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Overdamped sine-Gordon kink in a thermal bath
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We study sine-Gordon kink diffusion at finite temperature in the overdamped limit. By means of a general
perturbative approach, we calculate the first- and second-order~in temperature! contributions to the diffusion
coefficient. We compare our analytical predictions with numerical simulations. The good agreement allows us
to conclude that, up to temperatures where kink-antikink nucleation processes cannot be neglected, a diffusion
constant linear andquadratic in temperature gives a very accurate description of the diffusive motion of the
kink. The quadratic temperature dependence is shown to stem from the interaction with the phonons. In
addition, we calculate and compute the average value^f(x,t)& of the wave function as a function of time, and
show that its width grows withAt. We discuss the interpretation of this finding and show that it arises from the
dispersion of the kink center positions of individual realizations which all keep their width.
@S1063-651X~99!08407-X#
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I. INTRODUCTION

There is no longer any controversy about the phys
relevance of noise effects in spatially extended, nonlin
systems@1,2#: Indeed, the pervasive, joint role of nonlinea
ity and ~static or dynamic! disorder has already been reco
nized in biophysics, electronics, optics, fluids, conden
matter, computational physics, etc. In most of these fie
nonlinear phenomena involve nonlinear coherent excitatio
such as solitons or solitary waves, which play a key par
the corresponding system dynamics. It is because of
nowadays well established fact that much effort has b
devoted to understanding how stochastic perturbations a
solitons, mostly during the decade of the 1980s~see Refs.
@3–5# for reviews!. In fact, early numerical simulations@6#
already revealed thatf4 solitary waves underwen
Brownian-like motion in the presence of additive whi
noise, i.e., of thermal fluctuations. Subsequent works focu
on the study of soliton diffusion, since it may be crucial in
number of problems, such as photoexcitation dynamics, p
toconductivity of conducting polymers, or transport by pha
solitons in charge-density-wave systems, to name a few@7#.

Among the different soliton-bearing nonlinear mode
which have been studied in the above context, one which
received a great deal of attention is the sine-Gordon~sG!
equation. The interest in this model is both theoretical, a
displays the main features of more realistic and complica
cases while remaining analytically tractable, and applied
it very approximately describes the dynamics of many phy
cally relevant systems, such as one-dimensional magnet@8#
or long Josephson junctions@9#, for instance. Soliton diffu-
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sion governed by the sG~and other nonlinear Klein-Gordon
equations! has been studied along two main, different lin
which are discussed and compared, e.g., in Ref.@10#. The
first one consists of considering extended excitations of
system~phonons! in equilibrium with both a single sG soli
ton and a heat bath at temperatureT. This approach leads to
two distinct diffusion regimes: anomalous diffusion, chara
terized by a diffusion constant proportional toT2, and vis-
cous diffusion, when the appearance of a dynamical damp
coefficient yields a diffusion constant proportional toT21.
We will not follow this approach here; the interested read
is referred to the detailed review by Wada@11#. The second
manner isà la Langevin, i.e., introducing the influence of a
external thermal bath by means of local fluctuations of
string and a local damping force related to that by an app
priate fluctuation-dissipation relationship. The correspond
equation of motion is then

f tt2fxx1sin~f!52af t1h~x,t !, ~1!

with

^h~x,t !&50, ~2a!

^h~x,t !h~x8,t8!&5Dd~x2x8!d~ t2t8!, ~2b!

where the diffusion coefficientD52akbT, kb being the
Boltzmann constant, and2af t being the damping term with
a dissipation coefficienta. This equation has been consid
ered a number of times in the literature~see, e.g., Ref.@3#
and references therein; see also Ref.@12# for related experi-
mental work!.

In this work, we focus on the Langevin version of th
problem, with the aim of improving the analytical resul
obtained in the aforementioned works as well as of verify
them by numerical simulations specifically planned to th
222 ©1999 The American Physical Society
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end. Furthermore, we concern ourselves with the ov
damped limit of the sG equation, which reads

af t2fxx1sin~f!5eh~x,t,f , . . . !. ~3!

