbner basis. This name

has been motivated by the fact that when the ordering in Nn is induced by

a single cost vector, a Gröbner basis is a test set for the family of integer

programs IPA,c (see [30] or [103] for extended details). In the single objective

case the Buchberger algorithm computes a Gröbner basis. However, in the

multiobjective case the cost matrix induces a partial order, so division or the

3.2. TEST FAMILIES AND PARTIAL GRÖBNER BASES 47

Algorithm 9: Partial reduction algorithm

input : R = {(g, h)}, S = {(g, h)},
GC = {(g1, h1), . . . , (gl, hl) : hk+1 ≺C hk, k = 1, . . . , l − 1}

Set i := 1, So = {}.
repeat

for (g̃, h̃) ∈ S \ So do

while h̃− hi ≥ 0 do

if h̃− gi and h̃− g̃ are comparable by ≺C then

Ro = {(g̃ − gi,max≺C{h̃− gi, h̃− g̃})}
else

Ro = {(g̃ − gi, h̃− gi), (g̃ − gi, h̃− g̃)}
end
For each r ∈ Ro and s ∈ R:
if r ≺C s then

R = R\{s};
end
S = Ro.
R = R ∪Ro.
So = So ∪ {(g̃, h̃)}.

end

end
i = i+ 1;

until i ≤ t ;
output: R, the partial reduction set of (g, h) by GC

Buchberger algorithm are not applicable. Using the above reduction algorithm

(Algorithm 9) we present an “à la Buchberger” algorithm to compute the so

called geometric p-Gröbner basis to solve MOILP problems.

Definition 3.2.1 (Partial Gröbner basis). A family G = {G1, . . . ,Gt} ⊆
=A is a geometric partial Gröbner basis (geometric p-Gröbner basis) for the

family of problems MIPA,C , if G1, . . . ,Gt are the maximal chains for the par-

tially ordered set

t⋃
i=1

Gi and for any (g, h) ∈ Zn × Zn+ with h− g ≥ 0:

g ∈ Ker(A)⇐⇒ pRem((g, h),G)σ = {0}.

for any sequence σ.

A geometric p-Gröbner basis is said to be reduced if every element in each

maximal chain cannot be obtained by reducing any other element of the same

chain.

Given a geometric p-Gröbner basis, computing a reduced geometric p-

Gröbner basis is done by deleting the elements that can be reduced by other

elements in the basis. After the removing process, the family is a geometric

p-Gröbner basis having only non redundant elements. It is easy to see that

48 3. PARTIAL GRÖBNER BASES: A GEOMETRIC APPROACH

the reduced geometric p-Gröbner basis for MIPA,C is unique and minimal, in

the sense that no element can be removed from it maintaining the geometric

p-Gröbner basis structure.

This definition coincides with the notion of p-Gröbner bases (Definition

2.2.1) for the ideal =A induced by A, once we fix the partial order, ≺C , induced

by C.

In the following, we present algorithms to solve multiobjective problems

analogous to the methods that solve the single objective case, using usual

Gröbner basis. These methods are based on computing the reduction of a

feasible solution by the basis. The key for that result is the fact that the

reduction of any pair of feasible solutions is the same, therefore the algorithm

is valid for any initial feasible solution. After the following theorem, Lemma

3.2.1 ensures the same statement for the multiobjective case and geometric

p-Gröbner bases.

Theorem 3.2.1. Let G be the reduced geometric p-Gröbner basis for MIPA,C

and α a feasible solution for MIPA,C(Aα). Then,

pRem((α, α),G)σ = pRem((α, α),G)σ′ ,

for any sequences σ and σ′.

Proof. We first observe that the elements in pRem((α, α),G)σ are of the

form (β, β). Indeed, since the first step of Algorithm 9 reduces the element

(α, α) then h̃− g̃ = α−α = 0. Therefore, h̃− g̃ is always dominated by h̃− gi
because 0 ≺C h̃− gi, so that the remainders are of the form (α− gi, α− gi).

On other hand, let (β, β) be an element in pRem((α, α),G)σ, then α −
β ∈ Ker(A) and by Definition 3.2.1, pRem((α − β, α),G)σ′ = pRem((α −
β, β),G)σ′ = {0} for any σ′. �

The above result ensures that without loss of generality reductions of

elements of the form (α, α) by p-Gröbner bases are independent of the per-

mutation of indices used. Therefore, we do not make reference to σ in the

notation referring always to the natural sequence σ = (1, . . . , t).

Lemma 3.2.1. Let G be the reduced geometric p-Gröbner basis for MIPA,C

and α1, α2 two different feasible solutions in the same fiber of MIPA,C . Then,

pRem((α1, α1),G) = pRem((α2, α2),G).

Proof. Let (β, β) ∈ pRem((α1, α1),G), then since Aα1 = Aα2, β is

in the same fiber that α2. Next, since β cannot be reduced, then (β, β) ∈
pRem((α2, α2),G). �

3.2. TEST FAMILIES AND PARTIAL GRÖBNER BASES 49

The following theorem states the relationship between the three structures

introduced before: test families, reduced p-Gröbner bases and the family G≺C .

Theorem 3.2.2. The reduced p-Gröbner basis for MIPA,C is the unique

minimal test family for MIPA,C . Moreover, G≺C , introduced in (12), is the

reduced p-Gröbner basis for MIPA,C .

Proof. Let G = {G1, . . . ,Gt} be the reduced p-Gröbner basis for MIPA,C .

We have to prove that G satisfies the four conditions in Definition 3.1.1. By

definition of geometric p-Gröbner basis, it is clear that each Gi is totally or-

dered by its second component with respect to ≺C (Condition 1). Condition

2 follows because for each i and for each (g, h) ∈ Gi ⊆ Zn × Zn+, clearly

pRem((g, h),G) = {0}, so g ∈ Ker(A) and then A(h− g) = Ah.

Now, let x ∈ Nn be a dominated solution for MIPA,C(b). Then, there is a

Pareto-optimal solution, β, such that β ≺C x. By Lemma 3.2.1, pRem((x, x),G) =

pRem((β, β),G), and by construction of the set of partial remainders, β ∈
pRem((β, β), G), thus x 6∈ pRem((x, x),G). This implies that there exists

(g, h) ∈ Gi, for some i = 1, . . . , t, such that x− g ≺C x. This proves condition

3.

On the other hand, if x is a Pareto-optimal solution for MIPA,C(b), x ∈
pRem((x, x), G), then there exists no (g, h) in any Gi such that x − g ≺C x.

Therefore, for every i and for each (g, h) ∈ Gi, either x − g is infeasible or

incomparable to x, which proves condition 4.

Minimality is due to the fact that removing an element from the reduced

geometric p-Gröbner basis, that is the minimal geometric partial Gröbner

basis that can be built for MIPA,C we cannot guarantee to have a test family

because it may exist a pair (g, h) ∈ Zn × Zn+ with g ∈ Ker(A) that cannot be

reduced to the zero set.

Finally, the second statement of the theorem follows from Corollary 3.1.2.

�

Next, we describe an extended algorithm to compute a geometric p-

Gröbner basis for =A, with respect to the partial order induced by C. This

algorithm is the geometrical transcription of Buchberber algorithm for p-

Gröbner bases (Algorithm (5)). First, we need to define the geometrical equiv-

alent to the S-polynomials (6). For any (g, h), (g
′
, h
′
) in Zn × Zn+ we denote

by S1((g, h), (g
′
, h
′
)) and S2((g, h), (g

′
, h
′
)) the pairs

S
1
((g, h), (g

′
, h
′
)) =


(g − g

′
− 2(h− h

′
), γ + g − 2h) if γ + g − 2h ≺C γ + g

′
− 2h

′

(g
′
− g − 2(h

′
− h), γ + g

′
− 2h

′
) if γ + g

′
− 2h

′
≺C γ + g − 2h

(g − g
′
− 2(h− h

′
), γ + g − 2h)

if γ + g
′
− 2h

′
and γ + g − 2h

are incomparable

50 3. PARTIAL GRÖBNER BASES: A GEOMETRIC APPROACH

and

S
2
((g, h), (g

′
, h
′
)) =


(g − g

′
− 2(h− h

′
), γ + g − 2h) if γ + g − 2h ≺C γ + g

′
− 2h

′

(g
′
− g − 2(h

′
− h), γ + g

′
− 2h

′
) if γ + g

′
− 2h

′
≺C γ + g − 2h

(g
′
− g − 2(h

′
− h), γ + g

′
− 2h

′
)

if γ + g
′
− 2h

′
and γ + g − 2h

are incomparable

where γ ∈ Nn and γi = max{hi, h
′
i}, i = 1, . . . , n.

The pairs S1((g, h), (g
′
, h
′
)) and S2((g, h), (g

′
, h
′
)) are called 1− Svector

and 2− Svector of (g, h) and (g
′
, h
′
), respectively. The reader may note that

S1((g, h), (g
′
, h
′
)) and S2((g, h), (g

′
, h
′
)) coincide provided that the resulting

pairs are comparable under ≺C , whereas they correspond with the two possible

choices of the new pair in the case when the vectors γ+g
′
−2h

′
and γ+g−2h

are incomparable.

The following result is the geometric transcription of Theorem 2.2.1. Actu-

ally, the proof for this theorem would begin identifying vectors with binomials.

Theorem 3.2.3 (Extended geometric Buchberger’s criterion). Let G =

{G1, . . . ,Gt} with Gi ⊆ =A for all i = 1, . . . , t, be the maximal chains of the

partially ordered set {gi : gi ∈ Gi, for some i = 1, . . . , t}, and such that G∗,
the polynomial transcription of G, is a system of generators of IA. Then the

following statements are equivalent:

(1) G is a p-Gröbner basis for the family MIPA,C .

(2) For each i, j = 1, . . . , t and (g, h) ∈ Gi, (g
′
, h
′
) ∈ Gj, pRem(Sk((g, h),

(g
′
, h
′
)),G) = {0} , for k =, 1, 2.

Proof. The proof follows from the analogy between the algebraic and

the geometric notion of p-Gröbner basis and Theorem 2.2.1. �

This criterion (the one in Theorem 3.2.3) allows us to describe a geometric

algorithm which constructs a geometric p-Gröbner basis GC for MIPA,C , and

therefore a test family for that family of multiobjective problems.

The first approach to compute a p-Gröbner basis for a family of mul-

tiobjective programs is based on Conti and Traverso method for the single

objective case [30]. In Chapter 3 was described this algorithm using an al-

gebraic language. Here, we recall the same algorithm using the geometric

notation.

Given the program MIPA,C(b), we consider the associated extended mul-

tiobjective program, EMIPA,C(b) as the problem MIPÃ,C̃(b) where

Ã =


−1

Idm
... A

−1

 ∈ Zm×(m+1+n),

3.2. TEST FAMILIES AND PARTIAL GRÖBNER BASES 51

Algorithm 10: Partial Buchberger algorithm I

input : F1 = {M0,M1, . . . ,Mn} and F2 = {P0, P1, . . . , Pn},
Mi = (a1i −min{0,minj{aji}}, . . . , ami −
min{0,minj{aji}},−min{0,minj{aji}}, 0, n. . ., 0) (i > 0)
Pi = (0,m+1. . . , 0|ei) ∈ Nm+n+1 (i > 0)
M0 = (1,m+1. . . , 1, 0, n. . ., 0)
P0 = (0, n+m+1. . . , 0).

repeat
Compute, G1, . . . ,Gt, the maximal chains for G = φ(Υ(F1, F2)).
for i, j ∈ {1, . . . , t}, i 6= j, and each pair (g, h) ∈ Gi, (g′, h′) ∈ Gj
do

Compute Rk = pRem(Sk((g, h), (g
′
, h
′
)),G), k = 1, 2.

if Rk = {0} then
Continue with other pair.

else

Add φ(Υ(r)) to G, for each r ∈ Rk.
end

end

until Rk = {0} for every pairs ;
output: G = {G1, . . . ,GQ} geometric p-Gröbner basis for =A with

respect to ≺C .

C̃ = (M ·1|C) ∈ Z(m+1+n)×k, Idm stands for the m×m identity matrix, M is a

large constant and 1 is the (m+1)×k matrix whose components are all 1. This

problem adds m+1 new variables, whose weights in the multiobjective function

are big, and so, solving this extended minimization program allows us to solve

directly the initial program MIPA,C . Indeed, any feasible solution to the origi-

nal problem is a feasible solution to the extended problem with the first m com-

ponents equal to zero, so any feasible solution of the form (0,m+1. . . , 0, α1, . . . , αn)

is non-dominated, upon the order ≺C̃ , by any solution without zeros in the

first m components. Then, computing a geometric p-Gröbner basis for the

extended program using the partial Buchberger Algorithm (Algorithm 10), al-

lows us detecting infeasibility of the original problem. Furthermore, a trivial

feasible solution, x̃0 = (b1, . . . , bm, 0, n+1. . . , 0), is known and the initial set of

generators for =A is given by {{Mi−Pi,Mi} : i = 0 . . . , n} where Mi = (a1i−
min{0,minj{aji}}, . . . , ami−min{0,minj{aji}},−min{0,minj{aji}}, 0, n. . ., 0),

Pi = (0,m+1. . . , 0|ei), for all i = 1, . . . , n, M0 = (1,m+1. . . , 1, 0, n. . ., 0) and P0 = 0,

Mi, Pi,M0, P0 ∈ Zn+m+1
+ (see [2] for further details). Then, we can state the

following result.

Theorem 3.2.4. Let G = {Gi}ti=1 be a p-Gröbner basis for EMIPA,C and

b = (b1, . . . , bm). The entire set of Pareto-optimal solutions for MIPA,C(b)

consists of of the vectors α = (α1, . . . , αn) such that (0,m+1. . . , 0, α1, . . . , αn) ∈

52 3. PARTIAL GRÖBNER BASES: A GEOMETRIC APPROACH

pRem(((b, 0, n+1. . . , 0), (b, 0, n+1. . . , 0)),G). Moreover, if there is no α′ in the set

pRem(((b, 0, n+1. . . , 0), (b, 0, n+1. . . , 0)),G) whose m + 1 first components are zero

MIPA,C(b) is infeasible.

Proof. Let α be a vector obtained by successive reductions over G. It

is clear that α is feasible because ((0, α), (0, α)) is in the set of remainders of

((b,0), (b,0)) by G and then, in the same fiber. Besides, α is a Pareto-optimal

solution because G is a test family for the problem (Theorem 3.2.2).

Now, if β∗ is a Pareto-optimal solution, by Lemma 3.2.1, pRem(((0, β∗),

(0, β∗)),G)) = pRem(((0,b), (0,b)),G)), but since β∗ is a Pareto-optimal

solution, it cannot be reduced so ((0, β∗), (0, β∗)) ∈ pRem(((0, β∗), (0, β∗)

),G)), and then, ((0, β∗), (0, β∗)) also belongs to the list of partial remainders

of ((b,0), (b,0)) by G. �

Hoşten and Sturmfels [60] improved the method by Conti and Traverso

to solve single-objective programs using standard Gröbner bases. The method

described in Chapter 3 (Algorithm (8)) and the geometric approach differ just

in the two last steps (Step 3 and Step 4), since the first step (compute an initial

feasible solution) is done in term of vectors in both approaches and the second

steps must be done in terms of ideals in both approaches. Moreover, the last

two steps consist of computing a p-Gröbner basis (in this case a geometric

p-Gröbner basis) and of partially reducing the initial feasible solution by that

basis. The first of this procedures has been already described in a geometric

language (Algorithm (9)). Computing a geometric Gröbner basis can be done

as in the algebraic case, using the Extended Buchberger criterion (Theorem

3.2.3). A pseudocode for the extended Buchberger algorithm for computing

geometric p-Gröbner bases is described in Algorithm (11). Then the algorithm

is the following: (1) computing an initial basis for the polynomial toric ideal

IA = 〈xu − xv : u − v ∈ Ker(A)〉, that we can identify with JA (Algorithm

7, Chapter 2). After that procedure, and identifying IA with =A, we have a

initial system of generators for =A. Then, with this set of generators, compute

a geometric partial Gröbner basis using Algorithm (11).

Algorithm (12) summarizes the complete procedure to solve MIPA,C (b)

using geometric p-Gröbner bases.

There are some interesting cases where our methodology is highly simpli-

fied due to the structure of the set of constraints. One of these cases is when

the dimension of the set of constraints is n−1. The next remark explains how

the algorithm simplifies in this case.

Remark 3.2.1. Let A be a m× n integer matrix with rank n− 1. Then,

since dim(Ker(A)) = 1, the system of generators for =A (Step 2) has just one

3.2. TEST FAMILIES AND PARTIAL GRÖBNER BASES 53

Algorithm 11: pgrobner(F1, F2)

input : F1 = {M1, . . . ,Ms} and F2 = {P1, . . . , Ps}.
repeat

Compute, G1, . . . ,Gt, the maximal chains for G = φ(Υ(F1, F2)).
for i, j ∈ {1, . . . , t}, i 6= j, and each pair (g, h) ∈ Gi, (g′, h′) ∈ Gj
do

Compute Rk = pRem(Sk((g, h), (g
′
, h
′
)),G), k = 1, 2.

if Rk = {0} then
Continue with other pair.

else

Add φ(Υ(r)) to G, for each r ∈ Rk.
end

end

until Rk = {0} for every pairs ;
output: G = {G1, . . . ,GQ} p-Gröbner basis for MIPA,C .

Algorithm 12: Pareto-optimal solutions computation for MIPA,C(b)

input : MIPA,C(b)

Step 1. : Compute an initial feasible solution, αo, for MIPA,C(b).
Step 2. : Compute a system of generators for =A:
{{ui, vi} : i = 1, . . . , s}, using setofgenerators(A).

Step 3. : Compute the partial reduced Gröbner basis for
MIPA,C ,
GC = {G1, . . . ,Gt}, using pgrobner(F1, F2), where

F1 = {ui : i = 1, . . . , r}
and F2 = {vi : i = 1, . . . , r}.

Step 4. : Calculate the set of partial remainders:
R := pRem(αo,GC).

output: Pareto-optimal Solutions : R.

element, (g, h), and the p-Gröbner basis (Step 3) is the family G = {{(g, h)}}
because no Svector appears during the computation of the Buchberger algo-

rithm. In this case, Pareto-optimal solutions are obtained as partial remain-

ders of an initial feasible solution (α, α) by (g, h), i.e., the entire set of Pareto-

optimal solutions is a subset of Γ = {α − λg : λ ∈ Z+}. More explicitly, the

set of Pareto-optimal solutions for MIPA,C(b) is the set of minimal elements

(with respect to ≺C) of Γ.

To illustrate the above approach, we solve Example 2.3.1 with the geo-

metric approach.

54 3. PARTIAL GRÖBNER BASES: A GEOMETRIC APPROACH

Example 3.2.1.

(13)

min {10x+ y, x+ 10y}
s.t.

2x+ 2y > 17

2y 6 11

x 6 10

x, y ∈ Z+

Transforming the problem to the standard form results in:

(14)

min {10x+ y + 0z + 0t+ 0q, x+ 10y + 0z + 0t+ 0q}
s.t.

2x+ 2y − z = 17

2y + t = 11

x+ q = 10

x, y, z, t, q ∈ Z+

Step 1. : Feasible solution for MIPA,C(b): u = (9, 4, 9, 3, 1).

Step 2. : Following the steps of Algorithm 7:

(1) Basis for Ker(A) : B := {(0, 1, 2,−2, 0), (−1, 0,−2, 0, 1)}.
(2) LLL-reduced basis for B:

Bred := B := {(−1, 0,−2, 0, 1), (−1, 1, 0,−2, 1)}.

(3) J0 := 〈xu+ − xu− : u ∈ Bred〉 = 〈x5 − x1x
2
3, x2x5 − x1x

2
4〉

(4) Ji+1 := (Ji : x∞i)

(a) G̃0 := {x5 − x1x
2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4} ⇒ J1 := 〈x5 −
x1x

2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4〉
(b) G̃1 := {x5 − x1x

2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4} ⇒ J2 := 〈x5 −
x1x

2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4〉
(c) G̃2 := {x5 − x1x

2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4} ⇒ J3 := 〈x5 −
x1x

2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4〉
(d) G̃3 := {x5 − x1x

2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4} ⇒ J4 := 〈x5 −
x1x

2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4〉
(5) IA = 〈x5 − x1x

2
3, x2x5 − x1x

2
4, x2x

2
3 − x2

4, x1x
2
3 − 1〉 7→

=A = 〈{
(
(1, 0, 0, 0, 1), (0, 1, 0, 2, 0)

)
,
(
(1, 0, 2, 0, 0), (0, 0, 0, 0, 1)

)
,(

(0, 1, 2, 0, 0), (0, 0, 0, 2, 0)
)
}

Step 3. : Computing a p-Gröbner basis MIPA,C , using the order ≺sC
(Remark 24), and following Algorithm 11 we obtain G, whose maxi-

mal chains are:

G1 = {
(
(0, 1, 2, 0, 0), (0, 0, 0, 2, 0), (0, 1, 2, 0, 0)

)
,
(
(0, 1, 0, 0, 2),

(2, 0, 2, 2, 0), (0, 1, 0, 0, 2)
)
,
(
(0, 1, 0, 0, 1), (1, 0, 0, 2, 0), (0, 1, 0, 0, 1)

)
}

3.2. TEST FAMILIES AND PARTIAL GRÖBNER BASES 55

and

G2 = {
(
(1, 0, 0, 4, 0), (0, 2, 2, 0, 1), (1, 0, 0, 4, 0)

)
,
(
(1, 0, 2, 0, 0),

(0, 0, 0, 0, 1), (1, 0, 2, 0, 0)
)
,
(
(1, 0, 0, 2, 0), (0, 1, 0, 0, 1), (1, 0, 0, 2, 0)

)
}.

Step 4. : Partial remainders: Reducing first by G1:

pRem((9, 4, 9, 3, 1),G1) = {(9, 0, 1, 11, 1)}. All the steps to ob-

tain this remainder is shown in the Figure 3.4 (projection in

the variables x and y). The blue dots are those final remainders

since they are not dominated by any of the others, the grey dots

are those that have been discarded by the domination criterion

and the one with a red circumference is the initial point for this

reduction. The blue dots here will be the initial points for the

next step.

Figure 3.4. Partial reduction steps of (9, 4, 9, 3, 1) by G1

Then, reducing each remainder by G2:

pRem((9, 0, 1, 11, 1),G2) = {(9, 0, 1, 11, 1), (8, 1, 1, 9, 2),

(7, 2, 1, 9, 3), (6, 3, 1, 5, 4), (5, 4, 1, 3, 5), (4, 5, 1, 1, 6)}.
The movements to obtain those remainders from (9, 0, 1, 11, 1)

in the x-y-plane are described in Figure 3.5. The blue dots

are those final remainders (the nondominated solutions), the

grey dots are those that have been discarded by the domination

criterion and the ones with a red circumference is the initial

point for this reduction.

