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ABSTRACT.

Recently, more attention has been devoted to sparse vector
methods in order to reduce the computational burden when sgolving
sparse systems of linear equations. These methods exploit the sparsity
of the independent vector and/or the desire to know only a subset of
the unknown vector. They are also applicable when refactorization of a

slightly modifled matrix {s required.

This paper proposes a scheme to order the nodes with the purpose
of reducing the number of operations when applying sparse vector

methoda.

INTRODUCTION.

Sparse matrix equations of the form:
Ax = b (1)

appear in many engineering fleldasa. The standard wsolution procedure
paerforms a eparsity-oriented LDU decomposition of A, followed by

forward and back operations on the independent vector, b.
This paper deals with two kinds of problemst

a) Repeated solution of (1) when matrix A is alightly modified
(partial matrix refactorization problam) (1].

b) Solution of (1) when either vector b has only a {aew non-zero
elements or a small number of elements in the unknown vector x is

needed (sparse vector problam) [2].
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The main interest g focused on numerouam power system—raelated
toples where the mentioned problems arise, like the following ones!
compensation mathods, short=clrcuit analysis, optimal power [(low,
economic dispatch, contingency analysis, equivalencing, etc, Some of
these aspecta are wtrongly related to real time simulation and

operation control of electrical power systems.

A recent paper by Tinney et al. (2] emphasized the interest of
eparse vector methods in power syastem analysls, showing a dramatic
reduction in operationes count compared to conventional methods. In
that paper, the authors noted that new node ordering algorithms had to
be developed in order to enhance the sparsity of L'l (U‘l) without
sacrificing the sparsity of L (U).

In thie paper, one of such algorithms is presented, Results of
applying it to eight test systems are shown and compared to thosa
provided by Tinney‘s escheme 1 (T=2) ordering, alsc known as minlmunm

degree algorlithm [3).

BASIC COKCEPTS.

For simplicity this paper will be restricted to sparse symmetric
matrices or matrices that are sesymmetric in pattern of non =zaro

off=diagonal Lerms.

Given a symmetric matrix A-(aiji an assoclated undirected graph
G=(V,E) can be defined, where V e the geet of vertices (V) aVareaavy)
and E {s a collectlon o¢f unordered pairs of slaments of V (edges),
such that (v, vJ)eE if and only {f .1J¢n and id#j. The vertices are
also called nodes, pointa, buses, atc, and other names for edges are
branches, arcs or lines. If (v, V3JEE, then vy anc vy are said to ba
adjacent. The degroa of a vertex Ils the number of vertices adjacent to
tt. 1f G has n verticese, then a one-=to-one map, {, from V onto the set

(1,2,....n) 1s called a numbering of G,

1f element a,, !=s chosen am pivot and le eliminated, then the
reduced graph assocliated with the reduced matrix {uw obtalned from the
original graph by deleting vertex I and I{ncident a'cs and adding arcs
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between any palr of verticees which are neighbors of 1 but are not
neighbore of each other.

Considaer the symmetric factorization of a aparse matrix A into
utu. The graph assoclated to tha matrix FmUb4U 18 called the filled
graph GF'

Once A has been factorized Into UMU, interest focuses on the
solutlion of (1), whure elther b lu sparse or only a lew elements of X
are needed. Following (2) some delfinitions related Lo sparece vactors

will be introduced in order to make the paper self-sufflclent.

A singleton is a vactor with only one nonzero element. (e.z. in
location k). A path for a eingleton i{s defined as an ordered list of
rowa of U which ara setrictly necessary for the forward solutlon of
(1), The wsame path le executud in reverse order when a&nly the k—th
olement of x {a wanted. Such a path is weasily determined froam Ltha

eparse structure of U as follows (2):

1) Let k be the first row in the path.

2) Get the number of the lowest-numbered nonzero element {n row k of
U. Replacea k with this number and include it in the path.

3) If k {s the last row, exit., Otherwise, return to step 2.

Vhen row k of A is modified, only the rows belonzing to the path
graph of the eingleton k=th must ©be taken {nto account during the
refactorization of A, Hence, partial matrix refactorizatiocn and
forward wolutlon process arae aborded in the same way. From now on,
only the forward and backward processes on the Independent vector will

be coneldered.

A gencoral eparse vector is the sum of singletons, and its path is
the union of the pathe of its composite singletons. If only the rows
of a given path are involved in the solutfion of (1) the curr;spundlng

process is called the Fast Forward (FF) or the Fast Backward (FB)
respectively.

As an example conuider the 14 node IEEE test ayatem [4], whose

matrix U fe shown In Flgure l.a. The ordering algorithm used {a T-2,
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and node 1| (the reference node In the Load Flow problam) 1=
disregardad. A path graph for this network, which compactly describes
all of ite singleton paths Is shown Iin Figure l.b. Tha graph is a tree
which has a direction sense from low to high node for FF and from high

to low node for FB.