Note that we have introduced a factore in front of the noise
term for convenience in the analytical calculations in Sec
This equation~without noise,e50) was already considere
by Eilenberger in Ref.@13#, as the limit of the sG equation
~1! in the case when the dissipation effect is strong enoug
Eq. ~1!, and there is an input of energy into the system~see,
e.g., Refs.@14,15# and references therein!. On the other hand
Eq. ~3!, with additive noise as in Eq.~2!, is interesting in
itself: For example, it has been proposed as a model
crystal growth~see Refs.@16–18# and references therein!.
Equation~3! has also been studied to analyze the kink c
tribution to transport properties when the system is driv
and thermally activated@16,19–21#. In particular, the work
of Kaup@21# is the most closely related to the present one
it presents a singular perturbation theory to compute the fi
order ~in T) correction to the kink mobility as well as th
change of its shape. However, to our knowledge the f
diffusion problem for the overdamped sG equation has
been adressed in the literature to date and, therefore, we
lieve that our results will be interesting by themselves.
the other hand, we also hope that what we learn in this c
can be used toward obtaining a more complete, accurate
ture of the full sG problem; we will discuss this question
the conclusions.

The outline of the paper is as follows: In Sec. II, using
general perturbative method@13# which we recall in detail,
we calculate the correlation functions of the position and
velocity of the kink center up to second order inkbT, as well
as the diffusion coefficient and the mean value^f(x,t)& for
fixed t. In Sec. III we numerically integrate the stochas
r-
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e

partial differential equation~3!, with noise given by Eq.~2!,
using the Heun scheme@22#, and compute the time correla
tion function of the position of the kink center and the d
fusion coefficient. We compare these results with the th
retical ones obtained in Sec. II and find an excelle
agreement. Finally, in Sec. IV we discuss our results, su
marize our main conclusions, and sketch lines for future
search.

II. A GENERAL PERTURBATIVE APPROACH

Following the ansatz proposed in Refs.@13,23#, we as-
sume that the solution of Eq.~3! can be expanded as

f~x,t !5f0@x2X~ t !#1E
2`

1`

dk Ak~ t ! f k@x2X~ t !#, ~4!

where f k@x2X(t)# are the eigenfunctions of the linearize
version of Eq. ~3! @with e50#, which along with f T@x
2X(t)#5(]f0 /]x)@x2X(t)#, form a complete set of or-
thogonal eigenfunctions~see the Appendix!. The first term in
expansion~4! represents the translational mode related to
position of the kink centerX(t), whereas the second on
characterizes the phonon modes~linear excitations around a
kink! of the system. We will focus on the kink center motio
as described byX(t), as it is well established that such
particlelike picture is very generally enough to describe
behavior of the kink as a whole (X playing the role of a
collective coordinate; see, e.g., Ref.@24# for a review!.

In order to calculate the dynamics of the kink center,
begin by inserting Eq.~4! into Eq. ~3!, and projecting on the
orthogonal basis@see the Appendix, relationships~A7!# we
obtain a system of differential equations for the unkno
functionsX(t) andAk(t):
Ẋ~ t !52
1

8
Ẋ~ t !E

2`

1`

dk Ak~ t !I 1~k!2
1

16aE2`

1`

dkE
2`

1`

dk8Ak~ t !Ak8~ t !R3~k,k8!

1
AD

8a E
2`

1`

f T@x2X~ t !#h~x,t !dx2
1

48aE2`

1`

dkE
2`

1`

dk1E
2`

1`

dk2Ak~ t !Ak1
~ t !Ak2

~ t !R6~k,k1 ,k2!, ~5!

]Ak

]t
1

vk
2

a
Ak~ t !5Ẋ~ t !E

2`

1`

dk Ak~ t !I 3~k,k8!1
1

2aE2`

1`

dkE
2`

1`

dk8Ak~ t !Ak8~ t !R4~k,k8!