The entire set of Pareto-optimal solutions is:

{(9, 0, 1, 11, 1), (8, 1, 1, 9, 2), (7, 2, 1, 7, 3), (6, 3, 1, 5, 4), (5, 4, 1, 3, 5), (4, 5, 1, 1, 6)}

56 3. PARTIAL GRÖBNER BASES: A GEOMETRIC APPROACH

Figure 3.5. Partial reduction steps of
pRem((9, 4, 9, 3, 1),G1) by G2

If instead of considering first G1 and then G2, we could do it first for

G2 and then for G1, obtaining the same solutions. The illustrations

with this alternative movements is shown in the following graphs:

Figure 3.7 shows the feasible region and the Pareto-optimal solutions of the

example above.

Example 3.2.2.

(15)

min {−2x+ y, x− 2y}
s.t.

4x− 7y 6 5

x+ 8y 6 50

3x− y > 0

x+ y > 4

x, y ∈ Z+

The feasible region and the improvement cone for this problem is shown in

Figure 3.8. The geometric Gröbner basis for this problem has 4 maximal chains

defining 14 different movements. The Hasse diagram for the x-y projection of

the p-Gröbner basis is shown in Figure 3.9.

From the initial solution (3, 4), Figure 3.10 shows the movements from

that point to the nondominated solutions:

{(10, 5), (9, 5), (8, 5), (7, 5), (6, 5), (5, 5), (4, 5), (2, 6)}.

3.2. TEST FAMILIES AND PARTIAL GRÖBNER BASES 57

Figure 3.6. Two ways to compute remainders by the basis
in Example 3.2.1.

Figure 3.7. Feasible region, Pareto-optimal solutions and
improvement cone for Example 3.2.1

58 3. PARTIAL GRÖBNER BASES: A GEOMETRIC APPROACH

Figure 3.8. Feasible region and improvement cone for Ex-
ample 3.2.2.

(0, 2) (−1,−1)

(1,−1) (−1, 2)

OO

(−1, 0)

OO

(1, 0)

OO

(0, 1)

OO

(−2,−1)

OO

(0,−1)

OO

(2,−1)

WW0000000000000000000

(−1, 1)

OO >>~~~~~~~~~~

(−1,−2)

OO

(1,−2)

OO

(−2, 1)

OO

Figure 3.9. Hasse diagram for of the elements in the p-
Gröbner basis for Example 3.2.2.

3.4. Computational Experiments

A series of computational experiments have been performed in order to

evaluate the behavior of the proposed solution method. Programs have been

coded in MAPLE 10 and executed in a PC with an Intel Pentium 4 processor

at 2.66GHz and 1 GB of RAM. In the implementation of Algorithm 11 to

3.4. COMPUTATIONAL EXPERIMENTS 59

Figure 3.10. Movements from (3, 4) to the set of nondom-
inated solutions.

obtain the p-Gröbner basis, the package poset for Maple [96] has been used to

compute, at each iteration, the maximal chains for the p-Gröbner basis. The

implementation has been done in a symbolic programming language, available

upon request, in order to make the access easy to both optimizers and algebraic

geometers.

The performance of the algorithm was tested on randomly generated in-

stances for knapsack and transportation [82] multiobjective problems for 2, 3

and 4 objectives. For the knapsack problems, 4, 5 and 6 variables programs

have been considered, and for each group, the coefficients of the constraint were

randomly generated in [0, 20] whereas the coefficients of the objective matri-

ces range in [0, 20]. Once the constraint vector, (a1, . . . , an), is generated, the

right-hand side is fixed as b = d 1
2

∑n
i=1 aie to ensure feasibility.

The computational tests for each number of variables have been done in

the following way: (1) Generate 5 constraint vectors and compute the initial

system of generators for each of them using Algorithm 7; (2) Generate five

random objective matrices for each number of objectives (2, 3 and 4) and

compute the corresponding p-Gröbner basis using Algorithm 11; and (3) with

b = d 1
2

∑n
i=1 aie and for each objective matrix, compute the Pareto-optimal

solutions using Algorithm 12.

Table 4.1 contains a summary of the average results obtained for the

considered knapsack multiobjective problems. The second, third and fourth

columns show the average CPU times for each stage in the algorithm: sogt is

the CPU time for computing the system of generators, pgbt is the CPU time

for computing a p-Gröbner basis, and post is the time for computing a feasible

60 3. PARTIAL GRÖBNER BASES: A GEOMETRIC APPROACH

solution and partially reducing it to obtain the set of Pareto-optimal solutions.

The fifth column shows the total time for computing the set of Pareto-optimal

solutions for the problem. Finally, the sixth and seventh columns show the

average number of Pareto-optimal solutions and the number of maximal chains

in the p-Gröbner basis for the problem. The problems have been named as

knapN_O where N is the number of variables and O is the number of objectives.

For the transportation problems, instances with 3 origins × 2 destinations, 3

problem sogt pgbt post tott |pos| |maxch| steps act_pGB

knap4_2 0.063 249.369 1.265 250.697 11 20 2 164.920

knap4_3 0.063 1002.689 2.012 1004. 704 5 46 2 772.772

knap4_4 0.063 1148.574 2.374 1151.011 16 98 2.4 763.686
knap5_2 0.125 1608.892 0.875 609.892 3 29 2 1187.201

knap5_3 0.125 3500.831 2.035 3503.963 2 30 2.2 2204.123
knap5_4 0.125 3956.534 2.114 3958.773 9 45.4 3 3044.157

knap6_2 0.185 2780.856 2.124 2783.165 18 156 2.4 2241.091

knap6_3 0.185 3869.156 2.018 3871.359 16.4 189 2.4 2790.822
knap6_4 0.185 4598.258 3.006 4601.449 26 298 3.2 3096.466

Table 3.1. Summary of computational experiments for
knapsack problems

origins × 3 destinations and 4 origins × 2 destinations have been considered.

In this case, for each fixed numbers of origins, s, and destinations, d, the con-

straint matrix, A ∈ Z(s+d)×(sd), is fixed. Then, we have generated 5 instances

for each problem of size s × d. Each of these instances is combined with 5

different right-hand side vectors. The procedure is analogous to the knapsack

computational test: a first step where a system of generators is computed, a

second one, where the p-Gröbner basis is built and in the last step, the set

of Pareto-optimal solutions is computed using partial reductions. Table 3.2

shows the average CPU times and the average number of Pareto-optimal solu-

tions and maximal chains in the p-Gröbner basis for each problem. The steps

column shows the average number of steps in the p-Gröbner computation, and

act_pGB is the average CPU time in the computation of the p-Gröbner basis

elapsed since the last element was added to the basis until the end of the pro-

cess. The problems have been named as trNxM_O where N is the number of

origins, M is the number of destinations and O is the number of objectives. As

can be seen in tables 4.1 and 3.2, the overall CPU times are clearly divided into

the three steps, being the most costly the computation of the p-Gröbner basis.

In all the cases more than 99% of the total time is spent computing the p-

Gröbner basis. Once this structure is computed, obtaining the Pareto-optimal

solutions is done very efficiently.

3.4. COMPUTATIONAL EXPERIMENTS 61

problem sogt pgbt post tott |pos| |maxch| steps act_pGB

tr3x2_2 0.015 11.813 0.000 11.828 5.2 6 2 7.547
tr3x2_3 0.015 7.218 13.108 30.341 12 2.6 2 6.207

tr3x2_4 0.015 6.708 15.791 21.931 6 5 2.2 4.561

tr3x3_2 0.047 1545.916 1.718 1547.681 5 92 2 928.222
tr3x3_3 0.047 3194.333 11.235 3205.615 9 122 2.4 2172.146

tr3x3_4 0.047 3724.657 7.823 3732.527 24 187.4 2.2 2112.287

tr4x2_2 0.046 675.138 2.122 677.306 3.4 35.2 2 398.093
tr4x2_3 0.046 1499.294 6.288 1505.628 5.8 42.4 2.2 119.519

tr4x2_4 0.046 2285.365 7.025 2292.436 12 59 2.2 1654.048

Table 3.2. Summary of computational experiments for the
battery of multiobjective transportation problems

The CPU times and sizes in the different steps of the algorithm are highly

sensitive to the number of variables. However, our algorithm is not very sen-

sitive to the number of objectives, since the increment of CPU times with

respect to the number of objectives is much smaller than the one with respect

to the number of variables.

It is clear that one can not expect fast algorithms for solving MOILP, since

all these problems are NP-hard. Nevertheless, our approach provides exact

tools that apart from solving these problems, give insights into the geometric

and algebraic nature of the problem.

As mentioned above, using our methodology one can identify the common

algebraic structure within any multiobjective integer linear problem. This

connection allows to improve the efficiency of our algorithm making use of

any advance that improves the computation of Gröbner bases. In fact, any

improvements of the standard Gröbner bases theory may have an impact in

improving the performance of this algorithm. In particular, one can expect

improvements in the efficiency of our algorithm based on the special structure

of the integer program (see for instance Remark 3.2.1). In addition, we have to

mention another important issue in our methodology. As shown in Theorem

3.2.2, solving MOILP with the same constraint and objective matrices requires

computing only once the p-Gröbner basis. Therefore, once this is done, we can

solve different instances varying the right-hand side very quickly.

Finally, we have observed from our computational tests that a significant

amount of the time, more than 60% (see column act_pGB), for the computation

of the p-Gröbner basis is spent checking that no new elements are needed in

this structure. This implies that the actual p-Gröbner basis is obtained much

earlier than when the final test is finished. A different truncation strategy

may be based on the number of steps required to obtain the p-Gröbner basis.

According to the exact method, the algorithm stops once in a step no new

62 3. PARTIAL GRÖBNER BASES: A GEOMETRIC APPROACH

elements are added to the structure. Our tables show that in most cases the

number of steps is 2, actually only one step is required to generate the entire

p-Gröbner basis (see column steps). These facts can be used to accelerate the

computational times at the price of obtaining only heuristic Pareto-optimal

solutions. This idea may be considered an alternative primal heuristic in

MOILP and will be the subject of further research.

CHAPTER 4

Short generating functions

This chapter addresses another tool for solving MOILP: generating func-

tions. Here, we present two algorithms for solving general multiobjective prob-

lems: (1) fixing the dimension of the decision space, a polynomial time algo-

rithm that encodes the set of nondominated solutions of the problem as a short

sum of rational functions; and (2) a digging algorithm that computes the en-

tire set of nondominated solutions using the multivariate Laurent expansion

for the Barvinok’s function of the polytope defined by the constraints of the

problem. Furthermore, two polynomial delay algorithms for solving multiob-

jective problems are also presented (fixing only the dimension of the decision

space).

We show the results of a computational experiment and its analysis. Here,

we solve biobjective knapsack problems, report on the performance of the

algorithms and draw some conclusions on their results and their implications.

At the end of the chapter, we apply short generating functions to an

algebraic problem: counting the number of numerical semigroups of a given

genus. We translate that problem into the problem of determining the number

of integer points inside a convex polyhedron. Finally we show the results of

counting the number of numerical semigroups with genuses up to 15.

4.1. The multiobjective problem

Through this chapter, we deal with maximization multiobjective linear

and integer problems of the form:

(MIP∗A,C(b))

max (c1 x, . . . , ck x)

s.t.
d∑
j=1

aij xj ≤ bi i = 1, . . . ,m

xj ∈ Z+ j = 1, . . . , n

with aij , bi integers and xi non negative. As in the previous chapters, we will

consider the above problem in its standard form, i.e., the coefficient of the k

objective functions are non-negative and the constraints are in equation form.

63

64 4. SHORT GENERATING FUNCTIONS

In addition, we will assume that the constraints define a polytope (bounded)

in Rn. Therefore, from now on we deal with MIP∗A,C(b) (the superscript ∗

denotes that the problem is in maximization form).

In this case, a vector x̂ ∈ Rn is said to be a nondominated solution of

MIP∗A,C(b) if there is no other feasible vector y such that

cj y ≥ cj x̂ ∀j = 1, . . . , k

with at least one strict inequality for some j. If x is a nondominated solution,

the vector Cx = (c1 x, . . . , ck x) ∈ Rk is called efficient. Recall that XE is a

subset of Rn (decision space) and YE is a subset of Rk (objectives space). A

dominated point, y, is dominated by x if ci x � ci y for all i = 1, . . . , k.1 We

denote by XE the set of all nondominated solutions for (MIP∗A,C(b)) and by YE

the image under the objective functions of XE , that is, YE = {C x : x ∈ XE}.

4.2. A short rational function expression of the entire set of

nondominated solutions

We present in this section an algorithm for solving MIP∗A,C(b) using Barvi-

nok’s rational functions technique.

Theorem 4.2.1. Let A ∈ Zm×n, b ∈ Zm, C = (c1, . . . , ck) ∈ Zk×n,

J ∈ {1, . . . , n}, and assume that the number of variables n is fixed. Suppose

P = {x ∈ Rn : Ax ≤ b, x ≥ 0} is a rational convex polytope in Rn. Then, we

can encode, in polynomial time, the entire set of nondominated solutions for

MIP∗A,C(b) in a short sum of rational functions.

Proof. Using Barvinok’s algorithm (Theorem 1.4.1 - Theorem 5.4 in [7]),

we compute the following generating function in 2n variables:

(16) f(x, y) :=
∑

(u,v)∈PC∩Z2n

xu yv

where PC = {(u, v) ∈ Zn×Zn : u, v ∈ P, ci u− ci v ≥ 0 for all i = 1, . . . , k and
k∑
i=1

ci u −
k∑
i=1

ci v ≥ 1}. PC is clearly a rational polytope. For fixed u ∈ Zn,

the y-degrees, α, in the monomial xu yα of f(x, y) represent the solutions

dominated by u.

Now, for any function ϕ, let π1,ϕ, π2,ϕ be the projections of ϕ(x, y) onto the

x- and y-variables, respectively. Thus π2,f (y) encodes all dominated feasible

integral vectors (because the degree vectors of the x-variables dominate them,

by construction), and it can be computed from f(x, y) in polynomial time by

Theorem 1.7 in [7].

1We are denoting by � the binary relation ”greater than or equal to” and where it is
assumed that at least one of the inequalities in the list is strict.

4.2. SRF OF ND SOLUTIONS 65

Let V (P) be the set of extreme points of the polytope P and choose an

integer R ≥ max{vi : v ∈ V (P), i = 1, . . . , n} (we can find such an integer

R via linear programming). For this positive integer, R, let r(x,R) be the

rational function for the polytope {u ∈ Rn+ : ui ≤ R}, its expression is:

r(x,R) =

n∏
i=1

(
1

1− xi
+

xRi
1− x−1

i

)
.

Define f(x, y) as above, π2,f (x) the projection of f onto the second set

of variables as a function of the x-variables and F (x) the short generating

function of P . They are computed in polynomial time by Theorem 1.7 and

Theorem 5.4 in [7] respectively. Compute the following difference:

h(x) := F (x)− π2,f (x).

This is the sum over all monomials xu where u ∈ P is a nondominated

solution, since we are deleting, from the total sum of feasible solutions, the set

of dominated ones.

This construction gives us a short rational function associated with the

sum over all monomials with degrees being the nondominated solutions for

MIP∗A,C(b). This function encodes the whole set of nondominated solutions.

As a consequence, we can also compute the number of nondominated solutions

for the problem. The complexity of the entire construction being polynomial

since we only use polynomial time operations among four short rational func-

tions of polytopes (these operations are the computation of the short rational

expressions for f(x, y), F (x), r(x,R) and π2,f (x)). �

Remark 4.2.1. To prove the above result one may use a different approach

to compute the nondominated solutions assuming that there exists a polynomi-

ally bounded (for fixed dimension) feasible lower bound set, L, for MIP∗A,C(b),

i.e., a set of feasible solutions such that every nondominated solution is either

one element in L, or it dominates at least one of the elements in L. The reader

may note that this assumption is rather useful and in fact, it easily applies to

most combinatorial optimization problems in maximization form with nonneg-

ative objective matrices. For instance, knapsack, transportation, assignment

or matching problems, among many others.

First, compute the following operations with generating functions:

H(x, y) = f(x, y)− f(x, y) ∗ (π2,f (x) r(y,R))

66 4. SHORT GENERATING FUNCTIONS

where ∗ stands for the Hadamard product2.

This is the sum over all monomials xu yv where u, v ∈ P , u is a non-

dominated solution and v is dominated by u. In H(x, y), each nondominated

solution, u, appears as many times as the number of feasible solutions that it

dominates.

Next, compute a feasible lower bound set (see [52; 47]), L = {α1, . . . , αs}.
This way the set of nondominated solutions is encoded using the following

construction:

Let RLBi(x, y) be the following short sum of rational functions

RLBi(x, y) = H(x, y) ∗ (yαi r(x,R)) i = 1, . . . , s.

Taking into account that for each i, the element yαi is common factor for

RLBi(x, y) and it is the unique factor where the y-variables appear, we can

define NDi(x) =
RLBi(x, y)

yαi
, i = 1, . . . , s, to be the sum of rational func-

tions that encodes the nondominated solutions that dominate αi, i = 1, . . . , s.

Therefore, the entire set of nondominated solutions for MIP∗A,C(b) is encoded

in the short sum of rational functions ND(x) =

k∑
i=1

NDi(x).

4.3. Digging algorithm for the set of nondominated solutions of

MOILP

Section 4.2 proves that encoding the entire set of efficient solutions of

MOILP can be done in polynomial time for fixed dimension. This is a compact

representation of the solution concept. Nevertheless, one may be interested in

an explicit description of this list of points. This task could be performed, by

expanding the short rational expression which is ensured by Theorem 4.2.1,

but it would require the implementation of all operations used in the proof.

As far we know, they have never been efficiently implemented.

An alternative algorithm for enumerating the nondominated solutions of

a multiobjective integer programming problem, which uses rational generat-

ing functions, is the digging algorithm. This algorithm is an extension of a

heuristic proposed by Lasserre [71] for the single-objective case.

Let A,C and b be as in MIP∗A,C(b), and assume that P = {x ∈ Rn : Ax ≤
b, x ≥ 0} is a polytope. Then, by Theorem 1.4.1, we can compute a rational

2Given g1(z) =
∑
m∈Zd

βm z
m

and g2(z) =
∑
m∈Zd

γm z
m

, the Hadamard product g = g1 ∗ g2

is the power series g(z) =
∑
m∈Zn

ηm z
m

where ηm = βmγm).

4.3. A DIGGING ALGORITHM FOR MOILP 67

expression for f(P ; z) =
∑
α∈P∩Zn z

α in the form

f(P ; z) =
∑
i∈I

εi
zui

n∏
j=1

(1− zvij)

in polynomial time for fixed dimension, n. Each addend in the above sum will

be referred to as fi, i ∈ I.

If we make the substitution zi = zi t
c1i
1 · · · t

cki
k , in the monomial descrip-

tion we have f(P ; z, t1, . . . , tk) =
∑

α∈P∩Zn
zα tc1α1 · · · tckαk , where c1, . . . , ck are

the rows in C. It is clear that for enumerating the entire set of nondomi-

nated solutions, it would suffice to look for the set of leading terms, in the

t-variables, in the partial order induced by C, �C , of the multi-polynomial

f(P ; z, t1, . . . , tk). After the above changes we have:

(17) f(P ; z, t1, . . . , tk) =
∑
i∈I

fi(P ; z, t1, . . . , tk),

where fi(P ; z, t1, . . . , tk) := εi
zui tc1ui1 · · · tckuik

n∏
j=1

(1− zvij tc1vij1 · · · tckvijk)

. Now, we can as-

sume, wlog, that c1 vij is negative or zero. If it were zero, then we could

assume that c2 vij is negative. Otherwise, we would repeat the argument un-

til the first non zero element is found (it is assured that this element exists,

otherwise the factor would not appear in the expression of the short rational

function). Indeed, if the first non zero element were positive, we would make

the change:

1

1− zvij tc1vij1 · · · tckvijk

=
−z−vij t−c1vij1 · · · t−ckvijk

1− z−vij t−c1vij1 · · · t−ckvijk

and the sign of the t1-degree would be negative.

With these assumptions, the multivariate Laurent series expansion for

each rational function, fi, in f(P ; z, t1, . . . , tk) is

fi = εiz
ui tc1ui1 · · · tckuik

d∏
j=1

∞∑
λ=0

t
λc1vij
1 · · · tλckvijk

= εiz
ui tc1ui1 · · · tckuik

d∏
j=1

(1 + t
c1vij
1 · · · tckvijk + t

2c1vij
1 · · · t2ckvijk + · · ·)

The following result allows us to develop a finite algorithm for solving

MIP∗A,C(b) using Barvinok’s rational generating functions.

Let U (resp. l) be the greatest (resp. smallest) value that appears in the

non-zero absolute values of the entries in A, b, C. Set M = max{U, l−1}.

68 4. SHORT GENERATING FUNCTIONS

Lemma 4.3.1. Obtaining the entire set of nondominated solutions for a

MOILP requires only an explicit finite, polynomially bounded (in M) number

of terms of the long sum in the Laurent expansion of f(P ; z, t1, . . . , tk).

Proof. Let i ∈ I, j ∈ {1, . . . , n} and define Pi = {λ ∈ Zn+ : csui +
n∑
r=1

λr cs vir ≥ 0, s = 1, . . . , k}, Mij = max{λj : λ ∈ Pi} and mij = min{λj :

λ ∈ Pi}. Mij and mij are well-defined because Pi, defined above, is non

empty and bounded since, by construction, for each j ∈ {1, . . . , n} there exists

s ∈ {1, . . . , k} such that cs vij < 0.

Then, it is enough to search for the nondominated solutions in the finite

sum

εiz
ui tc1ui1 · · · tckuik

d∏
j=1

Mij∑
λ=mij

t
λc1vij
1 · · · tλckvijk .

First, mij ≥ 0. Then, by applying Cramer’s rule one can see that Mij

is bounded above by O(M2n+1). Thus, the explicit number of terms in the

expansion of fi, namely

n∏
j=1

bMij −mijc, is polynomial, when the dimension,

n is fixed. �

The digging algorithm looks for the leading terms in the t-variables, with

respect to the partial order induced by C. At each rational function (addends

in the above sum (17)) multiplications are done in lexicographical order in

their respective bounded hypercubes. If the t-degree of a specific multiplica-

tion is not dominated by one of the previous factors, it is kept in a list; oth-

erwise the algorithm continues augmenting lexicographically the lambdas. To

simplify the search at each addend, the following consideration can be taken

into account: if t
αo+

∑
j λjα

1
j

1 · · · tαo+
∑
j λjα

k
j

k is dominated, then any term of

the form t
αo+

∑
j µjα

1
j

1 · · · tαo+
∑
j µjα

k
j

k , µ being componentwise larger than λ, is

dominated as well.

The above process is done on each rational function that appears in the

representation of f . As an output we get a set of leading terms (for each ra-

tional function), that are the candidates to be nondominated solutions. Terms

that appear with opposite signs will be cancelled. Removing terms in the list

of candidates (to be nondominated solutions) implies consideration of those

terms that were dominated by the cancelled ones. These terms are included

in the current list of candidates and the process continues until no more terms

are added.