There 18 a relationship between this path graph and the sparaity
structure of U™}, The nodes belonging to the Xx-th node path coincide
with the nonzero columms of the k-th row of u~l, Hatrix U™l for the

former example ig given in Figure l.c.

As may be not;d, the number of nonzero elements of l.i"'1 is
directly related to the average singleton path length. Alwo the number
of nonzero elements of U ia directly related to the average mult-adds
needed to perform the forward or back substitution process on each
row, Thue, as pointed out f{n (2], what 18 required fs that both U and
u=l romailn as spuruve ae posalble.

DESCRIPTION OF THE ALGORITIH.

The basic idea which motivated the algorithm is quite simple. Let
us observe agalin the T-2 ordering applled to the l4-node system shown .
in Figure 1. In this case the average path length of the tree is 4.92.
This high value {s due mainly to the existence of a long branch
consisting of B nodes (2,3,4,6,9,11,12,13). Assume now Lthat the same
eystem is reordered as can be ssen In Figure 2. The resultant average
path length s 3.61 and the 1longest branch is compomed only of 5
nodes. This better result could be expected by. simple inapection of
the tree, where two pete of nodes are apparent (encircled) whose paths
have only two common nodes. This shape has been achieved by using a
clustering algorithm Iin order to obtain two weakly interconnacted

cluotera.

The reduction in the average path length implies a more sparase
U'l matrix, It may be obeerved, howaver, that this is done at the cost

of a wlightly larger (i{ll-in of U (one extra element appears).
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Hance, motivated by the above results, the (ollowing heuristic

procedure is propoged:

a) Perform a clustering of the matrix A, which ylelds the typical
Bordered Block Diagonal Form (BBDF). The optimum number of clusters
is not known "a priori”. In general, some triale must be carried
out, because a large number of clusters may degrade substantlally
the sparsity of U, overriding the gain attained with a shorter path
length. Somatimes, the matrix structure {teelf suggests the number

of clusters to be adopted.

b) Reorder the nodes belonging to each cluster following the minimum
degree algorithm (T=2).

A few clustering algorithms have appeared in the literature (see
for instance (5,6,7)). All of them have the drawback of seriocualy
degrading the eparaity of U, as the =asize of the border grows up.
Recently a clustering algorithm has been proposed (B8] which has proved
to avoid this problem almost completely. This is the one adopted in

the next section.

DISCUSSION OF EXPERIMENTAL RESULTS.

The admittance matrix of many electrical power systams has bean
used to test the proposed algorithm, The resulte corresponding to the
eight larger systems are tabulated in Tables I and II for the T-2
algorithm and the one proposed here respectively. The -Appondix
describes briefly the characteristics of these test systems, whose
sizes range from 118 to 661 nodes.

Each table contains the number of nonzero elemente of U and U’l.
as well as the number of mult-adds required to perform the
factorization of the matrix (actually, the maktrix has one node less
than the number i{ndicated in the firast column, as the reference or
slack node {= not {ncluded).

For every posseible singleton the path length and the total
mult-adde In FF were computed. The mean of these quantities {8



ROD

-1

HUL
ADD
FAC

1 SINGL

RANDOM STIHGLETONS

CLUSTERED SINGIL

ETONS

2 SINGL

5 STHGL

10 SING

2 SINGL

5 SINGL

10 §

ING

AP AD| AP

AQ

AP

AQ

AP

AO

AP

AOQ

AP AD

AP

AO

Rl

R2

R3

R4

118
175
265
293
ig3
448
596
661

253
399
549
684
1038
1189
1710
1851

990
2761
3622
5435
B971

10667
15688
17638

425
110
972
1229
2503
2850
4707
4972

%8 21

14.1

16.9 50(22.6

14.7 49
19.6 57
24.5 137
24.8 141
27.4 188

27.17 190

21.3
28.5
32.4
33.9
37.1
40.3

33
66
‘10
BS
181
189
2517
278

25.1
33.2
36.2
44.1
49.7
50.9
58.9
61.8

62

94
111
129
260
268
392
406

35.9
47.3
51.5
60.4
66.7
70.17

88
130
148
175
324
344

63.5 512

86.0

523

10.6
19.0
16.1
20.1
26.3
25.8
2B.6
27.8

23
56
53
58
145
143
194
187

13.1 29
19.8 57
18.1 56
23.6 €8
28.2 149
28.3 152
30.9 203
12.1 210

17.5
24.2
23.8
29.8
34.6
34.3

40
68
70
B4
173
172

16.6 220

37.3

221

54
56
54
54
57
56
56
55

12
14
71
72
11
10
&8
&8

12

13
12
11
10

24
31
23
26
28
25
23
21

Table I. Results obtained with

l
T-2 method.