2
AD

a E
2`

1`

f k8
* @x2X~ t !#h~x,t !dx1

1

6aE2`

1`

dkE
2`

1`

dk1E
2`

1`

dk2Ak~ t !Ak1
~ t !Ak2

~ t !R7~k,k1 ,k2!, ~6!

where

I 1~k!5E
2`

1`] f k

]u
f T~u!du5

ipvk

A2pcoshS pk

2 D ,

R3~k,k8!5E
2`

1`

f T~u!
] f T

]u
f k~u! f k8

* ~u!du52
i ~vk

22vk8
2

!2

4vkvk8 sinhS pDk

2 D , Dk5k82k,
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I 3~k,k8!5E
2`

1`] f k

]u
f k8
* ~u!du, ~7!

R4~k,k8!5E
2`

1`

@ f k8
* ~u!#2

] f T

]u
f k~u!du, R4~k,k!5

3ivk

8A2p coshS pk

2 D ,

R6~k,k1 ,k2!5E
2`

1`]2f T

]u2
f k~u! f k1

* ~u! f k2
~u!du,

R7~k,k1 ,k2!5E
2`

1`

cos~f0! f k8
* ~u! f k~u! f k1

* ~u! f k2
~u!du.

We now recall that, if we sete50 in Eq. ~3!, the static kink is an exact solution; hence in what follows we will consi
e as a small perturbative parameter, and expandAk(t) and X(t) in powers of e. By substituting the seriesAk(t)
5(n51

` enAk
n(t) and X(t)5(n51

` enXn(t) in Eqs. ~5! and ~6!, we find a set of linear equations for the coefficients of the
series. We only write down here the systems of equations up to ordere3, leaving out the cumbersome~albeit straightforward!
equation forAk

3(t). For O(e),

Ẋ1~ t !5e1~ t !, ^e1~ t !&50, ^e1~ t !e1~ t8!&5
D

8a2
d~ t2t8!, ~8a!

]Ak
1

]t
~ t !1

vk
2

a
Ak

1~ t !5
ek~ t !

a
, ^ek~ t !&50, ^ek~ t !ek8~ t8!&5

D

a2
d~ t2t8!d~k2k8!. ~8b!

For O(e2),

Ẋ2~ t !52
Ẋ1~ t !

8 E
2`

1`

dk Ak
1~ t !I 1~k!2

1

16aE2`

1`

dkE
2`

1`

dk8Ak
1~ t !Ak8

1
~ t !R3~k,k8!, ~9a!

]Ak
2

]t
~ t !1

vk
2

a
Ak

2~ t !5Ẋ1~ t !E
2`

1`

dk Ak
1~ t !I 3~k,k!1

1

2aE2`

1`

dkE
2`

1`

dk8Ak
1~ t !Ak8

1
~ t !R4~k,k8!. ~9b!

For O(e3),

Ẋ3~ t !52
Ẋ1~ t !

8 E
2`

1`

dk Ak
2~ t !I 1~k!2

Ẋ2~ t !

8 E
2`

1`

dk Ak
1~ t !I 1~k!2

1

16aE2`

1`

dkE
2`

1`

dk8Ak
2~ t !Ak8

1
~ t !R3~k,k8!

2
1

16aE2`

1`

dkE
2`

1`

dk8Ak
1~ t !Ak8

2
~ t !R3~k,k8!2

1

48aE2`

1`

dkE
2`

1`

dk1E
2`

1`

dk2Ak
1~ t !Ak1

1 ~ t !Ak2

1 ~ t !R6~k,k1 ,k2!.

~10!

We now proceed with the first-order equations. The solutions of Eqs.~8a! and ~8b! can be written as

X1~ t !5E
0

t

e1~t!dt, Ak
1~ t !5expS 2

vk
2t

a D E
0

t

expS vk
2t

a D ek~t!dt, ~11!

respectively. From these relations we can immediately compute averages over the quantities of interest, such as

^X1~ t !&50, ^X1~ t !X1~ t8!&5
D

8a2
M , ~12!