At the end, some dominated elements may appear in the union of the final

list. Deleting them in a simple cleaning process gives the list that contains

only the entire set of nondominated solutions for the multiobjective problem.

4.3. A DIGGING ALGORITHM FOR MOILP 69

Algorithm 13 details the pseudocode of the digging algorithm.

Algorithm 13: Digging algorithm for multiobjective problems

input : A ∈ Zm×n, b ∈ Zm, C ∈ Zk×n
Step 1: (Initialization)
Compute, f(z), the short sum of rational functions encoding the set of
nondominated solutions of MIP∗A,C(b). The number of rational function
is indexed by I.
Make the substitution zi = zi t

c1i
1 · · · t

cki
k in f(z). Denote by fi, i ∈ I,

each one of the addends in f , as in (17).
Set mij and Mij , j = 1, . . . , n, the lower and upper bounds computed in

the proof of Lemma 4.3.1 and S =

n∏
j=1

[mij ,Mij] ∩ Zn+.

Set Γi := {}, i ∈ I, the initial set of nondominated solutions encoded in
fi.
Step 2: (Nondominance test)
repeat

for i ∈ I do
for λi ∈ S such that its entries are not componentwise larger
than a previous λ do

Compute pi := zwo tw1
1 · · · t

wk
k , being wo := ui +

n∑
j=1

λij vij

and wh := c1 ui +

n∑
j=1

λij ch vij h = 1, . . . , k

if p is nondominated by elements in Γi then
Γi ← Γi ∪ {p}

end

end

end
Step 3: (Feasibility test)
for s, r ∈ I, s < r do

if p ∈ Γj ∩ Γh, εj = −εh then
Γj ← Γj \ {p}
Γh ← Γh \ {p}

end

end

until No changes in any Γi are done for all i ∈ I ;

Γ :=
⋃
j

Γj .

Remove from Γ the dominated elements.
output: The entire set of nondominated solutions for MIP∗A,C(b): Γ

Taking into account Lemma 4.3.1 and the fact that Algorithm 13 never

cycles, we have the following statement.

70 4. SHORT GENERATING FUNCTIONS

Recall that M = max{U, l−1}, where U is the greatest value that appears

in the non-zero absolute values of the entries in A, b, C and l is the smallest

value among these values.

Theorem 4.3.1. Algorithm 13 computes in a finite (polynomially bounded

on M) number of steps, the entire set of nondominated solutions for MIP∗A,C(b).

It is well known that enumerating the nondominated solutions of MOILP

is NP-hard and #P-hard ([41; 46]). Thus, one cannot expect to have very

efficient algorithms for solving the general problem (when the dimension is

part of the input).

In the following, we concentrate on a different concept of complexity that

has been already used in the literature for slightly different problems. Com-

puting maximal independent sets on graphs is known to be #P-hard ([55]),

nevertheless there exist algorithms for obtaining these sets which ensure that

the number of operations necessary to obtain two consecutive solutions of the

problem is bounded by a polynomial in the problem input size (see e.g. [106]).

These algorithms are called polynomial delay. Formally, an algorithm is said

polynomial delay if the delay, which is the maximum computation time be-

tween two consecutive outputs, is bounded by a polynomial in the input size

([4; 65]).

In our case, a polynomial delay algorithm, in fixed dimension, for solving a

multiobjective linear integer program means that once the first nondominated

solution is computed, either in polynomial time a next nondominated solution

is found or the termination of the algorithm is given as an output.

Next, we present a polynomial delay algorithm, in fixed dimension, for

solving multiobjective integer linear programming problems. This algorithm

combines the theoretical construction of Theorem 4.2.1 and a digging process

in the Laurent expansion of the short rational functions of the polytope asso-

ciated with the constraints of the problem.

The algorithm proceeds as follows.

Let f(z) be the short rational function that encodes the nondominated

solutions (by Theorem 4.2.1, the complexity of computing f is polynomial

-in fixed dimension-). Make the changes zi = zi t
c1i
1 · · · t

cki
k , for i ∈ I, in

f . Denote by fi each of the rational functions of f after the above changes.

Next, the Laurent expansion over each rational function, fi, is done in the

following way: (1) Check if fi contains nondominated solutions computing the

Hadamard product of fi with f . If fi does not contain nondominated solutions,

discard it and set I := I\{i} (termination); (2) if fi encodes nondominated

4.3. A DIGGING ALGORITHM FOR MOILP 71

solutions, look for an arbitrary nondominated solution (expanding fi); (3)

once the first nondominated solution, α, is found, check if there exist more

nondominated solutions encoded in the same rational function computing f ∗
(fi−zα tc1α1 · · · tckαk). If there are more solutions encoded in fi, look for them in

fi− zα tc1α1 · · · tckαk . Repeat this process until no new nondominated solutions

can be found in fi.

The process above describes the pseudocode written in Algorithm 14.

Algorithm 14: A polynomial delay algorithm for solving MOILP

input : A ∈ Zm×n, b ∈ Zm, C ∈ Zk×n
output: The entire set of nondominated solutions for MIP∗A,C(b)
Set XE = {} and YE = {}.
Step 1: Compute, f(z), the short sum of rational functions encoding
the set of nondominated solutions of MIP∗A,C(b). The number of rational
function is indexed by I.
Make the substitution zi = zi t

c1i
1 · · · t

cki
k in f(z). Denote by fi, i ∈ I,

each one of the addends in f (f =
∑
i∈I

fi).

Step 2: For each i ∈ I, check fi ∗ f . If the set of lattice points encoded
by this rational function is empty, do I ← I \ {i}.
Step 3:
while I 6= ∅ do

for i ∈ I do
Look for the first nondominated solution, α, that appears in the
Laurent expansion of fi.
Set XE ← XE ∪ {α} and YE ← YE ∪ {C α}.
Set fi ← fi − zα tc1α1 · · · tckαk

and check if f ∗ fi encodes lattice points. If it does not encode
lattice points, discard fi (I ← I \ {i}) since fi does not encode
any other nondominated point, otherwise repeat.

end

end

Theorem 4.3.2. Assume n is a constant. Algorithm 14 provides a polyno-

mial delay (bounded on M) procedure to obtain the entire set of nondominated

solutions of MIP∗A,C(b).

Proof. Let f be the rational function that encodes the nondominated

solutions of MIP∗A,C(b). Theorem 4.2.1 ensures that f is a sum of short rational

functions that can be computed in polynomial time.

Algorithm 14 digs separately on each one of the rational functions fi,

i ∈ I,that define f . (Recall that f =
∑
i∈I

fi).

Fix i ∈ I. First, the algorithm checks whether fi encodes some nondom-

inated solutions. This test is doable in polynomial time by Theorem 1.4.2.

72 4. SHORT GENERATING FUNCTIONS

If the answer is positive, an arbitrary nondominated solution is found among

those encoded in fi. This is done using digging and the Intersection Lemma.

Specifically, the algorithm expands fi on the hyperbox

n∏
j=1

[mij ,Mij]∩Zn and

checks whether each term is nondominated. The expansion is polynomial, for

fixed n, since the number of terms is polynomially bounded by Lemma 4.3.1.

The test is performed using the Hadamard product of each term with f .

The process is clearly a polynomial delay algorithm. We use digging

separately on each rational function fi that encodes nondominated points.

Thus, the time necessary to find a new nondominated solution from the last

one is bounded by the application of digging on a particular fi which, as argued

above, is polynomially bounded. �

Instead of the above algorithm one can use a binary search procedure to

solve multiobjective problem using short generating functions. In the worst

case, in digging algorithm, the expansion of every nonnegative term is needed

to obtain the set of nondominated solutions. Furthemore, as it is stated in The-

orem 4.3.1, the number of steps to solve the problem is polynomially bounded

on M . With a binary search approach, the number of steps to obtain the

solutions of our problem is decreased to a number bounded on log(M).

This alternative procedure can be described as follows:

Define M as above. By definition, P ⊆ [0,M]n. The methodology is based

on dividing the hypercube [0,M]n in 2n parts, and repeat the process over

those sub-hypercubes where obtaining a nondominated solution is assured, and

until there is only one nondominated solution in this hypercube. For checking

if there is a nondominated solution and counting if there is just one solution

in a hypercube, we use Theorem 4.2.1 to encode the nondominated solutions

in a short generating function, h(x). It is not difficult to see that the short

rational expression for the hypercube H =
n∏
i=1

[mi,Mi] ⊆ Rn, with mi,Mi ∈ Q

for i = 1, . . . , n, is:

rH(x) =

n∏
i=1

[xmii
1− xi

+
xMii

1− x−1
i

]
Then, h(x) ∗ rH(x) encodes the subset of nondominated solutions that lie in

the hypercube H. One can count the number of lattice points encoded by

this expression, i.e., the number of nondominated solutions in this hypercube.

The algorithm proceeds as a depth first search. Once a hypercube, where a

nondominated solution is found, and the hypercube is totally divided until the

nondominated solution is located in a sub-hypercube with only this solution,

the solution is kept, this sub-hypercube (node) is discarded for future checking

4.3. A DIGGING ALGORITHM FOR MOILP 73

and the process is repeated for the next sub-hypercube. When every sub-

hypercube in a hypercube is checked, discard it for future search and repeat

for the predecessor hypercube, until there are no more predecessors.

An illustrative example of this procedure is shown in Figure 4.1 where it

can be seen how the initial hypercube, [0, 4]× [0, 4], is divided successively in

sub-hypercubes, until an isolated nondominated solution is located in one of

them.

The finiteness of this procedure is assured since the number of times that

the hypercube [0,M]n can be divided in 2n sub-hypercubes is bounded by

log(M).

The pseudocode for this procedure is shown in Algorithm 15.

Algorithm 15: Binary algorithm for solving MOILP using SGF.

Initialization: M = [0,M]n ⊆ P .
Step 1: Let M1, . . . ,M2n be the hypercubes obtained dividing M by
its central point.
i = 1
Step 2: repeat

Count the elements encoded in rMi(x) ∗ h(x): nMi . This is the
number of nondominated solutions in the hypercube Mi.
if nMi = 0 then

if i < 2n then
i← i+ 1

else
Go to Step 1 with M the next hypercube to its predecessor
hypercube

end

else
if nMi = 1 then

Let x∗ the unique solution in Mi, ND = ND ∪ {x∗} and
i← i+ 1

else
Go to Step 1 with M =Mi

end

end

until i <= 2n ;

Theorem 4.3.3. Assume n is a constant. Algorithm 14 provides a poly-

nomial delay (bounded on log(M)) procedure to obtain the entire set of non-

dominated solutions of MIP∗A,C(b).

Remark 4.3.1. The application of the above algorithm to the single cri-

terion case provides an alternative proof of polynomiality for the problem of

finding an optimal solution of integer linear problems, in fixed dimension.

74 4. SHORT GENERATING FUNCTIONS

Assume that the number of objectives, k, is 1, and that there exists a

unique optimal value for the problem. Compute the short sum of rational

functions that encode this value. Locate the rational function, fi, i ∈ I, which

contains the optimum value. This operation takes polynomial time, for fixed

n, computing the Hadamard product fi ∗ f , and counting the number of lattice

points encoded by this function. Note that this is again doable in polynomial

time using Barvinok’s theory [9].

Once the rational function is found, expanding for finding the optimal

value is computed in polynomial time, since by Lemma 4.3.1, it is enough to

expand a prespecified polynomially bounded number of terms.

Remark 4.3.2 (Optimization over the set of nondominated solutions). In

practice, a decision maker expects to be helped by the solutions of the multi-

objective problem. In many cases, the set of nondominated solutions is too

large to make easily the decision, so it is necessary to optimize (using a new

criterion) over the set of nondominated solutions.

With our approach, we are able to compute, in polynomial time for fixed

dimension, a “short sum of rational functions”-representation, F (z), of the

set of nondominated solutions of MIP∗A,C(b). This representation allows us to

re-optimize with a linear objective, ν, based in the algorithms for solving single-

objective integer programming problems using Barvinok’s functions: digging,

binary search, ... or the algorithm proposed in Remark 5.1.1.

Moreover, the method of Remark 5.1.1 ensured polynomially of the algo-

rithm in fixed dimension, as well as an explicit computation of the optimal

values of the problem. The above discussion proves that solving the problem

of optimizing a linear function over the efficient region of a multiobjective

problem MIP∗A,C(b) is doable in polynomial time, for fixed dimension.

4.4. Computational Experiments

For illustrative purposes, a series of computational experiments have been

performed in order to evaluate the behavior of a simple implementation of the

digging algorithm (Algorithm 13). Computations of short rational functions

have been done with Latte v1.2 [36] and Algorithm 13 has been coded in

MAPLE 10 and executed in a PC with an Intel Pentium 4 processor at 2.66Gz

and 1 GB of RAM. The implementation has been done in a symbolic program-

ming language, available upon request, in order to make the access easy for

the interested readers.

The performance of the algorithm was tested on randomly generated in-

stances for biobjective (two objectives) knapsack problems. Problems from

4 to 8 variables were considered, and for each group, the coefficients of the

4.4. COMPUTATIONAL EXPERIMENTS 75

constraint were randomly generated in [0, 20]. The coefficients of the two ob-

jective matrices range in [0, 20] and the coefficients of the right hand side were

randomized in [20, 50]. Thus, the problems solved are in the form:

(18) max (c1, c2)x s.t. a1x1 + · · ·+ an xn ≤ b, xi ∈ Z+

The computational tests have been done on this way for each number of

variables: (1) Generate 5 constraint vectors and right hand sides and com-

pute the shorts rational functions for each of them; (2) Generate a random

biobjective matrix and run digging algorithm for them to obtain the set of

nondominated solutions.

Table 4.1 contains a summary of the average results obtained for the

considered knapsack multiobjective problems. The second and third columns

show the average CPU times for each stage in the Algorithm: srf is the CPU

time for computing the short rational function expression for the polytope with

LattE and mo-digging the CPU time for running the multiobjective digging

algorithm for the problem. The total average CPU times are summarized

in the total column. Columns latpoints and nosrf represent the number

of lattice points in the polytope and the number of short rational functions,

respectively. The average number of efficient solutions that appear for the

problem is presented under effic. The problems have been named as knapN

where N is the number of variables of the biobjective knapsack problem.

problem srf latpoints nosrf mo-digging effic total

knap4 0.018 12.25 25.75 4.863 4.5 4.881

knap5 0.038 31 62.5 487.640 9.25 487.678
knap6 0.098 217.666 124.25 2364.391 7.666 2364.489

knap7 0.216 325 203 2869.268 20 2869.484
knap8 0.412 3478 342 10245.533 46 10245.933

Table 4.1. Summary of computational experiments for
knapsack problems

As can be seen in Table 4.1, the computation times are clearly divided into

two steps (srf and mo-digging), being the most expensive the application of

the digging algorithm (Algorithm 13). In all cases more than 99% of the total

time is spent expanding the short rational function using “digging algorithm”.

The CPU times and sizes in the two steps are highly sensitive to the num-

ber of variables. It is clear that one cannot expect fast algorithm for solving

MOILP, since all these problems are NP-hard and #P-hard. Nevertheless, this

approach gives exact tools for solving any MOILP problem, independently of

the combinatorial nature of the problem.

76 4. SHORT GENERATING FUNCTIONS

Finally, from our computational experiments, we have detected that an

easy, promising heuristic algorithm could be obtained truncating the expansion

at each rational function. That algorithm would accelerate the computational

times at the price of obtaining only heuristics nondominated points.

4.4. COMPUTATIONAL EXPERIMENTS 77

Figure 4.1. Search tree and feasible region for the problem
v −max{(x, y) : x+ y ≤ 5, x− 2y ≤ 2, x+ y ≥ 2, x ≥ 1, y ≤
3, x, y ∈ Z+}

78 4. SHORT GENERATING FUNCTIONS

4.5. Counting numerical semigroups of given genus

In this last section we apply generating functions to solve a problem ap-

parently far from optimization: the one of counting the number of numerical

semigroups with given genus.

A numerical semigroup is a subset S of N that is closed under addition,

0 ∈ S and generates Z as a group. This last condition is equivalent to gcd(S) =

1.

For given numerical semigroup S, the set N\S has finitely many elements.

Its maximum is known as the Frobenius number of S and it is denoted by F (S).

If S = N, then F (S) = −1. Furthemore, S has a unique minimal system of

generators {n1, . . . , np}. The element n1 is the least positive integer belonging

to S and it is denoted by m(S), the multiplicity of S (m(S) = min(S \ {0})),
and the set of elements in G(S) = N \ S is known as the set of gap of S. Its

cardinality is known as the genus of S. The interested reader is referred to [6]

or [88; 89] for further details.

Given n ∈ S \ {0}, the Apéry set (named so after [3]) of S with re-

spect to n is the set Ap(S, n) = {s ∈ S : s − n 6∈ S} and it can be eas-

ily shown that if for every i ∈ {0, . . . , n − 1} we take w(i) the least el-

ement in S congruent with i modulo n (denoted w(i) ≡ i(modn)), then

Ap(S, n) = {0 = w(0), w(1), . . . , w(n−1)}. The set Ap(S, n) completely deter-

mines S, since S = 〈Ap(S, n)∪{n}〉 (where 〈A〉 denotes the monoid generated

by A). Moreover, the set Ap(S, n) contains in general more information than

an arbitrary system of generators of S. For instance, g(S) = max(Ap(S, n))−n
and for all s ∈ S there exist unique t ∈ N and w ∈ Ap(S, n) such that

s = tn+ w. One could say that the best way of describing S is by the Apéry

set of one of its elements, and the smallest Apéry set is Ap(S,m(S)).

Through this section, we apply short generating functions for counting the

number of solutions of certain system of diophantine equations that classify

the numerical semigroups for fixed multiplicity and genus.

The use of generating functions is justified since once the short generating

function is computed for a polytope P ⊆ Rn, the number of lattice points inside

P can be computed using tools from complex analysis. In the long expression,

there are as many integral points in P as monomials, and then, if we evaluate

the function in z = 1, we obtain that number. Using the short rational sum

expression for P , the point z = 1 is always a pole, so, this expression cannot

be evaluated at this point, but the limit in this point gives the same number.

First, we recall some results on numerical semigroups in order to translate

the problem of finding the number of numerical semigroups for fixed genus,

4.5. COUNTING NUMERICAL SEMIGROUPS OF GIVEN GENUS 79

in the problem of counting the number of lattice points inside a polytope and

then, apply Barvinok’s results.

Let S(m) be the set of all numerical semigroups with multiplicity m ∈
N\{0}. In [90] Rosales et al. proved that there is a one-to-one correspondence

between this set and the set of non-negative integer solutions of a system of

linear Diophantine inequalities. This identification was previously used by

Kunz in [70].

Let m be an integer greater than 1 and let S be in S(m) with Ap(S,m) =

{0 = w(0), w(1), . . . , w(m− 1)}. For all i ∈ {1, . . . ,m− 1} let ki ∈ N be such

that w(i) = kim + i. Then (k1, . . . , km−1) is a non-negative solution of the

system

xi > 1 for all i ∈ {1, . . . ,m− 1},

xi + xj − xi+j > 0 for all 1 6 i 6 j 6 m− 1, i+ j 6 m− 1,(19)

xi + xj − xi+j−m > −1 for all 1 6 i 6 j 6 m− 1, i+ j > m

xi ∈ Z for all i ∈ {1, . . . ,m− 1}

Denote by T (m) the set of non-negative solutions of (19). Then, the following

result, due to Rosales et al. [90], allow us to identify the set T (m) with S(m).

Theorem 4.5.1. Let m be an integer greater than 1. There exists a one-

to-one correspondence map between the sets T (m) and S(m).

Then, for fixed m, each solution of (19) corresponds with an unique nu-

merical semigroup with multiplicity m.

The following result due to Selmer [94] allows us to define a polytope whose

integer points represent each numerical semigroup with multiplicity and genus

given.

Theorem 4.5.2 ([94]). Let S be a numerical semigroup with multiplicity

m and Ap(S,m) = {0, w(1) = k1m+ 1, . . . , w(n− 1) = km−1 +m− 1}, then

g(S) =

m−1∑
i=1

ki

The system of inequalities

xi > 1 for all i ∈ {1, . . . ,m− 1},

xi + xj − xi+j > 0 for all 1 6 i 6 j 6 m− 1, i+ j 6 m− 1,

xi + xj − xi+j−m > −1 for all 1 6 i 6 j 6 m− 1, i+ j > m(20)

m−1∑
i=1

xi = g

80 4. SHORT GENERATING FUNCTIONS

defines a polytope in Rm−1, that we will call Pm,g. We denote by Jm,g the

system above.

Each element in Pm,g ∩ Z corresponds with a numerical semigroup with

multiplicity m and genus g.

We conclude that, for fixed m and g, the number of numerical semigroup

with multiplicity m and genus g is finite. We will denote nm,g = #(Pm,g ∩
Zm−1).

Once the problem of counting the number of semigroups for fixed multi-

plicity and genus, has been translated to count lattice points inside polytopes,

Barvinok’s rational function can help us.

Using Theorem 1.4.1 we can compute the following generating rational

function for Pm,g

(21) f(Pm,g; z) =
∑
i∈I

εi
zui

n∏
j=1

(1− zvij)

in polynomial time.

Then, nm,g = lim
z→0

f(Pm,g; z).

This limit can be computed with the following with Algorithm 16.

We use the following result in Algorithm 16.

Proposition 4.5.1. Let g(x) =
p(x)

q(x)
, where p(x) and q(x) are polynomials

in the indeterminate x, and such that 1 is a root of q(x) with multiplicity r.

If limx→1 g(x) exists, then pk)(1) = 0 for k = 1, . . . , r.

Proof. Note that since 1 is a root of multiplicity r of q(x), then we can

write q(x) = (1− x)rh(x) with h(x) a polynomial with h(1) 6= 0.

Assume that ps)(1) 6= 0 for s < r. Computing the s-th derivative of q:

qr)(x) =
r!

(r − k)!
(1− t)r−kq(t) + q̃(t)

with q̃(1) = 0. Then, limx→1 g(x) = limx→1
p(x)

q(x)
= · · · = limx→1

pk)(x)

qk)(x)
=

pk)(1)

0
=∞, a contradiction with the existence of limit of g(x) at x = 1. �

Using the results on generating functions listed in Chapter 1 and the above

proposition, the following result can be stated.

Theorem 4.5.3. For fixed multiplicity m, Algorithm 16 counts the nu-

merical semigroups for any genus g in polynomial time.

Proof. By Theorem 1.4.1, Step 1 can be done in polynomial time. The

rest of the steps are clearly polynomially bounded. �

4.5. COUNTING NUMERICAL SEMIGROUPS OF GIVEN GENUS 81

Algorithm 16: Procedure for counting the number of numerical semi-
groups for fixed multiplicity and genus.