KOD

-1

MUL
ADD
FAC

1 SINSL

RANDOM SINGLETONS

CLUSTERED SIKGLETONS

2 SINGL

5 SINGL

10 SING

2 SINGL

5 SINGL

10 s

IHG

AP AD

AP

AD

AP

AD

AP

AD

AP

AD

AP AQ

AP

A0

Rl

R2

bl
(™=

R4

—

118
175
265
293
383
448
596
661

256
413
552
121
1048
1197
1714
1855

968
19617
3426
3963
1012
g4lé

13819
15314

436
788
987
1434
2602
2916
47155
5020

$.3 21
12.3 3
14.0 45
13.6 42
19.4 9
19.8 101
24.2 158
24.2 155

13.8
18.3
20.4
21.8
28.1
28.0
36.1
36.6

33
54
65
12
147
146
245
241

23.5
32,0
34.9
31.9
45.9
46.9
58.7
60.1

59

98
110
130
237
246
392
97

15.4
46.1
50.8
58.1
66.8
10.1
81.9
84.8

89
138
149
196
328
344
510
519

10.6
11.8
14.6
15.2
20.9
21.9
25.3
24.8

24
n

46

47
104
111
162
155

12.2 17
16,1 43
171.8 8§52
16.8 "51
23.1 111
23.6 114
28.7 119
28.6 1315

11.7
20.8
22.1
21.9
29.1
29.6
4.9
35.4

41
56
65
65
134
134
202
20)

54
54
54
33
55
54
55
54

14
13
T4
12
73
13
14
14

[~ B BV . e ]

25
28
21
18
24
23
26
24

s e D

Table

AP: Average path length.
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I1. Resulte obtalned with the proposed algoritha,
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tabulated, as well as the ratios Rl, R2, R3, and R4 defined in (2]
which give a measure of the relative advantage of using FF instead of
the full forward proceas.

Further tests were made involving eparse vectoras with two, five
and ten randomly chosen nonzero elements. For each case 100 trials
were performed, and the avarage path length as well as the average
total mult-adds in FF are tabulated here. From thewe results the
ratios R5 and R6 defined in (2] may also be computed. These ratioa
indicate the loss of efficlency of sparse vector methods as the number

of random nonzeros grows.

In practice, the nonzeros in the sparse vector are not randomly
chosen. To test the effects of topologlically related nodees another set
of 100 trials was done. This time the two, five and ten nonzero
elemonte of the sparse vector were chosen {n a similar way ae is done
in diagonal band ordering. A node is randomly chosen as the first one.
The adjacent nodes to those already numbered are consecutively chosen,
and so on until the required number of nodes is achieved. The average

results from these tests are also glven.

It can be seen, as pointed out {n (2], that the growth in path
length and operations count (s wsignificantly emaller {f the nonzero

entries in the sparse vector correspend to topologically related
nodes .

The last column in Table II shows the adopted number of clusters
for each network.

These results suggest the following conclusions:

— The fill=in of the matrix U (= glightly increased with respect to
T-2 algorithm, as was expected (about 1%).

~ Oppositely, the sparsity of rl e alignificantly Aimproved (about
15X) which means, as was explained previcusly, that the average path
length for one singleton is proportionally decreased (column 5).

— Besides, the average total mult-adds in FF for 1 singleton (column
6) is about 20X less than with T-2 algorithm.
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—~ Asg the number of singletons growas, both algorithme tend to behave
similarly, though for 10 clustered singletons the proposed algorithm
still saves about 14X of mult—adds in FF compared to T-2 (coluan
18).

— When the singletons are randomly chosen, the advantage of the

proposed algorithm over T-2 ie less important.

CONCLUSIONS.
Racently, more {nterest has been devoted to gparse vaector
methode,  which enhance forward and backward subetitution prcocecccz by

exploiting the sparsity of the independent vector and/or the need to
know only a subset of the unknown vector. The weame techniques can be
uvused in the partial matrix refactorization process. Both types of
probleme arise frequently in many engineering flelds, particularly in

electric power systems analysis.

The speedup in a particular application depends not only on tha
number of nonzeros in the vector but on the aparsity of U and U—l,

which may be enhanced with a proper node ordering.

In this paper, an algorithm 18 proposed which clearly improves
the sparsity of vl compared to the minimum degree algorithm. The
improvement is translated into a reduction on thes operations count
besides 15X,
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APPENDIX.

To test the proposed algorithm, sevaral networks have been tried.

The data in Tables I and II refer to the following systems:

Nodes Comment

118 — ISEE test asystem.

175 — Obtained by Joining 2 IEEE test systems
together.

265 — Andalusian natwork covering 50,156,132 Kv,.

293 — Obtained by Joining 3 IEEE test systems
together.

383 ~ Spanish 132,220,380 Kv. network.,

448 ~ The former and the same levelas of Portugal.

596 - Spanish 132,220,380 Kv. levels and 50,66 Kv.
Andalusian network.

661 — The former and 132,220,380 Kv. laevels of
Portugal.

All the above mentioned systems, except the IEEE ones, ara

derived from the 661 node Spanish network in a peak oad condition of

about 20 GW, B GVAr. Smaller networke, like the IEEE ' 4, 30 and 57 [4)

among others, have been succesfully tested, but the results are not

reported because ¢of space limitations.