^Ẋ1~ t !&50, ^Ẋ1~ t !Ẋ1~ t8!&5
D

8a2
d~ t2t8!, ~13!
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^Ak
1~ t !&50, ^Ak

1~ t !Ak
1~ t8!&5

D

2avk
2 FexpS 2

vk
2ut82tu

a D 2expS 2
vk

2~ t1t8!

a D G , ~14!

whereM5min(t,t8). For the next orders, the calculations are more involved but not difficult. After some tedious algebra
Eqs.~9a!–~10! we find the average values of the position and velocity of the kink center:

^X2~ t !&50, ^Ẋ2~ t !&50, ~15!

^X3~ t !&50, ^Ẋ3~ t !&50, ~16!

whereas it can be shown that, for large enough times,

^uAk
2~ t !u&;

3skbT

16A2pvk
2

, ~17a!

s5E
2`

1` dk

vkcoshS pk

2 D '1.623 86. ~17b!

The corresponding correlation functions forX2(t) and Ẋ2(t) are

^X2~ t !X2~ t8!&5
D2M

512a3
1

D2p

4096a2E2`

1`@exp~22vk
2M /a!21#dk

vk
2cosh2S pk

2 D , ~18!

^Ẋ2~ t !Ẋ2~ t8!&5^Ẋ1~ t !Ẋ1~ t8!&
Dp

256aE2`

1`exp~2vk
2ut82tu/a!2exp„2vk

2~ t81t !/a…dk

cosh2S pk

2 D . ~19!

Notice that the cross correlation function ofX1(t) and X3(t) is of the same order aŝX2(t)X2(t8)&, and also that
^X1(t)X2(t8)&50. So, from Eqs.~8a! and ~10!, we have

^X3~ t !X1~ t8!&5^X2~ t !X2~ t8!&2
D2

256a3E2`

1`

dk I1~k!H S E
2`

1`

dm
R4~m,m!

vm
2 D F M

vk
2

1
a„exp~2vk

2M /a!21…

vk
4 G

2E
2`

1`

dn
R4~n,n!

vn
2

a

2vn
22vk

2 F „exp~22vn
2M /a!21…

2vn
2

2
„exp~2vk

2M /a!21…

vk
2 G J , ~20!

^Ẋ3~ t !Ẋ1~ t8!&52
1

8
^Ẋ1~ t !Ẋ1~ t8!&E

2`

1`

dkH ^Ak
2~ t !&I 1~k!2

1

8
^@Ak

1~ t !#2&uI 1~k!u2J . ~21!

Finally, from Eqs.~13!, ~19!, and~21! we obtain the final result, namely, that for larget @i.e., taking the limitt→` in Eqs.~19!

and ~21! in all terms except those related toX1(t)# the correlation function̂Ẋ(t)Ẋ(t8)& is given up to ordere4 by

^Ẋ~ t !Ẋ~ t8!&5e2^Ẋ1~ t !Ẋ1~ t8!&1e4~^Ẋ2~ t !Ẋ2~ t8!&1^Ẋ1~ t !Ẋ3~ t8!&1^Ẋ3~ t !Ẋ1~ t8!&!1•••

5
e2

8
^Ẋ1~ t !Ẋ1~ t8!&H 11e2S 3

32
1

3

128
s2D kbTJ 1o~e4!. ~22!

We now return to our original equation notation: We sete equal to 1 and considerAkbT as the small parameter. Whent
goes to infinity and imposinge51, from Eqs.~12!, ~18!, and~20! we find

^@X~ t !#2&5
kbT

4a
tH 11S 3

32
1

3

128
s2D kbTJ . ~23!