Input : m, g ∈ Z+, 1 ≤ m ≤ g + 1
Algorithm:

Step 1: Choose c ∈ Zm such that c vij 6= 0 for all i, j. Do the changes
xi = tci for each i = 1, . . . ,m. Then equation (21) is expressed as:

(22) f(Pm,g; t) =
∑
i∈I

εi
tc ui

n∏
j=1

(1− tc vij)

Step 2: Join the rational functions in equation (22) in one rational
function:

(23) f(Pm,g; t) =
P (t)

Q(t)

Step 3: Extract from Q(t) the terms with (1− t), i.e., express Q(t)
as:

Q(t) = (1− t)r q(t)
where q(t) is a polynomial with q(1) 6= 0.

Step 4: Use L’Hopital Rule successively to compute the limit:

lim
z→1

f(Pm,g; z) = lim
t→1

f(Pm,g; t) = lim
t→1

P (t)

(1− t)r Q(t)
=
P r)(1)

r!Q(1)

Output: Number of numerical semigroups for fixed multiplicity m
and genus g: nm,g.

Another useful result is the one that states that for a numerical semigroup

with fixed genus g, its multiplicity is at most m = g+ 1. Then, the number of

semigroups with fixed genus g (independently of the multiplicity) is given by

the following finite sum:

ng =

g+1∑
m=1

nm,g

Theorem 4.5.4. Let g be a given genus. g + 1 iterations of Algorithm 16

counts the numerical semigroups of genus g in polynomial time.

Proof. It follows from Theorem 4.5.3. �

Table 4.5 shows the number of numerical semigroups from genus 0 to 15

obtained using the above methodology. We run the software barvinok [109]

for counting nm,g, for each pair (m, g) with 1 ≤ m ≤ g + 1 in a PC with

an Intel Pentium 4 processor at 2.66GHz and 1 GB of RAM. It was able to

compute the number of numerical semigroups for genus up to 15. Although

this methodology can be applied to any genus, the software barvinok fails to

compute the short generating function representation of the polytope in (20)

for g < 15. barvinok is designed to be applicable to general polytopes and

82 4. SHORT GENERATING FUNCTIONS

therefore does not exploit the special structure of the polytope (20). Up to

date, there are only few implementations for computing generating functions

of rational polyhedrons. LattE [36] and barvinok [109] seems to be the most

recent and incorporating a larger battery of options. More effective imple-

mentations oriented to the particular polytope in (20) and further research in

the computation of generating functions of polyhedron will help to obtain the

number of numerical semigroups for larger genuses. In Rosales et al. [90],

HHH
Hg

m
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ng

2 1 1 2

3 1 2 1 4
4 1 2 3 1 7

5 1 2 4 4 1 12

6 1 3 6 7 5 1 33
7 1 3 7 10 11 6 1 39

8 1 3 9 13 17 16 7 1 67

9 1 4 11 16 27 28 22 8 1 118
10 1 4 13 22 37 44 44 29 9 1 204

11 1 4 15 24 49 64 72 66 37 10 1 343
12 1 5 18 32 66 85 116 116 95 46 11 1 592

13 1 5 20 35 85 112 172 188 182 132 56 12 1 1001

14 1 5 23 43 106 148 239 288 304 277 178 67 13 1 1693
15 1 6 26 51 133 191 325 409 492 486 409 234 79 14 1 2857

Table 4.2. Number of numerical semigroups with given
genus g and multiplicity m for g ≤ 15 and 2 ≤ m ≤ g + 1.

the authors proved that the set of numerical semigroups with fixed multiplicity

and genus can be seen as the set of integer points in a certain rational bounded

polyhedron. On other hand, the result of Barvinok [7] states that generating

functions are useful to count integer points in rational polyhedron. This paper

combines both results to count numerical semigroups for fixed multiplicity and

genus. Furthermore, the result by Selmer [94] allows us to count the number

of numerical semigroups just fixing the genus since this number only depends

of the number of numerical semigroups with fixed genus g and multiplicity at

most g + 1.

A similar methodology can be applied to other special families of nu-

merical semigroups where it is known their relationship with counting points

in polyhedra. For instance, in [90] the authors characterized in this way

maximal embedding dimension semigroups (MED-semigroups), symmetric nu-

merical semigroups and maximal embedding dimension symmetric semigroups

(MEDSY-semigroups). For all these cases, generating functions can be ap-

plied to compute the number of elements in the corresponding family fixing

the genus.

CHAPTER 5

Non linear multiobjective optimization

In this chapter, we introduce a new methodology for solving general

MOPIP (see Chapter 1 for a description of the problem) based on the con-

struction of reduced Gröbner bases of certain ideals related to the problem and

on solving triangular systems of polynomial equations given by those bases.

We describe different approaches for solving MOPIP using Gröbner bases

which are based on reducing the problem to different optimality conditions: the

necessary Karush-Kuhn-Tucker, the Fritz-John and the multiobjective Fritz-

John optimality conditions.

In the following sections we describe some algorithms for solving MOPIP

using tools from algebraic geometry. In particular, in each of these methods,

we transform our problem to a certain system of polynomial equations, and

we use Gröbner bases to solve it.

5.1. Obtaining nondominated solutions solving systems of

polynomial equations

In this section we present the first approach for solving multiobjective

polynomial integer programs using Gröbner bases. For this method, we trans-

form the program in a system of polynomial equations that encodes the set of

feasible solutions and its objective values. Solving that system in the objective

values, and then, selecting the minimal ones in the partial componentwise or-

der, allows us to obtain the associate feasible vectors, thus, the nondominated

solutions.

Through this section we solve MOPBPf ,g,h, i.e.

(MOPBPf ,g,h)

min (f1(x), . . . , fk(x))

s.t. gj(x) ≤ 0 j = 1, . . . ,m

hr(x) ≤ 0 r = 1, . . . , s

x ∈ {0, 1}n

Without loss of generality, we reduce the general problem to the problem

without inequality constraints since we can transform inequality constraints

83

84 5. NON LINEAR MULTIOBJECTIVE OPTIMIZATION

to equality constrains as follows:

(24) g(x) ≤ 0⇐⇒ g(x) + z2 = 0, z ∈ R.

where the quadratic term, z2, assures the nonnegativity of the slack variable

and then, less than or equal to type inequality. Initially, we suppose that

all the variables are binary. In Remark 5.1.1 we describe how to modify the

algorithm to incorporate the above slack variables.

This approach consists of transforming MOPBPf ,h to an equivalent prob-

lem such that the objective functions are part of the constraints. For this

transformation, we add k new variables, y1, . . . , yk to the problem, encoding

the objective values for all feasible solutions. The modified problem is:

(25)

min (y1, . . . , yk)

s.t. hr(x) = 0 r = 1, . . . , s

yj − fj(x) = 0 j = 1, . . . , k

xi(xi − 1) = 0 i = 1, . . . , n

y ∈ Rk x ∈ Rn

where integrality constraints are codified as quadratic constraints so

MOPBPf ,h is a polynomial continuous problem.

The algorithm consists of, first, obtaining the set of feasible solutions of

Problem (25) in the y variables; then, selecting from that set those solutions

that are minimal with respect to the componentwise order, obtaining the set of

efficient solutions of MOPBPf ,h. The feasible solutions in the x-variables asso-

ciated to those efficient solutions correspond with the nondominated solutions

of MOPBPf ,h.

Then, first, we concentrate in describing a procedure for solving the system

of polynomial equations that encodes the feasible region of Problem (25), i.e.

the solutions of

(26)

hr(x) = 0 for all r = 1, . . . , s

yj − fj(x) = 0 for all j = 1, . . . , k

xi(xi − 1) = 0 for all i = 1, . . . , n.

For analyzing the system (26) we use Gröbner bases as a tool for solving

systems of polynomial equations. Further details can be found in the book by

Sturmfels [99].

The set of solutions of (26) coincides with the affine variety of the following

polynomial ideal in R[y1, . . . , yk, x1, . . . , xn]:

I = 〈h1(x), . . . , hm(x), y1 − f1(x), . . . , yk − fk(x), x1(x1 − 1), . . . , xn(xn − 1)〉.

5.1. ND SOLUTIONS SOLVING SYSTEMS 85

Note that I is a zero dimensional ideal since the number of solutions of the

equations that define I is finite. Let V (I) denote the affine variety of I. If we

restrict I to the family of variables x (resp. y) the variety V (I ∩R[x1, . . . , xn])

(resp. V (I ∩R[y1, . . . , yk])) encodes the set of feasible solutions (resp. the set

of possible objective values) for that problem.

Applying the elimination property, the reduced Gröbner basis for I, G,

with respect to the lexicographical ordering with yk ≺ · · · ≺ y1 ≺ xn ≺ · · · ≺
x1 gives us a method for solving system (26) sequentially, i.e., solving in one

indeterminate at a time. Explicitly, the shape of G is:

1) G contains one polynomial in R[yk]: pk(yk)

2) G contains one or several polynomials in R[yk−1, yk] :

p1
k−1(yk−1, yk), . . . , p

mk−1
k−1 (yk−1, yk).

...

k + 1) G contains one or several polynomials in R[xn, y1, . . . , yk]:

q1
n(xn,y), . . . , qsnn (xn,y).

...

k + n) G contains one or several polynomials in R[xn, y1, . . . , yk]:

q1
1(x1, . . . , xn,y), . . . , qs1n (x1, . . . , xn,y).

Then, with this structure of G, we can solve, in a first step, the system in

the y variables using those polynomial in G that only involve this family of

variables as follows: we first solve for yk in pk(yk) = 0, obtaining the solutions:

y1
k, y

2
k, Then, for fixed yrk, we find the common roots of p1

k−1, p
2
k−1, . . .

getting solutions y1
k−1,r, y

2
k−1,r, . . . and so on, until we have obtained the roots

for p1(y1, . . . , yk). Note that at each step we only solve one-variable polynomial

equations.

We denote by Ω the above set of solutions in vector form

Ω = {(ŷ1, . . . , ŷk) :pk(ŷk) = 0, p1
k−1(ŷk−1, ŷk) = 0, . . . , p

mk−1
k−1 (ŷk−1, ŷk) = 0, . . .

p1
1(ŷ1, ŷ2, . . . , ŷk) = 0, . . . , pm1

1 (ŷ1, ŷ2, . . . , ŷk) = 0}.

As we stated above, Ω is the set of all possible values of the objective functions

at the feasible solutions of MOPBPf ,h. We are looking for the nondominated

solutions that are associated with the efficient solutions. From Ω, we can

select the efficient solutions as those that are minimal with respect to the

componentwise order in Rk. So, we can extract from Ω the set of efficient

solutions, YE :

YE = {(y∗1 , . . . , y∗k) ∈ Ω : 6 ∃(y′1, . . . , y′k) ∈ Ω with y′j ≤ y∗j for j = 1, . . . , k and

(y′1, . . . , y
′
k) 6= (y∗1 , . . . , y

∗
k)}

86 5. NON LINEAR MULTIOBJECTIVE OPTIMIZATION

Once we have obtained the solutions in the y variables that are efficient solu-

tions for MOPBPf ,h, we compute with an analogous procedure the nondom-

inated solutions associated to the y-values in YE . It consists of solving the

triangular system given by G for the polynomial where the x-variables appear

once the values for the y-variables are fixed to be each of the vectors in YE .

A pseudocode for this procedure is described in Algorithm 17.

Algorithm 17: Solving MOPIP by solving systems of polynomial equa-
tions

Input : f1, . . . , fk, h1, . . . hs ∈ R[x1, . . . , xn]
Initialization:
I = 〈f1 − y1, . . . , fk − yk, h1, . . . , hs, x1(x1 − 1), . . . , xn(xn − 1)〉.
Algorithm:

Step 1.: Compute a Gröbner basis, G, for I with respect to a
lexicographic order with yk ≺ · · · ≺ y1 ≺ xn ≺ · · · ≺ x1.

Step 2.: Let Gyl = G ∩ R[yl+1, . . . , yk] be a Gröbner basis for
Iyl = I ∩ R[yl+1, . . . , yk], for l = 0, . . . , k − 1.

(By the Elimination Property).
(1) Find all ŷk ∈ V (Gyk−1).

(2) Extend every ŷk to (ŷk−1, ŷk) ∈ V (Gyk−2).

...
(k − 1) Extend every (ŷ3, . . . , ŷk) to (ŷ2, ŷ3, . . . , ŷk) ∈ V (Gy1).

(k) Find all ŷ1 such that (ŷ1, . . . , ŷk) ∈ V (Gy0).
Step 3.: Select from V (Gy0) the minimal vectors with respect to the

usual componentwise order in Rk. Set YE this subset.
Step 4.: Let Gl = G ∩ R[y1, . . . , yk, xl+1, . . . , xn] a Gröbner basis for
Il ∩ R[y1, . . . , yk, xl+1, . . . , xn], for l = 0, . . . , n− 1. (By the
Elimination Property). Denote by
Sl = {(ŷ1, . . . , ŷk, x̂l+1, . . . , x̂n) : (ŷ1, . . . , ŷk) ∈
YE , and ∃(x1, . . . , xl) such that (x1, . . . , xn) is feasible} for
l = 0, . . . , n− 1.
(1) Find all x̂n such that (ŷ1, . . . , ŷk, x̂n) ∈ V (Gn−1) ∩ Sn−1.
(2) Extend every x̂n to ((ŷ1, . . . , ŷk, x̂n−1, x̂n) ∈ V (Gn−2) ∩ Sn−2.

...
(n− 1) Extend every (ŷ1, . . . , ŷk, x̂3, . . . , x̂n) to

(ŷ1, . . . , ŷk, x̂2, x̂3, . . . , xn) ∈ V (G1) ∩ S1.
(n) Find all x̂1 such that (ŷ1, . . . , ŷk, x̂1, . . . , x̂n) ∈ V (G0) ∩ S0.
Set XE = πx(V (G0) ∩ S0), where πx denotes the projection over
the x-variables.

Output: YE the set of efficient solutions and XE the set of
nondominated solutions for MOPBPf ,h.

Theorem 5.1.1. Algorithm 17 either provides all nondominated and effi-

cient solutions or provides a certificate of infeasibility whenever G = {1}.

5.1. ND SOLUTIONS SOLVING SYSTEMS 87

Proof. Suppose that G 6= {1}. Then, Gyk−1 has exactly one element,

namely p(yk). This follows from the observation that I ∩R[yk] is a polynomial

ideal in one variable, and therefore, needs only one generator.

Solving p(yk) = 0 we obtain every ŷk ∈ V (Gyk−1). Sequentially we obtain

ŷk−1 extending ŷk to the partial solutions (ŷk−1, ŷk) in V (Gyk−1) and so on.

By the Extension Theorem, this is always possible in our case.

Continuing in this way and applying the Extension Theorem, we can ob-

tain all solutions (ŷ1, . . . , ŷk) in V (G ∩ R[y1, . . . , yk]. These vectors are all

the possible objective values for all feasible solutions of the problem. Select-

ing from V (G ∩ R[y1, . . . , yk]) those solutions that are not dominated in the

componentwise order in Rk, we obtain YE .

Following a similar scheme in the x- variables, we have the set V (G0)∩S∗0
encoding all efficient (in the first k coordinates) and nondominated (in the last

n coordinates) solutions.

Finally, ifG = {1}, then, the ideal I coincides with R[y1, . . . , yk, x1, . . . , xn],

indicating that V (I) is empty (it is the set of the common roots of all polyno-

mials in R[y1, . . . , yk, x1, . . . , xn]). Then, we have an infeasible integer prob-

lem. �

Remark 5.1.1. In the case when we have added slack variables, as ex-

plained in (24), we slightly modify the above algorithm solving first in the slack

variables and selecting those solutions that are real numbers. Then continue

with the procedure described in Algorithm 17.

The following example illustrates how Algorithm 17 works with the corre-

sponding modifications due to non-binary variables and inequality constrains.

This simple example gives an idea about the kind of problems that can be

solved using this method. The feasible region has two different connected

components and one of these components is not convex.

Example 5.1.1.

(27)

min (x2
1 − x2, x1 − x2

2)

s.t. x2 − x4
1 + 10x3

1 − 30x2
1 + 25x1 − 7 ≥ 0

x2 − x3
1 + 9x2

1 − 25x1 + 12 ≤ 0

x1, x2 ∈ Z+

The feasible region for this problem is shown in Figure 5.1.

Now, we transform the problem to a binary problem and with equality

constraints. For the first task, we substitute each variable, x1 and x2 by their

binaries expressions, taking into account that we x1 is upper bounded by 6

and x2 by 15. For the second task, we add to the problem to new variables

w1 and w2. Then, the problem is equivalent to the following multiobjective

88 5. NON LINEAR MULTIOBJECTIVE OPTIMIZATION

Figure 5.1. Feasible region of Example 5.1.1

mixed-binary problem:

min (y1, y2)

s.t.

y1 − z2
10 − 4 z10 z11 − 8 z10 z12 − 16 z10 z13 − 4 z2

11

−16 z11 z12 − 32 z11 z13 − 16 z2
12 − 64 z12 z13 − 64 z2

13

+z20 + 2 z21 + 4 z22 + 8 z23 + 16 z24 = 0

y2 − z10 − 2 z11 − 4 z12 − 8 z13 + z2
20 + 4 z20 z21 + 8 z20 z22

+16 z20 z23 + 32 z20 z24 + 4 z2
21 + 16 z21 z22 + 32 z21 z23

+64 z21 z24 + 16 z2
22 + 64 z22 z23 + 128 z22 z24 + 64 z2

23

+256 z23 z24 + 256 z2
24 = 0

−7− 1536 z10 z11 z
2
13 − 192 z2

10 z11 z13 − 1536 z10 z
2
12 z13

−192 z10 z
2
11 z12 + 25 z10 + 50 z11 + 100 z12 + 200 z13 − 30 z2

10

−120 z10 z11 − 240 z10 z12 − 480 z10 z13 − 120 z2
11 − 480 z11 z12−

960 z11 z13 − 480 z2
12 − 1920 z12 z13 − 1920 z2

13 + z20 + 2 z21 + 4 z22

+8 z23 + 16 z24 + 960 z10 z11 z13 + 1920 z10 z12 z13 + 60 z2
10 z11

+120 z2
10 z12 + 240 z2

10 z13 + 120 z10 z
2
11 + 480 z10 z

2
12 + 1920 z10 z

2
13

+480 z2
11 z12 + 960 z2

11 z13 + 960 z11 z
2
12 + 3840 z11 z

2
13 + 10 z3

10

+80 z3
11 + 640 z3

12 + 5120 z3
13 − 1536 z10 z11 z12 z13 − z4

10 − 256 z4
12

−4096 z4
13 − 16 z4

11 + 3840 z2
12 z13 + 7680 z12 z

2
13 − 8 z3

10 z11

−16 z3
10 z12 − 32 z3

10 z13 − 24 z2
10 z

2
11 − 96 z2

10 z
2
12

−384 z2
10 z

2
13 − 32 z10 z

3
11 − 256 z10 z

3
12 − 2048 z10 z

3
13

−128 z3
11 z12 − 256 z3

11 z13 − 384 z2
11 z

2
12 − 1536 z2

11 z
2
13

−512 z11 z
3
12 − 4096 z11 z

3
13 − 8192 z12 z

3
13 − 2048 z3

12 z13

5.1. ND SOLUTIONS SOLVING SYSTEMS 89

−6144 z2
12 z

2
13 + 3840 z11 z12 z13 − 384 z2

10 z12 z13 − 96 z2
10 z11 z12

−1536 z2
11 z12 z13 − 384 z10 z

2
11 z13 − 384 z10 z11 z

2
12

−3072 z10 z12 z
2
13 − 3072 z11 z

2
12 z13 − 6144 z11 z12 z

2
13

+480 z10 z11 z12 − w2
1 = 0

12− 25 z10 − 50 z11 − 100 z12 − 200 z13 + 9 z2
10 + 36 z10 z11

+72 z10 z12 + 144 z10 z13 + 36 z2
11 + 144 z11 z12

+288 z11 z13 + 144 z2
12 + 576 z12 z13 + 576 z2

13 + z20 + 2 z21

+4 z22 + 8 z23 + 16 z24 − 96 z10 z11 z13 − 192 z10 z12 z13

−6 z2
10 z11 − 12 z2

10 z12 − 24 z2
10 z13

−12 z10 z
2
11 − 48 z10 z

2
12 − 192 z10 z

2
13 − 48 z2

11 z12

−96 z2
11 z13 − 96 z11 z

2
12 − 384 z11 z

2
13 − z3

10 − 8 z3
11

−64 z3
12 − 512 z3

13 − 384 z2
12 z13 − 768 z12 z

2
13

−384 z11 z12 z13 − 48 z10 z11 z12 + w2
2 = 0

z2
ij − zij = 0, i = 1, 2j = 0, 1, 2, 3, (4)

zij, yk, wi ∈ R.

Now, we compute the reduced Gröbner basis for the set of polynomials that

define the feasible region of the above problem with respect to the lexicographic

ordering such that z � yw. Running MAPLE 11 using the package Groebner

and the procedure Solve, it computes the 569 complex solutions solutions of the

polynomial system. Then, we remove those that are not real constants (it may

happen only for the slack variables w1 and w2). After this removing process we

have 29 solutions (16 of them given different values in the y-variables, note that

oposite values for the w-variables give the same y-values) in the 13 variables

that are involved in the problem. Actually, we can forget the values for variables

w1 and w2 since the were only useful to determine the real solutions. After

that, we have the following solutions for the y variables:

(y1, y2) ∈ {(16,−76), (9,−45), (17,−59), (14,−116), (11,−21), (13,−139),

(−3,−15), (13,−5), (−2,−8), (12,−12), (12,−164), (15,−95),

(10,−32), (18,−44), (8,−60), (−4,−24)}.

The minimal elements (with respect to the componentwise ordering) are:

YE = {(12,−164), (8,−60), (−4,−24)},

whose values in the z variables are:

ZE = {(0, 0, 1, 0, 0, 0, 0, 1, 0), (1, 0, 0, 0, 1, 0, 1, 0, 0), (1, 0, 1, 0, 1, 0, 1, 1, 0)},

and translating to values in the original x variables we have that the set of

nondominated solutions for the problem is:

XE = {(4, 8), (5, 13), (1, 5)}

90 5. NON LINEAR MULTIOBJECTIVE OPTIMIZATION

Figure 5.1.1 shows these solutions in the feasible region of the problem and the

levels curves of both objective functions at each of these solutions.

Figure 5.2. Feasible region, the nondominated solutions
and the level curves of Example 5.1.1

Remark 5.1.2. The Gröbner basis, G, computed for solving the system

of polynomial equations can be computed with respect to any other elimination

ordering. The only conditions required for that ordering is that it allows to

separate the family of x−variables from the family of y-variables and such

that the system of polynomials given by that basis allows solving first for the

y-variables and then for the x-variables sequentially.

5.2. Obtaining nondominated solutions by the Chebyshev norm

approach

In this section we describe two more methods for solving MOPIP based on

a different rationale, namely scalarizing the multiobjective problem and solv-

ing it as a parametric single-objective problem. We propose a methodology

based on the application of optimality conditions to a family of single-objective

problems related to our original multiobjective problem. The methods consist

5.2. THE CHEBYSHEV SCALARIZATION 91

of two main steps: a first step where the multiobjective problem is scalarized

to a family of single-objective problems such that each nondominated solu-

tion is an optimal solution for at least one of the single-objective problems in

that family; and a second step that consists of applying necessary optimality

conditions to each one of the problems in the family, to obtain their optimal

solutions. Those solutions are only candidates to be nondominated solutions

of the multiobjective problem since we just use necessary conditions.

For the first step, the scalarization, we use a weighted Chebyshev norm

approach. Other weighted sum approaches could be used to transform the

multiobjective problem in a family of single-objective problems whose set of

solutions contains the set of nondominated solutions of our problem. However,

the Chebyshev approach seems to be rather adequate since it does not require

to impose extra hypothesis to the problem. This approach can be improved for

problems satisfying convexity conditions, where alternative well-known results

can be applied (see [63] for further details).

For the second step, we use the Fritz-John and Karush-Kuhn-Tucker nec-

essary optimality conditions, giving us two different approaches. In this section

we describe both methodologies since each of them has its own advantages over

the other.

For applying the Chebyshev norm scalarization, we use the following re-

sult that states how to transform our problem to a family of single-objective

problems, and how to obtain nondominated solutions from the optimal so-

lution of those single-objective problems. Further details and proofs of this

result can be found in [63].

Theorem 5.2.1 (Corollary 11.21 in [63]). Let MOPBPf ,g,h be feasible. x∗

is a nondominated solution of MOPBPf ,g,h if and only if there are positive

real numbers ω1, . . . , ωk > 0 such that x∗ is an image unique solution of the

following weighted Chebyshev approximation problem:

(Pω)

min γ

s.t. ωi (fi(x)− ŷi)− γ ≤ 0 i = 1, . . . , k

gj(x) ≤ 0 j = 1, . . . ,m

hr(x) = 0 r = 1, . . . , s

xi(xi − 1) = 0 i = 1, . . . , n

γ ∈ R x ∈ Rn

where ŷ = (ŷ1, . . . , ŷk) ∈ Rk is a lower bound of f = (f1, . . . , fk), i.e., ŷi ≤
fi(x) for all feasible solution x and i = 1, . . . , k.

According to the above result, every nondominated solution of MOPBPf ,g,h

is the unique solution of Pω for some ω > 0. We apply, in the second step,

92 5. NON LINEAR MULTIOBJECTIVE OPTIMIZATION

necessary optimality conditions for obtaining the optimal solutions for those

problems (taking ω as parameters). These solutions are candidates to be non-

dominated solutions of our original problem. Actually, every nondominated

solution is among those candidates.

In the following subsections we describe the above-mentioned two method-

ologies for obtaining the optimal solutions for the scalarized problems Pω for

each ω.

5.2.1. The Chebyshev-Karush-Kuhn-Tucker approach: The first

optimality conditions that we apply are the Karush-Kuhn-Tucker (KKT) nec-

essary optimality conditions, that were stated, for the general case, as follows

(see e.g. [10] for further details):

Theorem 5.2.2 (KKT necessary conditions). Consider the problem:

(28)

min f(x)

s.t. gj(x) ≤ 0 = 1, . . . ,m

hr(x) = 0 r = 1, . . . , s

x ∈ Rn

Let x∗ be a feasible solution, and let J = {j : gj(x
∗) = 0}. Suppose that

f and gj, for j = 1, . . . ,m, are differentiable at x∗, that gj, for j 6∈ J , is

continuous at x∗,and that hr, for r = 1, . . . , s, is continuously differentiable

at x∗. Further suppose that ∇gj, for j ∈ I, and ∇hr, for r = 1, . . . , s, are

linearly independent (regularity conditions). If x∗ solves Problem 28 locally,

then there exist scalars λj, for j = 1, . . . ,m, and µr, for r = 1, . . . , s, such

that

(KKT)

∇f(x∗) +

m∑
j=1

λj ∇gj(x∗) +

s∑
r=1

µr∇hr(x∗) = 0

λj gj(x
∗) = 0 for j = 1, . . . ,m

λj ≥ 0 for j = 1, . . . ,m

From the above theorem the candidates to be optimal solutions for Prob-

lem (28) are those that either satisfy the KKT conditions (in the case where

all the functions involved in Problem (28) are polynomials, this is a system of

polynomial equations) or do not satisfy the regularity conditions. Note that

these two sets are, in general, not disjoint.

Regularity conditions can also be formulated as a system of polynomial

equations when the involved functions are all polynomials. Let x∗ be a feasible

solution for Problem (28), x∗ does not verify the regularity conditions if there

exist scalars λj , for j ∈ J , and µr, for r = 1, . . . , s, not all equal to zero, such

5.2. THE CHEBYSHEV SCALARIZATION 93

that:

(Non-Regularity)
∑
j∈I

λj∇gj +

s∑
r=1

µr∇hr = 0

The above discussion justifies the following result.

Corollary 5.2.1. Let x∗ be a nondominated solution for MOPBPf ,g,h.

Then, x∗ is a solution of the systems of polynomial equations (29) or (30), for

some ω > 0.

1−
k∑
i=1

νi = 0

k∑
i=1

νiωi∇fi(x) +

m∑
j=1

λj∇gj(x) +

s∑
r=1

µj∇hr(x) +

n∑
l=1

βl δil(2xi − 1) = 0

νi ωi (fi(x)− ŷi)− γ = 0

i = 1, . . . , k


(29)

for some λj gj(x) = 0, for j = 1, . . . ,m, λj ≥ 0, for j = 1, . . . ,m, and νi ≥ 0,

for i = 1, . . . , k.

k∑
i=1

νi = 0

k∑
i=1

νiωi∇fi(x) +

m∑
j=1

λj∇gj(x) +

s∑
r=1

µj∇hr(x) +

n∑
l=1

βl δil(2xi − 1) = 0

ωi (fi(x)− ŷi)− γ ≤ 0

i = 1, . . . , k


(30)

with x ∈ Rn such that gj(x) ≤ 0, for j = 1, . . . ,m, hr(x) = 0, for r = 1, . . . , s

λj ≥ 0, for j = 1, . . . ,m, and νi ≥ 0, for i = 1, . . . , k.

Let XKKT
E denote the set of solutions, in the x-variables, of system (29)

and let XNR
E denote the set of solutions, in the x-variables, of system (30)

(the problem is solved avoiding inequality constraints, then every solution is

evaluated to check if it satisfies the inequality constraints).

For solving these systems (Chebyshev-KKT and Non-Regulariry), we use

a Gröbner bases approach. Let I be the ideal generated by the involved equa-

tions.

Let us consider a lexicographical order over the monomials in R[x, γ, λ, ν, µ, β]

such that x ≺ γ ≺ λ ≺ ν ≺ µ ≺ β. Then, the Gröbner basis, G, for I with this

order has the following triangular shape:

• G contains one polynomial in R[xn]: pn(xn)

• G contains one or several polynomials in R[xn−1, xn]:

p1
n−1(xn−1, xn), . . . , pm1

n−1(xn−1, xn).

94 5. NON LINEAR MULTIOBJECTIVE OPTIMIZATION

...

• G contains one or several polynomials in R[x]:

p1
1(x1, . . . , xn), . . . , pmn1 (x1, . . . , xn).

• The remaining polynomials involve variables x and at least one γ,

λ, µ, ν or β.

We are interested in finding only the values for the x-variables, so, we

avoid the polynomials in G that involve any of the other auxiliary variables.

In general, we are not able to discuss about the values of the parameters γ, λ,

µ, ν and β. Needless to say that in those cases when we can do it, some values

of x may be discarded simplifying the process. We denote by Gx the subset of G
that contains only polynomials in the x-variables. By the Extension Theorem,

Gx is a Gröbner basis for I ∩ R[x1, . . . , xn].

Solving the system given by Gx and checking feasibility of those solutions,

we obtain as solutions those of our KKT or Non-Regularity original systems.

It is clear that the set of nondominated solutions of our problem is a subset

of XKKT
E ∪XNR

E , since either a solution is regular, and then, KKT conditions

are applicable or it satisfies the non regularity conditions. However, the set

XKKT
E ∪XNR

E may contain dominated solutions, so, at the end we must remove

the dominated ones to get only XE .

The steps to solve Problem MOPBPf ,g,h using the Chebyshev-KKT ap-

proach are summarized in Algorithm 18.

Algorithm 18: Summary of the procedure for solving MOPBP using
Chebyshev-KKT approach.

Input : f1, . . . , fk, g1, . . . gm, h1, . . . , hr ∈ R[x1, . . . , xn]
Algorithm:

Step 1: Formulate the Chebyshev scalarization of MOPBPf ,g,h.
(Problem Pω)

Step 2: Solve System (29) in the x-variables: XKKT
E .

Step 3: Solve System (30) in the x-variables: XNR
E .

Step 4: Remove from XKKT
E ∪XNR

E the subset of dominated
solutions: XE .

Output: XE the set of nondominated solutions for MOPBPf ,g,h

Theorem 5.2.3. Algorithm 18 solves Problem MOPBPf ,g,h in a finite

number of steps.

The following example illustrates the how the algorithm works.

5.2. THE CHEBYSHEV SCALARIZATION 95

Example 5.2.1. Consider the following simple problem in two variables:

(31)

min (8x1 − 8x2 + 2x1x2,−2x1 + 5x2 + 4x1x2)

s.t. −x1 + x3
1 + x4

2 ≥ 0

x1, x2 ∈ {0, 1}

The Chebyshev scalarization of this problem is:

(32)

min γ

s.t. ω1 (8x1 − 8x2 + 2x1x2 − (−2))− γ ≤ 0

ω2 (−2x1 + 5x2 + 4x1x2 − (−2))− γ ≤ 0

x1 − x3
1 − x4

2 ≤ 0

γ, ω1, ω2 ∈ R, x1, x2 ∈ {0, 1}

Then, KKT system is the one given by the partial derivatives of the Lagrangean

operator:

(33)

µ1 (ω1 (8x1 − 8x2 + 2x1 x2 + 8)− γ) = 0

µ2 (ω2 (−2x1 + 5x2 + 4x1 x2 + 2)− γ) = 0

λ1 (2x1 − 1) + µ1 ω1 (8 + 2x2) + µ2 ω2 (−2 + 4x2)− ν (−1 + 3x2
1) = 0

λ2 (2x2 − 1) + µ1 ω1 (−8 + 2x1) + µ2 ω2 (5 + 4x1)− 4 ν x3
2 = 0

1− µ1 − µ2 = 0

ν (−x1 + x3
1 + x4

2) = 0

x2
1 − x1 = 0

x2
2 − x2 = 0

µ1 ≥ 0

µ2 ≥ 0

ν ≥ 0

We solve this system sequentially using a Gröbner basis with respect to a lex-

icographic ordering with µ ≺ ν ≺ x ≺ γ ≺ λ. With this order we obtain the

following Gröbner basis:

G = {−1+µ1+µ2, ν x2, x
2
2−x2, x

2
1−x1, µ2 γ x2−µ2

2 γ x2−µ2 γ x1+µ2
2 γ x1, µ2 γ ν x1, γ x1 x2−

x2 γ+µ2 γ x2−µ2 γ x1, 10λ2 x2−10 γ−10λ2−6x2 γ−19µ2 γ x2 + 10x1 λ2 +

35µ2 γ + 10x1 γ,−273 γ2 x2 + 1173µ2 γ
2 x2 + 280 γ2 − 980µ2 γ

2 − 175 γ2 x1 +

255µ2 γ
2 x1 + 280λ2 γ,−259λ2 x2− 252 ν− 308 γ− 56λ2 + 252λ1 + 336x2 γ−

1025µ2 γ x2 − 252 ν x1 + 413x1 γ − 375µ2 γ x1 + 700µ2 γ, 56λ2 x2 − 56 γ −
56λ2+21x2 γ+19µ2 γ x2+504µ2 ω2+35x1 γ−19µ2 γ x1−56µ2 γ, 560ω1 µ2+

70λ2 x2−560ω1−21x2 γ+71µ2 γ x2−35x1 γ+55µ2 γ x1+70 γ−70µ2 γ,−γ2 x1 ν+

16 γ ω1 x1 ν, 8960 γ ω1 x1 + 511 γ2 x2− 18223µ2 γ
2 x2 + 3920 γ2 + 13720µ2 γ

2 +

22400 γ ω1 x2−35280ω2 γ−1295 γ2 x1−1769µ2 γ
2 x1+10584 γ ω2 x2−31360ω1 λ2+

282240ω2 ω1 − 35280λ2 ω2 x2 + 31360λ2 ω1 x2 + 17640 γ ω2 x1 − 62720ω1 γ}

96 5. NON LINEAR MULTIOBJECTIVE OPTIMIZATION

Sequentially solving, we obtain the following sets of solutions (they de-

pend of some variables, since the sysem is not zero-dimensional): {ω2 =

ω2, λ1 = 2ω2, λ2 = 9ω2, γ = 0, x2 = 0, µ1 = 0, ν = 0, µ2 = 1, x1 = 1, ω1 =

ω1}, {ω2 = ω2, λ2 = −6ω1, λ1 = −8ω1, µ1 = 1, γ = 16ω1, µ2 = 0, x2 =

0, ν = 0, x1 = 1, ω1 = ω1}, {ω2 = ω2, λ1 = −2ω2, γ = 2ω2, λ2 = 5ω2, x1 =

0, x2 = 0, µ1 = 0, ν = 0, µ2 = 1, ω1 = ω1}, {ω2 = ω2, λ1 = −2ω2, x2 =

1, γ = 9ω2, λ2 = −9ω2, µ1 = 0, ν = 0, µ2 = 1, x1 = 1, ω1 = ω1}, {ν =

ν, λ2 = λ2, µ2 = µ2, x1 = 0, x2 = 0, µ1 = 1 − 1µ2, γ = 2λ2/(−2 + 7µ2), λ1 =

−(1 (−2λ2 + 2 ν + 4µ2 λ2 − 7µ2 ν))/(−2 + 7µ2), ω2 = λ2/(−2 + 7µ2), ω1 =

2500000000λ2/(−2 + 7µ2)}, {x2 = 1, λ2 = λ2, µ2 = µ2, ν = 0, x1 = 1, µ1 =

1 − 1µ2, γ = −5λ2/(−3 + 8µ2), λ1 = −5555555556λ2 (−9 + 7µ2)/(−3 +

8µ2), ω2 = −5555555556λ2/(−3 + 8µ2), ω1 = −5000000000λ2/(−3 + 8µ2)},
{ω2 = ω2, ν = ν, µ2 = µ2, γ = 0, x2 = 0, x1 = 1, µ1 = 1 − 1µ2, ω1 = 0, λ2 =

9µ2 ω2, λ1 = 2µ2 ω2 + 2 ν}, {x2 = 1, ν = 0, x1 = 1, µ1 = 6250000000, ω1 =

−1411764706λ1, µ2 = 3750000000, γ = −1411764706λ1, λ2 = 0, λ1 = λ1, ω2 =

−1568627451λ1}, {ω2 = ω2, µ1 = 1, x1 = 0, µ2 = 0, x2 = 0, ω1 = ω1, λ1 =

λ1, λ2 = −8ω1, ν = −8ω1 + λ1, γ = 8ω1}, {ω2 = ω2, x2 = 1, µ1 = 1, x1 =

0, µ2 = 0, γ = 0, ν = 0, ω1 = ω1, λ2 = 8ω1, λ1 = 10ω1}, {x2 = 1, µ2 =

µ2, x1 = 0, γ = 0, ν = 0, ω1 = ω1, µ1 = 1 − 1µ2, ω2 = 0, λ2 = −8ω1 µ2 +

8ω1, λ1 = −10ω1 µ2 + 10ω1}, {ν = ν, x1 = 0, x2 = 0, λ2 = 0, λ1 = λ1, γ =

2333333333λ1−2333333333 ν, ω2 = 1166666667λ1−1166666667 ν, µ1 = 7142857143, µ2 =

2857142857, ω1 = 2916666667λ1 − 2916666667 ν}, {λ2 = λ2, µ2 = µ2, x1 =

0, x2 = 0, ν = 0, µ1 = 1−1µ2, γ = 2λ2/(−2+7µ2), ω2 = λ2/(−2+7µ2), ω1 =

2500000000λ2/(−2+7µ2), λ1 = −2λ2 (−1+2µ2)/(−2+7µ2)}, {ω2 = ω2, ν =

ν, λ2 = −6ω1, µ1 = 1, γ = 16ω1, µ2 = 0, x2 = 0, x1 = 1, ω1 = ω1, λ1 =

−8ω1 + 2 ν}, {ω2 = ω2, γ = 2ω2, ν = ν, λ2 = 5ω2, x1 = 0, x2 = 0, µ1 = 0, µ2 =

1, ω1 = ω1, λ1 = −2ω2 + ν}, {ω2 = ω2, x2 = 1, µ1 = 1, µ2 = 0, ν = 0, x1 =

1, ω1 = ω1, λ2 = 6ω1, λ1 = −10ω1, γ = 10ω1}, {x1 = 0, x2 = 0, ν = 0, λ2 =

0, λ1 = λ1, µ1 = 7142857143, µ2 = 2857142857, γ = 2333333333λ1, ω1 =

2916666667λ1, ω2 = 1166666667λ1}, {ω2 = ω2, ν = ν, λ2 = 9ω2, γ = 0, x2 =

0, µ1 = 0, µ2 = 1, x1 = 1, ω1 = ω1, λ1 = 2ω2 + 2 ν}, {ω2 = ω2, µ2 = µ2, γ =

0, x2 = 0, ν = 0, x1 = 1, µ1 = 1−1µ2, ω1 = 0, λ2 = 9µ2 ω2, λ1 = 2µ2 ω2}, {ω2 =

ω2, x2 = 1, x1 = 0, λ1 = 2ω2, µ1 = 0, ν = 0, µ2 = 1, ω1 = ω1, γ = 7ω2, λ2 =

−5ω2}, {ω2 = ω2, µ1 = 1, x1 = 0, µ2 = 0, x2 = 0, ν = 0, ω1 = ω1, λ2 =

−8ω1, γ = 8ω1, λ1 = 8ω1}
Discarding solutions of the above systems (taking into account that λ1, λ2,

µ1, µ2, ν ≥ 0 and ω1, ω2 > 0, we have as possible nondominated solutions in

the x variables:

{x1 = 0, x2 = 0}, {x1 = 1, x2 = 0}, {x1 = 0, x2 = 1}

5.2. THE CHEBYSHEV SCALARIZATION 97

Now, the non-regularity system is:

(34)

λ1 (2x1 − 1) + ν (−1 + 3x2
1) + µ1 ω1 (8 + 2x2) + µ2 ω2 (−2 + 4x2) = 0

λ2 (2x2 − 1) + 4 ν x3
2 + µ1 ω1 (−8 + 2x1) + µ2 ω2 (5 + 4x1) = 0

−µ1 − µ2 = 0

−x1 + x3
1 + x4

2 = 0

x2
1 − x1 = 0

x2
2 − x2] = 0

The set of solution of this system is: { {µ1 = −µ2, λ2 = 6ω1 µ2 +

9µ2 ω2, ω2 = ω2, λ1 = 8ω1 µ2 − 2 ν1 + 2µ2 ω2, x1 = 1, ν1 = ν1, µ2 = µ2, ω1 =

ω1, γ = γ, x2 = 0}, {µ1 = −µ2, λ2 = 8ω1 µ2 + 5µ2 ω2, λ1 = −ν1 − 2µ2 ω2 −
8ω1 µ2, ω2 = ω2, ν1 = ν1, µ2 = µ2, ω1 = ω1, x1 = 0, γ = γ, x2 = 0} },
whose solutions in the x variables are:

{x1 = 1, x2 = 0}, {x1 = 0, x2 = 0}

Then, the set of possible solutions of our problem is:

{x1 = 0, x2 = 0}, {x1 = 1, x2 = 0}, {x1 = 0, x2 = 1}

If we try to discard dominated solutions we get that the three solutions are not

comparable, and then, all of them are nondominated.

Figure 5.2.1 show the feasible region, the nondominated solutions and the

level curves for each of them in this simple problem.

5.2.2. The Chebyshev-Fritz-John approach. Analogously to the pre-

vious approach, once we have scalarized the original multiobjective problem to

a family of single-objective problems, in this section we apply the Fritz-John

(FJ) conditions to all the problems in this family. The following well-known

result justifies the use of FJ conditions to obtain candidates to optimal solu-

tions for single-objective problems. Proofs and further details can be found in

[10].

Theorem 5.2.4 (FJ necessary conditions). Consider the problem:

(35)

min f(x)

s.t. gj(x) ≤ 0 = 1, . . . ,m

hr(x) = 0 r = 1, . . . , s

x ∈ Rn

Let x∗ be a feasible solution, and let J = {j : gj(x
∗) = 0}. Suppose that f and

gj, for j = 1, . . . ,m, are differentiable at x∗, and that hr, for r = 1, . . . , s, is

continuously differentiable at x∗. If x∗ locally solves Problem (35), then there

98 5. NON LINEAR MULTIOBJECTIVE OPTIMIZATION

Figure 5.3. Feasible region, the nondominated solutions
and the level curves of Example 5.2.1

exist scalars λj, for j = 1, . . . ,m, and µr, for r = 1, . . . , s, such that

(FJ)

λ0∇f(x∗) +

m∑
j=1

λj ∇gj(x∗) +
s∑
r=1

µr∇hr(x∗) = 0

λj gj(x
∗) = 0 for j = 1, . . . ,m

λj ≥ 0 for j = 1, . . . ,m

(λ0, λ, µ) 6= (0,0,0)

Note that, in the FJ conditions, regularity conditions are not required to

set the result.

Corollary 5.2.2. Let x∗ be a nondominated solution for MOPBPf ,g,h.

Then, x∗ is a solution of the system of polynomial equations (36) for some

νi, λj , µr, βl, for i = 1, . . . , k, l = 1, . . . , n, j = 1, . . . ,m, r = 1, . . . , s and

5.2. THE CHEBYSHEV SCALARIZATION 99

ω > 0.

λ0 −
k∑
i=1

νi = 0

k∑
i=1

νiωi∇fi(x) +

m∑
j=1

λj∇gj(x) +

s∑
r=1

µj∇hr(x) +

n∑
l=1

βl δil(2xi − 1) = 0

νi (ωi (fi(x)− ŷi)− γ) = 0

i = 1, . . . , k

λj gj(x) = 0

j = 0, . . . ,m



(36)

where λj ≥ 0, for j = 1, . . . ,m, νi ≥ 0, for i = 1, . . . , k and δli, for l, i =

1, . . . , n, denotes the Kronecker delta function, δli =

{
1 if l = i

0 otherwise
.