Note that the slope of this function is the kink diffusion
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FIG. 1. Simulations with initial condition given by a static kink initially located atX(0)50, and subject to a thermal bath. As
continuous~but wiggly! line, we have plotted̂@X(t)#2&2^@X(t)#&2 as obtained by numerical integration of Eq.~3! for ~a! kbT50.2, ~b!
kbT50.4, ~c! kbT50.6, and~d! kbT50.8. Superimposed on these lines, the linear regression of the numerical results fort>30 is shown
~long-dashed line!. The solid line is the theoretical prediction^@X(t)#2&2^@X(t)#&2 from Eq. ~23!; this line practically overlaps with the
linear regression in~a!, ~b!, and~c!. The first-order result̂@X(t)#2&2^@X(t)#&2 from Eq. ~12! is shown as a dot-dashed line.
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coefficient, so if one takes into account the second-order
rection one obtains that the diffusion coefficient is a qu
dratic function of the temperature. We postpone our co
ments to Sec. IV, where a comparison with the previou
available results will be made.

To complete this work, we can calculate in a very simp
way the average value of the wave functionf(x,t) in first
order: From Eq.~4!, we have that

^f~x,t !&5^f0@x2eX1~ t !#&1O~e2!. ~24!

In this last relation we have taken into account that^Ak(t)&
5e^Ak

1(t)&1O(e2) and ^Ak
1(t)&50 @see Eq.~14!#.

If we solve the corresponding Fokker-Planck equation
X1 @see Eq.~8a!#, we obtain that the probability distributio
function for X1 is a Gaussian function given by

p~X1!5A4a2

ptD
expS 2

4a2X1
2

Dt D . ~25!

So one can define the average value^f(x,t)& as

^f~x,t !&5E
2`

1`

dX1p~X1!f0@x2eX1~ t !#. ~26!

Unfortunately we have not found the analytical express
for this integral. But we have calculated it numerically, a
below we will compare it to the simulations for the full pa
tial differential equation.
r-
-
-
y

r

n

III. NUMERICAL SIMULATIONS

For our numerical simulations of the partial differenti
equation~3!, we have used the method of Heun@22#, whose
stochastic properties are well known and suitable for co
parison to our theoretical predictions. We numerically in
grate Eqs.~3!, with white noise@Eq. ~2!#, starting from an
unperturbed kink at rest and taking the average values o
1000 realizations. The other parameters area51, Dx
50.05, andDt50.001. In the evaluation of the simulation
we have defined the center of the kink as follows: We fi
find all the lattice pointsi such thatf i<p andf i 11>p, or
vice versa. We then interpolate to obtain the pointsxi where
the fieldf crossesp. In case that, due to the noise-induc
deformation of the kink, there is more than one suchxi , we
average them to finally obtain the numerical kink center p
sition, xc . As discussed below, this introduces some err
but other alternatives we tested~such as the center of mas
for instance! gave results which did not really represent t
kink location, and moreover its calculation from numerics
much less accurate. Once the center is obtained, we
computed its variancê@X(t)#2&2^@X(t)#&2.

Figures 1~a!–1~d! show a comparison of our numerica
results with the analytical predictions@Eqs. ~12! and ~23!#,
for different values ofkbT. We see that there is an excelle
agreement between theory and numerics except for the h
est value ofkbT @Fig. 1~d!#. We have checked that this dis
agreement arises from the way we compute the kink cen
For such large values of the noise, points wheref(x,t)5p
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are found all over the system, irrespective of their distanc
the kink center~we note, however, that the temperature w
not high enough to create new kink-antikink pairs!. Those
points contribute to the center position through our averag
procedure, and in fact their contribution can be shown to
additive, i.e., it amounts to move the whole cur
^@X(t)#2&2^@X(t)#&2 upwards. This is indeed what occu
in Fig. 1~d!, and as we will see below the slope is very clo
to the predicted one. The same behavior is found for hig
temperatures insofar as no new kinks are created~not
shown!. Interestingly, a first conclusion that can be draw
from these figures is that already for not so high tempe
tures,kbT>0.4, as time passes the kink behavior becom
more and more different from the first-order predictio
showing clearly the necessity for the second-order cor
tion.