Let XFJ
E denote the set of solutions, in the x-variables, that are feasible

solutions of MOPBPf ,g,h and solutions of system (36).

The set of nondominated solutions of our problem is a subset of XFJ
E ,

since every nondominated solution is an optimal solution for some problem

in the form of (36), and every solution of this single-objective problem is a

solution of the FJ system.

However, dominated solutions may appear in the set of solutions of (36),

so, a final elimination process is to be performed to select only the nondomi-

nated solutions.

The steps to solve MOPBPf ,g,h using the Chebyshev-FJ approach are

summarized in Algorithm 19.

Algorithm 19: Summary of the procedure for solving MOPBP using
the Chebyshev-FJ approach.

Input : f1, . . . , fk, g1, . . . gm, h1, . . . , hr ∈ R[x1, . . . , xn]
Algorithm:

Step 1: Formulate the Chebyshev scalarization of MOPBPf ,g,h.
(Problem Pω)

Step 2: Solve system (36) in the x-variables for any value of ω > 0:
XFJ
E .

Step 3: Remove from XFJ
E the set of dominated solutions: XE .

Output: XE the set of nondominated solutions for Problem
MOPBPf ,g,h

Theorem 5.2.5. Algorithm 19 solves MOPBPf ,g,h in a finite number of

steps.

100 5. NON LINEAR MULTIOBJECTIVE OPTIMIZATION

The last part of the section is devoted to show how to solve the Chebyshev-

FJ system using Gröbner bases.

Consider the following polynomial ideal

I = 〈λ0−
k∑
i=1

νi,

k∑
i=1

νiωi∇fi(x)+

m∑
j=1

λj∇gj(x)+

s∑
r=1

µj∇hr(x)+

n∑
l=1

βl δil(2xi−

1), ν1 (ω1 (f1(x)− ŷ1)− γ), . . . , νk (ωk (fk(x)− ŷk)− γ), λ1 g1(x), . . . , λm gm(x)〉

in the polynomial ring R[x, γ, λ, ν, µ, β].

Let us consider a lexicographical order over the monomials in R[x, γ, λ, ν, µ, β]

such that x ≺ γ ≺ λ ≺ ν ≺ µ ≺ β. Then, the Gröbner basis, G, for I with this

order has the following triangular shape:

• G contains one polynomial in R[xn]: pn(xn)

• G contains one or several polynomials in R[xn−1, xn]:

p1
n−1(xn−1, xn), . . . , pm1

n−1(xn−1, xn)

· · ·
• G contains one or several polynomials in R[x]:

p1
1(x1, . . . , xn), . . . , pmn1 (x1, . . . , xn)

• The remainder polynomials involve variables x and at least one of

γ, λ, µ, ν or β.

We are interested in finding only the values for the x-variables, so, we

avoid the polynomials in G that involve any of the other auxiliary variables.

We denote by Gx the subset of G that contains only all the polynomials in

the x-variables. By the Extension Theorem, Gx is a Gröbner basis for I ∩
R[x1, . . . , xn].

Solving the system given by Gx, we obtain as solutions, those of our FJ

original system.

The following example illustrates the how the algorithm works.

Example 5.2.2. Consider the following simple problem in two variables:

(37)

min (−4x1 + 10x2,−x1 − 4x2)

s.t. 4x2 − 132x4
1 + 143x3

1 − 22x1 ≥ 0

x1, x2 ∈ {0, 1}

5.2. THE CHEBYSHEV SCALARIZATION 101

After formulating the Chebyshev problem, the FJ system is:

(38)

λ1 (2x1 − 1)− 4µ1 ω1 − µ2 ω2 − λ0 (−528x3
1 + 429x2

1 − 22) = 0,

λ2 (2x2 − 1) + 10µ1 ω1 − 4µ2 ω2 − 4λ0 = 0,

nu− µ1 − µ2 = 0,

x2
1 − x1 = 0,

x2
2 − x2 = 0,

λ0 (4x2 − 132x4
1 + 143x3

1 − 22x1) = 0,

µ1 (ω1 (−4x1 + 10x2 + 4)− γ) = 0,

µ2 (ω2 (−x1 − 4x2 + 5)− γ) = 0.

Whose solutions using the convenient Gröbner basis are: G = {{µ2 = µ2, ω1 =

ω1, λ1 = −4ω1 µ2 + 4ω1 ν, ν = ν, x1 = 1, λ0 = 0, x2 = 0, γ = 0, µ1 =

ν − 1µ2, ω2 = 0, λ2 = −10ω1 µ2 + 10ω1 ν}, {µ1 = ν, ω1 = ω1, ω2 = ω2, ν =

ν, x1 = 1, x2 = 1, λ2 = −10ω1 ν, µ2 = 0, λ1 = 4ω1 ν, γ = 10ω1, λ0 = 0}, {µ2 =

ν, ω1 = ω1, ω2 = ω2, ν = ν, x2 = 1, λ0 = 0, λ2 = 4ω2 ν, λ1 = −1ω2 ν, x1 =

0, µ1 = 0, γ = ω2}, {µ2 = µ2, ν = µ1 + µ2, λ1 = µ2 ω2, µ1 = µ1, ω2 = ω2, x1 =

1, x2 = 1, λ0 = 0, ω1 = 0, λ2 = 4µ2 ω2, γ = 0}, {µ1 = ν, ω1 = ω1, ω2 =

ω2, ν = ν, µ2 = 0, λ0 = 0, x1 = 0, γ = 4ω1, x2 = 0, λ2 = 10ω1 ν, λ1 =

−4ω1 ν}, {µ1 = ν, λ2 = λ2, ω1 = ω1, ω2 = ω2, ν = ν, µ2 = 0, x1 = 0, γ =

4ω1, λ0 = −0.25λ2 + 2.5ω1 ν, λ1 = −5.5λ2 + 51. ω1 ν, x2 = 0.}, {λ0 = λ0, µ2 =

µ2, ω2 = ω2, ν = ν, λ1 = −5. ω2 ν + 22λ0 + 4µ2 ω2, x1 = 0, x2 = 0, µ1 =

ν − 1µ2, γ = 5ω2, ω1 = 1.25ω2, λ2 = −4λ0 − 16.5µ2 ω2 + 12.5ω2 ν}, {µ2 =

µ2, ω2 = ω2, ν = ν, λ0 = 0, x1 = 0, x2 = 0, µ1 = ν − 1µ2, λ1 = 4µ2 ω2 −
5ω2 ν, γ = 5ω2, ω1 = 1.25ω2, λ2 = −16.5µ2 ω2 + 12.5ω2 ν}, {µ2 = ν, ω1 =

ω1, ω2 = ω2, λ1 = ω2 ν, ν = ν, x1 = 1, λ0 = 0, µ1 = 0, x2 = 0, γ = 4ω2, λ2 =

−4ω2 ν}, {µ2 = ν, λ2 = λ2, ω1 = ω1, ω2 = ω2, ν = ν, x1 = 0, µ1 = 0, x2 =

0, γ = 5ω2, λ0 = −.25λ2 − 1ω2 ν, λ1 = −5.5λ2 − 23ω2 ν}, {µ2 = µ2, ω2 =

ω2, ν = ν, x2 = 1., λ0 = 0, x1 = 0, µ1 = ν − 1µ2, γ = ω2, ω1 = .07ω2, λ2 =

4.71µ2 ω2 − .71ω2 ν, λ1 = −.71µ2 ω2 − .28ω2 ν}, {µ2 = ν, ω1 = ω1, ω2 =

ω2, λ1 = ω2 ν, ν = ν, x1 = 1, x2 = 1, λ0 = 0, λ2 = 4ω2 ν, µ1 = 0, γ = 0}, {γ =

γ, ω1 = ω1, ω2 = ω2, x1 = 1, µ2 = 0, λ0 = 0, µ1 = 0, x2 = 0, λ1 = 0, ν =

0, λ2 = 0}, {µ1 = ν, ω1 = ω1, ω2 = ω2, ν = ν, x1 = 1, µ2 = 0, λ1 = 4ω1 ν, λ0 =

0, x2 = 0, γ = 0, λ2 = 10ω1 ν}, {µ2 = ν, ω1 = ω1, ω2 = ω2, ν = ν, λ0 = 0, λ1 =

−1ω2 ν, x1 = 0, µ1 = 0, x2 = 0, λ2 = −4ω2 ν, γ = 5ω2}, {γ = γ, ω1 = ω1, ω2 =

ω2, µ2 = 0, λ0 = 0, x1 = 0, µ1 = 0, x2 = 0, λ1 = 0, ν = 0, λ2 = 0}, {µ1 =

ν, ω1 = ω1, ω2 = ω2, ν = ν, x2 = 1, λ2 = −10ω1 ν, µ2 = 0, γ = 14ω1, λ0 =

0, x1 = 0, λ1 = −4ω1 ν}, {λ2 = −4λ0, λ1 = 22λ0, γ = γ, λ0 = λ0, ω1 =

ω1, ω2 = ω2, µ2 = 0, x1 = 0, µ1 = 0, x2 = 0, ν = 0}, {γ = γ, ω1 = ω1, ω2 =

ω2, x1 = 1, x2 = 1, µ2 = 0, λ0 = 0, µ1 = 0, λ1 = 0, ν = 0, λ2 = 0}, {γ = γ, ω1 =

102 5. NON LINEAR MULTIOBJECTIVE OPTIMIZATION

ω1, ω2 = ω2, x2 = 1, µ2 = 0, λ0 = 0, x1 = 0, µ1 = 0, λ1 = 0, ν = 0, λ2 = 0}}
Discarding those solutions that do not verify the FJ inequality conditions we

have as possible nondominated solutions:

{x1 = 0, x2 = 0}, {x1 = 0, x2 = 1}

Furthermore, both solutions are not comparable, so they are the nondominated

solutions of the problem.

Figure 5.2.2 shows feasible region, the nondominated solutions and the

level curves of Example 5.2.2.

Figure 5.4. Feasible region, the nondominated solutions
and the level curves of Example 5.2.2

Remark 5.2.1 (Convex Case). In the special case where both objective

functions and constraints are convex, sufficient KKT conditions can be ap-

plied. If the feasible solution x∗ satisfies KKT conditions, and all objective

and constraints functions are convex, then x∗ is a nondominated solution. As

a particular case, this situation is applicable to linear problems.

5.3. ND USING NONDOMINANCE CONDITIONS 103

In this case, we may choose a linear scalarization instead of the Chebyshev

scalarization. With this alternative approach, the scalarized problem is

min

k∑
s=1

ts fs(x)

s.t. gj(x) ≤ 0 j = 1, . . . ,m

hr(x) = 0 r = 1, . . . , s

xi(xi − 1) = 0 i = 1, . . . , n

for t1, . . . , tk > 0.

Then, by Corollary 11.19 in [63], and denoting by S the feasible region, if

f(S) + Rk+ is convex, then each x∗ is a nondominated solution if and only if

x∗ is a solution of Problem 5.2.1 for some t1, . . . , tk > 0.

Using both results, necessary and sufficient conditions are given for that

problem and the removing step is avoided.

Remark 5.2.2 (Single-Objective Case). The same approach can be applied

to solve single-objective problems. In this case, KKT (or FJ) conditions can

be applied directly to the original problem, without scalarizations.

5.3. Obtaining nondominated solutions by nondominance

conditions

In this section, we address the solution of MOPBPf ,g,h by directly apply-

ing necessary conditions for multiobjective problems. With these conditions

we do not need to scalarize the problem, as in the above section, avoiding some

steps in the process followed in the previous sections.

The following result states the Fritz-John necessary optimality conditions

for multiobjective problems.

Theorem 5.3.1 (Multiobjective FJ necessary conditions, Theorem 3.1.1.

in [81]). Consider the problem:

(39)

min (f1(x), . . . , fk(x))

s.t. gj(x) ≤ 0 = 1, . . . ,m

hr(x) = 0 r = 1, . . . , s

x ∈ Rn

Let x∗ a feasible solution. Suppose that fi, for i = 1, . . . , k, gj, for j =

1, . . . ,m and hr, for r = 1, . . . , s, are continuously differentiable at x∗. If x∗

is a nondominated solution for Problem 39, then there exist scalars νi, for

i = 1, . . . , k, λj, for j = 1, . . . ,m, and µr, for r = 1, . . . , s, such that

104 5. NON LINEAR MULTIOBJECTIVE OPTIMIZATION

(MO-FJ)
k∑
i=1

νi∇fi(x∗) +

m∑
j=1

λj ∇gj(x∗) +

s∑
r=1

µr∇hr(x∗) = 0

λj gj(x
∗) = 0 for j = 1, . . . ,m

λj ≥ 0 for j = 1, . . . ,m

νi ≥ 0 for i = 1, . . . , k

(ν, λ, µ) 6= (0,0,0)

With this result, one can solve the system given by the necessary condi-

tions to obtain candidates to be nondominated solutions for our problem. For

solving this system, we use lexicographical Gröbner bases as in the above sec-

tions. We summarize the algorithm for solving the multiobjective polynomial

problem in Algorithm 20.

Algorithm 20: Summary of the procedure for solving MOPBP using
the multiobjective FJ optimality conditions.

Input : f1, . . . , fk, g1, . . . gm, h1, . . . , hr ∈ R[x1, . . . , xn]
Algorithm:

Step 1: Solve system (MO-FJ): XMOFJ
E .

Step 2: Remove from XMOFJ
E the subset of dominated solutions:

XE .

Output: XE the set of nondominated solutions for Problem
MOPBPf ,g,h

The following simple example illustrates Algorithm 20.

Example 5.3.1.

(40)

min (x2
1 + 10x2,−4x1 − x3

2)

s.t. 16 ∗ x2 − 16 ∗ x3
1 + 16 ∗ x2

1 − 3x1 − 8 ≥ 0

x1, x2 ∈ {0, 1}

Figure 5.5 shows the feasible region of the problem.

The system after applying Theorem 5.3.1 to the problem is:

(41)

2 ν1 x1 − 4 ν2 + λ1 (2x1 − 1)− µ1 (−3x2
1 + 2x1 − 3/16) = 0

10 ν1 − 3 ν2 x
2
2 + λ2 (2x2 − 1)− µ1 = 0

µ1 (x2 − x3
1 + x2

1 − (3/16)x1 − 1/2) = 0

x2
1 − x1 = 0

x2
2 − x2 = 0

λ1, λ2 ≥ 0

ν1, ν2 ≥ 0

5.4. COMPUTATIONAL EXPERIMENTS 105

Figure 5.5. Feasible region of Example 5.3.1

whose solutions are:

{x2 = 0, µ1 = 0, x1 = 1, ν1 = ν1, ν2 = ν2, λ2 = 10 ν1, λ1 = −2 ν1 + 4 ν2},
{x2 = 1, µ1 = 0, x1 = 1, ν1 = ν1, ν2 = ν2, λ2 = 3 ν2−10 ν1, λ1 = −2 ν1 +4 ν2}}.

Discarding dominated solutions we obtain that the set of nondominated

solutions is:

{x1 = 1, x2 = 1}, {x1 = 0, x2 = 1}

Figure 5.6 shows this set of nondominated solutions in the feasible region and

the level curves at these points of the problem.

Remark 5.3.1. In the special case where both objective functions and con-

straints are convex, Theorem 5.3.1 gives sufficient nondominance conditions

for MOPBPf ,g,h requiring that νi > 0 (see Theorem 3.1.8 in [81]).

5.4. Computational Experiments

A series of computational experiments have been performed in order to

evaluate the behavior of the proposed solution methods. Programs have been

coded in MAPLE 11 and executed in a PC with an Intel Core 2 Quad processor

at 2x 2.50 Ghz and 4 GB of RAM. The implementation has been done in that

symbolic programming language, available upon request, in order to make the

access easy to both optimizers and algebraic geometers.

106 5. NON LINEAR MULTIOBJECTIVE OPTIMIZATION

Figure 5.6. Nondominated solutions and level curves of Ex-
ample 5.3.1

We run the algorithms for three families of binary biobjective and triob-

jective knapsack problems: linear, quadratic and cubic, and for a biobjective

portfolio selection model. For each problem, we obtain the set of nondominated

solutions as well as the CPU times for computing the corresponding Gröbner

bases associated to the problems, and the total CPU times for obtaining the

set of solutions.

We give a short description of the problems where we test the algorithms.

In all cases, we use binary variables xj , j = 1, . . . , n, where xj = 1 means

that the item (resp. security) j is selected for the knapsack (resp. portfolio)

problem.

(1) Biobjective (linear) knapsack problem (biobj linkn): Assume that

n items are given. Item j has associated costs q1
j , q2

j for two dif-

ferent targets, and a unit profit aj , j = 1, . . . , n. The biobjective

knapsack problem calls for selecting the item subsets whose overall

profit ensures a knapsack with value at least b, so as to minimize

5.4. COMPUTATIONAL EXPERIMENTS 107

(in the nondominance sense) the overall costs. The problem may be

formulated:

min (

n∑
j=1

q1
j xj ,

n∑
j=1

q2
j xj)

s.t.

n∑
i=1

ai xi ≥ b, x ∈ {0, 1}n

(2) Biobjective cubic knapsack problem (biobj cubkn): Assume that n

items are given where item j has an integer profit aj . In addition we

are given two n×n×n matrices P 1 = (p1
ijk) and P 2 = (p2

ijk), where

p1
ijk and p2

ijk are the costs for each of the targets if the combination

of items i, j, k is selected for i < j < k; and two additional n × n
matrices Q1 = (q1

ij) and Q2 = (q2
ij), where q1

jj and q2
ij are the costs

for the two different targets if both items i and j are selected for i < j

The biobjective cubic knapsack problem calls for selecting the item

subsets whose overall profit exceeds the purpose of the knapsack b,

so as to minimize the overall costs. The problem may be formulated:

min
(n∑
i=1

n∑
j=i

q1
ij xi xj +

n−2∑
i=1

n−1∑
j=i+1

n∑
l=j+1

p1
ijl xi xj xl,

n∑
i=1

n∑
j=i

q2
ij xi xj +

n−2∑
i=1

n−1∑
j=i+1

n∑
l=j+1

p2
ijl xi xj xl

)
s.t.

n∑
i=1

ai xi ≥ b, x ∈ {0, 1}n

(3) Biobjective quadratic knapsack problem (biobj qkn): This problem

may be seen as a special case of the biobjective cubic knapsack prob-

lem when there are no cost correlations between triplets.

(4) Triobjective (linear) knapsack problem (triobj linkn): Assume that

n items are given where item j has an integer profit aj . In addition,

we are given three vectors q1 = (q1
j), q2 = (q2

j) and q3 = (q3
j), where

q1
j ,q2

j and q3
j are the costs for three different targets if j is selected.

The triobjective knapsack problem calls for selecting the item sub-

sets whose overall profit ensures a profit for the knapsack at least

b, so as to minimize (in the nondominance sense) the overall costs.

The problem is:

min (

n∑
j=1

q1
j xj ,

n∑
j=1

q2
j xj ,

n∑
j=1

q3
j xj)

s.t.

n∑
i=1

ai xi ≥ b, x ∈ {0, 1}n

108 5. NON LINEAR MULTIOBJECTIVE OPTIMIZATION

(5) Triobjective cubic knapsack problem (triobj cubkn): We are given

n items where item j has an integer profit aj . In addition, we are

given three n × n × n matrices P 1 = (p1
ijk), P 2 = (p2

ijk) and P 3 =

(p3
ijk), where p1

ijk, p
2
ijk and p3

ijk are the costs for each of the targets

if the combination of items i, j and k is selected for i < j < k;

and three additional n × n matrices Q1 = (q1
ij), Q

2 = (q2
ij) and

Q3 = (q2
ij), where q1

jj , q
2
ij and q3

ij are the costs for three different

targets if both items i and j are selected for i < j The triobjective

cubic knapsack problem calls for selecting the item subsets whose

overall profit ensures a value of b, so as to minimize the overall costs.

The problem is:

min
(n∑
i=1

n∑
j=i

q1
ij xi xj +

n−2∑
i=1

n−1∑
j=i+1

n∑
l=j+1

p1
ijl xi xj xl,

n∑
i=1

n∑
j=i

q2
ij xi xj +

n−2∑
i=1

n−1∑
j=i+1

n∑
l=j+1

p2
ijl xi xj xl,

n∑
i=1

n∑
j=i

q3
ij xi xj +

n−2∑
i=1

n−1∑
j=i+1

n∑
l=j+1

p3
ijl xi xj xl

)
s.t.

n∑
i=1

ai xi ≥ b, x ∈ {0, 1}n

(6) Triobjective quadratic knapsack problem (triobj qkn): This prob-

lem may be seen as a special case of the triobjective cubic knapsack

problem when there are no cost correlations between triplets.

(7) Biobjective portfolio selection (portfolio): Consider a market with

n securities. An investor with initial wealth b seeks to improve his

wealth status by investing it into these n risky securities. Let Xi be

the random return per a lot of the i-th secutiry (i = 1, . . . , n). The

mean, µi = E[Xi], and the covariance, σij = Cov(Xi, Xj), i, j =

1, . . . , n, of the returns are assumed to be known. Let xi be a deci-

sion variable that takes value 1 if the decision-maker invests in the

i-th security and 0 otherwise. Denote the decision vector by x =

(x1, . . . , xn). Then, the random return for a inversion vector x from

the securities is
∑
i=1 xiXi and the mean and variance of this ran-

dom variable are E[
∑
i=1 xiXi] =

n∑
i=1

µixi and V ar(
∑
i=1 xiXi) =

n∑
i=1

n∑
j=1

xi xj σij .

5.4. COMPUTATIONAL EXPERIMENTS 109

Let ai be the current price of the i-th security. Then, if an

investor looks for minimizing his investment risk and simultaneously

maximizing the expected return with that investment, the problem

can be formulated as:

min (V ar(

n∑
i=1

xiXi),−E[

n∑
i=1

xiXi])

s.t.

n∑
i=1

ai xi ≤ b, x ∈ {0, 1}n

 ⇒
min (

n∑
i=1

σij xi xj ,−
n∑
i=1

µi xi)

s.t.

n∑
i=1

ai xi ≤ b, x ∈ {0, 1}n


For each of the above 7 classes of problems, we consider instances ran-

domly generated as follows: ai is randomly drawn in [−10, 10] and the co-

efficients of the objective functions, qkij , p
k
ijl, σij and µi, range in [−10, 10].

Once the constraint vector, (a1, . . . , an), is generated, the right hand side, b,

is randomly generated in [1, |
∑n
i=1 ai|]. For each type of instances and each

value of n in [2, 13] we generated 5 instances.

Tables 5.1 and 5.3 contain a summary of the average results over the

different instances generated for the above problems. Each algorithm is la-

beled conveniently: alg1 corresponds with Algorithm 17, kkt is Algorithm 18,

kkt sl is Algorithm 18 where the inequality is transformed to an equation

using a slack variable, fj is Algorithm 19, fj sl is Algorithm 19 where the

inequality is transformed to an equation using a slack variable and mofj stands

for Algorithm 20. For each of these algorithms we present the CPU time for

computing the corresponding Gröbner basis (tgb), the total CPU time for

obtaining the set of nondominated solutions (ttot), the number of nondom-

inated solutions (#nd) and the number of variables involved in the resolution

of the problem (#vars).

From those tables, the reader may note that Algorithm 17 is faster than

the others for the smallest instances, although the CPU times for this algo-

rithm increase faster than for the others and it is not able to obtain solutions

when the size of the problem is around 12 variables. The algorithms based on

Chebyshev scalarization (kkt, kkt sl, fj and fj sl) are better than alg1 for

the largest instances. The differences between these four methods are mean-

ingful, but the algorithms based on the KKT conditions are, in almost all the

instances, faster than those based on the FJ conditions. Note that considering

slack variables to avoid the inequality constraint is not better, since the CPU

times when the slack variable is considered are larger. Finally, the best algo-

rithm, in CPU time, is mofj since except for the small instances is the fastest

and it was able to solve larger instances.

110 5. NON LINEAR MULTIOBJECTIVE OPTIMIZATION

One may think that the last step of our methods, i.e. removing domi-

nated solutions, should be more time consuming in alg1 than in the remain-

ing methods since alg1 does not use optimality conditions. However, from our

experiments this conclusion is not clearly supported. Actually, although this

process, is time consuming, when the dimension of the problem increases this

time is rather small compared with the effort necessary to obtain the Gröbner

bases.

Analyzing the CPU times for computing the Gröbner basis for each pro-

cedure and comparing with the total time, we can obtain, approximately, the

time consumed to remove dominated solutions to finally obtain the nondomi-

nated ones. For alg1, it was the procedure consuming the biggest average part

of the time removing the dominated solutions for biobjective linear knapsack

problems (% 41.13), triobjective linear knapsack (% 42.68) and triobjective

knapsack. However, the coefficient of variation for these distribution (per-

centage of the total time consumed computing the Gröbner basis) for alg1

is in all cases around 40%, while for the others algorithms this coefficient

is always around 8%, so, the relative time consumed computing the reduced

Gröbner basis varies more than in the other methods. Actually, for example,

for biobjective linear knapsack problems it ranges for alg1 in [0.26, 0.92] while

in kkt ranges in [0.58, 0.65], in fj ranges in [0.62, 0.69] and in mofj ranges in

[0.54, 0.66]. Furthermore, in general, for alg1, the percentage of the total time

that is consumed computing the Gröbner basis increases when the dimension

of the problem is higher. This difference is not so significative for the other

methods. Then, it is clear, that although the cleaning process in alg1 (that

means selecting the efficient solutions) seems to be the hardest, increasing

the number of variables one can observe that a big part of the time used on

computing the Gröbner basis, and only a small part of it on discarding the

componentwise dominated solutions.

Figure 5.4 shows some graphics comparing the algorithms with respect to

the average coefficient of variation of the time consumed removing dominated

elements for any of the problems and algorithms.

Table 5.2 shows some information about each of the presented algorithms.

For a multiobjective problem with n variables, m polynomial inequality con-

straints given by g = (g1, . . . , gm), s polynomial equality constraints given by

h = (h1, . . . , hs) and k objectives functions given by f = (f1, . . . , fk), Table

3 shows the number of variables (#var), the number of generators (#gen) and

the maximal degrees (maxdeg) of the initial polynomial ideals related to the

each of the algorithms. These numbers inform us about the theoretical com-

plexity of the algorithms. The computation of Gröbner bases depends of the

5.4. COMPUTATIONAL EXPERIMENTS 111

Figure 5.7. Graph comparing the coefficients of variation
for the time consumed in the removing process for all the
algorithms and problems.

number of variables (in general, double exponential) and of the size of the

initial system of generators (degrees and number of polynomials). Actually,

it is known that computing a Gröbner basis using Buchberger Algorithm is

doubly exponential in the number of variables. Some complexity bounds for

this algorithm involving #var, #gen and maxdeg can be found in [39].

From the above table the reader may note that both alg1 and mojf have

the same number of variables in any case, but the number of initial genera-

tors for alg1 is, in general, smaller than the same number for mojf, since the

number of objectives is usually smaller than the number of variables. Fur-

thermore, maximal degrees are smaller in alg1 than in mojf . However, in

practice, mojf is faster than alg1 since using optimality conditions helps in

identifying nondominated solutions.

1
1
2

5
.

N
O

N
L

IN
E

A
R

M
U

L
T

IO
B

J
E

C
T

IV
E

O
P

T
IM

IZ
A

T
IO

N

alg1 kkt kkt sl fj fj sl mofj

prob n gbt tott #vars gbt tott #vars gbt tott #vars gbt tott #vars gbt tott #vars gbt tott #vars #nd

b
i
o
b
j

l
i
n
k
n

2 0.02 0.07 5 0.30 0.48 11 0.35 0.61 12 0.24 0.39 10 0.31 0.50 11 0.03 0.06 7 1.8
3 0.03 0.09 6 0.82 1.31 13 0.95 1.61 14 0.71 1.06 12 0.84 1.39 13 0.10 0.18 9 1.6
4 0.07 0.23 7 2.45 3.89 15 3.05 4.90 16 2.07 3.10 14 2.54 4.12 15 0.33 0.52 11 3.6
5 0.32 0.69 8 7.01 10.82 17 8.71 13.90 18 5.92 8.71 16 7.31 11.71 17 0.91 1.40 13 4.6
6 2.86 4.11 9 25.00 37.88 19 32.29 50.13 20 20.63 30.11 18 26.66 41.70 19 3.01 4.61 15 5.4
7 31.15 35.59 10 72.85 107.15 21 82.90 127.08 22 55.68 79.80 20 66.77 104.82 21 7.89 11.60 17 5
8 342.10 373.72 11 176.94 261.58 23 209.68 322.58 24 133.78 193.54 22 165.97 262.46 23 18.35 27.60 19 4.2
9 5273.56 6382.43 12 462.14 675.24 25 529.50 813.54 26 333.81 492.89 24 418.75 670.82 25 48.50 79.08 21 8
10 269.19 404.04 23 7.8
11 480.26 835.46 25 6.4
12 1340.31 2004.33 27 5.4
13 4091.92 19546.05 29 11

b
i
o
b
j

q
k
n

2 0.03 0.07 5 0.28 0.47 11 0.37 0.64 12 0.23 0.36 10 0.31 0.51 11 0.04 0.07 7 1.4
3 0.04 0.10 6 0.79 1.29 13 1.12 1.86 14 0.68 1.04 12 0.95 1.54 13 0.09 0.16 9 2
4 0.19 0.37 7 3.27 4.97 15 4.63 7.15 16 2.69 4.01 14 3.89 5.95 15 0.49 0.70 11 2.4
5 1.76 2.37 8 9.22 13.88 17 11.94 18.06 18 7.54 10.94 16 9.90 15.11 17 1.08 1.74 13 3.8
6 21.43 23.22 9 25.21 37.33 19 33.74 50.13 20 20.57 29.46 18 27.60 41.86 19 2.92 4.58 15 3.6
7 425.13 430.43 10 59.57 91.29 21 85.56 129.88 22 49.38 72.81 20 69.20 107.76 21 5.93 9.71 17 4.4
8 172.26 255.22 23 228.66 337.02 24 127.43 188.32 22 174.23 272.72 23 14.75 25.66 19 5.4
9 463.39 692.25 25 641.29 939.99 26 350.34 515.07 24 489.31 755.88 25 39.90 65.78 21 6.6
10 138.11 255.42 23 7
11 331.34 643.90 25 9
12 891.46 1833.75 27 8

b
i
o
b
j

c
u
b
k
n

3 0.17 0.21 7 0.72 1.14 13 0.97 1.56 14 0.62 0.92 12 0.82 1.31 13 0.09 0.15 9 1.8
4 1.90 2.00 8 4.68 6.73 15 6.26 8.98 16 3.86 5.37 14 5.12 7.38 15 0.56 0.83 11 1.8
5 7.26 7.48 9 9.29 13.43 17 12.49 17.79 18 7.86 10.81 16 10.31 14.91 17 1.11 1.65 13 2.8
6 205.52 206.25 10 6.11 8.29 15 2.2
7 2067.24 2069.38 11 11.25 15.24 17 6.6
8 24.98 32.25 19 5.2
9 81.80 106.90 21 6.2
10 258.68 389.95 23 5.8
11 690.43 916.80 25 7.8

Table 5.1. Computational results for biobjective knapsack problems.

Algorithm #var #gen maxdeg

alg1 2n+ k +m+ s n+ k +m+ s max{2, deg(f), deg(g), deg(h)}
kkt 2n+ 2k +m+ s+ 1 2n+ k +m+ s+ 1 max{deg(f) + 2, deg(g) + 1, deg(h)}
nr 2n+ 2k +m+ s+ 1 2n+m+ s max{deg(f) + 1, deg(g), deg(h)}
fj 2n+ 2k +m+ s+ 2 2n+ k +m+ s+ 1 max{deg(f) + 2, deg(g) + 1, deg(h)}
mojf 2n+ k +m+ s 2n+m+ s max{deg(f), deg(g) + 1, deg(h)}

Table 5.2. Some data about all the nonlinear approaches.

5
.4

.
C

O
M

P
U

T
A

T
IO

N
A

L
E

X
P

E
R

IM
E

N
T

S
1
1
3

alg1 kkt kkt sl fj fj sl mofj

prob n gbt tott #var gbt tott #var gbt tott #var gbt tott #var gbt tott #var gbt tott #var #nd

t
r
i
o
b
j

l
i
n
k
n

2 0.03 0.08 6 0.82 1.27 13 0.99 1.61 14 0.75 1.16 12 0.88 1.47 13 0.04 0.06 8 1.6
3 0.02 0.10 7 2.98 4.33 15 3.63 5.51 16 4.19 5.62 14 4.95 7.00 15 0.14 0.20 10 2
4 0.06 0.65 8 14.71 20.07 17 18.03 25.22 18 19.93 25.61 16 23.62 31.94 17 0.73 0.90 12 2.8
5 0.71 1.00 9 40.75 56.40 19 48.20 68.21 20 55.31 72.04 18 65.38 87.07 19 2.70 3.62 14 4.2
6 2.44 3.32 10 68.69 102.22 21 84.95 129.12 22 107.04 147.24 20 130.13 185.43 21 2.26 3.36 16 6.2
7 22.35 25.32 11 188.86 276.15 23 219.78 335.08 24 272.32 374.25 22 326.76 470.51 23 5.89 8.59 18 11.4
8 360.38 367.76 12 501.35 731.46 25 576.07 856.28 26 729.93 993.07 24 830.08 1194.75 25 17.16 23.83 20 4.4
9 69.68 115.30 22 24.4
10 193.15 301.04 24 31.4
11 529.51 1075.93 26 26
12 1422.70 3145.30 28 85.2

t
r
i
o
b
j

q
k
n

2 0.04 0.09 6 0.96 1.52 13 1.28 1.96 14 0.88 1.37 12 1.19 1.81 13 0.05 0.08 8 2.2
3 0.06 0.18 7 3.20 4.72 15 4.11 6.13 16 4.67 6.25 14 5.21 7.42 15 0.14 0.20 10 2.8
4 0.09 0.32 8 6.50 9.89 17 9.03 13.82 18 9.59 13.14 16 11.44 16.59 17 0.28 0.45 12 5.2
5 2.87 3.68 9 21.05 30.87 19 30.61 45.61 20 30.93 41.79 18 39.81 56.92 19 0.79 1.26 14 8.6
6 31.76 33.69 10 49.11 72.24 21 72.03 106.16 22 69.31 91.93 20 86.83 122.30 21 2.19 3.85 16 9.4
7 1099.24 1109.07 11 152.63 224.47 23 223.51 326.03 24 232.64 319.26 22 296.38 417.00 23 5.18 8.14 18 12.6
8 481.73 709.09 25 721.64 1078.26 26 700.63 980.21 24 904.31 1289.78 25 14.81 22.22 20 17.6
9 44.36 67.14 22 13.6
10 119.50 213.66 24 17.8
11 343.53 793.88 26 29.8
12 1018.35 2445.64 28 40.2

t
r
i
o
b
j

c
u
b
k
n

3 0.05 0.15 7 2.74 4.01 15 4.07 5.88 16 4.25 5.55 14 5.33 7.29 15 0.11 0.19 10 3.4
4 0.18 0.43 8 9.97 13.81 17 13.14 18.50 18 14.32 18.31 16 17.91 23.90 17 0.42 0.56 12 4.4
5 1.37 1.82 9 1.03 1.43 14 8.4
6 28.61 29.80 10 2.93 4.19 16 6
7 9.57 12.67 18 7.6
8 30.95 37.29 20 13.4
9 92.52 115.68 22 25.4
10 371.98 447.80 24 29.4
11 1006.29 1593.48 26 37.4

p
o
r
t
f
o
l
i
o

2 0.03 0.14 5 0.43 0.73 11 0.68 1.10 12 0.40 0.65 10 0.60 0.94 11 0.06 0.08 7 2.0
3 0.03 0.08 6 1.40 2.09 13 1.65 2.59 14 1.08 1.64 12 1.42 2.28 13 0.18 0.28 9 2.0
4 0.08 0.38 7 3.50 5.34 15 4.56 7.08 16 2.85 4.17 14 3.74 5.95 15 0.46 0.71 11 4.0
5 0.82 1.33 8 9.41 14.46 17 11.87 18.16 18 7.85 11.61 16 9.76 15.15 17 1.16 1.84 13 5.4
6 17.39 18.73 9 25.28 38.45 19 32.75 50.01 20 20.92 30.43 18 26.76 41.96 19 2.90 4.71 15 6.8
7 179.84 184.29 10 74.90 111.93 21 95.74 143.34 22 59.19 85.91 20 75.66 117.77 21 7.40 12.09 17 6.2
8 4739.76 4749.91 11 132.97 201.62 23 168.92 255.92 24 108.75 161.05 22 137.98 217.42 23 15.16 25.23 19 8.0
9 393.58 606.13 25 580.04 886.54 26 311.33 490.41 24 455.34 742.80 25 35.83 76.77 21 11.4
10 1212.90 1837.36 27 1601.12 2440.86 28 869.72 1379.88 26 1207.49 1982.07 27 101.17 221.92 23 12.2
11 305.80 724.28 25 15.6

Table 5.3. Computational results for triobjective knapsack and biobjective portfolio problems.

CHAPTER 6

Conclusions

In this thesis we present several methods to solve two different families

of multiobjective discrete problems: linear and polynomial integer programs.

The linear case is tackled using the new structure that we propose, partial

Gröbner bases, in both polynomial and geometrical languages and generating

functions. With partial Gröbner bases we give a methodology analogous to

the one given by Conti and Traverso, but for multiobjective problems. The

advantage of this tool is that the geometrical interpretation is intuitive and its

is easy to describe and implement the algorithm to obtain the Pareto-optimal

solutions. However, the generating function approach uses Barvinok’s ideas

for encoding the integer points inside polytopes to encode the Pareto-optimal

solutions of a multiobjective linear integer problem. With this tool, we can

give some new complexity results, proving that encoding these Pareto-optimal

solutions can be done in polynomial time for fixed dimension of the decision

space (without fixing the dimension of the space of objectives). These kind

of results seem to be impossible to obtain with partial Gröbner bases since

even in the single-objective case it is not clear the complexity of Gröbner ba-

sis (the known upper bound is exponential in the dimension of the decision

space). As opposite to that, an implementation of the best algorithm (with

respect to the complexity) using generating functions is not easy. For that,

we would need to implement the projection and the intersection operations.

A difficult task, since the constructive proofs of that results use many other

results from discrete geometry. For partial Gröbner bases, although there

are some subroutines, the algorithm to obtain the set of Pareto-optimal so-

lutions is almost self-contained and the implementation is not that difficult

(only some thousand hours). Moreover, the geometrical approach of partial

Gröbner bases makes intuitive and clear the implementation. Other advan-

tage of p-Gröbner bases is that we have identify some patterns in the Gröbner

bases (in the single-objective case) and in the partial Gröbner bases for some

well-known combinatorial optimization problems. If a given structure of the

partial Gröbner basis is given a priori, obtaining the Pareto optimal solutions

of the corresponding problem should not be very expensive. In practice we

115

116 6. CONCLUSIONS

show that computing the partial Gröbner basis consumes around 90% of the

time. Furthermore, the geometrical interpretation of the p-Gröbner basis of a

combinatorial problem coincides with the movements in the graph that “im-

prove” feasible solutions. We have not already identified any pattern of the

generating functions encoding the Pareto-optimal solutions since only some

small problems could be computed “by hand”.

The other family of problems that we have solved is that of multiobjec-

tive polynomial integer programs. To solve them, we use the property of lex-

icographic Gröbner bases for solving systems of polynomial equations. This

property is based on the extension and the elimination property. To apply

these results, first we transform the multiobjective problem to the problem of

solving a system of polynomial equations. For this transformation we use dif-

ferent approaches: one of them without using any optimality conditions, some

other using scalarization results and optimality conditions and a last one using

multiobjective optimality conditions. We apply the more general optimality

conditions that we found to give a methodology for any polynomial problem.

However, for specific problems these methodologies allow us to slightly modify

the algorithm to incorporate new conditions that could give better result for

the problem. This is the case of convex problems.

Other improvement that can be done in this approach is the one of choos-

ing the ordering to compute the Gröbner basis. It is well-known that lex-

icographical Gröbner bases are the more expensive (in time consuming) to

compute. Other elimination orderings could be chosen to improve the compu-

tation times. In the case when we apply optimality conditions based on the

Lagrangean theory, in many cases, the multipliers associated to each solutions

are no unique, so the solutions of the Gröbner system depend on some of these

parameters. Comprehensive Gröbner bases may be a good alternative to dis-

cuss about the multipliers. As far as we know, there are no implementations

of these bases that allow solving problems involving more than 10 variables

(decision variables + parameters).

CHAPTER 7

Conclusiones

En esta tesis hemos presentado diversos métodos para resolver dos tipos de

problemas multiobjetivo discretos: programas enteros lineales y polinómicos.

El caso lineal ha sido abordado haciendo uso de una nueva estructura prop-

uesta también en esta memoria: las bases de Gröbner parciales (en su forma

polinomial y en su interpretación geométrica) y de las funciones generatri-

ces. Las bases de Gröbner parciales nos permiten desarrollar una metodoloǵıa

análoga a la presentada previamente por Conti y Traverso pero para prob-

lemas multiobjetivo. La ventaja de esta herramienta es que tiene una inter-

pretación geométrica intuitiva, además de relativamente fácil de describir e

implementar para obtener las soluciones Pareto-óptimas de un problema mul-

tiobjetivo. Por otra parte, la metodoloǵıa basada en funciones generatrices usa

los resultados de Barvinok para codificar los puntos enteros que hay dentro

de un politopo para dar una presentación, en términos de funciones racionales

cortas, de las soluciones Pareto-óptimas de un problema multiobjetivo. Con

esta herramienta, presentamos algunos resultados de complejidad de la opti-

mización entera multiobjetivo, dando un algoritmo polinomial en dimensión

fija (sin fijar la dimensión del espacio de objetivos). Esta clase de resultados

parecen dif́ıciles de obtener usando bases de Gröbner parciales, ya que incluso

en el caso mono-objetvo no está muy clara la complejidad del cálculo de las

bases de Gröbner standard (la cota superior conocida es exponencial en la

dimensión del espacio de decisión). Sin embargo, la implementación del mejor

algoritmo que usa funciones racionales cortas no es fácil de implementar. Para

ello, necesitaŕıamos implementar previamente las operaciones de intersección y

proyección con funciones generatrices. Esta tarea es complicada ya que aunque

Barvinok da unas forma constructiva de realizar estas operaciones, se utilizan

herramientas complejas de geometŕıa discreta. Para las bases de Gröbner par-

ciales, aunque hay algunas subrutinas, el algoritmo para obtener las soluciones

Pareto-óptimas no es complicado. Además, la interpretación geométrica de es-

tas bases hace intuitiva y clara la implementación. Otra ventaja de las bases

de Gröbner parciales es que hemos detectado algunos patrones para algunos

problemas de optimización combinatoria conocidos. Si la estructura de la base

117

118 7. CONCLUSIONES

es dada a priori, obtener las soluciones Pareto-óptimas debiera ser bastante

rápido, tal y como indican las pruebas computacionales que realizamos. En

la práctica, el cálculo de las bases de Gröner parciales consume alrededor del

90% del tiempo total. Además. la interpretación geométrica de las bases de

Gröbner parciales de un problema combinatorio coincide con los movimien-

tos en el grafo correspondiente, que permiten realizar mejoras a partir de una

solución factible dada. Aún no hemos detectado patrones en las funciones gen-

eratrices de ningún problema, ya que sólo algunos problemas pequeños pueden

ser calculados a mano con esta herramienta.

La otra clase de problemas que resolvemos son los problemas multiobjetivo

polinómicos discretos. Para resolverlos, usamos las propiedades de las bases de

Gröbner lexicográficas para resolver sistemas de ecuaciones polinómicas. Para

usar estas bases, primero transformamos el problema de optimización en el

problema de resolver un sistema de ecuaciones polinómicas. Para esta trans-

formación, usamos diferentes estrategias: una de ellas sin usar condiciones

de optimalidad, otras utilizando resultados de escalarización y condiciones de

optimalidad para problemas escalares, y finalmente, usando condiciones de

no dominancia. Para el desarrollo de estos algorimos hemos considerado las

condiciones más generales que hemos encontrado. Sin embargo, para proble-

mas concretos, estas metodoloǵıas son mejorables utilizando resultados más

fuertes una vez fijadas las propiedades del problema. Nuestros algoritmos son

fácilmente adaptables a la incorporación de estas mejoras.

Otra mejora que podŕıa ayudar a estas metodoloǵıas es la elección del

orden para calcular la bases de Gröbner. Es bien conocido que las bases de

Gröbner lexicográficas son las más costosas de calcular. Otros ordenes de

eliminación podŕıan ser elegidos para mejorar los tiempos de computación.

En el caso de los algoritmos basados en la Teoŕıa Lagrangiana, en muchos

caso, los multiplicadores asociados a cada solución no son únicos, aśı que las

soluciones en estos casos podŕıan depender de un parámetro. Las bases de

Gröbner paramétricas podŕıan ser una buena alternativa para discutir sobre los

multiplicadores. Sin embargo, no parece haber implementaciones que permitan

resolver problemas con más de 10 variables (variables + parámetros).