We have calculated the numerical values of the diffus
coefficient for several temperatures by taking the slope
^@X(t)#2&2^@X(t)#&2, which we obtain from a linear fit of
the data for not so early times (t>30) to avoid transient
effects coming from the adjustment of the kink to the h
bath. Note also that our prediction for the second-order c

FIG. 2. Lower solid line: the functionD1; upper solid line:D2,
which represent the first- and second-order results for the kink
fusion coefficient@see Eqs.~12! and~23!#. Diamonds represent th
numerical values of the kink diffusion coefficient, obtained by n
merical integration of Eq.~3! with final time t f5200 ~as in Fig. 1!
and different values ofkbT. A quadratic regression of these nume
cal values is also plotted~long-dashed line!.
to
s

g
e

er

-
s

,
c-

n
f

t
n-

tribution was obtained in the large-time limit, so we shou
not try to fit the entire evolution. The figures also show tho
linear regressions. Subsequently, in Fig. 2 we compare
computed slopes with the first- and second-order coefficie

D15kbT/4a, and D25(kbT/4a)$11( 3
32 1 3

128s2)kbT% @see
Eqs.~12! and~23!#. The comparison is once again very goo
and points out very clearly that for values ofkbT as low as
0.3, the first-order prediction begins to deviate from the d
fusion constant measured in the simulations. In addition,
quadratic fit to the simulation results, shown as a lon
dashed line in Fig. 2, practically coincides with the secon
order prediction in the whole studied range.

As a final verification of our results, in Fig. 3 we plot th
mean valuê f(x,t)& of the wave function at three differen
times along its evolution, both as obtained from the nume
cal simulation of the partial differential equation and fro
the numerical evaluation of Eq.~26!. The perfect agreemen
between these expressions provides us with a hint as to
to derive an approximate analytical estimate of the evolut
of ^f& from integral~26!. From Fig. 3 one immediately con
cludes that the width of̂f& increases with temperature an
time. Let us define the width of̂f& by

L~ t !5AE
2`

1`

x2^@fx~x,t !#2&dx

E
2`

1`

^@fx~x,t !#2&dx

. ~27!

With this definition, we can now calculatê@fx(x,t)#2&
by using the distribution function ofX1(t); this procedure
yields

L~ t !'AL0
21^@X1~ t !#2&, ~28!

where

L0
25

E
2`

1`

dx@x2/cosh2~x!#

E
2`

1`

dx@1/cosh2~x!#

50.8225.

f-

-

for
FIG. 3. Solid lines: Snapshots of the evolution of^f(x,t)&, obtained from numerical simulations of the partial differential equation,
fixed times of 40, 120, and 200, respectively. The initial kink~unperturbed, at rest! is also included for comparison. The width of^f&
increases as time progresses. The superimposed points have been computed numerically from integral~26!. Plots correspond tokbT50.4 ~a!
and 0.8~b!; the width of^f& is seen to increase also with temperature.
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FIG. 4. Solid lines: Analytical values of ln@L(t)/L(tfix)# for tfix540 ~a! andtfix580 ~b!. In both cases,a51 andkbT50.6. Long-dashed
lines: numerical values, calculated from Eq.~26!. The solid lines over the long-dashed lines correspond to the linear regression
numerical points.
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It is important to note that, of course, we could defi
L(t) using ^fx(x,t)& instead of^@fx(x,t)#2& in the above
expression, or equivalently another quantity which is loc
ized around the kink center. However, as all possible~and
sensible! definitions ofL(t) give more or less the same re
sults, the difference between them becomes a constant fa
when ^@X1(t)#2& increases aboveL0

2 ~for example, for large
enought). So we expect that the ratio

L~ t !