List of Figures

2.1 Hasse diagram of Example 2.1.1 20

2.2 Feasible region for Example 2.3.1 33

2.3 Feasible region of Example 2.3.2 36

3.1 Hasse diagram of Example 3.1.1 40

3.2 ≺C-skeleton of the (17, 11)t-fiber of Example 3.1.2 45

3.3 Two ways to compute paths from (9, 4, 9, 3) in Example 3.1.2 46

3.4 Partial reduction by G1 in Example 3.2.1 55

3.5 Partial reduction by G2 in Example 3.2.1 56

3.6 Two ways to compute remainders by the basis in Example 3.2.1. 57

3.7 Feasible region of Example 3.2.1 57

3.8 Feasible region of Example 15 58

3.9 Hasse diagram for the p-Gröbner basis of Example 3.2.2 58

3.10 Movements from (3, 4) in Example 15 59

4.1 Search tree for a biobjective problem. 77

5.1 Feasible region of Example 5.1.1 88

5.2 Feasible region, the nondominated solutions and the level curves of

Example 5.1.1 90

5.3 Feasible region, the nondominated solutions and the level curves of

Example 5.2.1 98

5.4 Feasible region, the nondominated solutions and the level curves of

Example 5.2.2 102

5.5 Feasible region of Example 5.3.1 105

5.6 Nondominated solutions and level curves of Example 5.3.1 106

5.7 Comparison of the c.v. for the nonlinear approach 111

119

List of Tables

3.1 Computational experiments for knapsack problems using pGB 60

3.2 Computational experiments for transportation problems using pGB 61

4.1 Computational experiments for knapsack problems using generating

functions 75

4.2 Number of numerical semigroups with given genus g and multiplicity

m for g ≤ 15 and 2 ≤ m ≤ g + 1. 82

5.1 Computational experiments for biobj. knapsacks by the nonlinear

approaches 112

5.2 Some data about all the nonlinear approaches. 112

5.3 Computational experiments for triobj. knapsacks by the nonlinear

approaches 113

121

Bibliography

[1] K. Aardal, R. Weismantel, and L.A. Wolsey, Non-standard approaches to

integer programming, Discrete Appl. Math., 123 (2002), pp. 5–74.

[2] W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, American

Mathematical Society, 1994.

[3] R. Apéry, Sur les branches superlinéaires des courbes algébriques, 1964.

[4] H. Arimura and T. Uno, A polynomial space and polynomial delay algorithm

for enumeration of maximal motifs in a sequence, in ISSAC’05, 2005, pp. 724–

737.

[5] R.M. Baer and O. Østerby, Algorithms over partially ordered sets, Journal

BIT Numerical Mathematics, 9 (1969), pp. 97–118.

[6] V. Barucci, D.E. Dobbs, and M. Fontana, Maximality properties in numer-

ical semigroups and applications to one-dimensional analytically irreducible

local domains, 1997.

[7] A. Barvinok, A polynomial time algorithm for counting integral points in

polyhedra when the dimension is fixed, Mathematics of Operations Research,

19 (1994), pp. 769–779.

[8] A. Barvinok and J.E. Pommersheim, An algorithmic theory of lattice points

in polyhedra, in New Perspectives in Algebraic Combinatorics, no. 38 in Mathe-

matical Sciences Research Institute Publications, Cambridge Univ. Press, 1999,

pp. 91–147.

[9] A. Barvinok and K. Woods, Short rational generating functions for lat-

tice point problems, Journal of the American Mathematical Society, 16 (2003),

pp. 957–979.

[10] M.S Bazaraa, H.D. Sherali, and C.M. Shetty, Nonlinear programming :

theory and algorithms, John Wiley and Sons, New York, NY, 1993.

[11] JE Beasley, N Meade, and TJ Chang, An evolutionary heuristic for the

index tracking problem, European Journal of Operational Research, 148 (1995),

pp. 621–643.

[12] A. Beck and M. Teboulle, Global optimality conditions for quadratic op-

timization problems with binary constraints, SIAM J. on Optimization, 11

(2000), pp. 179–188.

[13] T. Becker and V. Weispfenning, Gröbner bases: a computational approach

to commutative algebra, Springer-Verlag, London, UK, 1993.

[14] D. Bertsimas, D. Perakis, and S. Tayur, A new algebraic geometry algorithm

123

124 Bibliography

for integer programming, Management Sience, 46 (2000), pp. 999–1008.

[15] D. Bertsimas and R. Weismantel, Optimization over integers, Dynamic

Ideas, Belmont, Massachusetts, US, 1993.

[16] V. Blanco and J. Puerto, Short rational functions for multiobjective linear

integer programming. Arxiv, arXiv.[math.OC].0712.4295, December 2007.

[17] V. Blanco and J. Puerto, A gröbner bases methodology for solving mul-

tiobjective polynomial integer programs. Arxiv, arXiv.[math.OC].0902.1304,

December 2008.

[18] V. Blanco and J. Puerto, Computing the number of numerical semigroups

using generating functions. Arxiv, arXiv.[math.CO].0901.1228, January 2009.

[19] V. Blanco and J. Puerto, Partial gröbner bases for multiobjective integer

linear optimization, SIAM J. Discrete Math, 3 (2009), pp. 571–595.

[20] M. Bras-Amorós, Fibonacci-like behavior of the number of numerical semi-

groups of a given genus, Semigroup Forum, 76 (2008), pp. 379–384.

[21] K.M. Bretthauer and B. Shetty, The nonlinear resource allocation problem,

Operations Research, 43 (1995), pp. 670–683.

[22] M. Brion, Points entiers dans les polyèdres convexes, Annales scientifiques de

l’Ècole Normale Supèrieure Sér 4, 21 (1988), pp. 653–663.

[23] B. Buchberger, An Algorithm for Finding a Basis for the Residue Class Ring

of a Zero-Dimensional Polynomial Ideal, PhD thesis, University of Innsbruck,

Institute for Mathematics, 1965.

[24] B. Buchberger, Introduction to gröbner bases, in Gröbner Bases and Appli-

cations, B. Buchberger and F. Winkler, eds., vol. 251, London Mathematical

Society Lecture Note Series, Cambridge University Press, Cambridge UK, 1997,

pp. 32–60.

[25] G. Cantor, Beiträge zur begründung der transfiniten mengenlehre, Math.

Ann., 49 (1897), pp. 207–246.

[26] A. Cayley, A theorem on trees, Quarterly Journal of Mathematics, 23 (1889),

pp. 376–378.

[27] YJ Chang and BW Wah, Polynomial programming using groebner bases, Int’l

Conference on Computer Software and Applications, (1994), pp. 236–241.

[28] V. Chankong and Y.Y. Haimes, Multiobjective Decision Making Theory and

Methodology, Elsevier Science, New York, 1983.

[29] H. Cohen, A course in computational algebraic NUMBER theory, Springer-

Verlag New York, Inc., New York, NY, USA, 1993.

[30] P. Conti and C. Traverso, Buchberger algorithm and integer programming,

in AAECC, 1991, pp. 130–139.

[31] M.W. Cooper, A survey of methods for pure nonlinear integer programming,

Management Science, 27 (1981), pp. 353–361.

[32] D. Cox, J. Little, and D. O’Shea, Using Algebraic Geometry, Springer,

2nd ed., 2005.

Bibliography 125

[33] David A. Cox, John Little, and Donal O’Shea, Ideals, Varieties, and Al-

gorithms: An Introduction to Computational Algebraic Geometry and Com-

mutative Algebra, 3/e (Undergraduate Texts in Mathematics), Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2007.

[34] H.G. Daellenbach and C.A. De Kluyver, Note on multiple objective dy-

namic programming, Journal of the Operational Research Society, 31 (1980),

pp. 591–594.

[35] J.A De Loera, D. Haws, R. Hemmecke, P. Huggins, B. Sturmfels, and

R. Yoshida, Short rational functions for toric algebra and applications, Jour-

nal of Symbolic Computation, 38 (2004), pp. 959–973.

[36] J.A. De Loera, D. Haws, R. Hemmecke, P. Huggins, J. Tauzer, and

R. Yoshida, A user’s guide for latte v1.1. software package LattE is avail-

able at http://www.math.ucdavis.edu/latte/, 2003.

[37] J.A. De Loera, R. Hemmecke, and M. Köppe, Pareto optima of multicriteria

integer linear programs. To appear in: INFORMS Journal on Computing, 2008.

[38] X. Delorme, X. Gandibleux, and F. Degoutin, Resolution approché du

probleme de set packing bi-objectifs, in Proceedings de l’ecole d’Automne de

Recherche Operationnelle de Tours (EARO), 2003, pp. 74–80.

[39] T. Dubé, B. Mishra, and C. Yap, Complexity of Buchberger’s algorithm for

Grobner bases, 1995.

[40] F.Y. Edgeworth, Mathematical Psychiscs, P. Keagan, London, 1881.

[41] M. Ehrgott, Approximation algorithms for combinatorial multicriteria op-

timization problems, International Transactions in Operational Research, 7

(2000), pp. 5–31.

[42] M. Ehrgott, J. Figueira, and X. Gandibleux, eds., Multiobjective Discrete

and Combinatorial Optimization, vol. 147, Annals of Operations Research,

2006.

[43] M. Ehrgott, J. Figueira, and S. Greco, eds., Multiple Criteria Decision

Analysis. State of the Art Surveys, New York, Springer, 2005.

[44] M. Ehrgott and X. Gandibleux, A survey and annotated bibliography of

multiobjective combinatorial optimization, OR Spektrum, 22 (2000), pp. 425–

460.

[45] M. Ehrgott and X. Gandibleux, eds., Multiple Criteria Optimization. State

of the Art Annotated Bibliographic Surveys, Boston, Kluwer, 2002.

[46] M. Ehrgott and X. Gandibleux, Approximative solution methods for multi-

objective combinatorial optimization, TOP, 12 (2004), pp. 1–88.

[47] M. Ehrgott and X. Gandibleux, Bound sets for biobjective combinatorial

optimization problems, Comput. Oper. Res., 34 (2007), pp. 2674–2694.

[48] M. Ehrgott and D.M. Ryan, Constructing robust crew schedules with bi-

criteria optimization, Journal of Multi-Criteria Decision Analysis, 11 (2002),

pp. 139–150.

[49] N. El-Sherbeny, Resolution of a Vehicle Routing Problem with Multiobjec-

tive Simulated Annealing Method, PhD thesis, Faculte Polytechnique de Mons,

http://www.math.ucdavis.edu/latte/

126 Bibliography

Belgium, 2001.

[50] J.C. Faugère, A new efficient algorithm for computing gröbner basis (f4),

Journal of Pure and Applied Algebra, 139 (1999), pp. 61–88.

[51] J.C. Faugère, A new efficient algorithm for computing gröbner bases without

reduction to zero (f5), in ISSAC ’02: Proceedings of the 2002 international

symposium on Symbolic and algebraic computation, New York, NY, USA, 2002,

ACM, pp. 75–83.

[52] E. Fernández and J. Puerto, The multiobjective solution of the uncapacitated

plant location problem, European Journal of Operational Research, 45 (2007),

pp. 509–529.

[53] R. Fröberg, An Introduction to Gröbner Bases, John Wiley & Sons, 1998.

[54] X. Gandibleux and A. Jaszkiewicz, Multi-objective metaheuristics, Journal

of Heuristics, 6 (2000), pp. 291–343.

[55] M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide to

the Theory of NP-Completeness, W. H. Freeman & Co., 1979.

[56] K. Hägglöf, P. Lindberg, and L. Svensson, Computing global minima to

polynomial optimization problems using gröbner bases, Journal of Global Op-

timization (Historical Archive), 7 (1995), pp. 115–125.

[57] H. Hamacher and G. Ruhe, On spanning tree problems with multiple objec-

tives, Annals of Operations Research, 52 (1994), pp. 209–230.

[58] F. Hausdorff, Untersuchungen über ordungtypen, Berichte über die Verhand-

lungen der königlich sächsischen Gesellschaft der Wissenschaften zu Leipzig,

Matematisch - Physische Klasse, 58 (1906), pp. 106–169.

[59] S. Hosten, Degrees of Gröbner bases of integer programs, PhD thesis, Cornell

University, 1997.

[60] S. Hosten and B. Sturmfels, GRIN: An implementatiion of grobner bases for

integer programming, in IPCO: 4th Integer Programming and Combinatorial

Optimization Conference, 1995.

[61] S. Hosten and R. Thomas, Gröbner bases in integer programming, 1998.

[62] H. Ishibuchi and T. Murata, A multi-objective genetic local search algorithm

and its application to flowshop scheduling, IEEE Trans. Syst., Man, Cybern.

C, 28 (1998), pp. 392–403.

[63] J. Jahn, Vector Optimization: Theory, Applications and Extensions, Springer,

2004.

[64] N.J. Jobst, M.D. Horniman, C.A. Lucas, and G. Mitra, Computational

aspects of alternative portfolio selection models in the presence of discrete asset

choice constraints, Quantitative Finance, 1 (2001), pp. 489–501.

[65] D. S. Johnson and C. H. Papadimitriou, On generating all maximal inde-

pendent sets, Inf. Process. Lett., 27 (1988), pp. 119–123.

[66] N. Jozefowiez, F. Semet, and E-G. Talbi, A multi-objective evolutionary

algorithm for the covering tour problem, in Applications of multi-objective

evolutionary algorithms, C.A. Coello and G.B Lamont, eds., World Scientific,

2004, pp. 247–267.

Bibliography 127

[67] O. V. Khamisov, Algebraic solution of the problems of nonconvex quadratic

programming, Autom. Remote Control, 65 (2004), pp. 218–226.

[68] A.G. Khovanskii and A.V. Pukhlikov, The riemann-roch theorem for in-

tegrals and sums of quasipolynomials on virtual polytopes, Translation in St.

Petersburg Mathematical Journal, 4 (1992), pp. 188–216.

[69] J. Krarup and P.M. Pruzan, The simple plant location problem: survey and

synthesis, European Journal of Operational Research, 12 (1983), pp. 36–81.

[70] E. Kunz, über dir klassifikation numerischer halbgruppen, Regensburger

matematische schriften, 11 (1987).

[71] J.B. Lasserre, Integer programming, barvinok’s counting algorithm and go-

mory relaxations, Operations Research Letters, 32 (2003), pp. 133–137.

[72] DJ Laughhunn, Quadratic binary programming with application to capital-

budgeting problems, Operations Research, 18 (1970), pp. 454–461.

[73] J. Lawrence, Discrete and Computational Geometry, Discrete Mathematics

and Theoretical Computer Science, 6, American Mathematical Society, Provi-

dence, RI, 1991, ch. Rational-function-valued valuations on polyhedra, pp. 199–

208.

[74] A. K. Lenstra, H. W. Lenstra, and L. Lovàsz, Factoring polynomials with

rational coefficients, Math. Ann., 261 (1982), pp. 515–534.

[75] H.W. (Jr.) Lenstra, Integer programming with a fixed number of variables,

Tech. Report Report 81–03, Mathematisch Instituut, Universiteit ban Amster-

dam, 1981.

[76] D. Li and X. Sun, Nonlinear Integer Programming, International Series in

Operations Research & Management Science, Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2006.

[77] L. Lovàsz, An algorithmic theory of NUMBERs, graphs and convexity, vol. 50,

SIAM lecture series, 1986.

[78] D. Maclagan, R.R Thomas., T. Puthenpurackel, A.V. Jayanthan,

A. Khetan, L. Gold, and S. Faridi, Lecture notes for the graduate school at

the international conference on commutative algebra & combinatorics h.r.i.,

allahabad, december 8-13, 2003.

[79] O. Marcotte and R.M. Soland, An interactive branch-and-bound algorithm

for multiple criteria optimization, Management Science, 32 (1986), pp. 61–75.

[80] G. Mavrotas and D. Diakoulaki, A branch and bound algorithm for mixed

zero-one multiple objective linear programming, European Journal of Opera-

tional Research, 107 (1998), pp. 530–541.

[81] K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic Pub-

lishers, Boston, 1999.

[82] GL Nemhauser and LA Wolsey, Integer Programming and Combinatorial

Optimization, Wiley, New York, 1988.

[83] Jiawang Nie, James W. Demmel, and Victoria Powers, Minimizing poly-

nomials over semialgebraic sets, 2005.

[84] A. Ovchinnikov and A. Zobnin, Classification and applications of monomial

128 Bibliography

orderings and the properties of differential term-ordering, in Proceedings of

CASC, 2002.

[85] V. Pareto, Manuel d’Economie Politique, Marcel Giard, Paris, 1909.

[86] L. Pottier, Minimal solutions of linear diophantine systems: Bounds and al-

gorithms, in Proceedings 4th Conference on Rewriting Techniques and Applica-

tions, Como (Italy), R. V. Book, ed., vol. 488, Springer-Verlag, 1991, pp. 162–

173.

[87] A. Przybylski, X. Gandibleux, and M. Ehrgott, Two phase algorithms for

the biobjective assignment problem, European Journal of Operational Research,

185 (2008), pp. 509–533.

[88] J.C. Rosales and P.A. Garćıa-Sánchez, Finitely Generated Commutative

Monoids, Nova Science Publishers, New York, NY, 1999.

[89] J.C. Rosales and P.A. Garćıa-Sánchez, Numerical semigroups, Springer,

New York, NY, 2009.

[90] J.C. Rosales, P.A. Garćıa-Sánchez, Garćıa-Garćıa, J.I., and M.B.

Branco, Systems of inequalities and numerical semigroups, J. London Math.

Soc., 65 (2002), pp. 611–623.

[91] H. S. Ryoo and N. V. Sahinidis, Global optimization of nonconvex NLPs

and MINLPs with applications in process design, Computers and Chemical

Engineering, 19 (1995), pp. 551–566.

[92] Y. Sawaragi, H. Nakayama, and T. Tanino, Theory of Multiobjective Opti-

mization, Academic Press, 1985.

[93] A. Schrijver, Combinatorial Optimization. Polyhedra and Efficiency,

Springer, New York, NY, 2003.

[94] E.S. Selmer, On a linear diophantine problem of frobenius, J. Reine Angew.

Math., 293/294 (1977), pp. 1–17.

[95] S. Steiner and T. Radzik, Computing all efficient solutions of the biobjective

minimum spanning tree problem, Comput. Oper. Res., 35 (2008), pp. 198–211.

[96] J.R. Stembridge, A Maple package for posets., 2006.

[97] R.E. Steuer, Multiple Criteria Optimization: Theory, Computation and Ap-

plication, John Wiley & Sons, New York, NY, 1985.

[98] B. Sturmfels, Grobner Bases and Convex Polytopes, no. 8 in Univ. Lectures

Series, Providence, Rhode Island, 1996, American Mathematical Society, 1996.

[99] B. Sturmfels, Solving systems of polynomial equations, Tech. Report 97,

CBMS Regional Conference Series of the AMS, Rhode Island, 2002.

[100] B. Sturmfels, Algebraic recipes for integer programming, in Proceedings of

Symposia in Applied Mathematics, vol. 61, 2004.

[101] B. Sturmfels and R.R. Thomas, Variation of cost functions in integer pro-

gramming, Mathematical Programming, 77 (1997), pp. 357–387.

[102] M. Tawarmalani and N.V. Sahinidis, Global optimization of mixed integer

nonlinear programs: a theoretical and computational study, 2003.

[103] R.R. Thomas, A geometric Buchberger algorithm for integer programming,

Mathematics of Operations Research, 20 (1995), pp. 864–884.

Bibliography 129

[104] R.R. Thomas, Applications to integer programming, in PSAM: Proceedings of

the 53th Symposium in Applied Mathematics, American Mathematical Society,

1998.

[105] R.R. Thomas and R. Weismantel, Truncated gröbner bases for integer pro-

gramming, Applicable Algebra in Engineering, Communication and Comput-

ing, 8 (1997), pp. 241–256.

[106] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa, A new algorithm for

generating all maximal independent sets, SIAM J. Comput., 6 (1979), pp. 505–

517.

[107] E. Ulungu and J. Teghem, The two-phases method: An efficient procedure

to solve biobjective combinatorial optimization problems, Foundations of Com-

puting and Decision Sciences, 20 (1995), pp. 149–165.

[108] R. Urbaniak, R. Weismantel, and G.M. Ziegler, A variant of the buch-

berger algorithm for integer programming, SIAM J. Discret. Math., 10 (1997),

pp. 96–108.

[109] S. Verdoolaegehttp, Software barvinok. http://www.kotnet.org/~skimo/

barvinok/, 2008.

[110] B. Villarreal and Karwan, Multicriteria dynamic programming with an ap-

plication to the integer case, Journal of Optimization Theory and Applications,

31 (1982), pp. 43–69.

[111] M. Visée, J. Teghem, M. Pirlot, and E. L. Ulungu, Two-phases method

and branch and bound procedures to solve the biobjective knapsack problem, J.

of Global Optimization, 12 (1998), pp. 139–155.

[112] K. Woods and R. Yoshida, Short rational generating functions and their

applications to integer programming, SIAG/OPT Views and News, 16 (2005),

pp. 15–19.

[113] P.L. Yu, Cone convexity, cone extreme points, and nondominated solutions

in decision problems with multiobjectives, Journal of Optimization Theory and

Applications, 14 (1974), pp. 319–377.

[114] G.M. Ziegler, Gröbner bases and integer programming, in Some Tapas of

Computer Algebra, A.M. Cohen, H. Cuypers, and H. Sterk, eds., Springer-

Verlag, Berlin, FRG, 1999, ch. 7, pp. 168–183.

[115] S. Zionts, A survey of multiple criteria integer programming methods, Annals

of Discrete Mathematics, 5 (1979), pp. 389–398.

[116] S. Zionts and J. Wallenius, Identifying efficient vectors: some theory and

computational results, Operations Research, 23 (1980), pp. 785–793.

http://www.kotnet.org/~skimo/barvinok/
http://www.kotnet.org/~skimo/barvinok/

	portada_tesis2
	TESIS
	Contents
	Exordio
	Preface
	Chapter 1. Preliminaries
	1.1. Multiobjective Optimization
	1.2. Partially ordered sets (posets)
	1.3. Gröbner Bases
	1.4. Short Generating Functions

	Chapter 2. Partial Gröbner bases: a polynomial approach
	2.1. Elements in the partial theory
	2.2. Gröbner bases for partial orders
	2.3. Application to integer multiobjective programming

	Chapter 3. Partial Gröbner bases: a geometric approach
	3.1. From polynomials to vectors
	3.2. Test families and Partial Gröbner bases
	3.4. Computational Experiments

	Chapter 4. Short generating functions
	4.1. The multiobjective problem
	4.2. A short rational function expression of the entire set of nondominated solutions
	4.3. Digging algorithm for the set of nondominated solutions of MOILP
	4.4. Computational Experiments
	4.5. Counting numerical semigroups of given genus

	Chapter 5. Non linear multiobjective optimization
	5.1. Obtaining nondominated solutions solving systems of polynomial equations
	5.2. Obtaining nondominated solutions by the Chebyshev norm approach
	5.3. Obtaining nondominated solutions by nondominance conditions
	5.4. Computational Experiments

	Chapter 6. Conclusions
	Chapter 7. Conclusiones
	List of Figures
	List of Tables
	Bibliography

	back_tesis