L~ tfix!
→A t

tfix
~29!

for large enought and tfix .
Figure 4 shows a comparison of this prediction with t

numerical evaluation of the width of̂f& from Eq. ~26!.
From these plots we see that the broadening of^f& indeed
behaves asAt: We can compare the analytical slope equa
0.5 with the numerical ones equal to 0.4276 and 0.4517
plots ~a! and ~b!, respectively. The slope in~b! is closer to
the analytical value due to the fact thattfix is larger than in
case~a!, which agrees with the above considerations.

IV. DISCUSSION AND CONCLUSIONS

As we saw in Sec. III, our second-order theoretical p
dictions constitute a very accurate description of the k
dynamics for a wide range of temperatures, up to a valu
kbT.1. In fact, the range of validity of the analytical resu
might be somewhat higher, provided a better way to estim
the kink center from the numerical simulations could be
vised. In any event, the occurrence ofp crossings far away
from the kink center for values aroundkbT.1 indicates that
further increments of the temperature would undoubte
produce kink-antikink pairs, thus invalidating our collectiv
coordinate approach which necessarily relies on the iden
cation of the individual kink propagation. We note that th
value is a little over 10% of the kink rest mass (M058 in
our units!; in this respect, a similar result was obtained
Ref. @25# for the overdampedf4 model by means of a simi
lar perturbative approach~with the caveat that the numerica
data presented in Ref.@25# only allow one to guess what i
the range of validity of their results!.
l-
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of
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It is interesting to pursue further the comparison of t
results for the sG andf4 cases. In our calculations for the s
equation, we have found that the second-order correctio
clearly smaller~albeit relevant! than the first-order one. The
structure of the perturbative calculation allows one to ide
tify the origin of that correction: It comes from the intera
tion of the phonons~described by the functionsAk) with the
kink. Now, in the f4 case, the situation is quite differen
Indeed, the second-order correction is muchlarger than the
one we find here, and the reason for this is the so-ca
internal mode, present forf4 kinks and absent in the sG
case. The coupling between this internal mode~which has
been shown to act as a reservoir of energy available for
change with the kink translation mode@26#! and the kink
motion can be shown, by a careful examination of the cal
lation in Ref.@25#, to be responsible for most of the secon
order correction, while the phonons produce a second-o
term comparable to the one we have found. We thus see
while the range of validity of the analytical approach is
principle the same in both cases, the physics is certa
different, and in fact the question arises as to the validity
this kind of perturbative calculation for thef4 problem in
view of the large contribution of the internal mode. This
an interesting question that deserves further analytical
numerical work.

Returning to our results for the sG kink, the fact that t
second-order correction is smaller than the first-order te
makes us confident that our expansion is likely to be free
problems coming from secular terms. This belief is re
forced by the result that, up to the validity range discuss
above and limited by kink-antikink creation phenomena,
second-order result describes the kink behavior very ac
rately, which deviates very little from the predicted diffusiv
motion. It is then reasonable to expect higher-order contri
tions ~whose calculation is extremely cumbersome, but f
sible in principle! to be negligible, thus yielding our theore
ical result as the final one for the kink diffusion in th
overdamped sG problem. In this context, it is also import
to realize that Eqs.~8a! and ~8b!, which are only first order,
can also be obtained following the McLaughlin and Sc
procedure@27# ~see also Ref.@24#!. However, the advantage
of the perturbative scheme we have used are, on the
hand, that we were able to obtain the next order in the
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pansion, and, on the other hand, that we demonstrated
the second order originates in the interaction between p
non and translational modes of the sG kink.

A final remark on our results relates to the mean value
the wave function̂ f(x,t)& as a function oft, that mustnot
be interpreted as the shape of the kink, in contrast to
interpretation in Ref.@25#. We first note that the width of the
kink cannot increase from its value when unperturbed at r
the sG equation, being Lorentz invariant, implies that
kink width diminishes when in motion, and therefore an
creasing of the width would be very difficult to understa
on physical grounds. Indeed this is not the case. The bro
ening of the mean wave function in fact comes from t
dispersion of the individual realizations, as is immediat
seen from Fig. 5. As may be seen, all individual realizatio
show a width comparable to the initial kink width, whic
agrees with our physical intuition. The observedAt behavior,
discussed at the end of Sec. III, is then evidently related
the fact that the variance of the kink position also has t
behavior. The correct interpretation of the width of^f(x,t)&
is that it represents the area in which the kink can be loca
as its diffusive motion progresses. A similar result was fou
for multiplicative noise in Ref.@28# ~see also Ref.@2# and
references therein!.

To conclude, we want to stress that our main result is
quadratic dependence of the diffusion constant on the t
perature, stemming from the kink-phonon interactions. T
has been verified numerically to a high degree of accura
We have carried out standard Langevin dynamics sim
tions following a well grounded procedure, the He
method, as far as statistical properties are concerned@22#.
We can thus be sure that what we are dealing with is ind
the dynamics of a sG kink at finite temperature. Therefo
our analytical calculations and our numerical simulatio
firmly establish the quadratic dependence of the kink dif
sion constant on the temperature. Now the question rem
as to the behavior ofunderdampedsG kinks. Preliminary
calculations@29# seem to indicate that for underdamped
kinks the second-order correction is of the same order as
found here, which would support the applicability of the pr

FIG. 5. Average of the wave function forkbT50.4 and t
5200 obtained from 1000 realizations~wider solid line!, compared
to the average of only five realizations~dot-dashed line!. Also rep-
resented are three of these individual realizations. Note the diffe
slope and width of the average values as compared to indivi
realizations.
at
o-

f

e

t;
e
-

d-

y
s

to
t

d
d

e
-

s
y.
a-

d
,

s
-
ns

at
-

vious calculations at least for small temperatures and da
ing that is not too small. To date, to our knowledge,
detailed comparison with numerical simulations has e
been done to check the importance of the second-order
rection. On the other hand, it would be interesting to co
pare the results of our approach with the theoretical anal
and experiments in Ref.@12#. Such a comparison would pro
vide much insight into the importance of second- and high
order corrections in actual physical systems. Work alo
these lines is in progress@29#.

Note added in proof.After acceptance of this paper, w
implemented and improved the algorithm for detecting
kink center in our code. With this new procedure, no spu
ous contributions~see discussion below Fig. 1! to the vari-
ance appear. Specificially, Fig. 1~d! is largely improved, and
the numerical results overlap the theoretical prediction, t
confirming the interpretation we have provided of the d
crepancy. A detailed report will be given in@29#.
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APPENDIX

One class of solutions of Eq.~3! @with e50# is repre-
sented by a static kink

f0~x,t !54 arctan@exp~x!#. ~A1!

The perturbations over this equation may be treated
assuming that the solution of Eq.~3! @with e50# has the
forms

f~x,t !5f0~x!1c~x,t !, c~x,t !!f0~x!. ~A2!

If we substitute Eq.~A2! into Eq. ~3! @with e50#, and lin-
earize aroundf0(x), we obtain the following equation fo
c(x,t):

ac t5cxx2F12
2

cosh2~x!
Gc. ~A3!

Then, the solution of Eq.~A3! may be written asc(x,t)
5 f k(x)exp(2vk

2t/a), where f k(x) satisfies the eigenvalu
problem given by

2
]2f k

]x2
1F12

2

cosh2~x!
G f k5vk

2f k . ~A4!

nt
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This equation admits the following eigenfunctions with th
respective eigenvalues:

f T~x!5
2

cosh~x!
, vT

250, ~A5!

f k~x!5
exp~ ikx!@k1 i tanh~x!#

A2pvk

, vk
2511k2. ~A6!
-

s

R.

-

e

.
,

Notice thatf T(x) and f k(x) form a complete set of func
tions with the orthogonality relations

E
2`

1`

f T
2~x!dx58, E

2`

1`

f T~x! f k~x!dx50, ~A7a!

E
2`

1`

f k~x! f k8
* ~x!dx5d~k2k8!. ~A7b!
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